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Abstract 

The major confirmed genetic risk factor for late-onset, sporadic Alzheimer’s disease (AD) is 

variant ε4 of apolipoprotein E gene (APOE). It is proposed that ApoE, a protein involved in 

transport of cholesterol to neurons can cause neurodegeneration in AD through interaction with 

metals. Previous studies mostly associated copper, iron, zinc and calcium with ApoE4-mediated 

toxicity. We tested the association of other essential metals with ApoE. We compared plasma 

and cerebrospinal fluid (CSF) levels of copper, zinc, iron, sodium, magnesium, calcium, cobalt, 

molybdenum, manganese, boron and chromium, and CSF ferritin levels among AD, mild 

cognitive impairment (MCI) patients and healthy controls (HC) with different APOE genotype. 

Sodium, copper and magnesium levels were increased in carriers of ɛ4 allele. Additionally, the 

increase in sodium, calcium and cobalt plasma levels was observed in carriers of ɛ4ɛx genotype. 

The decrease in boron plasma levels was observed in carriers of ɛ4 allele and ɛ4ɛ4 genotype. 

Additionally, CSF zinc levels as well as plasma sodium levels were increased in AD patients 

compared to HC.These results indicate that the molecular underpinnings of association of 

essential metals and metalloids with ApoE should be further tested and clarified in vivo and in 

vitro. 
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1. Introduction 

    Homeostasis of essential metals is altered in Alzheimer’s disease (AD) [1–3], and it has been 

proposed that such changes are directly related to AD pathology [1]. This primarily refers to 

essential metals that are normally present in organisms and are crucial for normal functioning 

of many proteins and enzymes. Altered metal homeostasis in the AD brain has mainly been 

related to copper, zinc and iron [1]. 

  Apolipoprotein E (ApoE) is a protein involved in transport of cholesterol to neurons, and is 

mainly produced by astrocytes [4]. The apolipoprotein E gene (APOE) variant ε4 is the major 

confirmed genetic risk factor for late-onset, sporadic AD that comprises over 99% of all AD 

cases [5,6]. There are three common ApoE variants (ApoE2, ApoE3 and ApoE4). Two single 

nucleotide polymorphisms (SNPs) present in APOE gene determine which amino acid will be 

present at the protein level at positions 112 and 158. Thus, ApoE2 variant has Cys112 and 

Cys158, ApoE3 has Cys112 and Arg158 and ApoE4 has Arg112 and Arg158 [7]. APOE ε4 

heterozygotes have a 5 times increased risk, while APOE ε4 homozygotes have a 20 times 

increased risk for developing AD [8]. ApoE2 is considered to have protective effect in AD [9]. 

Association of metals with ApoE was observed in AD. Xu and collaborators proposed three 

mechanisms through which metal ions may interact with ApoE: 1) copper, zinc, and iron 

accumulate in amyloid plaques (AP); AP cause metal dyshomeostasis that leads to decrease in 

ApoE levels in AD; 2) metal dyshomeostasis in AD decreases APOE transcription and 

translation, which may promote toxicity of amyloid β (Aβ) as ApoE promotes Aβ clearance; 

and 3) the ApoE proteolysis that occurs in AD is more prominent for ApoE4 isoforms whose 

fragments disrupt mitochondrial and cytoskeletal functions and lead to neurodegeneration [10]. 

Stability of ApoE isoforms could be mediated by metal binding [11] and as metals stabilize 

ApoE isoforms in the order ɛ2>ɛ3>ɛ4, this could be the cause of higher vulnerability of the 

ApoE4 isoform for proteolysis. However, as these authors emphasized, these assumptions 

should be further tested [10]. 

  Previous studies associated copper, iron, zinc and calcium with ApoE4-mediated toxicity [12–

15]. In the current study we further analyzed the association of other essential metals like 

sodium, magnesium, cobalt, molybdenum, manganese and chromium and the metalloid boron 

with ApoE. We also measured cerebrospinal fluid (CSF) ferritin levels as it likely reflects the 

levels of iron in the brain. The scope of this study was to compare plasma and CSF levels of 

Cu, Zn, Fe, Na, Mg, Ca, Co, Mo, Mn, B and Cr, and CSF levels of ferritin in AD, mild cognitive 



impairment (MCI) patients and healthy controls (HC) with different APOE genotype. The 

investigation of a possible association between essential metals and APOE permitted us to 

assess the existence of altered metal homeostasis in AD. 

 

2. Materials and Methods 

2.1. Cerebrospinal fluid and blood collection 

  This study included 197 patients recruited at the University Hospital Centre, Zagreb and 

General Hospital Varaždin of whom 126 fulfilled NINCDS-ADRDA criteria for AD, 52 

suffered from MCI [16,17], and 19 were HC. Patients were neurologically tested, as described 

previously [18]. The examination included the Mini-Mental State Examination (MMSE), 

VDRL testing for syphilis, complete blood tests including thyroid function, albumin levels, and 

levels of vitamin B12 and electrolytes. None of the subjects included in this study suffered from 

renal diseases. It should be however noted that a limitation of this study is that although we had 

information on medication regimens for the majority of the included patients (summarized in 

Supplementary Table 1), we did not have information on use of supplements (since levels of 

boron, copper and magnesium may be affected by supplements). CSF was obtained between 

the L3/L4 or L4/L5 intervertebral spaces by lumbar puncture, always performed in the morning 

between 9 a.m. and 11 a.m. After centrifugation for 10 min at 2000 g, samples were aliquoted 

and stored at -80°C. Venous blood samples (4 ml) were collected into plastic syringes with 1 

ml of acid citrate dextrose as an anticoagulant. Blood samples were consistently obtained in the 

morning on an empty stomach. Thrombocyte-free plasma samples were collected by 

centrifugation (1100 g for 3 min and then 5087 g for 15 min), and stored at -20°C. Ferritin 

levels in CSF were determined by electrochemiluminescence (ECL) using a Roche Cobas E601 

instrument (Roche, Basel, Switzerland). All procedures were implemented in accordance with 

the approval of the Central Ethical Committee of the University of Zagreb Medical School (case 

no. 380-59-10106-18-111/126, class 641-01/18-02/01 from June 20, 2018) and Ethical 

Committee of the Clinical Hospital Centre Zagreb (case no. 02/21 AG, class 8.1-18/82-2 from 

April 24, 2018). 

 

2.2. Genotyping 

  Genomic DNA was extracted from peripheral blood using the salting-out method [19]. APOE 

polymorphisms (rs7412 and rs429358) were determined in 122 AD and 52 MCI patients and 



15 HCs by ABI Prism 7300 Real Time PCR System apparatus (Applied Biosystems, Foster 

city, CA, USA) using primers and probes purchased from Applied Biosystems as TaqMan® 

SNP Genotyping Assay (C_904973_10 ND C_3084793_20). All genotyping procedures were 

done by a researcher who was blind to all clinical data according to the procedures described 

by Applied Biosystems. Out of 189, 54 samples (29%) were genotyped again as a quality 

control for genotyping analyses. The three common variants of APOE (ɛ2, ɛ3, and ɛ4) were 

determined by two SNPs (rs429358 and rs7412). 

 

2.3. Analysis of metals by inductively coupled plasma mass spectroscopy (ICP-MS) 

CSF and plasma Cu, Zn, Fe, Na, Mg, Ca, Co, Mo, Mn, B and Cr levels were determined using 

inductively coupled plasma mass spectroscopy (ICP-MS) on Agilent 7500cx (Agilent 

Technologies, Tokyo, Japan) (Table 1). Before analysis CSF and plasma samples were 

prepared by dilution (1:10 for CSF and 1:20 for plasma) with solution containing 0.7 mM 

ammonia, 0.01 mM EDTA, 0.07% (v/v) Triton X-100 and 2µg/l of internal standards (Ge, Rh, 

Tb, Lu and Ir) in ultrapure water. MicroMist nebulizer combined with a Peltier standard quartz 

spray chamber (Scott–type) cooled at 2°C and a quartz torch with a 2.5 mm diameter injector 

with a Shield Plate system and Ni sampler and skimmer cones were used. Tune solution of 

1µg/l 7Li, 59Co, 89Y, 140Ce, and 205Tl was used for daily optimization of ICP-MS working 

conditions. Samples preparation and analysis were done in a laboratory with HVAC system 

(Heating, Ventilating and Air Conditioning) combined with HEPA filters. Standard addition 

method (i.e. matrix-matched calibration) was used for the quantification of elements 

concentration in CSF and plasma samples. To confirm the accuracy of the measurements, 

commercially available reference materials were used: ClinChek® Plasma Controls (Level I and 

II) and ClinChek® Serum Controls (Level I and II) from RECIPE (Munich, Germany); 

SeronormTM Trace Elements Serum (Level I and II) (Sero AS, Billingstad, Norway). Since there 

is a possibility for contamination of the samples with chromium from the needles used for 

sample collection, chromium was removed from statistical analysis. 

 

2.4. Statistical analysis 

  CSF and plasma Cu, Zn, Fe, Na, Mg, Ca, Co, Mo, Mn and B levels were compared between 

two groups using Mann-Whitney U tests, while non-parametric Kruskal-Wallis tests were used 



for comparison across three or more groups. A post-hoc non-parametric Dunn test to correct p 

values was used for pairwise comparisons. Statistical analysis was also done after introduction 

of age and sex as covariates. When analysing sodium plasma and CSF levels, presence of 

hypertension and cardiovascular diseases were also introduced as additional covariates (Table 

2). Covariate analysis was performed using non-parametric Quade’s ANCOVA. The genotype 

and allele distributions were determined by a χ2 test. Statistical analyses were performed with 

SPSS 19.0.1 (SPSS, Chicago, IL, USA), with the  value set at 0.05 for statistical significance. 

 

3. Results 

 

3.1. Levels of metals in plasma and CSF of AD, MCI patients and HC 

 

  Significant difference in the levels of zinc measured in CSF was observed among AD, MCI 

patients and HC (H test=9.317, df=2, p=0.009; Fig. 1A). This association was preserved after 

correction for age and sex (F=3.766; df=2, 190; p=0.025). The levels of zinc were significantly 

increased in CSF of AD patients compared to HC (p=0.027). The levels of sodium measured in 

plasma were significantly different between AD, MCI patients and HC (H test=10.567, df=2, 

p=0.005; Fig. 1B). Sodium levels were significantly increased in plasma of AD patients 

compared to HC (p=0.004). This association was preserved after correction for age and sex 

(F=6.228; df=2, 141; p=0.003). When introducing hypertension in addition to age and sex as a 

covariate, the levels of sodium plasma levels remained significantly different between the 

groups (F(2,113)=4.724; p=0.011). However, when introducing existence of cardiovascular 

diseases as covariate in addition to age and sex, the significance in sodium plasma levels 

between the groups was lost (F(2,110)=2.384; p=0.097). Also, introduction of hypertension and 

cardiovascular diseases as covariates in addition to age and sex, resulted in loss of significance 

in plasma sodium levels between the groups (F(2,110)=2.288; p=0.106). There was no significant 

difference in the levels of zinc measured in plasma, sodium measured in CSF and copper, iron, 

calcium, magnesium, cobalt, molybdenum, manganese and boron measured in both plasma and 

CSF among AD, MCI patients and HC (Table 1). 

 

3.2. Levels of metals in AD, MCI patients and HC with different APOE genotypes 

 



  No significant difference in distribution of APOE genotypes and alleles was observed among 

AD, MCI patients, and HC (Table 3). 

 A significant increase in sodium plasma levels was observed in AD, MCI patients and HC 

carriers of ɛ4 APOE genotype (ɛ4ɛ4 + ɛ4ɛx) (F(1,90)=4.354; p=0.040) (Fig. 2; Table 4). Sodium 

plasma levels were also significantly increased in AD, MCI patients and HC carriers of ɛ4ɛx 

APOE genotype compared to carriers of ɛxɛx APOE genotype (F(2,90)=3.414; p=0.037; p=0.037) 

(Fig. 2; Table 4). Additionally, sodium plasma levels were significantly increased in carriers 

of ɛ4ɛ3 APOE genotype compared to carriers of ɛ3ɛ3 APOE genotype in AD, MCI patients and 

HC (H test=12.530, df=4, p=0.014; p=0.020) and AD and MCI patients (H test=10.427, df=4, 

p=0.034; p=0.050; Fig. 2G-H), but this association was lost after introduction of covariates 

(hypertension and cardiovascular diseases) (Table 4). 

  Plasma boron levels were significantly decreased in AD and MCI patients carrying ɛ4ɛ4 APOE 

genotype compared to patients carrying ɛxɛx APOE genotype (F(2,105)=3.998, p=0.021; 

p=0.020; Fig. 3A). Decrease in boron plasma levels was also observed in AD and MCI patients 

carriers of ɛ4 allele (F(1, 105)=4.077, p=0.046) (Fig. 3).  

  Copper plasma levels (U=456, Z=-1.987, p=0.047; Fig. 4A) and magnesium plasma levels 

(F(1,69)=6.041, p=0.016; Fig. 4B) were increased in AD patients carrying ɛ4 allele [for copper, 

significance was lost after introduction of covariates (age and sex) (F(1,69)=3.665, p=0.060)]. 

Additionally, zinc plasma levels (F(2,68)=3.556, p=0.034; Fig. 5A), calcium plasma levels 

(F(2,69)=4.155, p=0.020; p=0.028; Fig. 5B) and cobalt plasma levels (F(2,116)=3.069, p=0.050; 

p=0.040; Fig. 5C) were increased in patients carrying ɛ4ɛx APOE genotype compared to 

patients carrying ɛ4ɛ4 APOE genotype. 

  Plasma levels of iron, molybdenum, manganese and CSF levels of copper, zinc, iron, sodium, 

magnesium, calcium, cobalt, molybdenum, manganese and boron did not differ significantly 

among patients carrying different APOE genotype. No significant difference in the levels of 

CSF ferritin was observed among patients with different APOE genotype. 



4. Discussion 

  In this study we demonstrate increases in plasma levels of sodium, copper and magnesium in 

carriers of ɛ4 allele of APOE. Additionally, sodium, calcium and cobalt plasma levels were 

increased in carriers of ɛ4ɛx genotype. Conversely, boron plasma levels were decreased in 

carriers of ɛ4 allele and ɛ4ɛ4 genotype. We also observed an increase in CSF zinc levels and 

plasma sodium levels in AD patients compared to HC. 

  Squitti and collaborators were among the first to observe an increase of serum copper in APOE 

ɛ4 carriers compared to APOE ɛ4 non-carriers [12,20,21]. Zappasodi et al. tested the correlation 

of “free” serum copper and electroencephalographic (EEG) activity in AD and reported stronger 

correlation between serum copper and temporal 1 EEG activity in APOE ɛ4 carriers compared 

to APOE ɛ4 non-carriers [22]. Gonzalez et al. reported higher levels of serum zinc and copper 

in AD patients APOE ɛ4 carriers compared to non-carriers [13]. Miyata and Smith proposed 

that ApoE antioxidative activity might be mediated by sequestration of copper in an isoform-

dependent manner [11]. In fact, copper can even affect transcription of the APOE gene [23]. 

Additionally, patients carrying the APOE ε4 genotype have earlier onset of symptoms of 

Wilson disease [24], a rare genetic disorder characterized by copper overload [25]. These results 

support our observation of increased copper plasma levels in AD patients carrying APOE 

ε4 allele. 

  Increased risk for AD in APOE ɛ4 carriers could be at least in part due to zinc dyshomeostasis 

in AD brains [10]. These authors tested ApoE proteolysis in the presence of zinc and concluded 

that ApoE4 isoform is the most sensitive to proteolysis compared to ApoE2 and ApoE3 

isoforms [10]. In addition to the fact that metal-induced aggregation of Aβ (either by Zn or Cu) 

is highest in the presence of ApoE4 [26], Oh et al. showed that zinc promotes ApoE and Aβ 

aggregation into larger ApoE/Aβ complexes, making Aβ more resistant to Aβ-degrading 

proteases [27]. In turn, ApoE can regulate zinc homeostasis, as reduction in synaptic zinc levels 

and reduced expression of ZnT3 (a zinc transporter required for accumulation of zinc in 

synaptic vesicles) was observed in APOE knockout mice [28]. Because synaptic zinc is 

important for long-time potentiation [29], decrease in its levels can lead to cognitive 

impairment. A study of APOE- targeted gene replacement mice showed no difference in the 

levels of zinc, copper and iron measured in the liver of mice with different APOE genotypes 

[30]. However, a study in humans showed higher levels of serum zinc in APOE ɛ4 carriers with 

AD compared to non-carriers [13]. The present study shows significantly elevated zinc plasma 

levels in ɛ4ɛx heterozygotes compared to ɛ4ɛ4 homozygotes and a significant increase in zinc 



CSF levels in AD patients compared to HC, while there was no difference in zinc plasma levels 

in AD vs MCI, and MCI vs HC groups. 

  A neuroimaging study [15] revealed that cortical iron (measured by quantitative susceptibility 

mapping magnetic resonance imaging) and APOE ɛ4 allele synergistically interact with the 

default mode network (DMN) activity. DMN function is altered early in AD [31-33]. Kagerer 

et al. proposed that APOE ɛ4 allele could accelerate the accumulation of iron in the brain that 

could contribute to DMN dysfunction [15]. Moreover, Van Bergen et al. observed increased 

brain iron levels (measured by quantitative susceptibility mapping) in carriers of APOE ɛ4 allele 

[34]. Ayton and collaborators also reported an increase in CSF ferritin levels in carriers of 

APOE ɛ4 allele [35,36]. As CSF ferritin levels likely reflect the levels of iron in the brain, they 

proposed that elevation of the brain iron could be a possible mechanism through which APOE 

ɛ4 allele contributes to the increased risk for AD [35]. Additionally, Tisato et al. observed that 

presence of certain variants in genes responsible for iron metabolism (such as HFE 282Y allele) 

can reduce the APOE ɛ4-associated risk for AD [37]. It has been shown that ApoE binds iron 

[11] and another study revealed that iron upregulates ApoE levels in cultured neurons and 

astrocytes [38]. However, no changes were found in brain iron levels, measured postmortem in 

gray matter in carriers of APOE ɛ4 allele [39]. Also, as mentioned above, no difference in the 

levels of zinc, copper and iron measured in the liver of mice with different APOE genotypes 

[30]. These two studies support our results as we did not observe the difference in CSF and 

plasma iron levels in patients with different APOE genotypes. We also did not observe a 

difference in CSF levels of ferritin in patients with different APOE genotypes.  

  In addition, the present investigation reveals a significant increase in sodium plasma levels in 

carriers of APOE ɛ4 allele and in patients carrying ɛ4ɛx and ɛ4ɛ3 APOE genotypes. Also, 

sodium plasma levels were significantly increased in AD patients compared to HC. However, 

an increase in sodium CSF levels was observed in hypertensive patients with history of familial 

AD [40]. Also, quantitative sodium imaging using ultrahigh-field MRI revealed increase in 

tissue sodium concentrations in many AD brain regions [41,42]. Moreover, an increase in 

sodium levels in frontal and parietal cortex was detected in postmortem AD brains [43]. These 

authors did not observe any changes in sodium CSF levels, as in our study. They also showed 

that treatment of astrocytes with Aβ leads to an increase in intracellular levels of sodium, 

suggesting that imbalance in cell ion homeostasis in AD brain can be triggered by Aβ and thus 

could contribute to the pathophysiology of AD [43]. Some studies indicate that higher dietary 

sodium intake might be associated with impaired cognitive function, although with mixed 



results (for a systematic review, see [44]). When analyzing sodium levels among groups, we 

introduced hypertension and cardiovascular diseases as additional covariates. Sodium levels 

show a positive association with blood pressure [45], while hypertension is a major risk factor 

for development of cardiovascular diseases [46,47]. In addition, various cardiovascular 

pathologies are observed in AD (cerebral amyloid angiopathy, cerebral arteriosclerosis, small 

blood vessel disease, microvascular degeneration and dysfunction of blood-brain barrier) 

[48,49]. By introducing covariates, we wanted to exclude the possibility that difference in 

sodium levels between the groups with different APOE genotype and diagnoses is the 

consequence of cardiovascular pathology rather than AD pathology. Although after 

introduction of these covariates, statistical significance was lost in some groups, but when 

including all cases (AD, MCI patients and HC), statistical significance remained. Thus, we 

concluded that the observed alterations in sodium levels between patients with different APOE 

genotype and patients with different diagnoses is the consequence of AD pathology, not 

cardiovascular pathology. 

  Boron deprivation can affect cognitive performance and lead to poorer performance on tasks 

for short-term memory [50–52]. The results of our study support these finding as we observed 

a significant decrease in boron plasma levels in carriers of ɛ4 allele and ɛ4ɛ4 APOE genotypes. 

  Impaired calcium signalling is a hallmark of many neurodegenerative disorders, including AD 

[53]. There is ample evidence of ApoE interaction with calcium. A study in primary neurons 

collected in APOE wild-type and knockout mice showed that after a mechanical injury, rates of 

apoptosis and intercellular calcium levels were higher in ApoE4 neurons [14]. These authors 

hypothesized that APOE polymorphisms can influence calcium levels. Our results support this 

view. Compared to carriers of ɛ4ɛ4 genotype, we observed increased calcium plasma levels in 

patients carrying ɛ4ɛx APOE genotype. The results of Tolar and collaborators, who showed that 

ApoE and truncated ApoE peptide lead to increased intracellular calcium levels in embryonic 

rat hippocampal neurons and cause neuronal death [54]. Also, treatment of primary cerebral 

cortical neurons isolated from APOE knockout mice with ApoE4 lead to calcium overload 

through N-methyl-D-aspartate receptor and CaMK II signaling pathway [55], offer further 

support. Other studies based on different approaches have also shown that ApoE4 disrupts 

calcium homeostasis [56–60]. 

  Treatment of streptozotocin-induced rat models of sporadic AD with magnesium sulfate 

decreased tau protein phosphorylation and had positive effect on cognitive functions and 



synaptic plasticity [61]. Magnesium deficiency in diet was also associated with impaired 

memory [62], while magnesium supplementation improved memory [63–65]. Decreased levels 

of magnesium were detected in the brain and blood cells of AD patients [66,67]. Zhu et al. 

recently showed that optimal dietary magnesium intake improves cognitive function at least in 

part through modification of APOE methylation [68]. However, in apparent contrast to these 

data, we observed increased levels of plasma magnesium in carriers of ɛ4 APOE allele.   

Interestingly, we observed a significant increase in cobalt plasma levels in patients carrying 

ɛ4ɛx APOE genotype compared to carriers of ɛ4ɛ4 genotype. Increased levels of cobalt have 

been reported in brains of AD patients, especially in nucleus basalis of Meynert [69]. 

  In conclusion, our study reveals a strong association between copper, zinc, sodium, 

magnesium, calcium and cobalt, as well as the metalloid boron, with APOE genotype in AD 

and MCI patients. As previous studies addressed mostly the association of calcium, copper, iron 

and zinc with ApoE4-mediated toxicity, our findings indicate that additional in vivo and in vitro 

studies into the molecular basis of the association of other essential metals and metalloids with 

ApoE-dependent mechanisms are warranted. The most notable finding of this study is the 

increase of sodium plasma levels and decrease in boron plasma levels in carriers of risk alleles 

in APOE gene that to our knowledge had not been previously observed. Additionally, variation 

in the plasma levels of magnesium and cobalt in patients with different APOE genotype should 

be further tested on larger cohorts. 
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Table 1. Levels of Cu, Zn, Fe, Na, Mg, Ca, Co, Mo, Mn and B measured in CSF and plasma 

of AD, MCI patients and HC. 

Metal                    AD       MCI              HC 
 Mean ± SD 

(Number of 

patients) 

Median 

(25-75th 

percentile) 

Mean ± SD 

(Number of 

patients) 

Median 

(25-75th 

percentile) 

Mean ± SD 

(Number of 

patients) 

Median 

(25-75th 

percentile) 

 

Cu 

CSF 

(µg/l) 

 

16.8 ± 6.4 

(125) 

 

16.5 

(11.9-20.4) 

15.4 ± 6.3 

(50) 

14.4 

(10.8-19.6) 

15.3 ± 8.4 

(19) 

13.1 

(8.5-20.4) 

Plasma 

(µg/l) 

 

914.9 ± 177.9 

(93) 

910 

(775-1023) 

972.35 ± 216.4 

(37) 

958.0 

(817.5-1103.5) 

1004.4 ± 304.4 

(14) 

1008 

(848.8-1209) 

 

Zn 

CSF 

(µg/l) 

94.9 ± 44.8 

(125) 

88.8 

(58.4-121.4) 

83.4 ± 52.7 

(50) 

67.9 

(48.2-107.1) 

66.8 ± 45.6 

(19) 

47.2 

(26.7-97.8) 

Plasma 

(µg/l) 

690.8 ± 101 

(92) 

675.5 

(628.3-757.3) 

703.49 ± 110.4 

(37) 

681.0 

(634.5-754.0) 

762 ± 154.7 

(14) 

760.5 

(630.8-838.5) 

 

Fe 

 

CSF 

(µg/l) 

36.9 ± 20.6 

(126) 

33.7 

(21.6-47.9) 

35.2 ± 18.2 

(50) 

29.9 

(22-44.4) 

30.9 ± 13 

(19) 

30.8 

(20.6-39.9) 

Plasma 

(µg/l) 

1074.1 ± 429.4 

(80) 

981 

(845.3-1257.8) 

1150.7 ± 418.8 

(35) 

1149 

849-1345) 

1189 ± 1028.4 

(12) 

835 

(559.3-1252.3) 

 

Ca 

 

CSF 

(mg/l) 

44.9 ± 14 

(126) 

44.4 

(34.5-55) 

40.3 ± 11.7 

(50) 

37.9 

(32-47.7) 

40.5 ± 13.1 

(19) 

39 

(31.5-49.7) 

Plasma 

(mg/l) 

78.3 ± 6.7 

(93) 

78.4 

(74.4-82.7) 

78.67 ± 7.9 

(37) 

77.7 

(73.4-81.2) 

79.6 ± 8 

(14) 

82.45 

(75.52-85.33) 

 

Na 

 

CSF 

(mg/l) 

3531.5 ± 879.2 

(126) 

3547 

(2997.5-4266) 

3200.6 ± 982 

(50) 

3108 

(2540.5-3927) 

3231.8 ± 708.6 

(19) 

3164 

(2816-3637) 

Plasma 

(mg/l) 

3677.23 ± 286 

(93) 

3691 

(3540.5-3864.5) 

3636.2 ± 313.9 

(37) 

3649 

(3398.5-3822.5) 

3387.9 ± 345.5 

(14) 

3457.5 

(3145-3644.5) 

 

Mg 

 

CSF 

(mg/l) 

30.2 ± 8.4 

(126) 

29.9 

(24.6-35.9) 

27.9 ± 8.6 

(50) 

27.8 

(21.6-34.2) 

27.8 ± 8.3 

(19) 

24.8 

(23.5-30.1) 

Plasma 

(mg/l) 

24.3 ± 2.7 

(93) 

24.1 

(22.6-25.9) 

24.6 ± 2.9 

(37) 

23.8 

(22.9-25.6) 

24.1 ± 6.8 

(14) 

23 

(20.2-26.7) 

 

Mo 

 

CSF 

(µg/l) 

0.745 ± 0.511 

(126) 

0.595 

(0.410-0.880) 

1.1 ± 0.7 

(50) 

1.1 

(0.4-1.6) 

0.716 ± 0.833 

(19) 

0.470 

(0.200-0.660) 

Plasma 

(µg/l) 

1.409 ± 1.292 

(93) 

1.180 

(0.935-1.505) 

1.6 ± 1.2 

(37) 

1.2 

(1.0-1.6) 

1.142 ± 0.480 

(14) 

1.060 

(0.865-1.588) 

 

Mn 

 

CSF 

(µg/l) 

1.330 ± 0.789 

(126) 

1.220 

(0.773-1.613) 

1.2 ± 0.8 

(50) 

1.0 

(0.6-1.5) 

1.240 ± 0.841 

(19) 

1.030 

(0.680-1.380) 

Plasma 

(µg/l) 

1.158 ± 0.448 

(93) 

1.080 

(0.940-1.240) 

1.1 ± 0.3 

(37) 

1.1 

(0.9-1.3) 

1.142 ± 0.480 

(14) 

1.060 

(0.865-1.588) 

 

B 

 

CSF 

(µg/l) 

29.7 ± 17.6 

(126) 

27.4 

(16.3-41.8) 

34.9 ± 43.6 

(50) 

28.2 

(15-37.6) 

23.7 ± 18.5 

(19) 

21.1 

(11-30.6) 

Plasma 

(µg/l) 

30.8 ± 14.4 

(93) 

27.1 

(21.6-34.9) 

35.9 ± 32.9 

(37) 

28.6 

(21.5-40.2) 

22.9 ± 9.5 

(14) 

22 

(14.5-28.9) 

 

Co 

 

CSF 

(µg/l) 

0.142 ± 0.073 

(126) 

0.122 

(0.092-0.178) 

0.151 ± 0.142 

(50) 

0.115 

(0.081-0.174) 

0.122 ± 0.081 

(18) 

0.099 

(0.068-0.151) 

Plasma 

(µg/l) 

0.428 ± 0.089 

(93) 

0.430 

(0.370-0.490) 

0.453 ± 0.158 

(37) 

0.44 

(0.335-0.525) 

0.393 ± 0.242 

(14) 

0.33 

(0.218-0.445) 

Ferritin CSF 

(µg/l) 

9.48 ± 3.63 

(64) 

8.76 

(7.11-11.18) 

8.38 ± 3.24 

(29) 

7.61 

(6.11-9.9) 

9.83 

(1) 

 

AD, Alzheimer’s disease; CSF, cerebrospinal fluid; HC, healthy control; MCI, mild cognitive impairment; SD, 

standard deviation.  



Table 2. Demographic data and information on the presence of hypertension and 

cardiovascular diseases in AD and MCI patients and HC. 

 

 

 

 

 

AD, Alzheimer’s disease; F, female; HC, healthy controls; M, male; MCI, mild cognitive impairment  

 Age Sex Hypertension Cardiovascular 

diseases 
Median 

(25–75th 

percentile) 

F/M Yes/No Yes/No 

AD 72 

(65-78) 

68/58 35/39 12/62 

MCI 65 
(60-73) 

25/27 19/12 11/20 

HC 61 

(52-75) 

9/10 7/4 1/7 



Table 3. Count (N) and frequencies (%) of APOE gene polymorphism (rs7412 and rs429358) 

genotypes and alleles in AD and MCI patients and HCs. 

 

APOE 

AD MCI HC 
(N=122) (N=52) (N=15) 

N (%) N (%) N (%) 

Genotype    

ɛ3ɛ2 10 (8.2) 1 (1.9) 2 (13.3) 

ɛ3ɛ3 67 (54.9) 33 (63.5) 11 (73.3) 

ɛ4ɛ2 4 (3.3) 0 (0.0) 0 (0.0) 

ɛ4ɛ3 33 (27.0) 16 (30.8) 1 (6.7) 

ɛ4ɛ4 8 (6.6) 2 (3.8) 1 (6.7) 

 χ2 = 9.398; df = 8; p = 0.154 

Genotype    

ɛxɛx 77 (63.1) 34 (65.4) 13 (86.7) 

ɛ4ɛx 37 (30.3) 16 (30.8) 1 (6.7) 

ɛ4ɛ4 8 (6.6) 2 (3.8) 1 (6.7) 

 χ2 = 4.349; df = 4; p = 0.183 

Allele    

ɛ4 non-carriers 77 (63.1) 34 (65.4) 13 (86.7) 

ɛ4 carriers 45 (36.9) 18 (34.6) 2 (13.3) 

 χ2 = 3.285; df = 2; p = 0.136 

AD, Alzheimer’s disease; APOE, apolipoprotein E; HC, healthy control; MCI, mild cognitive impairment. 

 



Table 4. Analysis of sodium levels between patients with different APOE genotype with covariate analysis (with age, sex, hypertension and 

cardiovascular diseases as covariates). 

AD, Alzheimer’s disease; APOE, apolipoprotein E; HC, healthy control; MCI, mild cognitive impairment. 

 

AD, MCI, HC APOE 3 groups - ɛxɛx, ɛ4ɛx, ɛ4ɛ4 APOE 2 groups - ɛ4+ vs ɛ4- APOE 5 groups - ɛ3ɛ2, ɛ3ɛ3, ɛ4ɛ3, 

ɛ4ɛ4, ɛ4ɛ2 
Uncorrected H test=11.867, df=2, p=0.003* 

ɛxɛx vs ɛ4ɛx, p=0.002* 

U=1119, Z=-3.056, p=0.002* H test=12.530, df=4, p=0.014* 

ɛ4ɛ3 vs ɛ3ɛ3, p=0.020* 

Corrected for age and sex F(2,116)=6.474; p=0.002* 

ɛxɛx vs ɛ4ɛx, p=0.002* 

F(1,116)=9.868; p=0.002* F(4,116)=3.479; p=0.010 

ɛ4ɛ3 vs ɛ3ɛ3, p=0.009* 

Corrected for hypertension, age and sex F(2,90)=3.335; p=0.040* 

ɛxɛx vs ɛ4ɛx, p=0.040* 

F(1,90)=4.263; p=0.042* F(4,90)=2.258; p=0.069 

Corrected for cardiovascular diseases, age and sex F(2,90)=3.524; p=0.034* 

ɛxɛx vs ɛ4ɛx, p=0.034* 

F(1,90)=4.440; p=0.038* F(4,90)=2.267; p=0.068 

Corrected for hypertension, cardiovascular 

diseases, age and sex 

F(2,90)=3.414; p=0.037* 

ɛxɛx vs ɛ4ɛx, p=0.037* 

F(1,90)=4.354; p=0.040* F(4,90)=2.287; p=0.066 

AD, MCI APOE 3 groups - ɛxɛx, ɛ4ɛx, ɛ4ɛ4 APOE 2 groups - ɛ4+ vs ɛ4- APOE 5 groups - ɛ3ɛ2, ɛ3ɛ3, ɛ4ɛ3, 

ɛ4ɛ4, ɛ4ɛ2 
Uncorrected H test=9.613, df=2, p=0.006* 

ɛxɛx vs ɛ4ɛx, p=0.006* 

U=984, Z=-2.755, p=0.006* H test=10.427, df=4, p=0.034* 

ɛ4ɛ3 vs ɛ3ɛ3, p=0.050* 

Corrected for age and sex F(2,105)=4.790; p=0.010* 

ɛxɛx vs ɛ4ɛx, p=0.008* 

F(1,105)=7.165; p=0.009* F(4,105)=2.703; p=0.035 

ɛ4ɛ3 vs ɛ3ɛ3, p=0.038* 

Corrected for hypertension, age and sex F(2,82)=2.379; p=0.099 F(1,82)=3.184; p=0.078 F(4,82)=1.983; p=0.105 

Corrected for cardiovascular diseases, age and sex F(2,82)=2.492; p=0.089 F(1,82)=3.355; p=0.071 F(4,82)=2.004; p=0.102 

Corrected for hypertension, cardiovascular 

diseases, age and sex 

F(2,82)=2.434; p=0.094 F(1,82)=3.269; p=0.074 F(4,82)=2.036; p=0.097 

AD APOE 3 groups - ɛxɛx, ɛ4ɛx, ɛ4ɛ4 APOE 2 groups - ɛ4+ vs ɛ4-  
Uncorrected H test=8.971, df=2, p=0.011* 

ɛxɛx vs ɛ4ɛx, p=0.014* 

U=429, Z=-2.571, p=0.010*  

Corrected for age and sex F(2,69)=4.332; p=0.017* 

ɛxɛx vs ɛ4ɛx, p=0.026* 

F(1,69)=3.967; p=0.050*  

Corrected for hypertension, age and sex F(2,52)=1.829; p=0.171 F(1,52)=0.882; p=0.352  

Corrected for cardiovascular diseases, age and sex F(2,52)=2.049; p=0.139 F(1,52)=0.726; p=0.398  

Corrected for hypertension, cardiovascular 

diseases, age and sex 

F(2,52)=2.062; p=0.137 F(1,52)=0.727; p=0.398  



Figure 1. Levels of A) zinc measured in CSF (1p=0.027*, 2p=0.051) and B) sodium measured 

in plasma of AD, MCI patients and HC (1p=0.004*, 2p=0.002*, 3p=0.013*, 4p=0.097, 

5p=0.106). 

1 Uncorrected 
2 Corrected for age and sex 
3 Corrected for hypertension, age and sex 
4 Corrected for cardiovascular diseases, age and sex 
5 Corrected for hypertension, cardiovascular diseases, age and sex 

 

 

 

 

 



 

Figure 2. Levels of sodium measured in plasma of AD, MCI patients and HC with different APOE genotypes. A) 1p=0.002*, 2p=0.002*, 3p=0.042*, 

4p=0.038*, 5p=0.040*, B) 1p=0.006*, 2p=0.009*, 3p=0.078, 4p=0.071, 5p=0.074, C) 1p=0.010*, 2p=0.050*, 3p=0.352, 4p=0.398, 5p=0.398, D) 



1p=0.002*, 2p=0.002*, 3p=0.040*, 4p=0.034*, 5p=0.037*, E) 1p=0.006*, 2p=0.008*, 3p=0.099, 4p=0.089, 5p=0.094, F) 1p=0.014*, 2p=0.026*, 

3p=0.171, 4p=0.139, 5p=0.137, G) 1p=0.020*, 2p=0.009*, 3p=0.069, 4p=0.068, 5p=0.066, H) 1p=0.050*, 2p=0.038*, 3p=0.105, 4p=0.102, 5p=0.097. 

1 Uncorrected 
2 Corrected for age and sex 
3 Corrected for hypertension, age and sex 
4 Corrected for cardiovascular diseases, age and sex 
5 Corrected for hypertension, cardiovascular diseases, age and sex 



 

 

Figure 3. Levels of boron measured in plasma of AD, MCI patients and HC with different 

APOE genotypes. A) 1p=0.012*, 2p=0.020*, B) 1p=0.045*, 2p=0.053, C) 1p=0.043*, 2p=0.046*.

  

1 Uncorrected 
2 Corrected for age and sex 

 

  



 

Figure 4. Levels of A) copper (1p=0.047*, 2p=0.060) and B) magnesium (1p=0.010*, 

2p=0.016*) measured in plasma of AD patients with different APOE genotypes.  

1 Uncorrected 
2 Corrected for age and sex 

 

  



 Figure 5. Levels of A) zinc (1p=0.045*, 2p=0.034*) and B) calcium (1p=0.044*, 2p=0.028*) 

measured in plasma of AD patients and C) cobalt (1p=0.033*, 2p=0.040*) measured in plasma 

of AD, MCI patients and HC with different APOE genotypes. 

1 Uncorrected 
2 Corrected for age and sex 

 


