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Malignant brain tumors are among the most aggressive 
human neoplasms. One of the most common and se-
vere symptoms that patients with these malignancies ex-
perience is sleep disruption. Disrupted sleep is known to 
have significant systemic pro-tumor effects, both in pa-
tients with other types of cancer and those with malignant 
brain lesions. We therefore provide a review of the current 
knowledge on disrupted sleep in malignant diseases, with 
an emphasis on malignant brain tumors. More specifically, 
we review the known ways in which disrupted sleep ena-
bles further malignant progression. In the second part of 
the article, we also provide a theoretical framework of the 
reverse process. Namely, we argue that due to the sever-
al possible pathophysiological mechanisms, patients with 
malignant brain tumors are especially susceptible to their 
sleep being disrupted and compromised. Thus, we further 
argue that addressing the issue of disrupted sleep in pa-
tients with malignant brain tumors can, not just improve 
their quality of life, but also have at least some potential 
of actively suppressing the devastating disease, especial-
ly when other treatment modalities have been exhausted. 
Future research is therefore desperately needed.
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The annual incidence of tumors of the central nervous 
system (CNS) is little over 22 per 100 000 in the general 
population (1). Around a third of these lesions are malig-
nant. Among the malignant tumors, gliomas are by far the 
most common type, constituting over 80% of the number. 
Among gliomas, the most aggressive type (glioblastoma) 
is the most common one, making up over a half of all new-
ly diagnosed gliomas (2,3). The five-year survival of patients 
with malignant CNS tumors is around 30%, with patients 
being diagnosed a glioblastoma having a five-year survival 
rate of less than 5%. All this goes to show how malignant 
CNS tumors are some of the most aggressive human ma-
lignancies today. It also shows how the vast accumulated 
knowledge on the disease origin and progression still has 
not translated into significant improvement of the overall 
survival of these patients. New treatment modalities are 
therefore desperately needed.

Besides the devastating diagnosis of a malignant brain tu-
mor, these patients often experience a wide variety of se-
vere symptoms, which significantly diminish their quality 
of life (4). There has been an increasing awareness of the 
importance of supportive and palliative care in patients 
suffering from malignant brain tumors, especially those in 
whom other treatment modalities have been exhausted 
(5-7). One of the most commonly reported symptoms is 
sleep disturbance (4,8-12).

Sleep is a recurrent, physiological phenomenon, which 
consists of many measurable factors (12) and is ubiquitous 
throughout the natural world (13-16). It is a highly active, 
easily reversible process, which is crucial not only for the 
physical and mental well-being of all living organisms, but 
also for the very concepts we as humans have of ourselves 
and the world around us (17). There are many theories re-
garding the possible function of sleep, ranging from the 
physiological explanations such as rest of individual cells 
(18) to behavioral explanations of why a biological system 
needs periodic inactivity (19). There is a growing under-
standing of how the modern lifestyle disrupts the natural 
circadian rhythm in humans, consequences of which are 
still not sufficiently explored (20).

Sleep disruption has a well known detrimental role for an 
organism. Indeed, patients with disrupted sleep have been 
found to have a higher prevalence of several diseases, such 
as cardiovascular disorders (21), cognitive impairment (22), 
various metabolic disorders and obesity (23,24), and sys-
temic and local inflammation (25,26). Furthermore, sleep 
can be impaired in many ways. The current classification 

of sleep disorders consists of several clinical entities such 
as insomnia, parasomnia, hyper-somnolence, sleep-related 
movement disorders, etc (27). However, this article refers to 
all of this broad pathology as “sleep disturbance,” primar-
ily for clarity and simplicity sake. In addition, research on 
disrupted sleeping patterns in patients with malignant le-
sions usually also encompasses all of these entities into this 
broader term (28,29).

DISRUPTED SLEEP IN PATIENTS WITH A MALIGNANT 
DISEASE

An emerging field of interest in sleep disruption in pa-
tients suffering from malignant diseases has recently 
gained much attention (11,29). Indeed, it has been shown 
that disrupted sleep is one of the most common com-
plaints in patients undergoing oncological treatment, 
with patients suffering from malignant brain tumors be-
ing especially susceptible (4,10). Furthermore, the risk of 
developing several different neoplasms can be directly 
correlated with various sleep disturbances (30-33). On the 
other hand, patients suffering from various types of neu-
rological disorders very often also suffer from some sort 
of disrupted sleeping pattern (34,35), indicating that pa-
tients with CNS pathology are very susceptible to sleep 
disruption.

Research into the complex relationship which malignant 
brain tumors could have with disrupted sleep is quite 
scarce. It usually addresses the severity and frequency 
with which disrupted sleep occurs as a symptom in these 
patients (8,9,36) as well as the effects of the oncological 
treatment on sleeping patterns (8), but usually does not 
explore in detail the possible pathophysiological mecha-
nisms by which disrupted sleep could actually detrimen-
tally affect patients‘ ability to fight off the disease, or the 
ways in which malignant brain lesions themselves could 
actually impair sleep.

The aim of this article was therefore to review the cur-
rently available research concerning sleep in patients with 
malignant brain tumors. More specifically, we provide a re-
view of the known consequences of disrupted sleep on 
the malignant progression and connect it to the currently 
available research regarding malignant brain tumor pa-
thology. The secondary aim, which is explored in the sec-
ond part of the article, was to provide theoretical frame-
work for the possible pathophysiological effects that a 
malignant brain lesion itself could have on the brain’s 
ability to sleep.
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Systemic effects of disrupted sleep

Alongside other detrimental effects stated above, there 
have been several proposed mechanisms of the possi-
ble pro-tumor effects of disrupted sleep (2,30). As men-
tioned earlier, however, these reports focus on many 
other types of malignant diseases, but usually leave out 
patients with brain tumors, a fact already noted else-
where (8,28). We will therefore explore several possi-
ble mechanisms of the pro-tumor effects of disrupted 
sleep that have been linked to other malignancies and 
determine the possible correlation it could have to ma-
lignant brain tumors. These mechanisms include phase 
shifts, reduced anti-oxidant levels, immunosuppression, 
metabolic changes, melatonin depletion, cognitive im-
pairment, and epigenetic changes. All of these systemic 
changes have in turn been linked to a worse prognosis 
in patients with malignant brain tumors, indicating dis-
rupted sleep as a possible exacerbating factor of tumor 
progression. This connection has been differently prov-
en for various factors and we tried to note them here in 
descending order, starting from the ones with the most 
clinical proof.

Disrupted sleep and phase shift

Disrupted sleeping patterns have been found to signifi-
cantly influence the transcription of the so-called clock 
genes (37). These genes, alongside the circadian “master 
clock” in the suprachiasmatic nuclei of the brain, govern 
the rhythmic circadian synchronization of almost all of the 
physiological processes within the body (2).

The physiological circadian clock functions as a tumor sup-
pressor at the systemic, molecular, and cellular levels. In-
deed, these circadian rhythms have been found to be so 
important that their various disruptions lead to the so-
called phase shifts, which have been linked to both tum-
origenesis and tumor progression (2,38). In fact, there is a 
growing awareness of how chronotherapy could improve 
the efficacy of cancer treatment and the quality of patients’ 
lives (38,39).

Malignant brain tumors have been found to rely heavily 
on the expression of clock genes, namely in their growth 
(40), cellular proliferation (41), and migration (42). It is 
therefore very likely that the disruption of various circa-
dian sleep-wake cycles further impairs the physiologi-

cal circadian rhythms, thus having crippling pro-tu-
mor effects.

Disrupted sleep and reduced antioxidant levels

Excess production of free radicals (or oxidative stress) plays 
an important role in the metabolism of all living aerobic or-
ganisms, including humans. These free radicals, also called 
reactive oxygen species, induce oxidative damage to cer-
tain cellular macromolecules, and this damage has been 
linked to many common human diseases including cancer 
(43). Several protective cellular mechanisms have evolved 
to counter this damage, namely in the form of various anti-
oxidant molecules and antioxidant enzymes (44). Of these, 
glutathione has been found to be the most important 
mammalian cellular antioxidant molecule, with a crucial 
role in cell protection against oxidative stress (44).

Glutathione is a well-known antioxidant molecule with a 
significant protective role against oxidative free-radicals 
and carcinogens (45). However, glutathione levels are not 
constant. They actually strongly depend on the circadian 
rhythm. More specifically, they are significantly elevated 
during sleep (46). Thus, due to the disruption of sleep 
cycles, physiologically elevated levels of glutathione are 
diminished, making cells more susceptible to oxidative 
damage.

The therapeutic potential of glutathione is highly complex 
and controversial. Indeed, beside its protective role, gluta-
thione also significantly influences the response to therapy 
of the tumor cells themselves, namely it allows these cells 
to suffer less damage from oncological therapy (47,48). 
Bansal and Simon (45) offer a more in-depth analysis of the 
immensely complex dual role which glutathione plays in 
cancer patients. The knowledge of these complex systems 
and mechanisms is still insufficient, and further research is 
desperately needed.

Beside glutathione reduction due to the lack of sleep, 
there is also another mechanism that diminishes glutathi-
one levels and that occurs in patients with malignant brain 
tumors. It involves glutamate metabolism and is explored 
in greater detail in the section regarding chemical sleep 
disruption.

Disrupted sleep and immunosuppression

It is well-known that patients with malignant brain tumors 
experience a significant local and systemic immunosup-
pression (49,50). This is an area of intense recent interest 
with regard to potential therapeutic options (51). While the 
exact mechanisms of this suppression are unclear, one pos-
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sible explanation could be that the tumor alters sleeping 
patterns, which in turn influences immunosuppression. 

It has been shown that disrupted sleep can impair the sys-
temic immune response both in animals (52) and in humans 
without (53,54) and with (55) malignant disease. In patients 
with malignancies, disrupted sleep seems also to negatively 
affect the immune system, primarily by disrupting the func-
tioning of natural killer cells and cytokine production (55). 

It therefore seems possible that future treatments target-
ing the immune response of patients will have to account 
for disrupted sleep as well.

Disrupted sleep and metabolic changes

Even short-term sleep loss has been shown not only to 
disrupt the physiological functioning of various metabolic 
processes such as glucose regulation or cortisol and insu-
lin secretion, but also to lead to an increased appetite and 
caloric intake (20). Chronic sleep disruption has also been 
linked to severe complications such as cortisol and insulin 
dysregulation, obesity, and diabetes mellitus (20,56).

These alterations to various aspects of metabolic syndrome 
have on the other hand been consistently connected to a 
worse prognosis in patients with cancer (57), as well as with 
malignant brain tumors (58,59). Our own preliminary re-
search on patients with meningiomas (60) and patients with 
glioblastomas (61) showed that at least some patients with 
primary intracranial malignancies could actually have signifi-
cantly disrupted chronic blood glucose levels. Even on the 
cellular level, it has been shown that genes coding for vari-
ous glucose transporters (GLUT1 for example) are differently 
expressed in the sleeping brain than in the awake one (46).

It seems therefore likely that the metabolic changes 
linked with disrupted sleep further impair the metabol-
ic status of patients with brain neoplasms, leading to a 
worse prognosis.

Disrupted sleep and melatonin depletion

Melatonin is a pineal hormone that is involved in the circa-
dian regulation and facilitation of sleep (62). Besides in the 
pineal gland, melatonin is also synthesized in various other 
organs, tissues, and cells, also in a circadian fashion, with a 
high rhythm amplitude and a prominent nocturnal maxi-
mum. In the extrapineal sites, secretion oscillations have 
considerably lower amplitudes. Some of the extrapineal 

sources are, according to current knowledge, of particular 
importance, either in quantitative terms, such as the gas-
trointestinal tract, which contains several hundred times 
more melatonin than the pineal gland or, with regard to 
functional aspects, some areas of the central nervous sys-
tem and several leukocytes.

Melatonin is also often called a hormone of darkness since 
all of the body’s melatonin is secreted at night-time (63). 
Melatonin has been shown to have various anti-tumor ef-
fects, both in malignant brain tumors (64,65) and in other 
cancers (63,66). Besides this protective role in malignant 
brain tumor patients, melatonin also has many other pos-
sible anti-tumor mechanisms, which link it to points men-
tioned earlier. These include such diverse effects as the 
ones on the systemic immune response, its antioxidant 
role, its effect on glucose regulation, etc (67,68).

The modern, industrialized lifestyle with its dependency 
on light disrupts significantly the synthesis and the secre-
tion of melatonin (63,69). Even different diets have been 
found to affect the melatonin levels in the organism (70). It 
has also been found that disrupted sleeping schedules sig-
nificantly further diminish melatonin secretion (63,71).

Melatonin levels are therefore likely altered in patients with 
malignant brain tumors due to their impaired sleeping 
schedules, thus diminishing the many possible anti-tumor 
effects of the hormone. And while melatonin is currently 
successfully administered in the treatment of restoring the 
diurnal rhythm (72), its complex metabolism has repeated-
ly been suggested as a possible therapeutic target in onco-
logical treatment (73,74). This type of research is still unfor-
tunately in its infancy and further investigation is needed.

Disrupted sleep and cognitive impairment

Sleep disruption has been shown to severely diminish the 
quality of life in patients and their families through various 
mood disorders, memory impairment, increased demen-
tia risk, etc (20). Cognitive impairment is also known to be 
connected to a worse survival in patients with malignant 
brain tumors (75). Therefore, it is possible that disrupted 
sleep at least partially exacerbates the cognitive impair-
ment of these patients, also leading to a worse prognosis.

Disrupted sleep and epigenetic changes

There is a growing awareness of the significant effects 
of sleep disruption on the epigenome (76). Epige-
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netic changes have on the other hand been found to have 
a crucial role in the modern understanding of brain malig-
nancies and their classification (77). It is therefore possible 
that disrupted sleep alters in some way various epigenetic 
environments in malignant brain tumor patients, a current-
ly underexplored field with significant potential.

Tumor effects on sleep

Having discussed the possible ways in which disrupted 
sleep as a common symptom can influence the tumor 
progression, we will now focus on the effects of the tumor 
itself on the brain’s ability to sleep.

Physical effects

Direct physical effects

Sleep disturbances are a very common symptom of pa-
tients with brain tumors (4,10). The exact causes of these 
disturbances are still largely unknown, with several articles 
mentioning various possible explanations (8). The authors 
here include the patients’ comorbid conditions, concurrent 
symptoms, environmental stressors, prescribed medication, 
as well as neuropsychiatric effects. The authors also mention 
the so-called direct tumor effects, namely pituitary/hypo-
thalamic involvement and anhedonia. We however feel that 
additional possible mechanisms could be put into the latter 
category that the authors do not explore. Indeed, we feel 
that these direct effects of the tumor make patients even 
more susceptible to subsequent environmental mecha-
nisms mentioned earlier. Although the research into this area 
has unfortunately been limited, sporadic reports show that 
sleep could actually be impaired even before chemo- and 
radiotherapy or other external factors (78). This is also true in 
our preliminary research (data currently unpublished).

Direct disruption in the sleep-wake circuitry

This mechanism is straightforward and has been men-
tioned in previous research. It seems fairly obvious that a 
malignant lesion that destroys the neural projections or 
the structures involved in the sleep-wake circuitry (the 
hypothalamus for example) would disrupt the sleeping 
patterns. It has indeed been reported that patients with a 
malignant tumor in these regions could have severely im-
paired sleeping cycles (79).

Lesions in parts of the brain not directly involved in sleep-
wake regulation

The brain function inevitably relies on its structure. And, 
as mentioned earlier, one of the most important brain 

functions is sleep. Therefore, it is likely that the complex 
changes occurring during sleep are not limited to certain 
cerebral areas, but are instead function of the entire brain 
(80). It would follow then that any disruption in the cere-
bral structure can impair sleep to a greater or lesser degree. 
More specifically, even malignant lesions in the brain re-
gions that are not usually considered to be crucial for sleep 
could mechanically disrupt the complex cerebral structure 
and its function. Indeed, sleeping is disrupted in many oth-
er neurologic pathological conditions that compromise the 
general brain structure (35,81). Also of note is that the grow-
ing intracranial mass can cause many other non-specific 
symptoms (such as headaches) during sleep and thus fur-
ther impairing the sleeping schedule of a patient.

Indirect physical effects

A growing intracranial mass can cause a variety of non-
specific symptoms. This is especially true for highly prolifer-
ative malignant tumors, where the compensatory mecha-
nisms of an organism are rapidly rendered insufficient due 
to the fast and infiltrative tumor growth. The most com-
monly reported indirect physical effect of a malignant le-
sion on brain function is disruption in a patient’s breathing 
patterns.

Breathing is a highly complex physiological phenomenon. 
It is tightly controlled in several distinct control points, 
namely the central control at the level of the brainstem, 
effector control (respiratory muscles for example), and 
sensory control. The central breathing control is primar-
ily performed by three large neuron groups in the pons 
and medulla (82,83). Disruption or damage in these neu-
rons and neuron groups can lead to severe breathing dis-
orders and even death (Ondine’s curse). Beside malignant 
lesions, such damage can occur in other types of neuropa-
thology as well, such as in multiple sclerosis (84). Breath-
ing is also controlled at a higher level, namely through 
corticobulbar and corticospinal pathways (82). This supra-
pontine control allows for voluntary respiration modifica-
tion. Destruction of these pathways can also lead to severe 
breathing disorders (85). Another possible mechanism by 
which malignant brain tumors can compromise breathing 
is through elevated intracranial pressure, which arises due 
to the growing lesion. This in turn can cause an indirect 
compression of the breathing centers, similarly to what oc-
curs in patients with Chiari malformation (86).

All of the mechanisms described above can compromise 
breathing and breathing patterns of a patient, causing 
various types of dyspneas and apneas, especially during 
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sleep. Indeed, it has already been recognized that sleep-
disordered breathing has a much higher prevalence in pa-
tients with neurologic disorders such as stroke and epilep-
sy (87). While these sleeping disorders have been labeled 
highly prevalent and grossly under-recognized (88), they 
have also not been sufficiently investigated in patients 
with malignant brain tumors. This seems remarkable since 
it has already been shown that apneas and insomnias lead 
to a functional reorganization of the brain (89,90). More-
over, this type of sleep disruption has been connected to 
a worse outcome and prognosis in several diseases, in-
cluding malignant ones (91). Furthermore, when different 
effects of acute, chronic, and cyclic hypoxia were investi-
gated with regards to tumor aggressiveness, it has been 
shown that cyclic hypoxia (such as the one occurring in 
patients with sleep apneas) actually significantly enhances 
tumor cell aggressiveness by altering various cancer hall-
marks, such as angiogenesis, metastasis, cell proliferation, 
and/or inflammation (92). Although these findings have 
not yet been tested on brain tumor cells, it seems possible 
that similar effects could take place in them as well.

Knowing how common and often undetected various 
breathing disorders are in the general population (87,93), 
and taking into account the pathophysiological mecha-
nisms described above, it is likely that patients with brain 
tumors are also susceptible to this type of pathology. Un-
fortunately, research is still fairly limited and warrants fur-
ther effort into deciphering the complex relationship 
which brain tumors, sleeping, and breathing have with 
each other.

Chemical sleep disruption

Alongside all of the aforementioned mechanisms by 
which malignant brain tumors can disrupt sleeping patters 
of a patient through their physical interaction with normal 
brain tissue, there is also another important way in which 
this disruption can occur. The disruption in question is a 
chemical one, through glutamate.

Glutamate is not only the predominant excitatory neu-
rotransmitter in the central nervous system, but it also has 
a crucial role in regulating sleep-wake cycles (94). More 
specifically, it has a significant excitatory role in promoting 
and maintaining wakefulness. This is in fact true whether 
the molecule is located in the intra-synaptic (95) or extra-
synaptic space (96). Besides this physiological role, cellular 
glutamate metabolism has gained much interest recently 
due to its apparent crucial role in the survival of malignant 

cells, especially in their cellular growth and proliferation 
(97).

Glutamate is mostly secreted into the synaptic cleft by 
the cysteine-glutamate transporter (system x-

c), which ex-
changes it with extracellular cysteine. Glutamate cannot 
passively diffuse back to the intracellular space, nor can 
it be metabolized by extracellular enzymes. It is therefore 
transported into the intracellular space primarily by mol-
ecules known as the excitatory amino acid transporters 
(EAATs) (98). Glutamate release and uptake to and from the 
synaptic cleft are both tightly regulated through the afore-
mentioned molecules. If this tight control is disrupted, it 
leads to glutamate accumulation and causes detrimental 
excitotoxicity (99,100). This type of damage can also occur 
in the presence of necrosis, which causes the intracellular 
glutamate to leak into the extracellular space, damaging 
cells, and causing a cascade of neurotoxocity (100) and fur-
ther cellular decay (101). This over-abundance of extracel-
lular glutamate is detrimental not only to the surrounding 
cells, but also to the cellular ability to cope with reactive 
oxygen radicals. This happens since the abundance of ex-
tracellular glutamate impairs the system x-

c, which normal-
ly exchanges it with extracellular cysteine. The deficiency 
of this transporter leads to an intracellular lack of cysteine, 
which in turn causes a complex cascade in which cellular 
cysteine and subsequent glutathione production are im-
paired (100), therefore disabling the anti-oxidative proper-
ties of glutathione (see earlier).

The abundance of glutamate in malignant brain tumors 
is well-known (102-104). And even though in the past it 
has been proposed that this abundance is caused primar-
ily by tumor cells necrosis (thus being merely a side-effect 
of necrosis), it has since been repeatedly shown that ma-
lignant cells express a significant upregulation of system 
x-

c as well as a significant downregulation of EAAT mol-
ecules. Both of these changes of genetic expression allow 
for a higher extracellular glutamate concentration (100). 
This would therefore imply an important role that extra-
cellular glutamate has in the survival of malignant cells. 
Knowing the positive effect that disrupted sleep has on 
tumor cells, it seems likely that at least one of the func-
tions of this active glutamate secretion is actually chemi-
cally disrupting sleep.

Clinical implications

The currently standardized treatment of patients with 
malignant brain tumors consists of surgery, che-
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motherapy, and radiotherapy. Diagnosis and treatment of 
sleep disorders in these patients is seldom considered. As 
mentioned earlier, many researchers have already noticed 
this fact (4,8,10,28,30,105), thus we will not go into this is-
sue in depth. Suffice to say that the cited articles include 
several methods on how to measure and diagnose sleep 
disorders, as well as how to treat them, with a special em-
phasis on the evaluation of treatable underlying causes of 
sleep disorders, as well as the importance of sleep hygiene 
alone or in addition to pharmacological management.

The fact that disrupted sleep is such a common symptom 
and so crippling to the quality of life of patients with ma-
lignant brain tumors is well known. Thus, the currently fre-
quent disregard of the problem in the oncological treat-
ment increasingly seems insensible and misguided. The 
added benefit of actively recognizing and addressing this 
problem is that it has at least some potential in actively 
suppressing the vicious disease. We would therefore en-
courage all centers treating patients with malignant brain 
tumors to actively include somnologists into the multidis-
ciplinary teams, and to actively address the disrupted sleep 
that these patients likely suffer from.

Conclusions

In this article, we tried to raise two main issues. The first 
one is that considering the current knowledge of the re-
lationship between sleep disruption and malignant dis-
eases, it is quite possible that disrupted sleep is not just 
a common symptom but actually a possible factor in the 
disease progression. We thus argue that addressing the is-
sue in patients with malignant brain tumors cannot only 
be a palliative measure that has the potential to improve 
the quality of life of these patients but can also prove to 
be a possible therapeutic approach in limiting the disease 
progression, especially when other treatment modalities 
have been exhausted. Worth noting however, is that all of 
this research is still in its theoretical stage, and treatment 
of sleeping schedules should not be considered as a ther-
apeutic approach against a malignant brain tumor until 
further research is conducted. The second issue we tried 
to raise is that patients with malignant brain tumors are 
especially susceptible to these impaired sleeping sched-
ules. Not just because of the oncological treatment they 
receive, but also due to the innate properties of malignant 
cerebral lesions and their specific interactions with the 
healthy brain. Indeed, we feel that this area of interest 

is currently underexplored and merits further research 
into the subject.
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