Abstract (english) | Many relatively common chronic inflammatory skin diseases manifest on the face (seborrheic dermatitis, rosacea, acne, perioral/periorificial dermatitis, periocular dermatitis, etc.), thereby significantly impairing patient appearance and quality of life. Given the yet unexplained pathogenesis and numerous factors involved, these diseases often present therapeutic challenges. The term “microbiome” comprises the totality of microorganisms (microbiota), their genomes, and environmental factors in a particular environment. Changes in human skin microbiota composition and/or functionality are believed to trigger immune dysregulation, and consequently an inflammatory response, thereby playing a potentially significant role in the clinical manifestations and treatment of these diseases. Although cultivation methods have traditionally been used in studies of bacterial microbiome species, a large number of bacterial strains cannot be grown in the laboratory. Since standard culture-dependent methods detect fewer than 1% of all bacterial species, a metagenomic approach could be used to detect bacteria that cannot be cultivated. The skin microbiome exhibits spatial distribution associated with the microenvironment (sebaceous, moist, and dry areas). However, although disturbance of the skin microbiome can lead to a number of pathological conditions and diseases, it is still not clear whether skin diseases result from change in the microbiome or cause such a change. Thus far, the skin microbiome has been studied in atopic dermatitis, seborrheic dermatitis, psoriasis, acne, and rosacea. Studies on the possible association between changes in the microbiome and their association with skin diseases have improved the understanding of disease development, diagnostics, and therapeutics. The identification of the bacterial markers associated with particular inflammatory skin diseases would significantly accelerate the diagnostics and reduce treatment costs. Microbiota research and determination could facilitate the identification of potential causes of skin diseases that cannot be detected by simpler methods, thereby contributing to the design and development of more effective therapies. |