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Article
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1 Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine,
Šalata 12, 10000 Zagreb, Croatia

2 Department of Neurosurgery, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
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Abstract: Background: Individuals with specific TREM2 gene variants that encode for a Triggering
Receptor Expressed on Myeloid cells 2 have a higher prevalence of Alzheimer’s disease (AD). By
interacting with amyloid and apolipoproteins, the TREM2 receptor regulates the number of myeloid
cells, phagocytosis, and the inflammatory response. Higher TREM2 expression has been suggested to
protect against AD. However, it is extremely difficult to comprehend TREM2 signaling in the context
of AD. Previous results are variable and show distinct effects on diverse pathological changes in AD,
differences between soluble and membrane isoform signaling, and inconsistency between animal
models and humans. In addition, the relationship between TREM2 and inflammasome activation
pathways is not yet entirely understood. Objective: This study aimed to determine the relationship
between soluble TREM2 (sTREM2) levels in cerebrospinal fluid (CSF) and plasma samples and other
indicators of AD pathology. Methods: Using the Enzyme-Linked Immunosorbent Assay (ELISA),
we analyzed 98 samples of AD plasma, 35 samples of plasma from individuals with mild cognitive
impairment (MCI), and 11 samples of plasma from healthy controls (HC), as well as 155 samples
of AD CSF, 90 samples of MCI CSF, and 50 samples of HC CSF. Results: CSF sTREM2 levels were
significantly correlated with neurofibrillary degeneration, cognitive decline, and inflammasome
activity in AD patients. In contrast to plasma sTREM2, CSF sTREM2 levels in the AD group were
higher than those in the MCI and HC groups. Moreover, concentrations of sTREM2 in CSF were
substantially higher in the MCI group than in the HC group, indicating that CSF sTREM2 levels could
be used not only to distinguish between HC and AD patients but also as a biomarker to detect earlier
changes in the MCI stage. Conclusions: The results indicate CSF sTREM2 levels reliably predict
neurofibrillary degeneration, cognitive decline, and inflammasome activation, and also have a high
diagnostic potential for distinguishing diseased from healthy individuals. To add sTREM2 to the list
of required AD biomarkers, future studies will need to include a larger number of patients and utilize
a standardized methodology.

Keywords: inflammasome; microglia; mild cognitive impairment; plasma samples; tau protein;
ELISA method

1. Introduction

Carriers of certain TREM2 gene variants (R47H, D87N, L211P, H157Y, R62H, and
T96K) have an increased risk of Alzheimer’s disease (AD). Therefore, the TREM2 receptor is
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commonly investigated in the context of AD [1,2]. After APOE gene variants [3], the R47H
variant of TREM2 is the second most common risk factor for AD, and it can increase the
risk of developing AD by two- to fourfold [2]. ApoE is one of the TREM2 receptor ligands,
and its interaction, if altered, can have a significant effect on the onset of AD symptoms [4].
The TREM2 receptor is indispensable for interacting with apolipoproteins and amyloid-β
(Aβ), and regulating the number of myeloid cells, phagocytosis, and the inflammatory re-
sponse [1,2]. TREM2 is also essential for synaptic pruning and regulates synaptic clearance
via phagocytosis, whereas the absence of TREM2 results in aberrant synaptic clearance [4].
Microglial cholesterol metabolism also depends on TREM2 signaling, as TREM2 deficiency
is associated with impaired intracellular cholesterol storage and efflux [5]. Intriguingly,
TREM2 indirectly regulates the myelinating process by influencing cholesterol metabolism
and clearing myelin debris [5]; this is severely disrupted by the TREM2 p.Q33X mutation
in microglia, which interferes with lysosomal function and contributes to Nasu–Hakola
disease [6,7]. The downstream signaling of TREM2 induces transcriptional changes that
promote the transition from a homeostatic to a disease-associated microglia phenotype
(DAM) [8]. The TREM2 receptor also mediates autophagy, one of the mechanisms for de-
grading cellular proteins, particularly abnormally aggregated proteins, which is impaired
in AD [9]. Humans with TREM2 risk variants and TREM2-deficient mice accumulate
vesicles resembling autophagy [9].

The protective effect of increased TREM2 expression against AD symptoms has
previously been reported [10]. The TREM2 receptor interacts with the Aβ to initiate
its phagocytosis [11]. Higher levels of cerebrospinal fluid (CSF) sTREM2 are associated
with delayed Aβ accumulation in the brain, as measured by amyloid-PET scan [12]. In
the 5XFAD model of AD, protracted TREM2 stimulation via injection of human TREM2
(hTREM2) agonistic mAb (AL002c) attenuated pathological changes in Aβ and neurite
injury [13]. However, a recent study suggests that chronic TREM2 antibody administra-
tion does not influence Aβ plaque burden [14]. In addition, chronic TREM2 activation
increased the dissemination of tau neurofibrillary degeneration and loss of the synapses
surrounding plaques in the region with the highest pathological tau changes and neuritic
dystrophy [14]. In contrast, the soluble form of the TREM2 receptor (sTREM2) promoted Aβ

plaque degradation [15], indicating that two receptor isoforms may play distinct functions
in relation to pathological changes and disease stages. In accordance with that statement, a
recent study on APP/PS1 mice demonstrated that increased TREM2 activation indirectly
inhibits tau protein phosphorylation and neuronal loss by inhibiting glycogen synthase
kinase-3β, the major actor of tau hyperphosphorylation [16]. In addition, AD-associated
microglial activation stage 2 markers in non-demented individuals are predictive of a
delayed accumulation of tau [17]. The increased activity of TREM2 in the transgenic mouse
model is associated with decreased expression of genes essential for the pro-inflammatory
response of microglia [18] and can increase its phagocytotic activity [12,13]. TREM2 expres-
sion and inflammasome activation produce contradictory outcomes [19–23]. Microglia cells
with the R47H variant have a diminished rate of inflammasome activation [19], whereas
macrophages with higher TREM2 expression inhibit inflammasome activation [20]. In
contrast, their pyroptosis increases in the absence of TREM2 [21]. A similar effect was
observed in C57/BL6 mice, where overexpression of TREM2 attenuated postoperative
neuroinflammation [24]. TREM2 overexpression also ameliorates LPS-induced oxidative
stress and inflammation in the BV2 cell line [25]. In contrast, one study discovered that the
AD mouse model TREM2 knock-out (APPPS1; Trem2−/−) has decreased expression of the
pro-inflammatory cytokines IL-1β and IL-6 and increased expression of anti-inflammatory
markers associated with reduced Aβ and tau protein pathological alterations [22]. Mi-
croglia activated by high glucose levels increase TREM2 expression and pro-inflammatory
cytokine release, whereas downregulation of TREM2 reduces inflammation caused by high
glucose levels [23]. Soluble TREM2 (sTREM2) is a form of TREM2 receptor that is released
after its extracellular domain is cleaved by ADAM10 and ADAM17 metalloproteases [11],
and its function remains poorly understood. Another process can be involved in generat-
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ing sTREM2, namely, the soluble form of the receptor can be produced by transcription
of the alternative transcript lacking a transmembrane domain [26], and it appears that
approximately 25% of the sTREM2 may be due to the expression of this isoform. As
discussed, TREM2 shedding from the membrane may function as a negative regulator
of TREM2 signaling [27]. It is still debatable whether the soluble form of TREM2 has an
agonistic effect or whether it competes with the presumably protective full-length mem-
brane TREM2 [11,27]. Additionally, it is not known if sTREM2 CSF levels are positively
correlated with CSF Apoptosis-associated Speck-like protein Containing a CARD (CAspase
Recruitment Domain) (ASC) protein levels, which would indicate an association between
the release of the sTREM2 form and the activation of the inflammasomes. ASC is an adap-
tor protein that plays a crucial role in the assembly of the inflammasome, a multiprotein
complex involved in the activation of inflammatory responses, regulation of the production
of pro-inflammatory cytokines, and the initiation of immune responses [19–21]. Therefore,
revealing the correlation of CSF sTREM2 with CSF ASC protein levels was also one of the
objectives of this study.

It has been hypothesized that sTREM2 initiates the survival of microglia and the secre-
tion of pro-inflammatory cytokines [28]. In the 5xFAD transgenic mouse model, injection
of sTREM2 into the hippocampus increases microglial clustering around amyloid plaques
and reduces amyloid plaque load by uptake and degradation of Aβ, thus rescuing deficits
of spatial memory and long-term potentiation [15]. However, the depletion of microglia
abolishes the neuroprotective effect of sTREM2 [15]. Recently, a rare p.H157Y variant of
TREM2 that gives rise to cleavage sites at the extracellular domain was identified; this
variant is associated with increased production of sTREM2 and an increased risk of AD [29].
In vivo experiments with Trem2 H157Y knock-in mice revealed that increased levels of
sTREM2 are advantageous for the animals, resulting in improved synapse function and
amelioration of amyloid pathological alterations [29]. However, the study did not include
other pathological factors, such as tau protein changes, which could be one explanation
for why this mutation has a different effect in humans [29]. In a separate study examining
the effect of the R47H variant on tau pathology in the PS19 mouse model of tauopathy
expressing either human common TREM2 or the R47H variant, it was discovered that
impaired TREM2 signaling (in the case of the R47H variant) significantly attenuated neu-
rodegenerative changes caused by tau pathology. It is hypothesized that altered TREM2
receptor signaling influences microglial activation and, as a result, ameliorates microglia-
mediated degeneration [30]. It appears that tau neurofibrillary degeneration associated
with TREM2 signaling is highly dependent on ApoE variants [31]. TREM2 knock-out P301S
tau mice with an expressed ApoE4 variant have significantly higher neurodegenerative
and tau protein alterations than mice with the same ApoE variant and an expressed TREM2
gene [31]. In the THY-Tau22 transgenic murine model of tauopathy, TREM2 deficiency
decreased microglial activation, which exacerbated pathological changes in later stages [32].
The TREM2 signaling pathways are extraordinarily complex, as evidenced by their varying
effects on diverse pathological alterations, differences in signaling between soluble and
membrane isoforms signaling, and discordance between animal models and human AD
patients. In amyloid mouse models of AD, for instance, brain expression or injection
of wild-type sTREM2 decreases amyloid pathological changes, indicating that wild-type
sTREM2 is protective against amyloid pathology [33].

To determine whether sTREM2 protects against AD and at what stage of the disease,
it is crucial to conduct additional longitudinal studies on the AD population. Analysis of
the TREM2 levels in the CSF generally revealed elevated levels in AD patients; however,
other studies did not confirm these findings [34], and some reported variable TREM2 levels
dependent on the disease stage, with the highest levels typically associated with earlier
symptomatic stages (for review, see [33]). Intriguingly, an increase in TREM2 CSF levels
correlates positively with total and phosphorylated tau CSF levels, and inversely with
Aβ levels [1,34–37]. Lower Aβ-PET signaling was associated with higher CSF TREM2
levels, indicating that microglial activity may be protective against the formation of Aβ
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plaques [12]. Therefore, sTREM2 may be a useful biomarker of the pathological state of
AD; however, future research should include additional studies with a greater number
of patients and more uniform analysis procedures. This study aimed to determine the
relationship between sTREM2 levels in CSF and plasma samples and other markers of AD
pathology and the activation of the inflammasomes.

2. Materials and Methods
2.1. Cerebrospinal Fluid and Blood Collection

This study included patients admitted to the University Hospital Center “Zagreb”
in Zagreb, Croatia. AD diagnosis was based on NIA-AA (National Institute on Aging-
Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s
disease) [38,39], NINCDS-ADRDA (National Institute of Neurological and Communicative
Disorders and Stroke and Alzheimer’s Disease and Related Disorders Association), and
DSM-IV-TR (Diagnostic and Statistical Manual of Mental Disorders) criteria [40]. The
diagnosis of MCI (mild cognitive impairment) was determined by criteria described by
Petersen et al. [41] and Albert et al. [42]. Samples were collected during a routine patient
examination at one time point (a cross-sectional study). CSF samples were obtained
by lumbar puncture (performed at intervertebral spaces L3/L4 or L4/L5). Following
10 min of centrifugation at 2000× g, CSF samples were aliquoted and stored at −80 ◦C
in polypropylene tubes. Venous blood samples were collected in the morning on an
empty stomach. Samples were collected using plastic syringes containing 1 mL of acid
citrate dextrose as an anticoagulant. Thrombocyte-free plasma was extracted through
centrifugation, first at 1100× g for 3 min and then at 5087× g for 15 min. Plasma samples
were stored at −20 ◦C. All procedures were approved by the Ethical Committee of the
Clinical Hospital Center “Zagreb” (protocol no. 02/21 AG, class 8.1–18/82-2 from 24 April
2018, and protocol no. 02/21 AG, class 8.1–19/201-2 from 23 September 2019) and the
Central Ethical Committee (Institutional Review Board) of the University of Zagreb School
of Medicine (protocol no. 380-59-10106-18-111/126, class 641-01/18-02/01 from 20 June
2018, and protocol no. 380-59-10106-19-111/251, class 641-01/19-02/01 from October 2019).
We analyzed 98 AD, 35 MCI, and 11 healthy controls (HC) plasma samples, as well as
155 AD CSF samples, 90 MCI CSF samples, and 50 HC CSF samples.

2.2. ELISA Procedure

Levels of the biomarkers (sTREM2, ASC, p-tau181, t-tau, and Aβ1-42) in CSF and
sTREM2 in plasma samples were determined with an Enzyme-Linked Immunosorbent
Assay (ELISA) according to manufacturer protocols for:

• TREM2 (Human TREM2 ELISA Kit, Abcam, Cambridge, UK);
• Aβ1-42 (Innotest β-amyloid1-42, Fujirebio, Gent, Belgium);
• total tau (Innotest hTau Ag, Fujirebio, Gent, Belgium);
• p-tau181 (Innotest Phospho-Tau(181P), Fujirebio, Gent, Belgium);
• ASC (Human PYCARD/ASC/TMS1 Sandwich ELISA, LSBio, Seattle, WA, USA).

Aβ1-42, t-tau, p-tau181, and ASC ELISA measurements were performed on 96-well
plates coated with capture antibodies (indirect capture method). Samples and standards
were added and incubated in the plates. The ASC ELISA samples were diluted 1:2. After
incubation, the detection antibody was added to the washed wells. For the indirect detec-
tion of Aβ1-42, t-tau, p-tau181, and ASC, biotin-labeled detection antibodies were used in
conjunction with the streptavidin-HRP complex.

The sTREM2 ELISA kit consisted of a 96-well plate coated with an anti-tag antibody
that immobilized the complex of capture antibody-analyte-detector antibody. After adding
samples (1:50 dilution) and standards to the wells, a capture/detector antibody mixture
was added. HRP chromogenic substrate was applied following incubation and washing.
All analytes’ absorbances were measured at 450 nm at Glomax Explorer (Promega, Madison,
WI, USA), and protein concentrations were calculated using a 4-parameter algorithm in
GraphPad Prism 8.0 (GraphPad Software Inc., San Diego, CA, USA).
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2.3. Statistical Analysis

GraphPad Prism 8.0 (GraphPad Software Inc., San Diego, CA, USA) software was
used for statistical analyses, with the level of statistical significance set at α = 0.05. Because
of the small number of subjects in some groups, non-parametric statistical tests were used.
A non-parametric Kruskal–Wallis test with the Dunn–Bonferroni post-hoc test was used
for the comparison of the sTREM2 levels between the groups in CSF and plasma samples.
For the correlation analyses, we used a non-parametric Spearman correlation test, and the
correlation of the parameters was tested in all subjects. The diagnostic sensitivity, specificity,
and cut-off value for CSF sTREM2 were measured by the analysis of the Receiver Operating
Characteristic (ROC) Area Under Curve (AUC). The best cut-off value was determined
when the sum of sensitivity and specificity was maximized.

3. Results

In Table 1, the basic characteristics of the MCI, AD, and HC groups are presented.

Table 1. Age and number of Mini-Mental State Examination (MMSE) points, and cerebrospinal fluid
(CSF) levels of sTREM2, t-tau, p-tau181, Aβ1-42, and ASC for the AD, MCI, and HC groups, where (n)
represents the sample size analyzed.

Group
Age (Years)
Mean ± SD

(n)

MMSE
(Points)

Mean ± SD
(n)

sTREM2
(pg/mL)

Mean ± SD
(n)

ASC (ng/mL)
Mean ± SD

(n)

Aβ1-42 (pg/mL)
Mean ± SD

(n)

p-tau181
(pg/mL)

Mean ± SD
(n)

t-tau (pg/mL)
Mean ± SD

(n)

AD 70.58 ± 8.670
(154) a,b

20.30 ± 4.395
(142) a,b

33,854 ± 19,631
(155) a,b

3.817± 1.348
(126)

549.5 ± 303.9
(152)

77.06 ± 45.25
(147) a,b

522.5 ± 400.9
(146) a,b

MCI 66.42 ± 8.832
(90) a,c

25.64 ± 2.903
(74) a,c

26,940 ± 17,043
(90) a,c

3.432 ± 1.121
(78)

665.9 ± 374.8
(86) c

53.32 ± 29.90
(87) a,c

257.5 ± 177.1
(86) a

HC 58.80 ± 10.68
(49) b,c

29.06 ± 2.199
(32) b,c

18,527 ± 13,566
(50) b,c

3.369 ± 1.272
(39)

552.8 ± 521.7
(49) c

35.18 ± 22.70
(49) b,c

222.7 ± 284.0
(48) b

Kruskal–Wallis
test

H test = 45.13 p
< 0.0001

H test = 124.4 p
< 0.0001

H test = 35.38 p
< 0.0001

H test = 6.44 p
= 0.04

H test = 8.873 p
= 0.01

H test = 57.40 p
< 0.0001

H test = 58.02 p
< 0.0001

a Significant difference between AD and MCI; b Significant difference between AD and HC; c Significant difference
between MCI and HC.

3.1. sTREM2 Levels in CSF and Plasma Samples

CSF sTREM2 concentrations were significantly higher in AD than in MCI (p = 0.01)
and HC (p < 0.0001), and in MCI than in the HC group (p = 0.01) (Figure 1). Plasma sTREM2
concentrations were comparable between groups. The correlation between sTREM2 levels
and age, sex, Mini-Mental State Examination (MMSE) score, ASC protein concentrations,
and primary CSF biomarkers for AD (total and phosphorylated tau protein and Aβ concen-
trations) was analyzed. CSF sTREM2 levels correlated significantly positively with patient
age (rs = 0.26, p < 0.0001; Figure 2a), plasma sTREM2 concentrations (rs = 0.2, p = 0.02;
Figure 2b), CSF p-tau181 (rs = 0.28, p < 0.0001; Figure 2c), and CSF ASC protein levels
(rs = 0.19, p = 0.003; Figure 2d). CSF sTREM2 concentrations also correlated positively
and highly significantly with t-tau protein levels (rs = 0.31, p < 0.0001; Figure 2e) and
negatively and significantly with MMSE score (rs = −0.19, p = 0.002; Figure 2f). There was
no relationship between the levels of sTREM2 and Aβ1-42 in CSF (rs = 0.08, p = 0.18). Age
was also positively correlated with plasma sTREM2 concentrations (rs = 0.26, p = 0.002).
As shown in Figure 3, the sensitivity and specificity of sTREM2 in CSF as a biomarker for
AD were 65.81% and 80.00%, respectively, at a cut-off value of 23,950 pg/mL (AUC = 0.75;
p < 0.001).
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Figure 3. ROC curve for CSF sTREM2 levels. The sensitivity and specificity of sTREM2 in CSF as
a biomarker for AD were 65.81% and 80.00%, respectively. The best cut-off value was determined
when the sum of sensitivity and specificity was maximized. This cut-off value is 23,950 pg/mL.
AUC = 0.75; p < 0.0001. AD, Alzheimer’s disease; AUC, Area Under Curve; ROC, Receiver Operating
Characteristic; sTREM2, sTREM2, soluble Triggering Receptor Expressed on Myeloid cells 2.

3.2. ASC Levels in CSF and Plasma Samples

In addition to the already mentioned positive correlation of ASC protein concentrations
in the CSF with sTREM2, ASC levels were positively correlated with the age of the subjects
(rs = 0.22, p = 0.0005), p-tau181 concentrations (rs = 0.24, p = 0.0003), and t-tau protein
concentrations (rs = 0.17, p = 0.01). ASC protein concentrations in plasma were positively
correlated with ASC protein concentrations in the CSF (rs = 0.23, p = 0.02) and subject age
(rs = 0.2, p = 0.02). The results of the analysis of the diagnostic potential of ASC protein
showed that the concentration of ASC protein in the CSF is not a good indicator of the
differences between AD patients and healthy subjects (AUC = 0.54; p = 0.42).

4. Discussion

Our findings demonstrate convincingly that CSF levels of sTREM2 are significantly
greater in the AD group than in the MCI and HC groups. Apart from rare exceptions [34,43],
the vast majority of previous studies [44,45] have, like the present study, found elevated
concentrations of sTREM2 in CSF to be strongly associated with AD. Importantly, we
found that concentrations of sTREM2 in CSF are substantially higher in the MCI group
compared to the HC group, confirming previous suggestions that sTREM2 could be used
as a biomarker to detect conversion from MCI to AD [45] and can indicate earlier changes
in the MCI stage. A conclusive graph of our main results is given in Figure 4.

Our findings also demonstrate that, statistically, plasma levels of sTREM2 do not
differ between the three groups analyzed. This once again confirms that prospective AD
biomarkers in plasma are poor indicators of what is occurring in the brain, and as a result,
these biomarkers have unsatisfactory outcomes. There are numerous reasons for this, but
some of the most important are as follows: (1) probably only a small fraction of sTREM2
enters the peripheral biofluid system; (2) like other proteins, sTREM2 can be degraded
by proteases or form complexes with various blood proteins; and (3) sTREM2 can also be
cleared in the liver and kidney, and by macrophages in peripheral organs and tissues [46].
The third reason suggests that the optimal blood-collection site should be changed from the
cubital vein to the internal jugular vein, as this would reduce blood dilution, degradation,



Neurol. Int. 2023, 15 849

and organ clearance effects [46]. Regardless of the aforementioned explanations, our results
indicate that plasma sTREM2 concentrations do not adequately differentiate microglial
activity between the MCI, AD, and HC subject groups. On the other hand, differences in
CSF sTREM2 levels suggest that the innate immune response in the brains of AD patients
is much stronger and that microglia are more active in the MCI stage than during healthy
aging. Using transgenic mouse models of amyloid deposition, it has been demonstrated
that genetic variability in the microglial response to amyloid deposition may be a significant
risk factor for AD [47]. In the same study that confirmed the involvement of four mouse
orthologs of GWAS-established risk genes for AD, including TREM2, at least four new
putative risk genes were identified with a high degree of statistical rigor, as increased
expression of these genes in microglia was observed only in the presence of amyloid [47].
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a specificity of 80.0%. AD, Alzheimer’s disease; CSF, cerebrospinal fluid; HC, healthy controls;
MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; p-tau, tau phosphorylated
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Previously, variations in sTREM2 levels were determined at distinct disease stages.
The MCI group had the highest levels of sTREM2, which may be indicative of microglia’s
response to early neuronal death [35] and efferocytosis [48]. Efferocytosis enables mi-
croglia to efficiently remove apoptotic and necrotic cells as well as cellular debris. In
addition, it stimulates the production of anti-inflammatory cytokines, such as TGF-β and
IL-10, while suppressing the release of pro-inflammatory cytokines. Thus, a deficiency
in efferocytosis leads to the accumulation of apoptotic cells and cholesterol-rich brain
tissue cellular detritus, resulting in chronic inflammation and autoimmunity [48]. Other
authors [36,37] have discovered that sTREM2 concentrations are exceedingly sensitive to
the onset of pathological changes during the progression of the disease [36,37,45]. In early
non-symptomatic stages with low Aβ and normal tau levels, sTREM2 levels are lower, and
sTREM2 concentrations increase when tau protein changes manifest as elevated CSF levels
of p-tau and t-tau [36,37]. The TREM2 receptor is known to interact with Aβ and initiate its
phagocytosis [11]. Ewers and colleagues [12] have demonstrated that elevated sTREM2
CSF levels prevent Aβ accumulation in the brain. In the 5xFAD model of AD, protracted
TREM2 stimulation by injection of human TREM2 (hTREM2) agonistic MAb (AL002c)
was protective against Aβ pathological changes and neurite damage [13]. Even though
the role of the TREM2 receptor in the pathogenesis of AD is not completely understood,
it is reasonable to assume that in the early stages of the disease it may play a protective
role, but as the disease progresses and the adaptive immune response is more involved, it
becomes harmful [11,49]. In addition, TREM2 may only be protective against a subset of
the pathological alterations in AD, specifically the previously mentioned Aβ load, but not
tau pathology. Recent research [49] found that the number of T cells, particularly cytotoxic
T cells, was significantly elevated in regions of pathological tau changes in the brains of
mice with tauopathy and AD patients.

An important study investigated 1035 participants from the Alzheimer’s Disease
Neuroimaging Initiative database, including 310 HC, 527 MCI, and 198 AD subjects [50].
CSF sTREM2 levels were associated with older age and CSF p-tau and t-tau levels, all with
p < 0.0001 [50], corroborating the findings of this investigation. Contrary to our findings,
however, sTREM2 levels were not correlated with the cognitive status [50]. Another
recently published study examined sTREM2 levels longitudinally from the participants of
the observational Dominantly Inherited Alzheimer Network, which included families with
a history of autosomal dominant AD [51]. Participants aged over 18 years were categorized
as either carriers or pathogenic variants in PSEN1, PSEN2, and APP genes (N = 155) or
non-carriers (N = 93). High amyloid burden at baseline, demonstrated by low CSF Aβ1-42
but not high cortical uptake in Pittsburgh compound B positron emission tomography
(PiB-PET), was the only factor that indicated a higher annual rate of rise in sTREM2 in
individuals with pathogenic mutations [51]. According to the authors of the study, these
findings support the protective effect of sTREM2 on Aβ deposition, Aβ-dependent tau
pathology, cortical atrophy, and cognitive decline [51]. As a result, sTREM2 could be an
important marker for clinical trial design and interpretation.

The cross-sectional design of the present investigation is a limitation; a longitudi-
nal study would be preferable for tracking TREM2 level changes across disease stages.
Notwithstanding this, correlation analysis reveals a robust relationship between microglial
activity and pathological alterations of tau proteins. In our study, sTREM2 CSF levels were
positively correlated with both t-tau and p-tau181 CSF levels, findings in good agreement
with previous studies in which tau-related neurodegeneration was reported to be associated
with an increase in CSF sTREM2 (for review, see [11,27]), but not with Aβ1-42 CSF levels,
similar to a recent report by Suarez-Cálvet et al. [36]. Based on the current investigation and
the study of Suarez-Cálvet et al., it is logical to conclude that the pathology of the longest
form of amyloid (Aβ1-42) in the absence of downstream tau-related neurodegeneration
is associated with a decrease in CSF sTREM2. Intriguingly, a recent study found a posi-
tive association between sTREM2 in CSF and the shorter variants of amyloid, Aβx-40 [52],
which are not typically associated with AD [53,54]. These findings may be explained by



Neurol. Int. 2023, 15 851

the possibility that AD patients have a higher removal rate of soluble Aβ1-42 because of
increased cellular Aβ1-42 uptake [55].

This interdependence between sTREM2 levels and biomarkers of tau protein alter-
ations has been reported previously, confirming the significance of the TREM2 receptor
in tauopathy pathogenesis [11]. However, the precise roles of the TREM2 receptor in
tauopathies remain undetermined. Its primary functions appear to include promoting
phagocytosis, moderating the response to neuronal injury, and modulating neuroinflam-
mation [7]. Recent research examining the effect of the R47H variant on tau pathology
in the PS19 mouse model of tauopathy revealed that this variant improves microglia re-
sponse and causes neurodegenerative alterations related to pathological changes of tau
proteins [30]. In the THY-Tau22 mouse model of tauopathy, another study revealed that
TREM2 deficiency worsens tau pathological changes in later stages owing to the lower
microglial activation rate [32]. Depending on the APOE genotype, TREM2 signaling has
distinct effects on pathological changes in the tau protein. Tau pathological changes and
neurodegeneration are significantly more severe in mice with a silenced TREM2 gene
and ApoE4 than in mice with an active TREM2 gene [31]. This is further evidence of the
complexity of TREM2 signaling and a reminder of the distinctions between animal models
of AD and humans. A positive correlation between sTREM2 concentrations and the age
of the subjects suggests that microglial activation increases with age, whereas a negative
correlation between sTREM2 concentrations and the MMSE score suggests that sTREM2
could be a good indicator of cognitive deficits and that neurodegenerative changes and
microglial activation are highly interrelated.

In addition, sTREM2 CSF levels were positively correlated with CSF ASC protein
levels, indicating a potential link between the release of the soluble TREM2 form and
the activation of the inflammasomes. Multiple studies [19–21,23] have demonstrated the
relationship between inflammasomes and TREM2 receptors. Microglia cells with the R47H
TREM2 gene variant, which increases the risk of AD onset, have a decreased activation
of the NOD-like leucine-rich repeat receptors family pyrin domain-containing 3 (NLRP3)
inflammasome upon ligand binding to the TREM2 receptor [19]. Overexpression of TREM2
in macrophages inhibits activation of the NLRP3 inflammasome [20], whereas silencing
the TREM2 gene substantially increases macrophage pyroptosis [21]. These results suggest
that TREM2 receptor expression performs a protective and anti-inflammatory role (for
review, see [56]). In the context of AD, this property of TREM2 implies greater control over
the inflammatory response and protection from over-activation and cross-activation of
the inflammasomes, including the neuronal NLRP1 inflammasome [57], but this does not
imply that silencing the inflammatory response is always the best course of action. For a
healthy immune response, the timing and sequence of events are of the utmost importance,
as AD pathological changes may affect the interaction between two receptors differently. In
interpreting the results, it is important to remember that a previous study [58] has already
demonstrated a correlation between elevated sTREM2 levels and pathological changes
of the white matter, specifically small vessel disease and amyloid angiopathy, regardless
of the severity of other pathological changes. This study demonstrates that CSF sTREM2
concentrations can differentiate between healthy and AD patients. With a cutoff value
of 23,950 pg/mL, CSF sTREM2 had a relatively good sensitivity of 66.81% and a high
specificity of 80%.

Excessive inflammasome activation is one of the adverse effects of chronically active
microglia. The AD group had higher concentrations of ASC protein in the CSF than the
MCI and HC groups, but the differences in plasma concentrations were not statistically
significant. In addition, there was no significant difference between the MCI and HC
groups in terms of CSF ASC protein concentrations. This indicates that inflammasome
activity is greater in AD compared to MCI, where significant activation of the inflamma-
some and release of ASC protein into the extracellular milieu does not likely occur. Even
though the concentrations of ASC in the CSF are significantly higher in the AD group,
the diagnostic potential analysis of the ASC protein revealed that the concentration of the
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ASC protein in the CSF is not a reliable diagnostic marker for distinguishing AD patients
from cognitively healthy subjects. In addition to microglia, we know that neurons also
express inflammasomes. In neurons, the NLRP1 inflammasome is especially active [55], so
higher concentrations of extracellular ASC in AD may be a result of more severe neuronal
degeneration. In contrast to the findings of the present research, a recent study found
elevated concentrations of ASC protein in the serum of MCI subjects compared to those
of control and AD subjects [59]. The extended period of storage of plasma samples in our
study, as well as the small number of subjects in the HC group, could account for conflicting
results. Moreover, the presence of ASC protein in peripheral blood is not only an indicator
of inflammasome activation in the brain but also of inflammatory processes in peripheral
tissues. In addition to the previously mentioned concentrations of sTREM2 in the CSF, the
concentrations of ASC protein in the CSF were positively correlated with the concentra-
tions of ASC in the plasma and the age of the subjects, which can be interpreted as the
activation of the inflammasome becoming more pronounced with age. Similar to sTREM2,
the concentrations of ASC protein in the CSF of our sample are positively correlated with
t-tau and p-tau181 concentrations, confirming the interdependence between the activation
of inflammatory processes and pathological alterations of tau protein. It is known that
microglia in AD are activated by the presence of pathologically altered tau protein and that
pathological forms of tau protein in neurodegenerative diseases influence the course of
inflammation [60,61]. Additionally, it has been shown that aggregated forms of tau protein
activate the NLRP3 inflammasome [62]. As a result of the phagocytosis of aggregated
forms of tau protein and the inability of microglia to degrade them, the inflammasome is
activated, and it has been proposed that microglia also contribute to the spread of neu-
rofibrillary changes [62]. The aforementioned findings indicate that the inflammasome can
be activated by the consumption of aggregated ASC and altered tau proteins in nearby
cells [62]. This results in the dissemination of inflammation and pathological tau protein
changes via tau seeds, which serve as tau templates for the pathological folding of normal
tau monomers throughout the affected regions of the brain [56]. Although the precise
sequence and cause-and-effect relationships of pathological changes in the activation of the
inflammasome and tau protein have not been fully elucidated, the aforementioned findings
confirm the importance of further research in this field.

AD is also characterized by dysregulation of glucose metabolism [63–66], and a recent
study found that inflammation initiated by elevated glucose levels in the BV2 microglial cell
line results in a higher rate of NLRP3 inflammasome activation [23]. Additional experiments
have shown that the TREM2 receptor can modulate the inflammatory response initiated by
high glucose levels and the NLRP3 inflammasome [23]. Choi and colleagues found that
5xFAD mouse microglia consume significantly more glucose than wild-type microglia and
that as the disease progresses, microglia express a greater number of glucose transporters
(GLUT1 and GLUT2), have insufficient glycolysis, and have a higher level of oxidative
phosphorylation [28]. In addition, they discovered a positive correlation between the levels
of CSF sTREM2 and glucose intake in the human hippocampus [28], which, given the
activation of inflammasomes in glia in response to high glucose concentrations, could be a
link between sTREM2 levels and the activation of inflammasomes. Despite the apparent
connection between TREM2 signaling and the inflammasome activation pathway, the
role and interaction of sTREM2 and inflammasome activation remain undefined. Even
though other monocytes can also express the TREM2 receptor and release its soluble form
into the blood [67], our results indicate a positive correlation between CSF and plasma
sTREM2, which suggests that the state of the periphery indicates alterations in the brain
to some extent. Several studies have failed to find a correlation between CSF sTREM2
levels and peripheral blood sTREM2 levels [68,69], and one study reported a negative
correlation between CSF and plasma sTREM2 levels [70]. Despite obvious differences in
CSF sTREM2 levels, the latter statement can explain the lack of significant differences in
plasma sTREM2 levels between the analyzed groups due to the reasons already discussed
(for review, see [46]). Lastly, plasma sample groups were substantially smaller than CSF
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sample groups, which may explain why the differences were not statistically significant.
The major limitation of the study is the small number of samples in some groups, especially
plasma samples. Additionally, plasma samples were stored for a longer period than CSF
samples before the analysis of sTREM2 and ASC protein levels.

5. Conclusions

In contrast to plasma sTREM2, CSF sTREM2 levels were significantly higher in the
AD group than in the MCI and HC groups, indicating a high diagnostic potential for
distinguishing diseased from healthy individuals. The significant difference in sTREM2
levels between patients with MCI and HC subjects highlights sTREM2’s potential even
further. AD patients with elevated CSF sTREM2 levels reliably predict neurofibrillary
degeneration, cognitive decline, and inflammasome activation. To confirm the addition of
CSF sTREM2 to the list of mandatory biomarkers for AD, future research should include
more patients and follow the same pre-analytical, analytical, and post-analytical procedures.
Considering the complexity of TREM2 signaling in relation to various pathological aspects
of AD, future longitudinal studies on AD patients are necessary.
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57. Španić, E.; Langer Horvat, L.; Ilić, K.; Hof, P.R.; Šimić, G. NLRP1 Inflammasome activation in the hippocampal formation in
Alzheimer’s disease: Correlation with neuropathological changes and unbiasedly estimated neuronal loss. Cells 2022, 11, 2223.
[CrossRef]

58. Tsai, H.H.; Chen, Y.F.; Yen, R.F.; Lo, Y.L.; Yang, K.C.; Jeng, J.S.; Tsai, L.K.; Chang, C.F. Plasma soluble TREM2 is associated with
white matter lesions independent of amyloid and tau. Brain 2021, 144, 3371–3380. [CrossRef]

59. Scott, X.O.; Stephens, M.E.; Desir, M.C.; Dietrich, W.D.; Keane, R.W.; de Rivero Vaccari, J.P. The inflammasome adaptor protein
ASC in mild cognitive impairment and Alzheimer’s disease. Int. J. Mol. Sci. 2020, 21, 4674. [CrossRef]

60. Zilka, N.; Stozicka, Z.; Kovac, A.; Pilipcines, E.; Bugos, O.; Novak, M. Human misfolded truncated tau protein promotes activation
of microglia and leukocyte infiltration in the transgenic rat model of tauopathy. J. Neuroimmunol. 2009, 209, 16–25. [CrossRef]

61. Zilka, N.; Kazmerova, Z.; Jadhav, S.; Neradil, P.; Madari, A.; Obetkova, D.; Bugos, O.; Novak, M. Who fans the flames of
Alzheimer’s disease brains? Misfolded tau on the crossroad of neurodegenerative and inflammatory pathways. J. Neuroinflamma-
tion 2012, 9, 47. [CrossRef]

62. Stancu, I.-C.; Cremers, N.; Vanrusselt, H.; Couturier, J.; Vanoosthuyse, A.; Kessels, S.; Lodder, C.; Brône, B.; Huaux, F.;
Octave, J.-N.; et al. Aggregated tau activates NLRP3-ASC inflammasome exacerbating exogenously seeded and non-exogenously
seeded tau pathology in vivo. Acta Neuropathol. 2019, 137, 599–617. [CrossRef] [PubMed]

63. Chen, Z.; Zhong, C. Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: Implications for diagnostic and
therapeutic strategies. Prog. Neurobiol. 2013, 108, 21–43. [CrossRef] [PubMed]

64. An, Y.; Varma, V.R.; Varma, S.; Casanova, R.; Dammer, E.; Pletnikova, O.; Chia, C.W.; Egan, J.M.; Ferrucci, L.; Troncoso, J.; et al.
Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimer’s Dement. 2018, 14, 318–329. [CrossRef] [PubMed]

65. Cho, S.; Lee, H.; Seo, J. Impact of genetic risk factors for Alzheimer’s disease on brain glucose metabolism. Mol. Neurobiol. 2021,
58, 2608–2619. [CrossRef]
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