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Introduction

Autism spectrum disorders (ASD) is an umbrella term 
for disorders characterized by impairments in social 
interaction and communication as well as stereotypical 
behaviozrs of variable severity according to the 
Diagnostic and Statistical Manual of Mental Disorders, 
Fifth Edition (DSM-5) (American Psychiatric 
Association 2013). In addition to core symptoms and 
on average, about 25% of individuals have a clinical 
diagnosis of epilepsy (Muñoz-Yunta and others 2008; 
Spence and Schneider 2009) and have sensory abnor-
malities in multiple domains including somatosensa-
tion, vision, and olfaction (Cascio 2010; Menassa and 
others 2017; Menassa and others 2018). Twin studies 
indicate a significant genetic basis for these disorders 
with pairwise concordance for ASD varying between 
60% and 95% in monozygotic twins versus 0% to 30% 
in dizygotic twins (Bailey and others 1995; Rosenberg 

921378 NROXXX10.1177/1073858420921378The NeuroscientistCarroll et al.
research-article2020

1Nuffield Department of Clinical Neurosciences, University of 
Oxford, Oxford, Oxfordshire, UK
2Oxford Centre for Human Brain Activity, Wellcome Centre for 
Integrative Neuroimaging, Department of Psychiatry, University of 
Oxford, Oxford, Oxfordshire, UK
3Croatian Institute for Brain Research, Centre of Research Excellence 
for Basic, Clinical and Translational Neuroscience, University of 
Zagreb School of Medicine, Zagreb, Croatia
4Maurice Wohl Clinical Neuroscience Institute, King’s College 
London, London, UK
5Faculty of Medicine, University of Southampton, Southampton, 
Hampshire, UK
6Sir William Dunn School of Pathology, University of Oxford, Oxford, 
Oxfordshire, UK
7Biological Sciences, Faculty of Environmental and Life Sciences, 
University of Southampton, Southampton, UK

Corresponding Author:
David A. Menassa, Biological Sciences, University of Southampton, 
The Queen’s College, University of Oxford, High Street, OX1 4AW 
Oxford, UK.
Email: david.menassa@univ.oxon.org.

Autism Spectrum Disorders: Multiple 
Routes to, and Multiple Consequences 
of, Abnormal Synaptic Function and 
Connectivity

Liam Carroll1, Sven Braeutigam2, John M. Dawes1, Zeljka Krsnik3,  
Ivica Kostovic3, Ester Coutinho4, Jennifer M. Dewing5,  
Christopher A. Horton6, Diego Gomez-Nicola7, and David A. Menassa1,7  

Abstract
Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental disorders of genetic and 
environmental etiologies. Some ASD cases are syndromic: associated with clinically defined patterns of somatic 
abnormalities and a neurobehavioral phenotype (e.g., Fragile X syndrome). Many cases, however, are idiopathic or 
non-syndromic. Such disorders present themselves during the early postnatal period when language, speech, and 
personality start to develop. ASDs manifest by deficits in social communication and interaction, restricted and repetitive 
patterns of behavior across multiple contexts, sensory abnormalities across multiple modalities and comorbidities, 
such as epilepsy among many others. ASDs are disorders of connectivity, as synaptic dysfunction is common to both 
syndromic and idiopathic forms. While multiple theories have been proposed, particularly in idiopathic ASDs, none 
address why certain brain areas (e.g., frontotemporal) appear more vulnerable than others or identify factors that may 
affect phenotypic specificity. In this hypothesis article, we identify possible routes leading to, and the consequences 
of, altered connectivity and review the evidence of central and peripheral synaptic dysfunction in ASDs. We postulate 
that phenotypic specificity could arise from aberrant experience-dependent plasticity mechanisms in frontal brain 
areas and peripheral sensory networks and propose why the vulnerability of these areas could be part of a model to 
unify preexisting pathophysiological theories.
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and others 2009; Steffenburg and others 1989). A total 
of 5% to 15% of affected individuals possess an iden-
tifiable Mendelian condition corresponding to a syn-
dromic gene disorder (Woodbury-Smith and Scherer 
2018), with a significant proportion of sporadic and 
inherited ASDs resulting from dominantly acting de 
novo mutations (Zhao and others 2007). In a small 
number of cases, altered neurodevelopment, resulting 
in ASD-like symptomatology, has been attributed to 
maternal immune activation (MIA) (Bilbo and others 
2018; Brown and Meyer 2018) or the maternal trans-
fer of antibodies to the fetus (Coutinho and others 
2017b; Dalton and others 2003; Dalton and others 
2006), though it is not clear how phenotypic specific-
ity arises here. Most cases of ASD are of unknown 
etiology. Nonetheless, despite their genetically and 
environmentally heterogeneous nature (Betancur 
2011), ASDs converge on a shared symptomatology, 
suggesting that common molecular pathways may be 
dysregulated. A unifying theory that links such postu-
lates and relates them to the connectivity patterns and 
synaptic abnormalities associated with ASD and 
addresses ASD-phenotypic specificity, is otherwise 
lacking. Such a theory may enable greater understand-
ing of the relationship between genetic synaptopathies 
and ASD and inform novel therapeutic approaches.

The seminal study by Hubel and Wiesel demon-
strated that, early in life, monocular deprivation in 
the dominant eye in a kitten shifts this dominance to 
the non-deprived eye (Wiesel and Hubel 1963). From 
this came the central role for experience-dependent 
synaptic plasticity in the development of neural cir-
cuits. Indeed, many of the genes mutated in ASD are 
crucial components of experience-dependent signal-
ing processes that regulate synaptic plasticity (Table 
1). While the genetic contributions to idiopathic ASD 
are heterogeneous and largely unknown, syndromic 
forms of ASD provide an invaluable tool to gain 
insight into the convergent molecular pathophysiol-
ogy of ASD. In the following section, we identify the 
critical periods during human neurodevelopment and 
the postnatal age where synaptic dysfunction is likely 
to occur and contribute to ASD symptomatology. 
Next, we review the role of the immune system and 
microglia in altering synaptic circuits in ASD and 
present recent evidence on the outside-in theory of 
ASD arguing for a  pivotal role for primary sensory 
neurons in some of the observed symptomatology. We 
then proceed to identify the most recent mechanisms 
by which brain connectivity is altered in ASD and 
conclude by proposing a model unifying existing 
ASD theories.

Neurodevelopmental and Postnatal 
Circuitry Disturbance in ASD 
Development

The way by which generalized synaptic dysfunction in 
ASD might lead to patterns of cortical connectivity and 
specific behavioral impairments, while preserving or 
even enhancing other behaviors (Mottron and others 
2006) remains an open and important question. Core 
autistic behaviors may be explained by developmental 
disconnections between higher order association areas 
(Just and others 2004; Just and others 2007; Ozonoff and 
others 1991; Perez Velazquez and others 2009) such as 
the dorsolateral prefrontal regions and anterior cingulate 
cortex and other cortical areas. Considering a prospective 
genetic and environmental etiology, it is important to 
determine when an initial disturbance of the circuitry 
develops, and which components of cortical circuitry and 
functional networks are mostly affected. Different com-
ponents of cortical connectivity develop sequentially, but 
in a partly overlapping manner, from the late embryonic 
period through to young adulthood (Petanjek and others 
2011). Furthermore, these periods of rapid growth may be 
particularly vulnerable to genetic insults (Kostović and 
others 2014). Recent progress in genetic, genomic and 
transcriptomic ASD research has elucidated various cod-
ing and non-coding variances and co-expression net-
works, which show spatiotemporal preferences and may 
cause abnormalities of the presynaptic and postsynaptic 
molecular assembly of synapses (Gandal and others 
2018; Geschwind 2009; Koopmans and others 2019; 
Molnár and others 2019; Sestan and State 2018; Zhu and 
others 2018). In particular, a whole range of presynaptic 
and postsynaptic proteins may be affected due to altera-
tion of ASD-risk genes (Table 1). It is important to note 
here that ASD risk genes for the pre- and postsynaptic 
circuitry does not necessarily mean that synapses are the 
only point of failure in ASD. SNARE complex proteins 
mediate the fusion of presynaptic vesicles with the plasma 
membrane and intracellular vesicle growth cone and 
leading filopodia external membranes, thereby providing 
a mechanism for directed growth and migration. For 
example, neurexins have non-synaptic roles during devel-
opment (Harkin and others 2019; Tsaneva-Atanasova and 
others 2009). Although we specifically focus on synaptic 
dysfunction in this review, dysregulation of axonal 
growth and pathfinding can play a role in the etiology of 
ASD, as candidate ASD-susceptibility genes impinge 
upon these processes (McFadden and Minshew 2013). 
Furthermore, subtle deficits in these processes could play 
a part in the failure of long-distance pathway formation in 
ASD.
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Table 1. Neurophysiological Roles of Autism Spectrum Disorders (ASD)–Linked Genes.

Gene Protein Function Disease Association Main Role in Synapses Syndromic Model

MECP2 Control of gene 
expression

Syndromic ASD mutation
Rett syndrome

↑ Excitatory transmission
↑ Synaptic plasticity

Primate model (Liu and others 2016)
Impaired social behavior
↑ S/RBs

TSC1/2 mTOR signaling 
antagonist

Syndromic ASD mutation
Tuberous sclerosis

↑ Dendritic spine density
↑ Synaptic plasticity (LTP/

LTD)

Mouse model (Chévere-Torres and others 
2012)

↓ Social behavior
CACNA1C Encodes α1-subunit 

of voltage-
dependent  
Ca2+ channel

Syndromic ASD mutation
Timothy syndrome

↑ Activity-dependent 
dendrite neurotransmission

↑ Synaptic plasticity (LTP)

Mouse model (Bader and others 2011)
Impaired social behavior
↑ S/RBs
↓ USVs

SHANK1 Molecular scaffold 
in excitatory 
synapses

Rare single gene mutation 
linked to ASD

↑ Basal excitatory synaptic 
transmission

Mouse model (Sungur and others 2014)
↓ Social behavior
↑ S/RBs
↓ USVs

SHANK2 Molecular scaffold 
in excitatory 
synapses

Syndromic ASD mutation ↑ Synapse formation
↑ Synaptic plasticity (LTP)

Mouse model (Schmeisser and others 2012)
Impaired social behavior
↑ S/RBs
↓ USVs

SHANK3 Molecular scaffold 
in excitatory 
synapses

Syndromic ASD mutation
Phenlan-McDermid 

syndrome

↑ Synapse formation
↑ Synaptic plasticity

Mouse model (Peça and others 2011)
↓ Social behavior
↑ S/RBs

NRXN1 Cell adhesion 
molecule in the 
nervous system

Syndromic ASD mutation
Pitt-Hopkins-like  

syndrome 2

↑ Ca2+-driven 
neurotransmission

↑ Synaptic plasticity (LTP)

Mouse model (Etherton and others 2009)
No difference in social behavior
↑ S/RBs

NLGN3 Neural cell surface 
molecule

Single gene mutation linked 
to ASD

↑ Synapse formation
↑ Synaptic plasticity (LTP)

Rat model (Hamilton and others 2014)
↓ Social behavior

NF1 Negative 
regulator of cell 
proliferation

Syndromic ASD mutation Regulates GABA release
↑ Synaptic plasticity

Mouse model (Costa and others 2001)
Impaired social behavior
N/A S/RBs
N/A USVs

PTEN Regulator of PI3K 
signaling

Syndromic ASD mutation
Cowden syndrome

↓ Spine density
↑ Synaptic plasticity (LTD)

Mouse model (Lugo and others 2014)
Impaired social behavior
↑ S/RBs
No difference in USVs

CNTNAP2 Synaptic adhesion 
molecule

Syndromic ASD mutation
Cortical dysplasia-focal 

epilepsy syndrome

↓ GABAergic interneurons
↓ Neuronal synchrony

Mouse model (Peñagarikano and others 2011)
↓ Social behavior

LTD = long-term depression; LTP = long-term potentiation; N/A = not applicable/not tested; S/RBs = stereotypical repetitive behaviors; USVs = ultrasonic 
vocalizations.

The Prenatal Period

The analysis of gene expression during the mid-fetal 
period indicates inner cortical plate (CP) projection neu-
rons as a prospective target in ASD (Sestan and State 
2018; Willsey and others 2013). Recent work also sug-
gests that, in comparison with typical development, dif-
ferentially expressed genes in ASD are down-regulated in 
layer 2/3 excitatory neurons and upregulated in proto-
plasmic astrocytes and microglia (Velmeshev and others 
2019). Both observations are in accordance with previous 
Golgi studies showing that during late mid-gestation, the 
phenotype of cortical projection neurons is rapidly devel-
oping (Marin-Padilla 1970; Mrzljak and others 1988). 

However, late mid-gestational peak expression of syn-
apse-development genes occurs after initial synaptogen-
esis during early fetal life (Huttenlocher and Dabholkar 
1997; Kang and others 2011; Kostović and Rakic 1990; 
Kostović and Krmpotić 1976; Kostović and others 1989).

During mid-gestation, synapses are found in transi-
tional cortical areas called the subplate (SP) (which con-
tains future interstitial gyral white matter neurons) and 
the marginal zone (MZ) (future layer I), whereas at the 
transition between mid and late mid-gestation (after 24 
postconceptional weeks [pcw]) synapses develop rapidly 
in the CP (Kostović and Rakic 1990; Kostović and others 
1989; Kostović and others 2019a; Molliver and others 
1973). The SP is where the earliest connectivity and 
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functional activity begin in the developing cortex (Moore 
and others 2009; Moore and others 2011). Fetal circuitry 
is then spontaneous and endogenous (Friauf and Shatz 
1991; Kanold and Luhmann 2010; Kostović and Judaš 
2015) (Fig. 1). During this window, it is difficult to ascer-
tain whether environmental influences affect synapse 
development. Furthermore, more evidence is needed to 
concur on whether SP and MZ synapses during mid-ges-
tation (Kostović and Rakic 1990; Molliver and others 
1973) participate in spontaneous activity or whether they 
are silent (Meng and others 2014). Using in vitro patch- 
clamping studies in human SP neurons during mid- 
gestation, synaptic potentials could be elicited (Moore 
and others 2009; Moore and others 2011). SP neurons 
may be activated by the stimulation of thalamic axons 
before CP neurons (Allendoerfer and Shatz 1994; Friauf 
and Shatz 1991). This finding corresponds to 

observations in humans, where the first synapses within 
the CP of the somatosensory and visual cortices are seen 
only after 23 pcw (Kostović and Rakic 1990; Molliver 
and others 1973). Thus, this period may be described as 
sensory-expectant, and one cannot exclude activity influ-
ences of afferents from the thalamus and the basal fore-
brain (Kostović and Judaš 2002, 2010). Indeed, recent 
evidence suggests that the primate SP receives thalamo-
cortical innervation much earlier than previously thought 
(Alzu’bi and others 2019). Furthermore, arealization, 
which is the process of innervation of cortical areas by 
specific thalamic nuclei, has been proposed as core to the 
eventual establishment of long-range connectivity 
(Moreno-Juan and others 2017).

After the 24th pcw and during the entire late fetal 
period, the situation changes and cortical responses are 
evoked by peripheral stimulation (Fitzgerald 2005; 

Figure 1. Timing of human neurogenetic events. These events can be affected by genetic and environmental factors during 
prenatal and postnatal periods, leading to abnormal cortical organization and complex cognitive and behavioral deficits in humans. 
The critical period for the interaction of presynaptic axons and postsynaptic neurons during initial synaptogenesis and the 
formation of cortical circuitry begins at the early fetal period and shows prolonged periods of prospective vulnerability: during 
the early preterm for thalamocortical connections (red bar), and during the late preterm for callosal and long cortico-cortical 
connections (blue), which may correspond to a 1st hit event. However, since short cortico-cortical pathways continue during 
infancy and early childhood (purple), peaking at around 2 years for associative cortex for example, we may expect vulnerability 
that corresponds to a second hit in the pathogenesis of circuitry relating to ASD. Modified with permission from Kostović I, 
Judaš M. (2015). Embryonic and fetal development of the human cerebral cortex in brain mapping: an encyclopaedic reference; 
volume 2: anatomy and physiology, systems, Elsevier.
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Khazipov and Luhmann 2006; Kostović and Judaš 2010; 
Leroy and others 2011). Thus, a sensory-expectant form 
of transient cortical circuitry gradually shifts into a sen-
sory-evoked cortical circuitry (Kostović and Judaš 2015). 
Alongside increasing activity in the CP, transient activity 
still remains within the SP, and this prolonged activity of 
both transient and permanent circuitries seems to be a 
salient feature of the human brain (Kostović and Judaš 
2006). During this period, there is also intensive growth 
of callosal and long associative pathways (Huang and 
Vasung 2014; Huang and others 2006; Vasung and others 
2017), at a time associated with a high expression level of 
a myriad of genes involved in synaptogenesis (Pletikos 
and others 2014).

Altogether, the above delineate the late mid-gestation 
and late gestation/preterm periods as critical periods for 
the initial interaction of converging ASD-risk genes, 
development of cortical pathways within the frontal, 
somatosensory, visual, and limbic areas as well as synap-
tic interactions within the thalamus, striatum, amygdala, 
and basal forebrain (Kostović and others 2019b). 
However, it remains unclear as to whether interactions 
with the environment in prematurely born neonates or 
interactions with external stimuli in utero prior to birth 
alter the development of circuitry during typical develop-
ment. Experimental studies in primates suggest that envi-
ronmental influences may change the structure of 
preexisting synapses, but not the total number of pro-
duced synapses (Bourgeois and others 1989) indicating 
that prenatal synaptogenesis in primates is genetically 
programmed and experience-independent.

There is currently no evidence to suggest that atypical 
functional networks found in ASD, such as the frontopari-
etal and salient/ventral attention networks, are selectively 
damaged during an initial insult. The functional networks 
involving the limbic structures are most likely the candi-
dates for developmental disturbances, as synapses in the 
hippocampus and cingulate gyrus appear to develop at a 
faster rate than within the neocortex (Kostović and 
Krmpotić 1976; Kostović and others 1989).

The differences in timing and pace of synaptogenesis 
in the hippocampus, anterior cingulate gyrus (“limbic 
cortex”) and lateral fronto-parietal neocortex is signifi-
cant for differential vulnerability of these cortical net-
works. If one of these networks is injured and the other is 
spared in intrauterine life, disconnectivity may ensue, 
changing further the development of synapses, because 
the timing of structural synaptic connectivity is essential 
for the further development of circuitry.

It is even less clear as to when and how, during postna-
tal development, cortical circuitry and synapses undergo 
structural and functional alteration, leading to the expres-
sion of ASD symptomatology. It follows that, if the first 
red-flag of ASD symptoms appears by 2 to 3 years of age, 

and the full spectrum of the disorder is visible later during 
childhood (Lord and others 2000), then the search for 
critical periods when abnormal circuitry develops must 
be concentrated on the first two years of postnatal life 
(Gao and others 2015; Kostović and others 2014; Pletikos 
and others 2014). During this time, there is a dramatic 
increase in synapse and spine production in cortical areas 
(Huttenlocher 1999; Petanjek and others 2011). Synapses 
develop and reach their plateau more rapidly in primary 
sensory areas, such as the primary visual cortex, than in 
associative frontal areas (Huttenlocher 1999). Parallel to 
the process of synaptogenesis, there is substantial growth 
of pyramidal neuron dendrites during the first 2 years of 
life, alongside a dormant period for layer III pyramidal 
neurons between 2.5 and 16 months (Petanjek and others 
2011).

The Postnatal Period

The postnatal period is characterized by the growth of 
short cortico-cortical pathways, which may contribute to 
a significant reorganization of cortical circuitry and syn-
apse function (Kostović and others 2014). The develop-
ment of whole brain functional architecture during the 
first two years shows significant changes in both within 
and between-network interactions (Gao and others 2015). 
The early increase in the connectivity of primary net-
works shows that partial connectivity decreases (Gilmore 
and others 2018). Higher order networks, which are topo-
logically incomplete in neonates, show synchronization 
and connectivity increases during the first 2 years of life 
(Gao and others 2015). Similar developmental trends 
have been demonstrated in the emergence of the brain’s 
default networks which include the prefrontal, posterior 
cingulate/retrosplenial, inferior parietal, and hippocam-
pal cortices. It seems that the main “hub” is the posterior 
cingulate/retrosplenial cortex, whilst the medial prefron-
tal cortex may represent a potential secondary hub, begin-
ning from 1 year of life (Gao and others 2009).

During the early postnatal period, the cortex is envi-
ronmentally driven and gradually becomes experience/
sensory dependent. This phenomenon is best known from 
the study of the visual system (Maurer and others 1999). 
The background underlying such changes in connectivity 
is myelination, which is synchronized in order to provide 
balanced activity of remote cortical areas (Salami and 
others 2003) and may substantially participate in changes 
within different networks during the first and second 
years of life. The general indicator of developmental 
change within cortical organization is cortical thickness, 
which can be monitored in large cohorts of those with 
ASD and healthy controls (Khundrakpam and others 
2017). Approaching the second half of the first year, 
social stimuli become more important and may modify 
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socially driven cortico-cortical networks (Ciarrusta and 
others 2019).

All of the above suggest that developmental events 
may be disturbed during the first and second year of life, 
which may alter synaptic function of selected cortical cir-
cuitry, and this alteration may underlie a “second-hit” 
event in the developmental pathogenesis of ASD. Thus, 
an initial, first phase abnormality of synaptogenesis and 
differential vulnerability of limbic and lateral neocortical 
networks in prenatal life and subsequent developmental 
reorganization during the second postnatal phase may 
contribute to alterations of connectivity referred to as 
overconnectivity, disconnectivity, and hypoconnectivity 
(Ciarrusta and others 2019; Courchesne and others 2005; 
Geschwind 2009; Yerys and others 2019). According to 
(Picci and Scherf 2015), early perturbation of cortical 
connectivity may be considered as a “first-hit,” which 
sets up a neural circuitry that is “built to fail” in the face 
of a second-hit that occurs during late childhood.

The Role of the Immune System in 
ASD Pathophysiology

In utero or early life exposure to an abnormal immune 
response is a known risk factor for ASD. This is sup-
ported by several lines of evidence from different fields, 
including epidemiology and immunology (Estes and 
McAllister 2015). This is the basis for the “immune the-
ory” of ASD, which postulates that a genetically predis-
posed individual, if exposed to an immune system stressor 
(such as environmental toxins, infections, or maternal 
immune molecules) during the prenatal or early postnatal 
period, will have irreversible neural circuit changes 
(Gottfried and others 2015), which will eventually lead to 
behavioral symptoms.

Epidemiological evidence shows a link between expo-
sure to infectious agents during pregnancy and an 
increased risk for neurodevelopmental disorders in the 
progeny (Knuesel and others 2014; Patterson 2002). This 
is supported by the “winter baby” phenomenon (Zerbo 
and others 2011), which describes an increased risk for 
ASD in children conceived in the colder months. There 
is, as yet, no clear association with a particular infectious 
agent; infections by a virus, bacterium, and parasite have 
all been linked to neurodevelopmental disorders, which 
likely indicates a common mechanism caused by mater-
nal immune activation (MIA) and not the infection per se. 
It is postulated that this MIA in utero might result in 
chronic dysfunction in the progeny, since neuropatholog-
ical studies had revealed the presence of markers of 
inflammation such as microglial activation in patients 
with ASD (Rodriguez and Kern 2011). Additionally, 
increased pro-inflammatory markers within the serum 
and cerebrospinal fluid (Ashwood and others 2011; Chez 

and others 2007; Zerbo and others 2014) have also been 
reported in ASD, which persist many years after disease 
diagnosis. Animal models support the link between 
maternal infections, MIA and structural and behavioral 
anomalies in the offspring. Existing models are based on 
maternal exposure to the infectious agent (e.g. human 
influenza virus), a viral mimetic (e.g., polyinosinic-poly-
cytidilic acid [poly(I:C)] or bacterial mimetic (lipopoly-
saccharide [LPS]) or the immune mediators themselves 
(inflammatory cytokines) (Meyer and others 2009). 
Additionally, MIA is associated with defective microglial 
synaptic pruning whereby mouse progeny have autistic-
like behaviors (Fernández de Cossío and others 2017). 
Microglia seem to be implicated directly or indirectly in 
the pathological mechanism shared between different 
causes of ASD. This is further supported by impaired 
functional connectivity and autistic-like behaviors in 
CX3CR1−/− mice lacking responsive microglia (Zhan and 
others 2014), for example, though this could be due to 
two reasons: a transient decreased microglial density in 
postnatal development, or the fractalkine signaling path-
way being responsible for the tagging of synapses.

A compelling hypothesis that microglia influence 
brain growth by regulating early postnatal neurogenesis 
and synaptogenesis by pruning mechanisms has gath-
ered interest in recent years (Cunningham and others 
2013; Paolicelli and others 2011; Shankle and others 
1999). This raises the question as to whether microglial 
activity may be adversely affected by ASD-linked syn-
aptic mutations, and whether this may result in deficient 
pruning of developing synaptic connections, leading to 
overconnectivity.

Microglia are present in the brain from early develop-
ment, derived from erythro-myeloid progenitors (EMPs) 
originating in the yolk sac (YS) (Ginhoux and others 
2010; Menassa and Gomez-Nicola 2018; Verney and oth-
ers 2010). Early microglial progenitors seed the brain, 
named pre-macrophages (pMacs), expand and persist 
into adulthood to form the resident microglial population 
in the adult brain (Epelman and others 2014; Ginhoux 
and others 2010). Microglia develop in three steps (early, 
pre-, and adult microglia), in synchrony with brain devel-
opment (Matcovitch-Natan and others 2016). From an 
initial limited number of infiltrating progenitors, the pop-
ulation expands rapidly to colonize all brain regions by 
birth. During postnatal development, microglial numbers 
continue to increase until postnatal day 14, to later 
undergo a selection phase before achieving the final adult 
densities (Askew and others 2017; Nikodemova and oth-
ers 2015). This is based on rodent studies and is unknown 
in humans. Rodent studies indicate that monocyte infil-
tration and differentiation do not contribute to the postna-
tal microglial population, although it is still unclear if 
transient waves of monocyte infiltration could drive 
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functional changes in brain development (Askew and 
others 2017). Altogether, our current understanding of 
microglial dynamics during embryonic and postnatal 
brain development supports an intimate bidirectional 
communication with the brain’s environment, as microg-
lia can alter neuronal numbers and synaptic contacts, and 
neurons can influence microglial phenotypic specifica-
tion (Askew and Gomez-Nicola 2017).

Various studies support the notion that synaptic con-
tacts with microglia and microglial-mediated synaptic 
pruning are regulated by neural activity in an experience-
dependent manner (Parkhurst and others 2013; Schafer 
and others 2012; Tremblay and others 2010). Furthermore, 
disturbance of experience-dependent plasticity mecha-
nisms at a neuronal level by ASD-linked mutations 
impinges onto microglial pruning mechanisms, resulting 
in overconnectivity (Table 1).

Further evidence for the involvement of microglia in 
ASD etiology comes from the literature on the transfer of 
maternal pathogenic antibodies to the fetus. The first 
cohort study linking maternal antibodies to ASD dates 
back to the early 1990s where paternal lymphocyte epit-
opes in the sera of mothers of children with ASD were 
identified (Warren and others 1990). These findings were 
largely forgotten and studies of maternal-to-fetal transfer 
of serum from mothers of autistic or dyslexic children in 
mouse models were published a decade later (Dalton and 
others 2003; Vincent and others 2002). These demon-
strated in the mouse offspring deficits in neuromotor 
coordination and cerebellar metabolite changes. 
Additionally, maternal serum bound the surface of 
Purkinje cell neurons suggesting a neuronal surface anti-
gen. Since then, the presence of antibodies against fetal 
antigens in the sera of mothers of autistic children has 
been reported (Braunschweig and others 2012; Brimberg 
and others 2013; Piras and others 2014; Zimmerman and 
others 2007). More recently, case-control studies of ges-
tational samples found that antibodies against CASPR2, a 
cell adhesion protein of the neurexin family, were fre-
quent in mid-gestational sera from mothers of children 
with intellectual disability (Coutinho and others 2017a) 
or ASD (Brimberg and others 2016). Importantly, in utero 
exposure to CASPR2-antibodies, in a passive immuniza-
tion maternal-to-fetal mouse model, led to irreversible 
abnormalities in the offspring manifested by deficits in 
social behaviors, cortical lamination abnormalities, 
increased activated microglial numbers correlating with a 
loss of glutamatergic synapses (Coutinho and others 
2017b). These studies strongly support a causal link 
between maternal antibodies and neurodevelopmental 
deficits in the offspring and put tangible evidence behind 
the concept of maternal antibody-mediated neurodevel-
opmental disorders. Importantly, they hint toward an 
effect of pathogenic maternal antibodies in the process of 

microglia-dependent synaptic refinement, which could 
be the link between the immune system and neuronal cir-
cuit development. This is certainly an area to explore in 
future studies.

A prospective link between the immune system and 
the damage of associative circuitry may occur in cases of 
periventricular focal lesions in preterm infants, namely, 
infection and activation of the immune system, in combi-
nation with hypoxia-ischemia. This may damage associa-
tive periventricular pathways in areas of axonal 
crossroads, which show increased vulnerability (Kostović 
and others 2014). It was also shown that in a cohort of 
preterm infants there is a tendency of higher prevalence 
of ASD (Limperopoulos and others 2008). Hypoxic-
ischemic factors may also disturb the activity of axonal 
guidance molecules in periventricular vulnerable areas 
leading to altered connectivity that can underlie ASD 
(McFadden and Minshew 2013).

The Role of the Peripheral Nervous 
System in Synaptic Dysfunction in 
ASD

Altered somatosensation, such as hypersensitivity to 
touch or abnormal pain sensitivity, is common in people 
with ASD and assessment of sensory function is now part 
of the diagnostic criteria (Cascio 2010). The first step in 
normal somatosensation is activation of specialized sen-
sory endings in the skin such as low-threshold mechano-
receptors and free nerve endings of nociceptors and 
thermoreceptors. These peripheral neurons have been 
somewhat overlooked in terms of providing an explana-
tion for the sensory phenotype observed in those with 
ASD. Indeed, abnormal sensory responses in ASDs may 
arise purely from altered processing at the level of the 
central nervous system (CNS). However, recent preclini-
cal studies point to dysfunction of the peripheral nervous 
system (PNS) as an important driver not only of abnormal 
sensation but also other core ASD-like behaviors.

In terms of expression, using recently created search-
able transcriptional sequencing databases, it is interesting 
to note that many of ASD candidate genes, which are 
known to be important for synapse formation and func-
tion, (e.g., NRXNs, NLGNs, SHANKs, FMR1, CNTNAP2 
and MECP2, Table 1) (Guang and others 2018) are well- 
expressed by primary sensory neurons (Table 2). In line 
with this, a number of genetic ASD mouse models dis-
play abnormal sensory behavior alongside the more char-
acteristic ASD-like behaviors such as anxiety and reduced 
sociability (Table 2). For instance, genetic mutations in 
Mecp2, Frm1, and Shank3 all result in impairment of dis-
criminate touch and hypersensitivity to tactile stimuli 
(Orefice and others 2016). Since these genetic models 
affect gene expression throughout the whole organism, it 
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is difficult to untangle the contribution of the PNS and 
CNS. In an effort to tackle this issue, a recent study using 
conditional ablation models of Rett syndrome–linked 
Mecp2 mutations (Orefice and others 2016), which are 
also associated with ASDs (Wen and others 2017), 
showed that specific ablation from primary sensory neu-
rons resulted in the same sensory phenotype as global 
deletion. In contrast, specific deletion from CNS regions, 
such as the forebrain, did not impair sensory behavior 
when compared with littermate controls. These findings 
imply that loss of function of Mecp2 in the PNS, and not 
the CNS, is the reason for altered sensation in this model 
of ASD. Remarkably, when Mecp2 was introduced back 
into sensory neurons in the global Mecp2-mutant mouse, 
mechanosensation and other ASD-like behaviors, such as 
sociability, were normalized. These changes were linked 
to a decrease in the expression of the beta-3 subunit of the 
GABAA receptor at the central terminal of low-threshold 
mechanosensitive neurons. This resulted in a hyperexcit-
able synapse due to loss of presynaptic inhibition and, as 
a consequence a loss of control on tactile sensory input 
(Note: Mutations in GABRB3 are also strongly linked to 
ASD [Delahanty and others 2011] and specific deletion in 
primary sensory neurons, also causes ASD-like behav-
iors). These data therefore suggest that altered synaptic 
function of peripheral neurons, due to ASD candidate 
gene mutation, is not only important for abnormal 
responses to tactile stimuli, but their dysfunction may 
also drive other ASD-like behaviors whose origin has tra-
ditionally been considered CNS specific (Orefice and 
others 2016) (Fig. 2).

In terms of pain sensitivity, there are reports of ASD 
phenotypes with both hypo- and hyper-sensitivity (Cascio 
2010; Vaughan and others 2019). Shank3 knockout mice 
are a model of ASD (Zhou and others 2016) and show 

deficits in heat sensitivity (Han and others 2016). Indeed, 
Shank3 is highly expressed by primary sensory neurons, 
including nociceptors, particularly at the level of the pre-
synaptic terminal in the superficial dorsal horn. Here, it 
interacts with Trpv1, an important protein in the transduc-
tion of noxious heat in the skin and also expressed at the 
central terminal. Using the Trpv1 specific algogen capsa-
icin, loss of Shank3 results in decreased synaptic trans-
mission due to a loss of Trpv1 surface expression. These 
findings again point to disruption of synaptic function in 
primary sensory neurons as the substrate for ASD-like 
behaviors, in this case, pain insensitivity. This is further 
supported by the observation that nociceptor-specific 
removal of Shank3, but not from other parts of the nervous 
system, replicate the aberrant thermosensitivity phenotype 
(Han and others 2016)). Furthermore, genetic disruption 
of other ASD associated genes, such as GABRB3 and 
CNTNAP2, result in ASD-like behaviors in mice (DeLorey 
and others 2008; Peñagarikano and others 2011), includ-
ing pain (Dawes and others 2018; DeLorey and others 
2011). Although expression of these genes is altered glob-
ally, isolation of primary sensory neurons from Cntnap2 
knockout mice, show that these neurons are dysfunctional. 
For example, compared to control neurons, disruption of 
Cntnap2 results in hyperexcitability due to loss of surface 
Kv1 channels and provides an explanation for the pain 
hypersensitivity phenotype (Dawes and others 2018). This 
phenomenon was observed at the level of the cell body as 
well as nerve terminals in the skin. Such findings suggest 
that ASD-associated genes may disrupt primary sensory 
neuron function not only at the central terminal but also in 
other neuronal compartments.

Since these genes are well expressed by primary sen-
sory neurons, their loss might result in altered structural 
development and hence, abnormal sensation. Although 

Table 2. Expression of Select Autism Spectrum Disorders (ASD)–Linked Genes in Primary Sensory Neurons and 
Somatosensation in Mouse Models.

ASD Gene
SFARI 
Scorea

Expression by Primary Sensory Neuronsb

Altered Somatosensation in MouseHuman Mouse

MECP2 2/S Good Good Touch and pain (Orefice and others 2016)
FMR1 S Good Good Touch (Orefice and others 2016)
SHANK3 1/S Low Good Touch and heat pain (Han and others, 2016)
SHANK2 2 Low Low Mechanical and heat pain (Ko and others 2016)
CNTNAP2 2/S Good High Mechanical and heat pain (Dawes and others 2018)
GABRB3 2 Good High Touch, mechanical and heat pain (Orefice and others 2016)
CDH8 4 Good Good Cold (Suzuki and others 2007)

aScore indicates how well associated the gene is with ASD. 1 (highest), 5 (hypothesized but untested), S (associated with a syndrome similar to 
ASD).
bData taken from online database (Ray and others 2018). Low <10 TPM (transcripts per million), good 10 to 99 TPM, high >100 TPM. 
Expression levels are measured from whole lumbar dorsal root ganglion samples.
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one study reports on lower epidermal nerve fiber density 
in ASD (Silva and Schalock 2016), there is a lack of other 
studies in this area. From ASD mouse models, primary 
sensory neurons are structurally normal in terms of skin 
innervation, subpopulation distribution and their central 
terminals (Dawes and others 2018; Han and others 2016; 
Orefice and others 2016). Instead, it seems that in terms 
of primary sensory neuron biology, ASD genes directly 
alter function at the level of the synapse and other neuro-
nal compartments, to alter tactile sensitivity and pain, 
independently of neurodevelopmental mechanisms. In 
agreement with this idea, antibody-mediated disruption 

of the protein product of Cntnap2 (CASPR2), or genetic 
ablation of Mecp2, from primary sensory neurons in 
adulthood result in the same altered sensory behaviour 
compared to when these genes are removed during devel-
opment (Dawes and others 2018; Orefice and others 
2016; Orefice and others 2019). However, abnormal sen-
sory input might also have an important developmental 
role in shaping the wider symptomology of ASD. For 
example, studies investigating touch deprivation during 
development in humans and animal models show that 
lack of touch impacts onto cognitive behaviors (Ardiel 
and Rankin 2010; Cascio and others 2019). Given that 

Figure 2. Dysfunction of primary sensory neurons in autism spectrum disorders (ASD). By genetically altering ASD-linked 
genes, several mouse models have been developed. Some of these models have shown phenotypic changes in somatosensation 
associated with primary sensory neuron dysfunction. This dysfunction is linked not only to the synapse (the central terminal 
of the dorsal horn of the spinal cord) of these neurons but also to other neuronal compartments (e.g., the peripheral terminal 
in the skin and the cell soma). Loss of Cntnap2 leads to hyperexcitability in d-hairs, a type of low threshold mechanoreceptor 
(LTMR), due to loss of Kv1 channel function. Loss of Shank3 reduces the functional expression of TRPV1, a transduction 
channel important in heat hyperalgesia, in nociceptors. Soma loss of Cntnap2 also impacts onto nociceptor function resulting 
in hyperexcitablility of Aδ and C fibers. At the level of the synapse, loss of MECP2 results in the down regulation of GABA 
receptors and loss of presynaptic inhibition on LTMRs leading to increased sensitivity to tactile stimuli.
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touch can affect synapse formation in areas of the brain 
such as the prefrontal cortex (Kolb and others 2012), 
aberrant sensory input may be a key driver in altered syn-
apse development in ASD patients. In line with this, 
removal of Mecp2 or Gabrb3 from primary sensory neu-
rons in adulthood only affects tactile behavior, whereas 
removal from these neurons during development also 
causes anxiety and reduced social behavior and circuitry 
changes within the brain (Orefice and others 2019). 
Therefore, abnormal tactile experience-dependent syn-
apse development may be a fundamental pathophysiolog-
ical mechanism underlying ASD and the targeting of 
primary sensory neurons offers an alternative strategy for 
the treatment of core ASD behaviors.

Evidence of Altered Connectivity in 
ASD

There is no doubt that a deeper understanding of abnor-
mal synaptic connectivity, and by extension, structural 
connectivity defined by axonal pathways, is critical for 
the study of ASDs. Besides this so-called static connec-
tivity, functional connectivity is beginning to play a 
major role in ASD research. Broadly speaking, func-
tional connectivity refers to the dynamic and function-
ally unified relationship between brain areas regardless 
of apparent neuronal connections between the regions 
(Friston 2011). In neuroimaging applications, functional 
connectivity is typically defined as the possible causal 
correlation between neurophysiological events, quanti-
fied through some measure, where deviation from statis-
tical independence of such events is assumed to indicate 
connectivity (Table 3).

Functional connectivity can be assessed with most 
commonly available neuroimaging technologies, how-
ever, there are currently no strong models that could 
explain the behavioral patterns observed in ASD at the 
neuronal circuit level. Nevertheless, it is commonly, 
although not universally agreed, that anomalies in the 
interplay between long-range (including interlobe) and 
short-range (region-specific) connectivity relate to the 
behavioral theory of weak central coherence that, to some 
degree, explains both the social impairments and the 
superior performance in certain tasks of sensory percep-
tion (Menassa and others 2018). Accordingly, this 
assumes that higher order, social processes are reliant on 
intact large-scale connectivity, whereas putatively low-
level perception can be accomplished with predominantly 
local circuitry.

The first indications that long-range functional con-
nectivity is impaired in ASD date back to the late 1980s, 
when positron emission tomography was used to show 
reduced correlations in glucose metabolism between 
frontal cortices and other brain areas in resting adults 

with ASD (Horwitz and others 1988). Subsequently, 
functional magnetic resonance imaging (fMRI) has been 
used, where connectivity is typically defined in terms of 
correlation coefficients between regional BOLD (blood 
oxygen level–dependent) time-series, or spatial coher-
ence patterns. Indeed, such studies have revealed impaired 
connectivity both within the frontal lobe and between 
frontal and temporal cortices during rest and a variety of 
task conditions, such as, face recognition (Koshino and 
others 2008), sentence comprehension (Just and others 
2004) and the processing of emotional expressions (Sato 
and others 2012). Such findings, augmented by computa-
tional models of executive functioning, have led to the 
theory of frontal-posterior underconnectivity in ASD 
(Just and others 2012). Moreover, a recent fMRI study 
suggests that ASD individuals show reduced functional 
connectivity between the hippocampus and regions of the 
frontal-parietal network (Cooper and others 2017), imply-
ing that underconnectivity might involve non-neocortex 
and perhaps subcortical structures (Fig. 3).

Interestingly, underconnectivity in ASD compared to 
typically developing subjects can be observed at the 
whole-brain level, as well as locally in visual networks 
(Moseley and others 2015), where effects are intermedi-
ate in relatives who share some behavioral patterns with 
their affected siblings. This suggests that impairments in 
connectivity are heritable to some degree. The putative 
clinical relevance of functional connectivity is further 
supported by findings from a longitudinal study sug-
gesting that anomalies default-mode network and fron-
tal-parietal task control network correlate with future 
ASD traits and changes in adaptive behaviors (Plitt and 
others 2015).

Although underconnectivity has been observed 
often, this phenomenon might not always be present as 
suggested by a large-scale study in ASD (Woodward 
and others 2017). Using data culled from the Autism 
Brain Imaging Data Exchange, the authors examined 
thalamocortical functional connectivity as quantified 
by resting fMRI. The results suggest the prefrontal cor-
tex, temporal cortex, and sensorimotor cortex show 
increased (hyper-) connectivity with the thalamus in 
individuals with ASD but not in typically developing 
subjects. The associations found between connectivity 
patterns and clinical symptoms, however, were not sig-
nificant, making it impossible to judge the clinical rel-
evance of observed hyper-connectivity. The notion of 
thalamocortical hyper-connectivity was recently cor-
roborated using resting fMRI data obtained in adult 
males with ASD (Iidaka and others 2019). Interestingly, 
authors found some evidence that the pathophysiology 
of ASD is more likely related to thalamocortical hyper-
connectivity than to amygdala-cortical hypo-connec-
tivity, which has been observed in the past in line with 
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Table 3. Brain Connectivity Patterns in Autism Spectrum Disorders (ASD).

ASD Clinical Cohort Analysis Method Behavioral Findings Connectivity Findings Definition of Connectivity Range

Tuberous sclerosis
(n = 14; mean age: 9.3 years)
(Peters and others 2013)

Resting-state 
EEG

N/A ↓ Long-range 
connectivity

↑ Local connectivity

Not defined

High functioning ASD
(n = 10; mean age: 23.8 years)
(Barttfeld and others 2011)

Resting state, 
eyes closed

EEG

ASD severity related 
to ↑ short-range 
coherence and 
↓ long-range 
coherence

↓ Long-range 
connectivity

↑ Local connectivity

Local connectivity defined as 
cortico-cortical connections 
between the same cortical areas.

Long-distance connectivity defined 
as cortico-cortical connections 
between different functional areas

NF1 mutation
(n = 14; mean age: 12.49 years)
(Loitfelder and others 2015)

Resting state
fMRI

Relative connectivity 
levels correlated 
with parent reports 
of cognitive, social 
and behavioral 
functioning

↑ Frontofrontal 
connections

↑ Temporofrontal 
connections

↓ Left amygdala-PCC 
coupling

Not explicitly defined.

NF1 mutation
(n = 30; mean age: 27 years)
(Tomson and others 2015)

Resting state 
fMRI

Differences in local 
connectivity were 
correlated with IQ 
and internalizing 
symptoms

↓ Long-range 
connectivity

↑ Local connectivity

Local connectivity appears to be 
defined as connections within 
visual networks.

Long-range connectivity defined as 
anterior-posterior connectivity 
and within the DFN (default-
mode network).

ASD diagnosed via ADI-R 
(n = 12; mean age: 26.5 years)
(Kennedy and Courchesne 

2008)

Resting state
fMRI

N/A ↓ Long-range 
connectivity

Regional abnormality 
in local connections

Local connectivity investigated in 
localized areas of the DFN.

Long-distance connectivity defined 
as the DFN.

ASD including 11 with 
Asperger’s 

(n = 26; mean age: 26 years)
(Shukla and others 2011)

Resting state
DTI

N/A ↓ Long-range 
connectivity

↓ Local connectivity

Local connectivity defined as those 
<35 mm including subcortical 
U-fibers.

Long-distance connectivity defined 
> 65 mm.

ASD including PDD-NOS, 
Asperger’s

(n = 16, mean age: 57.5 years)
(Sundaram and others 2008)

DTI N/A No significant 
difference in long-
range connectivity

↓ Local connectivity

Local connectivity defined as fiber 
tracts within the frontal lobe 
(spanning 35 voxels).

Long-distance connectivity defined 
as fibers projecting from frontal 
lobe to other brain regions.

High functioning ASD
(n = 15; mean age: 10.8 years)
(Sundaram and others 2008)

Executive 
function task

MEG

↑ Mistakes in ASD 
group in executive 
function task.

↑ Perseverative 
errors in ASD

↓ Long-range 
connectivity/
synchrony

↑ Local connectivity/
synchrony

Local connectivity defined by 
intraparietal synchrony.

Long-distance connectivity defined 
by synchrony between the frontal-
parietal networks.

ACC = anterior cingulate cortex; ADOS = Autism Diagnostic Observation Schedule; DTI = diffusion tensor imaging; EEG = electroencephalography;  
FFA = fusiform face area; fMRI = functional magnetic resonance imaging; IFG = inferior frontal gyrus; MEG = magnetoencephalography; PDD-NOS = pervasive-
developmental disorder not otherwise specified; PCC = posterior cingulate cortex.

the underconnectivity account of autism. Noteworthy, 
hyper-connectivity (assessed with resting fMRI) 
between the thalamus and cortical regions was found 
children and adolescents with ASD relative to typically 
developing children (Mash and others 2020).

In studies employing electroencephalography (EEG) 
and magnetoencephalography (MEG), functional con-
nectivity is typically defined in terms of a correlation of 
signals in frequency bands commonly known as funda-
mental rhythms, which have been robustly linked to a 
large number of cognitive processes and brain states. The 
precise neuronal mechanism underlying the rhythms are 

still elusive, although there is evidence that higher fre-
quency oscillations emerge from the coordinated interac-
tion of inhibition and excitation (Buzsáki and Wang 
2012). Broadly in line with fMRI findings, resting-state 
EEG studies of ASD have reported reduced coherence 
between frontal and occipital regions for delta (1-2 Hz) 
and theta (3-7 Hz) bands (Coben and others 2008) and 
reduced connectivity between the frontal cortex and the 
temporal and parietal cortices for the alpha (8-12 Hz) 
band (Murias and others 2007).

There is some evidence for increased short-range 
frontal connectivity in the delta band (Barttfeld 
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and others 2011) and increased local connectivity in 
occipital cortices (Berman and others 2015) as evi-
denced by a measure known as alpha-to-gamma (>30 
Hz) phase-amplitude coupling (PAC). Using a measure 
of evoked (i.e., stimulus-locked) gamma oscillation 
detected with MEG, increased 40 Hz coherence follow-
ing semantically incongruous sentences was observed 
over frontal regions (Braeutigam and others 2008) 
whereas increased frontal-temporal functional connec-
tivity in ASD was observed in a perceptual discrimina-
tion task (Menassa and others 2018). In contrast, a form 
of generalized underconnectivity has been reported in 
ASD for face processing tasks using coherence and PAC 
measures applied to EEG recordings (Khan and others 
2013). It appears that the picture emerging from electro-
physiological studies is at least as complex as the one 
suggested by fMRI, where in addition to underconnec-
tivity, aberrant over-coherence might have a greater 
etiological relevance than previously assumed. This 
view would be supported by a recent study that func-
tional whole-brain connectivity in the theta band at 14 
months correlates with severity of restricted behaviors 
at 36 months in infants who met criteria for ASD 
(Haartsen and others 2019).

Considering the roles of the medial prefrontal cortex 
(area 32) and anterior cingulate cortex, the long cortico-
cortical connection with the precuneate parietal cortex 
may be of special interest. Associative pathways connect-
ing these areas form the backbone of the structural 

connectome and these areas are known to have functions 
of self-awareness and social cognition. Synaptic connec-
tivity of these regions shows earlier establishment of 
long-range connectivity than lateral neocortical areas. 
Here, the timing and differential vulnerability of abun-
dant presynaptic input to these medial prefrontal cortical 
areas may be one of the multiple routes of abnormal syn-
aptic connectivity.

Taken together, there is growing evidence that ASD is 
associated with altered patterns of functional and brain 
connectivity (see also O’Reilly and others, 2017 for a 
recent review of electrophysiological studies). In addi-
tion to the observations discussed above, further studies 
are listed in Table 3, which also points to relevant obser-
vations based on diffusion tensor imaging (DTI) as a 
bridge between anatomical and functional connectivity. 
Specifically, long-range connectivity appears generally 
impaired, that is, reduced, compared with typically 
developing subjects. However, this might not hold under 
certain task conditions. The case of short-range connec-
tivity is less clear, implying that the coexistence of 
impaired, unimpaired, or possibly enhanced skills is not 
simply explained in terms of network scale. Although 
definitive answers are not readily available, we are 
beginning to better understand the relationship between 
functional and synaptic-structural connectivity, which 
will help to assess the meaning and clinical relevance of 
functional connectivity. Indeed, a recent review of com-
bined (resting state) fMRI and DTI found a significant 

Figure 3. Connectivity in autism spectrum disorders (ASD). Left: spatial and temporal resolutions of common neuroimaging 
technologies used in measuring connectivity in ASD. Right: an illustration of the putative anomalies in functional connectivity 
in ASD, where local connections are favored over long-range interactions. MEG, magnetoencephalography; EEG, 
electroencephalography; fMRI, functional magnetic resonance imaging; PET, positron emission tomography; SPECT, single-photon 
emission computed tomography; IEEG, intracranial electric recordings.
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quantitative structure-function relationship suggesting 
that anatomical connectivity provides the basis from 
which functional connectivity emerges (Straathof and 
others 2019).

Altered Energetic States in ASD May 
Explain Altered Connectivity

The wiring economy principle dictates that the metabolic 
costs of functionally resourcing a brain are large and gov-
erns its connectivity structure (Laughlin and Sejnowski 
2003; Raj and Chen 2011). Given that the cost of wiring 
the brain may scale as the square of the wire length 
(Chklovskii 2004), it may be hypothesized that altered 
developmental connectivity in ASD may imbalance wir-
ing cost optimization. This may be met by insufficient 
resource allocation and reduced development of more 
“costly” long-distance connections, resulting in a situation 
of local overconnectivity and distal underconnectivity.

A putative direct mechanism underlying distal under-
connectivity may result from the inherent vulnerability of 
long-distance connections to glutamate and oxidative 
stress. Although there is a distinct lack of literature inves-
tigating energetic states in long-distance/interlobar con-
nections, a parallel may be drawn with long, highly 
arborized dopaminergic neurons from the substantia 
nigra. For example, the energy cost of axonal action 
potential generation and membrane recovery increases 
with the size and complexity of the axonal arbor of such 
dopaminergic neurons (Pissadaki and Bolam 2013).

The Imbalance between Excitation 
and Inhibition Is Core to ASD 
Pathophysiology

With the emergence of computer modelling approaches 
of neural networks, the dynamic effects of clustered and 
overconnected circuits can be investigated. Although cur-
rent models may lack the necessary complexity to model 
the possible heterogeneity of individual neuron response 
profiles, they have generally shown that a rewiring of 
only 3% of excitatory connections can substantially 
change balanced network dynamics (Litwin-Kumar and 
Doiron 2012).

In 2003, Rubenstein proposed that inherent to some 
forms of ASD is an increased cortical excitation to inhibi-
tion ratio (E/I), resulting in hyperexcitability of cortical 
circuits (Rubenstein and Merzenich 2003). Over a decade 
later, this theory has been bolstered by various studies 
(Robertson and others 2016; Sohal and others 2009; 
Wilson and others 2007) and is consistent with the 
observed prevalence of epilepsy in ASD that is some 25 
times the rate found in the general population (Bolton and 

others 2011; Bozzi and others 2018). Why glutamatergic/
excitatory and GABAergic/inhibitory networks and 
transmission may be differentially affected in ASD 
remains an open question. In a recent critical literature 
review, abnormal GABAergic and glutamatergic neuro-
transmission in key brain areas have both been implicated 
in E/I imbalance in ASD (Uzunova and others 2016). 
This may reflect the outcome of asymmetry in E/I ratios 
across different cortical networks that is possibly linked 
to their relative composition of interneuron subtypes, 
which show heterogeneity in E/I synaptic inputs (Gulyás 
and others 1999). Network E/I balance in certain brain 
regions may therefore be differentially affected by, or 
themselves affect, network overconnectivity. Future stud-
ies may benefit from investigating functional patterns of 
E/I ratios across cortical areas. This may provide further 
insight into the possible susceptibility of certain cortical 
networks to E/I imbalance that may result from, or pos-
sibly in, ASD-linked overconnectivity.

Vulnerability of Frontal Networks in 
ASD and Phenotypic Specificity

A further theory linked to ASD involves the early closure 
of neuroplastic critical windows (Berger and others 
2013). The idea that a precise balance of E/I transmission 
may be required for critical window plasticity (LeBlanc 
and Fagiolini 2011), which otherwise would be compro-
mised if the E/I balance is offset, may provide a means to 
unify ASD theories. Given that the development of fron-
tal networks may strongly depend on experience-depen-
dent input during a critical plasticity window (age 2-3 
years), premature closure of such a window may further 
compound the susceptibility of frontal networks in ASD.

In fact, stimulated elevation of the E/I ratio in the 
mouse PFC via optogenetic approaches, elicits a pro-
found impairment in cellular information processing and 
has been associated with autistic-like behaviors (Yizhar 
and others 2011). These findings may accredit a “two-hit” 
mechanism in which E/I imbalance affects frontal net-
works, first at the level of the developmental critical 
period, and second at the level of circuit dynamics and 
network function following this. Networks less depen-
dent on such critical periods would be less affected by the 
first “hit” and may be relatively spared in ASD. Such a 
mechanism may therefore account for the network and 
phenotypic specificity in ASD (Table 4).

It is also possible that the specificity of circuits most 
adversely affected in ASD may be governed by their rela-
tive dependency on experience-dependent plasticity for 
development—reflected by the subsequent differences in 
histogenesis duration between functional areas that may 
otherwise be disturbed in ASD (Doll and Broadie 2014; 
Ebert and Greenberg 2013).
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Frontal brain networks show the most protracted 
development out of all brain regions (Huttenlocher and 
Dabholkar 1997; Schneider and others 2004; Sousa and 
others 2018), presumably alluding to the developmental 
dependence of these regions and subsequent develop-
ment of complex cognitive, social and behavioral abili-
ties on life experience. Several lines of evidence implicate 
the dependence of normal frontal network development 
and function on experience-dependent plasticity (Bock 
and others 2008; Kolb and others 2012). This can be con-
trasted to other circuit functions, that are relatively spared 
in ASD (Kéïta and others 2010; Shafai and others 2015). 
For example, visual orientation discrimination thresholds 
are not different between individuals with ASD and 
healthy controls (Shafai and others 2015). Given that ori-
entation selectivity can still develop, albeit to a reduced 
level, in visually deprived animals (Chapman and Stryker 
1993), it may be suggested that circuits relatively spared 
in ASD are ones that show a greater degree of intrinsic 
functional hardwiring. Such circuit functionality may 
therefore be less dependent on extrinsic, experience-
dependent plasticity mechanisms.

Conclusion

Despite the genetic heterogeneity in ASD, two key bio-
logical themes, namely synaptic non-plasticity and abnor-
mal brain connectivity, link idiopathic and syndromic 
ASDs at the level of altered biological function. However, 
the manner in which ASD-linked synaptic non-plasticity 
might lead to specific patterns of local overconnectivity, 
distal underconnectivity, and phenotypic specificity has 
not yet been solved. The inherent dependence of frontal 
brain networks on experience for normal development 
may underlie their vulnerability to disruption by ASD-
linked synaptic non-plasticity. The “two-hit” model pro-
posed here, in which brain overconnectivity may disrupt 
E/I balance, and the critical developmental period needed 

for the development of frontal networks, as well as nor-
mal network dynamics and function, may further com-
pound frontal network vulnerability. This may explain 
phenotypic specificity in some cases of ASD. Connectivity 
patterns in ASD may arise due to impingement of ASD-
synaptic mutations on microglial pruning functions. This 
model may inform novel therapeutic strategies aimed at 
rescuing cellular functions of synaptic plasticity and may 
provide insight into the etiology of ASD.
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