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Older people are increasingly susceptible to adverse drug 
reactions (ADRs) or therapeutic failure. This could be medi-
ated by considerable polypharmacy, which increases the 
possibility of drug-drug and drug-gene interactions. Pre-
cision medicine, based on individual genetic variations, 
enables the screening of patients at risk for ADRs and the 
implementation of personalized treatment regimens. It 
combines genetic and genomic data with environmental 
and clinical factors in order to tailor prevention and dis-
ease-management strategies, including pharmacothera-
py. The identification of genetic factors that influence drug 
absorption, distribution, metabolism, excretion, and action 
at the drug target level allows individualized therapy. Pos-
itive pharmacogenomic findings have been reported for 
the majority of cardiovascular drugs (CVD), suggesting that 
pre-emptive testing can improve efficacy and minimize 
the toxicity risk. Gene variants related to drug metabolism 
and transport variability or pharmacodynamics of major 
CVD have been translated into dosing recommendations. 
Pharmacogenetics consortia have issued guidelines for 
oral anticoagulants, antiplatelet agents, statins, and some 
beta-blockers. Since the majority of pharmacogenetics 
recommendations are based on the assessment of single 
drug-gene interactions, it is imperative to develop tools for 
the prediction of multiple drug-drug-gene interactions, 
which are common in the elderly with comorbidity. The 
availability of genomic testing has grown, but its clinical 
application is still insufficient.
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Variability in the response to drug therapy is a widespread 
issue. It may be affected by various factors, including, but 
not limited to age, sex, renal and hepatic function, as well 
as drug-drug and drug-food interactions. An important 
role is also played by genetics (1); genetic predisposition 
accounts for approximately 20%-40% of interindividual 
variability in drug response (2), but in the case of some 
therapies, eg, metoprolol and torsemide, twin studies 
revealed that genetic contribution to pharmacokinetic 
(PK) variability is up to 90% (3). Potential effects of genet-
ic polymorphisms are numerous and include prolonged 
and enhanced pharmacological effect, drug toxicity and 
side effects, the lack of efficacy in the use of recommend-
ed doses and need for higher doses, activation of alterna-
tive and harmful biochemical pathways, as well as drug 
interactions.

Genetic profiling has been first implemented in the area 
of pharmacogenetics/pharmacogenomics. While pharma-
cogenetics investigates a specific DNA polymorphism or 
coding variant, pharmacogenomics investigates the role 
of various genome components in the response to a drug. 
Personalized medicine (also termed precision medicine) 
refers to an approach that uses a patient-unique profile. 
It combines genetic and genomic data with environmen-
tal and clinical factors to assess individual risks and tailor 
prevention and disease-management strategies, including 
pharmacotherapy.

The major challenge in pharmacogenomics is translat-
ing the results of genetic testing into treatment recom-
mendations. In recent years, genotype-based guidelines 
have provided strong evidence linking genetic variants 
to the variability of drug efficacy or risk for the develop-
ment of adverse reactions (ADRs) (4). This is of enormous 
importance for the elderly patients since the risk for ADRs 
increases with age, comorbidity, and the number of con-
comitant medicinal therapies (5). Among others, the Clini-
cal Pharmacogenetics Implementation Consortium (CPIC) 
has issued very helpful guidelines for dosing of different 
medicines according to related pharmacogenes. The phar-
macogenetic data may improve our ability to select the 
most appropriate medication, individualize the dose and 
dosing schedule, thus yielding significant health and eco-
nomic benefits for patients and society (6).

In this review, we would like to present some recommen-
dations and guidelines considering pharmacogenomics 

for the treatment of the elderly with comorbidity and 
polypharmacy, giving specific examples of pharma-

cogenomics of cardiovascular drugs applied in the elderly 
population. We also summarized relevant published data 
from our previous investigations and scientific literature.

Adverse drug reactions in the elderly

Adverse drug reactions (ADRs) are a significant cause of 
morbidity, mortality, and health care costs and are respon-
sible for nearly 30% of hospital admissions of elderly pa-
tients (7,8). Furthermore, ADRs in the elderly population 
are expected to be more severe and underreported, with 
a substantially high mortality rate. More than 80% of ADRs 
as cause of admission or registered in hospital are related 
to the applied dose, which makes them predictable and 
avoidable (9,10). A meta-analysis in the US found that ADRs 
contributed to 100 000 deaths per year (11), while a Swed-
ish study reported that they contributed to 3.1% deaths 
per year in the general population (12). The overall mortal-
ity of hospitalized patients linked to an ADR ranges from 
0.14% to 4.7%, with fatal outcomes more likely occurring 
in patients older than 55 and the greatest risk in patients 
older than 75 (11,13). The most important risk factors for 
ADR-related hospitalizations were older age, comorbidities 
with polypharmacy, and possibly unsuitable medicines. 
ADR-related hospital admissions are mostly attributable to 
antiplatelets, anticoagulants, diuretics, NSAIDs, and antidi-
abetic drugs (14). ADR-related hospitalization in older pa-
tients can be prevented by the development of interven-
tion strategies and prediction tools (15). By increasing drug 
efficacy and drug safety and decreasing ADRs, the poten-
tial for cost savings is enormous (11).

Pharmacogenomics of ADVERSE REACTIONS

Pharmacogenetic variability could influence drug response 
at the PK and pharmacodynamics (PD) level. When apply-
ing the equal dose of a drug to two unrelated persons of 
equal weight, plasma drug level differences can be more 
than 1000-fold (2,16). Pharmacokinetics investigates the 
transport of administered drugs, including their absorp-
tion, distribution, metabolism, and excretion (processes 
coded by ADME genes). ADME genes are highly variable 
(17,18), and this variability significantly accounts for inter-
individual inconsistency in medication efficacy and toxic-
ity (2). The majority of pharmacogenetics studies reported 
on genetic differences in drug-metabolizing enzymes of 
phase I (predominantly P450 CYPs) and phase II, as well as 
drug transporters. The effects of pharmacogenetics on PD 
refer to genetic variations of the drug targets (ie, receptors), 
with the consequence of a decreased therapeutic efficacy. 
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The identification of genetic factors that underlie these dif-
ferences might optimize drug efficiency and improve the 
safety profile, thus enabling individualized therapy (19).

Polypharmacy

Older people often suffer from comorbidities, resulting in 
a high use of polypharmacy. Multiple studies confirmed 
polypharmacy to be a considerable risk for drug-disease, 
drug-drug, and drug-gene interactions (5,20). The con-
sequences of polypharmacy include ADRs, admission to 
hospitals, fatal outcomes, and other health adverse out-
comes. Elderly patients with altered drug metabolism or 
PD can be identified by pharmacogenetic testing. Pub-
lished data has confirmed the potential of precision medi-
cine, especially in older patients with polypharmacy and 
with a history of emergency care admission (21). How-
ever, predicting the deleterious impact of polypharmacy 
still requires comprehensive research that should take 
into consideration structured drug-drug and drug-drug-
gene interactions, which are common in this population. 
Recently, enzymes and transporters included in drug me-
tabolism have been analyzed for the 100 top-selling drugs 
that already had pharmacogenetic data in their summa-
ries of product characteristics (22). Such an approach 
could improve the identification of combinatorial phar-
macogenomic associations.

Many drugs prescribed to older adults are metabolized 
by multiple cytochrome P450 (CYP) enzymes, which par-
ticipate in the biotransformation of 70%-90% of overall 
approved drugs. The most common CYPs responsible for 
drug biotransformation are CYP2C9, CYP2C19, CYP2D6, 
CYP3A4, and CYP3A5 (23). Genotypes can help us predict 
patients’ enzymatic activity, ranging from poor to ultrarap-
id (4). Besides considerable interindividual variability, there 
are also significant interpopulation and interracial differ-
ences in CYP polymorphisms frequency (24).

An increasing number of applied drugs increases the risk 
for multiple drug-drug and drug-gene interactions, with 
probable ADRs. Liu et al described how pharmacogenom-
ics can be used for drug risk assessment in patients on 
polypharmacy (25).

Pharmacogenomics of cardiovascular drugs

The significance of pharmacogenomics (PGx) was con-
firmed for 72% of cardiovascular drugs, which further re-
sulted in clinically actionable PGx information (26). Table 1 

shows gene-cardiovascular drug pairs for which PGx soci-
eties, mainly the CPIC and Dutch Pharmacogenetics Work-
ing Group (DPWG), issued recommendations.

Vitamin K antagonists (VKAs)

The pharmacogenetics of VKAs, coumarin-type anticoagu-
lants, is based on genetic polymorphisms related to over-
dosing risk and to resistance. The variability of warfarin 
exposure and risk for bleeding is mostly explained by the 
gene variants that code proteins involved in the PK and PD 
of VKAs: cytochrome P450 isoform 2C9 (CYP2C9) and vita-
min K epoxide reductase subunit 1 (VKORC1).

The Food and Drug Administration, followed by the Eu-
ropean Medicines Agency, recognized the utility of the 
CYP2C9 and VKORC1 genotypes, together with non-genet-
ic factors. Today, the algorithm applications (eg, www.War-
farinDosing.org) take into account the mentioned genes 
variants to define the recommended initial VKAs dose. 
Data on these genes are noted in the warfarin summary of 
product characteristics. Subsequently, the CPIC and DPWG 
issued warfarin dosing guidelines (27,28).

Our data obtained for patients with ischemic stroke 
showed that the introduction of genotype-guided admin-
istration in early stages of warfarin treatment shortened 
the required stabilization period and enhanced anticoag-
ulant effectiveness, with improved clinical outcomes, cru-
cial in clinical practice (29,30). Furthermore, the economic 
evaluation of such an approach indicated that PGx-guided 
warfarin therapy was a cost-effective treatment decision 
for the management of older patients with atrial fibrilla-
tion (AF) who developed ischemic stroke (31).

Direct oral anticoagulants

In recent years, direct oral anticoagulants (DOACs) have 
been increasingly prescribed owing to their favorable PK 
and PD, hence they do not require routine coagulation 
monitoring. Nevertheless, the cases of inter-individual vari-
ability in plasma DOACs levels and unexpected bleeding 
complications were documented, prompting PGx studies 
of the most frequently used DOACs (apixaban, dabigatran, 
edoxaban, and rivaroxaban) (32). Up-to-date findings sug-
gest that the main factors contributing to the variability in 
plasma DOAC concentrations are drug interactions and 
PGx, but scientific knowledge is still limited. The absorp-
tion of the prodrug dabigatran etexilate depends on 
the function of intestinal membrane protein P-gly-

www.WarfarinDosing.org
www.WarfarinDosing.org
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Table 1. The summary of recommendations from guidelines for cardiovascular drug dosing according to genotypes, issued by 
DPWG and CPIC†

Drug Gene/allele Genotype Clinical effects Recommendation Guidelines

Acenocoumarol VKORC1
-1639 G>A

AA The genetic variation increases the 
sensitivity to acenocoumarol.

Patients with the VKORC1-1639 AA 
genotype are recommended to be 
given 50% of the standard initial 
dose of acenocoumarol and undergo 
more frequent monitoring of INR.

DPWG Guideline 
for acenocouma-
rol and VKORC1 
(77,78)

Atorvastatin SLCO1B1
421 t > C

CC
TC

The genetic polymorphism may 
lead to reduced atorvastatin trans-
port to the liver. This may increase 
atorvastatin plasma concentrations 
and therefore the risk of myopathy.

An alternative drug for patients with 
the SLCO1B1 521 CC or TC genotype 
and with additional significant risk 
factors for statin-induced myopathy.

DPWG Guideline 
for atorvastatin 
and SLCO1B1 
(77,78)

Clopidogrel CYP2C19
*2, *3, *17

PM
(*2/*2, *2/*3, 
*3/*3)

Significantly reduced platelet inhi-
bition; increased residual platelet 
aggregation; increased risk for 
adverse cardiovascular events.

Alternative antiplatelet therapy (eg, 
prasugrel, ticagrelor) if there is no 
contraindication.

CPIC Guideline for 
clopidogrel and 
CYP2C19 (46)

IM
(*1/*2, *1/*3, 
*2/*17)

Reduced platelet inhibition; 
increased residual platelet aggrega-
tion; increased risk for adverse 
cardiovascular events.

Alternative antiplatelet therapy (eg, 
prasugrel, ticagrelor) if there is no 
contraindication.

UM
(*1/*17,*17/*17)

Increased platelet inhibition; de-
creased residual platelet aggrega-
tion. The genetic variation may be 
associated with increased risk of 
bleeding.

Clopidogrel – label recommended 
dosage and administration.

Flecainide CYP2D6 PM The genetic variation reduces 
conversion of flecainide to inactive 
metabolites. This increases the risk 
of side effects.

Reduce the dose to 50% of the 
standard 
dose and record an ECG and monitor 
the plasma concentration.

DPWG Guideline 
for flecainide and 
CYP2D6 (77,78)

IM Reduce the dose to 75% of the 
standard dose for CYP2D6 intermedi-
ate metabolizer (IM) patients with 
indications other than the diagnosis 
of Brugada syndrome and record 
an ECG and monitor the plasma 
concentration.

UM The genetic variation increases 
conversion of flecainide to inactive 
metabolites. A higher dose is pos-
sibly required as a result.

There are no data about the phar-
macokinetics and/or the effects of 
flecainide in UM.

Metoprolol CYP2D6 PM The gene variation reduces the 
conversion of metoprolol to inac-
tive metabolites. However, the 
clinical consequences are limited 
mainly to the occurrence of asymp-
tomatic bradycardia.

If a gradual reduction in heart rate is 
desired, or in the event of symp-
tomatic bradycardia, prescribe no 
more than 25% of the standard dose, 
increase the dose in smaller steps.

DPWG Guideline 
for metoprolol 
and CYP2D6 
(77,78)

IM If a gradual reduction in heart rate is 
desired, or in the event of symp-
tomatic bradycardia, prescribe no 
more than 50% of the standard dose, 
increase the dose in smaller steps.

UM The gene variation increases the 
conversion of metoprolol to inac-
tive metabolites. This can increase 
the dose requirement. However, 
with a target dose of 200 mg/d, 
there was no effect on the blood 
pressure and hardly any effect on 
the reduction of the heart rate.

Use the maximum dose for the 
relevant indication as a target dose, 
and if the effectiveness is still insuf-
ficient: increase the dose based on 
effectiveness and side effects to 2.5 
times the standard dose or select an 
alternative drug.
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coprotein (gene ABCB1/MDR1), while its conversion to the 
active drug form depends on hepatic carboxylesterase 1 
(CES1). Interindividual variation of dabigatran plasma con-
centrations has been found to be affected by gene variants 
of the ABCB1 rs1045642, rs4148738, and CES1 rs2244613, 
but the results did not reach significance (33-35).

A significant association was revealed between rivaroxa-
ban concentrations and CYP3A enzyme activity, with a 
possible role of variability in two drug transporters, ABCB1 
and ABCG2 (36-38). For apixaban, the pharmacogenes of 
interest are CYP3A4, ABCB1, ABCG2, and SULT (39,40), while 
those for edoxaban are CYP3A4, CES1, SLCO1B1, and ABCB1 

(41,42). The clinical relevance of these and newly discov-
ered genes should be examined in future studies focusing 
on drug-drug-gene interactions, especially in the elderly 
with comorbidities and polytherapy.

Adenosine diphosphate (ADP) receptor antagonists – 
P2Y12 inhibitors

P2Y12 inhibitors clopidogrel and prasugrel are prodrugs 
that are metabolized by multiple CYP enzymes to their 
pharmacologically active metabolites, which irrevers-
ibly inhibit the ADP P2Y12 receptor (43). CYP2C19 is 
the main enzyme involved in clopidogrel conver-

Table 1. The summary of recommendations from guidelines for cardiovascular drug dosing according to genotypes, issued by 
DPWG and CPIC†

Drug Gene/allele Genotype Clinical effects Recommendation Guidelines
Phenprocumon VKORC1

-1639 G>A
AA The genetic variation increases the 

sensitivity to phenprocoumon.
Patients with the VKORC1-1639 
(rs9923231) AA genotype are recom-
mended to be given 50% of the 
standard initial dose of phenprocou-
mon and more frequent monitoring 
of INR.

DPWG Guideline 
for phenprocou-
mon and VKORC1 
(77,78)

Propafenone CYP2D6 PM Genetic variation increases the sum 
of the plasma concentrations of 
propafenone and the active metab-
olite 5-hydroxypropafenone. This 
increases the risk of side effects.

Reduce the dose to 30% of the 
standard dose, perform an ECG and 
monitor plasma concentrations.

DPWG Guideline 
for prophafenone 
and CYP2D6 
(77,78)IM Monitor plasma concentrations and 

perform an ECG or select an alterna-
tive antiarrhythmic drug.

UM Genetic variation decreases the 
sum of the plasma concentrations 
of propafenone and the active 
metabolite 5-hydroxypropafenone. 
This increases the risk of reduced or 
no efficacy.

Monitor plasma concentrations and 
perform an ECG or select an alterna-
tive antiarrhythmic drug.

Simvastatin SLCO1B1
421 t > C

CC High myopathy risk Prescribe a lower dose or consider 
an alternative statin (eg, pravastatin 
or rosuvastatin); consider routine CK 
surveillance.

CPIC Guideline for 
simvastatin and 
SLCO1B1 (63,65)

TC Intermediate myopathy risk Prescribe a lower dose or consider 
an alternative statin (eg, pravastatin 
or rosuvastatin); consider routine CK 
surveillance.

Warfarin CYP2C9
*2,*3

The genotype-specific initial dose 
and maintenance dose can be cal-
culated using an algorithm, at www.
warfarinDosing.org

CPIC Guideline 
for warfarin and 
CYP2C9,CYP4F2, 
VKORC1 (27,28)

VKORC1
-1639 G>A
CYP4F2
(rs2108622)

*INR – international normalized ratio; IM – intermediate metabolizer; PM – poor metabolizer; UM – ultrarapid metabolizer; CPIC – The Clinical Phar-
macogenetics Implementation Consortium (https://cpicpgx.org/guidelines/); DPWG – The Dutch Pharmacogenetics Working Group (https://www.
knmp.nl/downloads/pharmacogenetic-recommendations-february-2020.pdf).
†Adapted according to PharmGKB – The Pharmacogenomics Knowledgebase, (https://www.pharmgkb.org/guidelineAnnotations).

https://cpicpgx.org/guidelines/
https://www.knmp.nl/downloads/pharmacogenetic-recommendations-february-2020.pdf
https://www.knmp.nl/downloads/pharmacogenetic-recommendations-february-2020.pdf
https://www.pharmgkb.org/guidelineAnnotations
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sion to its active metabolite. Consequently, the carriers of 
inactivating alleles CYP2C19*2 or *3 experience a reduced 
therapeutic efficacy (44,45) and higher risk of recurrent car-
diovascular events. The CPIC issued dosing guideline for 
clopidogrel (46) (Table 1).

Interesting data have been obtained for the increased 
function of CYP2C19*17 (rs12248560) allele, which increas-
es CYP2C19 expression (heterozygote carriers are consid-
ered rapid metabolizers and homozygote carriers ultra-
rapid metabolizers). *17 is present in ≈ 30% of Caucasians 
(24,46), and the carriers treated with clopidogrel have in-
creased active metabolite formation and therefore in-
creased platelet aggregation inhibition and lower major 
adverse cardiac event (MACE) risk. Some studies also ob-
served a higher bleeding risk (44,47-49). Due to inconsis-
tent results, the clinical implications for *17 carriers remain 
uncertain and need further research. Other genetic vari-
ants that can serve as biomarkers in the individualization 
of clopidogrel treatment are the transporter gene ABCB1 
c.3435C>T (decreased clopidogrel absorption) and CES1, 
carboxylesterase-1 (increased active metabolite forma-
tion), but testing for these variants is not currently recom-
mended (46). As PPIs are also metabolized by CYP2C19, 
and some of them are inhibitors of this enzyme, there is a 
potential for drug-drug-gene interactions (50).

There are no recommendations for genotyping in the case 
of other antithrombotic drugs, although some pharmaco-
genetics evidence connects CYPs gene variants with drug 
concentrations. Prasugrel is activated predominantly by 
CYP3A4 and CYP2B6 and in smaller degree by CYP2C19. Ti-
cagrelor’s metabolite (AR-C124910XX), with equipotent an-
tiplatelet effects, is a result of CYP3A4 enzymatic activity. In 
the PLATO and TRITON-TIMI 38 randomized studies, ticagre-
lor and prasugrel, respectively, showed better MACE risk re-
duction than clopidogrel in acute coronary syndrome (ACS) 
patients (51,52). However, both drugs had higher bleeding 
rates and higher cost and discontinuation rates (53). In clini-
cal practice, clopidogrel is the most often used P2Y12 inhib-
itor. In a recent study, CYP3A4*22 low activity allele carriers 
had the area under the plasma concentration-time curve 
of ticagrelor 89% (P = 0.004), higher than CYP3A4*1 normal 
activity allele carriers (54). This markedly impaired elimina-
tion resulted in its enhanced antiplatelet effect. However, 
there is a lack of data on the association of *22 allele with 
bleeding. The impact of prasugrel and ticagrelor pharma-
cogenes variants, including CYP3A4*22 (rs35599367) and 

SLCO1B1 (rs4149056), on clinical and safety outcomes is 
still unclear and warrants further research.

Our analysis of eight cases from VigiBase (World Health 
Organization’s global Individual Case Safety Report data-
base), describing drug-drug interactions (DDI) between 
rosuvastatin and ticagrelor that lead to rhabdomyolysis, 
pointed to several potential aspects that may result in the 
onset of rhabdomyolysis: old age, very high dose of ro-
suvastatin, DDI at the level of drug metabolic enzymes 
(CYPs and UGTs) and drug transporters (ABCB1, ABCG2, 
OATP1B1) in addition to pharmacogenetic susceptibility 
(55). Pharmacogenetic analysis indicated the presence of 
inactivating alleles: CYP3A4 *1/*22, CYP2C9 *1/*3, CYP2D6 
*1/*4, UGT1A1 *28/*28, UGT2B7 -161C/T, ABCB1 3435C/T, 
and ABCB1 1237C/T, which may possibly enhance the 
DDI, not merely concerning rosuvastatin and ticagrelor, 
but also concerning other concomitant drugs, such as 
amiodarone and proton pump inhibitors (PPI). A recent 
review focused on possible mechanisms of interactions 
of the most widely used statins with ticagrelor, includ-
ing CYP3A4 isoenzyme, glucuronidation, organic anion 
transporter polypeptides (OATPs), and P-glycoprotein. Al-
though the concomitant use of statins with ticagrelor, at 
usually prescribed dosages, was found to be quite harm-
less, thoughtful approach should be applied, especially in 
older patients (56).

The main challenge in the management of coronary heart 
disease (CHD) patients with concurrent venous throm-
boembolism is that simultaneous application of various 
antithrombotic treatments could increase the bleeding 
risk (57). A PGx approach can help optimize antithrombot-
ic therapy, achieve the most beneficial effects, and mini-
mize the risk of bleeding when combining anticoagulants, 
antiplatelet medicines, triple antithrombotic therapy regi-
men, and thrombolytic drugs and treatment over longer 
periods.

β-hydroxy β-methylglutaryl-CoA reductase inhibitors 
(statins)

Statins are used as hypolipidemics for primary and sec-
ondary prevention of cardiovascular (CV) disease and be-
long among the most highly prescribed drugs worldwide 
(58). They are commonly well tolerated, but in some pa-
tients can cause ADRs. Statins are mostly discontinued due 
to musculoskeletal side effects (MSE), followed by hepat-
ic toxicity. MSE range from common myalgias ( ~ 5% pa-
tients) to increasingly severe myopathies accompanied 
by raised plasma creatine kinase levels ( ~ 0.1% patients), 
and to rare rhabdomyolysis (0.1-8.4/100 000 patient-years) 
(59). The occurrence of cognitive impairment or new onset 
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of diabetes is rare and questionable, without clear clinical 
evidence (60). In high CV risk patients, a high- statin dose 
is recommended, but very often these patients are under-
dosed (61). As most ADRs of statins are infrequent and not 
serious, statins are often used continuously during a longer 
time period and thereby are susceptible to DDIs, which can 
increase the risk of statin-associated MSE and hepatic tox-
icity. Possible origins of statin DDIs are the use of concomi-
tant drugs and pharmacogenetic predisposition. There-
fore, the safety of statins use has been intensively studied, 
mainly in patients on polytherapy at risk of DDIs (62). The 
patients of special concern are those who cannot tolerate 
statins or who do not reach their low density lipoprotein 
cholesterol goal, since they need an additional non-statin 
lipid-modifying agent, such as ezetimibe or a PCSK9 inhibi-
tor, increasing the risk of ADRs (58).

Currently, pharmacogenetic guidelines are published only 
for simvastatin and atorvastatin and SLCO1B1 gene (cod-
ing for organic anion transporting polypeptides OATP1B1) 
(Table 1) (63). Higher statin exposure (especially with sim-
vastatin) with greater MSE risk has been found in the car-
riers of SLCO1B1 variants associated with OATP1B1 defi-
ciency. For example, homozygous carriers of low activity 
allele SLCO1B1*5/*5 treated with 80 mg/d of simvastatin 
bear a 17-fold higher MSE risk, while heterozygous carri-
ers (SLCO1B1*1/*5) bear a 3- to 5-fold higher risk compared 
with the carriers of the wild type allele (64). Since the MSE 
risk is multifactorial, pharmacogenetic examination has a 
limited positive predictive value. Pharmacogenetic tests 
before starting statin therapy are not recommended; how-
ever, SLCO1B1 genotyping may be indicated if MSE signs 
and symptoms occur in a patient on statins. The CPIC has 
issued dosing guidelines (63,65). The leading risk factors 
for statins ADRs are genetic factors (eg, SLCO1B1, CYP3A4/5, 
and ABCG2), comorbidities (kidney failure, liver dysfunction, 
hypothyroidism, diabetes mellitus), very young or very old 
age, female sex, and drug-associated factors (dosage, statin 
type, and concomitant therapy with OATP1B1, ABCG2, and/
or CYP3A4/5 inhibitors, eg, ketoconazole, cyclosporine) 
(59,66-68). In vitro studies showed that statin lactones were 
more potent and myotoxic than statin acids.

Statin therapy risk prediction can be considerably im-
proved by a multifactorial approach that includes multi-
ple genes testing along with the prediction of DDIs and 
other risk factors. Although pharmacogenomic analysis is 
progressively applied with the aim of drug therapy optimi-
zation, its real potential in elderly population on polyphar-
macy has not been studied so far.

A study conducted in collaboration with the Croatian 
Agency for Medicinal Products and Medical Devices, which 
recruited patients with ADRs, pointed to several genes that 
presented the risk of statin ADRs (69). Besides the well-
known association with SLCO1B1*5 variant, results showed 
a significant impact of another drug transporter gene vari-
ant, ABCG2 421C>A, on the development of atorvastatin 
ADRs, which was prominent in older age patients (66). In 
another study investigating fluvastatin ADRs risk in renal 
transplant patients, we also confirmed the relevance of AB-
CG2 421C>A, along with the polymorphisms of CYP2C9 (flu-
vastatin main metabolic pathway) and concomitant thera-
py with CYP2C9 inhibitors (70).

A recent study found multiple factors associated with ator-
vastatin and its metabolite concentrations, including smok-
ing and drug-drug-gene interactions involving proton PPIs 
and loop diuretics, principally furosemide (71). An associa-
tion between PPIs and the CYP2C19 genotype with an im-
pact on atorvastatin concentrations was also detected.

Our previously published case report described a similar 
finding (72). This case illustrated the clinical relevance of the 
relationship between pharmacogenetics (low activity trans-
porter OATP1B1 and low activity enzyme CYP2C19) and DDI 
between atorvastatin and a PPI (pantoprazole) in the devel-
opment of rhabdomyolysis with acute renal failure.

Another example from our routine genetic testing is that 
of a patient with polypharmacy with statins (atorvastatin 
followed by rosuvastatin) and ezetimibe who developed 
signs of hepatotoxicity (significantly elevated transami-
nases ALT, AST), also suggesting the relevance of phar-
macogenetics interacting with DDIs (73). The patient was 
homozygous for ABCG2 421A low activity allele, predispos-
ing for low transporter activity and impaired elimination 
of statins and ezetimibe into the bile. The fact that all three 
drugs are substrates of ABCG2 (in addition, ezetimibe is 
also an ABCG2 inhibitor), and genetically conditioned 
poor activity of ABCG2, resulted in slower drug elimina-
tion into the bile and enhanced adverse effects on the liv-
er. More and more emerging data are pointing to ABCG2 
as a promising pharmacogenetic biomarker, not only for 
statins but also other drugs, predisposing for drug-drug-
gene interactions (74).

In liver microsomes (animal/rat model), interactions be-
tween ticagrelor or prasugrel with statins and their im-
pact on safety and effectiveness confirmed that the 
co-administration of P2Y12 inhibitors with simvas-
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tatin might significantly inhibit the CYP3A4 activity (75). 
The data also suggested that ticagrelor inhibited CYP3A4 
activity. Since almost half of the prescribed drugs are CY-
P3A4 substrates, this finding could be relevant for clinical 
practice, especially for the treatment of older people on 
polypharmacy.

Regarding other cardiovascular drugs, guidelines have also 
been issued for metoprolol, propafenone, and flecainide, 
based on CYP2D6 genotype (Table 1).

Although many antihypertensives and beta-blockers are 
substrates of CYP polymorphic enzymes, predominantly 
CYP2D6 and CYP3A4, there are no genotype-dosage rec-
ommendations. Here as well, special care should be taken 
when administering multiple drugs that are substrates of 
these enzymes, which is again especially emphasized in 
the elderly population. Therefore, genotyping can help 
in predicting the intensity of drug interactions and de-
tect slow metabolizers, who have a significantly increased 
ADRs development.

Rare gene variants

Besides common genetic polymorphisms, recent projects 
based on advanced sequencing methods revealed many 
rare genetic variants in ADME and drug response relevant 
genes (76). Specific pharmacogenes panels, which provide 
information for multiple polymorphisms including rare 
variants, have been developed for clinical testing and will 
improve pharmacogenetic analysis and ADRs prediction.

THE COST-EFFECTIVENESS OF PHARMACOGENOMICS 
APPROACH

In the recent decade, several hundred studies have as-
sessed the cost-effectiveness of PGx testing. Their major 
disadvantage was that they were undertaken after the 
choice of a treatment protocol, meaning that reactive 
genotyping was performed instead of pre-emptive test-
ing. Furthermore, categories in economic models were not 
uniform and results were not comparable.

The majority of studies on CV drugs were focused on war-
farin and clopidogrel, and only a smaller number inves-
tigated statins and ACE inhibitors. A recently published 
comprehensive systematic review by Zhu et al showed 
that 67% of the included high-quality studies found 

that CVD treatment PGx testing was cost-effective 
(79). However, 20% of studies observed question-

able cost-effectiveness of PGx vs standard treatment, while 
13% of studies were inconclusive. Zhu et al found that PGx-
guided clopidogrel treatment showed cost-effectiveness 
in 81% of studies, and warfarin treatment in 56% (79). The 
data were specifically supportive in patients with ACS and 
AF. These findings are in agreement with the results of our 
study in AF patients (warfarin and CYP2C9/VKORC1 geno-
typing) who developed ischemic stroke (31).

A newly published study (80) found that PGx (multi-gene 
genotyping of CYP2C9, CYP2C19, VKORC1, and SLCO1B1) 
was cost-effective compared with standard treatment and 
single gene genotyping in ACS patients with percutane-
ous coronary intervention (PCI) (80).

Another systematic review reported that the majority of 
PGx-guided treatment economic assessments were cost-
effective, with an average Quality of Health Economic 
Studies score of 76 (score range from 0-100; >75 is high). 
However the review included not only CV drugs, but oth-
er drugs as well (81). In conclusion, PGx-guided CVD treat-
ment cost-effectiveness has not yet been clearly stated.

Conclusions

Pharmacogenomics data may improve the selection of a 
particular drug treatment and allow the tailoring of dose 
and dosing schedule to the patient’s genetic profile. This 
can enhance drug effectiveness and reduce toxicity and 
thus be of enormous importance for elderly patients with 
comorbidities and polypharmacy.

In the field of CV diseases treatment, the progress of phar-
macogenetics/PGx has increased our understanding of 
the molecular mechanisms involved in the toxicity and 
efficacy of commonly used CV drugs. Pharmacogenetics 
analysis and recommendations issued by several consortia 
enable clinical applications that can improve the predic-
tion of VKA and clopidogrel resistance and hemorrhagic or 
MSE risk. This PGx approach has had a significant impact 
on health care efficiency and economic status of society. 
However, we still need to address many clinical challenges. 
Other tests, potentially for direct oral anticoagulants, be-
ta-blockers, or antihypertensives can be expected. Since 
the majority of pharmacogenetics recommendations are 
based on the estimation of single drug-gene interactions, 
for older people with polypharmacy it is imperative that 
we develop methods and tools for the prediction of multi-
ple drug-drug-gene interactions. Pharmacogenetics analy-
sis is more accessible but is still insufficiently used in clini-
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cal medicine. Its wider implementation requires physicians’ 
and scientists’ knowledge and expertise regarding genet-
ics, risk prediction, and genetic counselling. In addition, 
improved patients’ satisfaction with pharmacotherapy will 
result in better compliance and overall treatment success. 
We believe that in the near future, the economic evalua-
tion of pre-emptive testing, which will include genetic 
panel, namely all important CV drug-gene pairs, might 
demonstrate its usefulness and cost-effectiveness. Specifi-
cally, data for elderly population on long term polytherapy 
of chronic CVD could be even more significant and favor 
the cost-effective PGx guided CVD treatment.

In conclusion, personalized medicine based on PGx has a 
potential to yield significant health and economic benefits 
for patients, especially the elderly, health care profession-
als, and society.
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