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Introduction: The study aims to quantify changes in the number, size, and distribution of
arachnoid granulations during the human lifespan to elucidate their role in cerebrospinal
fluid physiology.

Material and Methods: 3T magnetic resonance imaging of the brain was performed in
120 subjects of different ages (neonate, 2 years, 10 years, 20 years, 40 years, 60 years,
and 80 years) all with the normal findings of the cerebrospinal fluid system (CSF). At each
age, 10 male and 10 female subjects were analyzed. Group scanned at neonatal age
was re-scanned at the age of two, while all other groups were scanned once. Arachnoid
granulations were analyzed on T2 coronal and axial sections. Each arachnoid granulation
was described concerning size and position relative to the superior sagittal, transverse,
and sigmoid sinuses and surrounding cranial bones.

Results: Our study shows that 85% of neonates and 2-year-old children do not have
visible arachnoid granulations in the dural sinuses and cranial bones on magnetic
resonance imaging. With age, the percentage of patients with arachnoid granulations in
the superior sagittal sinus increases significantly, but there is no increase in the sigmoid
and transverse sinuses. However, numerous individuals in different age groups do not
have arachnoid granulations in dural sinuses. Arachnoid granulations in the cranial bones
are found only around the superior sagittal sinus, for the first time at the age of 10, and
over time their number increases significantly. From the age of 60 onwards, arachnoid
granulations were more numerous in the cranial bones than in the dural sinuses.

Conclusion: The results show that the number, size, and distribution of arachnoid
granulations in the superior sagittal sinus and surrounding cranial bones change
significantly over a lifetime. However, numerous individuals with a completely normal CSF
system do not have arachnoid granulations in the dural sinuses, which calls into question
their role in CSF physiology. It can be assumed that arachnoid granulations do not
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play an essential role in CSF absorption as it is generally accepted. Therefore, the
lack of arachnoid granulations does not appear to cause problems in intracranial fluid
homeostasis.

Keywords: arachnoid granulations, cerebrospinal fluid, dural sinuses, CSF resorption, the classical concept of
CSF physiology, the new concept of CSF physiology

INTRODUCTION

Arachnoid granulations are invaginations of the arachnoid
meninges into the dural sinuses and were first described in
detail by Pacchioni in the early 18th century, who called them
‘‘glandulae congoblatae’’ (Brunori et al., 1993). He proposed
that ‘‘glandulae congoblatae’’ primarily have a secretory function
and that fluid created by them ‘‘lubricates’’ the meninges and
brain. According to the generally accepted traditional concept
of cerebrospinal fluid physiology, arachnoid granulations and
arachnoid villi are thought to be the major site of cerebrospinal
fluid absorption into the venous system. Although some other
possible sites of absorption have been identified in recent years
(Gomez et al., 1985; Kida et al., 1993; Brinker et al., 1997;
Johnston et al., 2004; Iliff et al., 2013; Rasmussen et al., 2018),
arachnoid granulations and villi are still considered a key site
of cerebrospinal fluid absorption (Von Monakow, 1905; Weed,
1935; Davson et al., 1973; Milhorat, 1975; Pollay, 2010; Sakka
et al., 2011; Damkier et al., 2013; Bothwell et al., 2019). The
presumed mechanism of cerebrospinal fluid absorption into the
dural sinuses still is not completely clear. It is important to
note that there is no scientifically accepted methodology for
measuring cerebrospinal fluid absorption. Weed hypothesized
that absorption through arachnoid granulations was primarily
determined by the difference in hydrostatic and colloidosmotic
pressure between the subarachnoid space and the dural
venous sinuses (Weed, 1923, 1935). Welch and Friedman
(1960) hypothesized the existence of large open channels
on arachnoid granulations that act as one-way valves and
allow direct drainage of cerebrospinal fluid into dural sinuses
due to pressure gradient between cerebrospinal fluid and
dural sinuses. However, analysis of arachnoid granulations
by electron microscopy did not show the existence of such
‘‘valves’’ (Shabo and Maxwell, 1968a,b). On the contrary, it
has been demonstrated that arachnoid granulations and villi
are entirely covered by endothelial cells interconnected by
‘‘tight junction’’ connections, which questions the role of
arachnoid granulations in cerebrospinal fluid absorption. Still,
the traditional concept of cerebrospinal fluid physiology was
supported by the observation that transcellular vacuoles in
endothelial cells could theoretically be a mechanism of fluid
absorption (Tripathi and Tripathi, 1974).

The numerous experimental results cannot fit into the
traditional concept of cerebrospinal fluid physiology based
on the postulates of secretion, unidirectional circulation, and
absorption of cerebrospinal fluid predominantly in dural sinuses.
These results suggest that both the secretion and resorption of
cerebrospinal fluid take place along the entire capillary network
of the central nervous system (Orešković et al., 2003, 2016, 2017c,

2018; Klarica et al., 2009, 2013, 2014, 2019; Bulat and Klarica,
2011; Jurjević et al., 2011; Radoš et al., 2014; Orešković and
Klarica, 2014; Orešković et al., 2018). Since the role of arachnoid
granulations in the regulation of intracranial fluids is not clear,
in this article, we wanted to examine in more detail how the
number, size, and distribution of arachnoid granulations change
during lifespan from infancy to 80 years of age.

MATERIALS AND METHODS

Subjects
Patients scanned from 2015–2020 were randomly selected
from an extensive MRI database at the Neuron Polyclinic
at the Croatian Institute for Brain Research. All patients
or their legal guardians have given written consent that
the MRI scan results can be used for scientific research
and education. The medical diagnoses for which the MR
examinations were made were as follows: dizziness, syncope,
migraine, trigeminal neuralgia, transient ischemic attack,
epilepsy, premature birth, concussion, cavernous malformation,
deafness, depression, tinnitus. The inclusion criteria for this
study were the appropriate age at the time of imaging and
age-appropriate findings of CSF system. The exclusion criteria
were the existence of pathology that could theoretically disrupt
the physiology of cerebrospinal fluid (hydrocephalus, conditions
after extensive neurosurgery, conditions after placement
of drainage catheters, the presence of expansive processes,
developmental malformations, etc.). The age groups of 0 years
(neonates), 2 years, and 10 years, 20 years, 40 years, 60 years,
and 80 years were analyzed in this study. The patients analyzed
as neonates were re-analyzed at 2 years of age, while all other
groups were analyzed only once. Re-scanned patients are part
of a cohort of 380 preterm infants and only patients with
normal MR exams and normal neuropediatric findings are
included in the study. Each age group consisted of 10 male and
10 female patients.

MRI Acquisition
All MRI scans were performed on a 3T MR device
(Magnetom PrismaFIT, Siemens, Germany) as part of standard
neuroradiological diagnostics using a 64-channel head and
neck coil. Coronal T2 sections (TR/ TE = 5,000/100 ms,
matrix: 512 × 308; voxel size: 1 × 1 × 3 mm) and axial
T2 sections (TR/TE = 5,000/100 ms, matrix: 512 × 282; voxel
size: 1 × 1 × 3 mm) were used for morphological quantification
of arachnoid granulations. Neonates were scanned under
a neuropediatrician’s supervision and with phenobarbitone
sedation (5–10 mg/kg). Two-year-old children were imaged
under the anesthesiology team’s supervision under general
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anesthesia using 8% inhaled anesthetic sevoflurane for sedation
and 6% for maintenance anesthesia during MR imaging.
Subjects in all older age groups were scanned without sedation
and anesthesia.

Image Analysis
MR image analysis was performed using the PACS system
(Picture Archiving and Communication System) Carestream
(Carestream Health Inc., Rochester, NY, USA) in which
arachnoid granulations were analyzed and measured in two
planes (coronal and axial). Arachnoid granulation was defined
as an impression into the lumen of the venous sinus or
into the cranial bone, whose signal on all MRI sequences
was the same as the cerebrospinal fluid’s signal. Arachnoid
granulations were analyzed in two planes, and the dimension
was determined according to the largest diameter, as shown
in Figure 1. Arachnoid granulations were classified into
seven groups according to size (0–2.0 mm, 2.1–4.0 mm,
4.1–6.0 mm, 6.1–8.0 mm, 8.1–10.0 mm, 10.1–15.0 mm,
15.1–20.0 mm). Arachnoid granulations were measured
separately for the dural sinuses (superior sagittal sinus, transverse
and sigmoid sinuses) and separately for the surrounding
cranial bones.

Statistical Analysis
The χ2 test was used to examine the significance of differences
in the frequency of arachnoid granulations with respect to
age. Fisher’s exact test was used in the case of a significant
test for post hoc significance testing. A nonparametric test
for multiple independent Kruskal-Wallis samples was used to
examine differences in arachnoid granulation size concerning
age, while a Mann-Whitney U test with Bonferroni correction for
multiple testing was used for post hoc monitoring of differences.
A significance level of p < 0.05 or less according to the Bonferroni
correction was used. The online calculator GraphPad1 was used
for the χ2 test, while all other analyses were performed using
SPSS version 21.0.

RESULTS

Percentage of the Subjects With Arachnoid
Granulations in Dural Sinuses
Our results show that during the lifespan, the proportion of
subjects with arachnoid granulations in the dural sinuses changes
significantly (Figure 2A). As many as 85% of subjects on MRI
sections do not have any visible arachnoid granulation in any
of the dural sinuses in the neonatal age. At this age, arachnoid
granulations are found in the transverse sinuses in 15% of
subjects, in the superior sagittal sinus in 10% of subjects, and
in the sigmoid sinuses in 5% of subjects. The same group of
children was re-scanned at the age of 2 years, and, interestingly,
the results were the same, which shows no change in the number
of arachnoid granulations in this period.

The percentage of the subjects with arachnoid granulations
in the superior sagittal sinus is significantly different concerning

1https://www.graphpad.com/

age (χ2
(6) = 30.40, p < 0.0001), with a significantly higher

percentage of the subjects with arachnoid granulations at the
age of 20 compared to age 10 years (p = 0.0002). At the age
of 40, arachnoid granulations are present in 100% of subjects,
and then a significant trend of a lower percentage of the
subjects with arachnoid granulations can be observed at the
age of 80 years (p = 0.0083) when 65% of subjects have visible
arachnoid granulations.

In the transverse and sigmoid sinuses, the share of subjects
with arachnoid granulations in all examined age groups
never exceeds 40% and 25%, respectively. Regarding arachnoid
granulations in transverse sinuses, there are no significant
differences in the percentage of the subjects with arachnoid
granulations with respect to age (χ2

(6) = 9.23, p = 0.1609). Also,
there are no significant differences in the percentage of the
subjects with arachnoid granulations in sigmoid sinuses with
respect to age (χ2

(6) = 10.09, p = 0.1210).

The Average Number of Arachnoid
Granulations in the Dural Sinuses
Our results show that the average number of arachnoid
granulations in the dural sinuses is different at different ages
(Figure 2B). Specifically, significant differences with respect
to age were found in the average number of granulations in
the superior sagittal sinus (H(6) = 75.21, p < 0.0001), in the
transverse (H(6) = 14.48, p = 0.0247) and sigmoid sinuses (H
(6) = 16.32, p = 0.0121). The largest number of arachnoid
granulations is located in the superior sagittal sinus. The average
number of arachnoid granulations in the superior sagittal sinus
at the ages 0 and 2 years is very low (0.1 ± 0.3). In subjects
older than 2 years, the number of arachnoid granulations in
the superior sagittal sinus was significantly higher, as shown
by the post hoc Mann-Whitney U test (U = 90.00, r = 0.47).
We find 1.2 ± 2.5 arachnoid granulations at the age of 10 and
5.4 ± 4.4 and 8.2 ± 5.7 in the age groups of 20 and 40. In older
age groups of 60 and 80 years, the average number of arachnoid
granulation decreases to 6.1 ± 6.1 and 2.2 ± 2.2, respectively,
which is significantly lower (U = 55.00, p < 0.0001). The average
number of arachnoid granulations in the transverse sinuses is
highest in the age group of 20 years (1.0 ± 1.4; H(6) = 14.48,
p = 0.0247), while in other age groups, their average number in
the transverse sinuses is equal to or less than 0.5. In the sigmoid
sinuses, the average number of arachnoid granulations is highest
in the age group of 40 years (0.6 ± 0.8; H(6) = 16.32, p = 0.0121)
while in all other age groups, it is equal to or less than 0.4.

Size of Arachnoid Granulations in Dural
Sinuses
In our subjects, arachnoid granulations in the superior sagittal
sinus also differed significantly in size, from the smallest
measuring less than a millimeter to the largest, measuring
10–15 mm. Figure 2C shows significant difference in the
proportions of arachnoid granulations of different sizes in the age
groups from 10 to 80 years (χ2

(20) = 73.69, p < 0.0001). According
to the data in Figure 2C, it can be seen that the proportion
of arachnoid granulations that are less than 4 mm shows a
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FIGURE 1 | (A) Coronal T2 section in neonates without arachnoid granulation in the superior sagittal sinus and the surrounding cranial bones. (B) Coronal
T2 section in an 80-year-old subject with pronounced arachnoid granulations in the superior sagittal sinus (solid arrow) and the surrounding cranial bones (empty
arrow). (C) Coronal T2 section in a 60-year-old subject with an example of arachnoid granulation in the superior sagittal sinus has the largest diameter in the coronal
plane (dashed arrow). (D) Axial T2 section from the same subjects with the representation of the same arachnoid granulation in the superior sagittal sinus (dashed
arrow).

downward trend over 10–80 years, while the proportion of
arachnoid granulations that are greater than 4 mm is significantly
higher in old age groups. At the age of 10 years, the total
proportion of arachnoid granulations that are less than 4 mm
make up 75% of all arachnoid granulations in the superior sagittal
sinus. At the age of 80, the finding is reversed so that the
proportion of arachnoid granulations less than 4 mm is 25%.

Percentage of the Subjects With Arachnoid
Granulations in Cranial Bones
Arachnoid granulations in the cranial bones were visible only
in the bones around the superior sagittal sinus, while in the
bones around the transverse and sigmoid sinuses, we did not
find arachnoid granulations in any of the subjects (Figure 3A).

The percentage of the subjects with arachnoid granulations in
the bones around the superior sagittal sinus is significantly
different with respect to age (χ2

(6) = 41.10, p < 0.0001). In
two groups of the youngest subjects (neonates and subjects
aged 2 years), we did not find arachnoid granulations in
the bones around the superior sagittal sinus, which indicates
that they develop only later in life (p < 0.0083). In subjects
aged 10 years, arachnoid granulations in the bones around
the superior sagittal sinus are found in 35% of subjects, while
the percentage of the subjects with arachnoid granulations
at age 20 is 65% which is significantly higher (p = 0.0083).
At age 40 and 60 years, arachnoid granulations are present
in 100% of subjects, while in the age group of 80, they are
present in 80% of subjects. According to our observation,
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FIGURE 2 | (A) Percentage of subjects with arachnoid granulation in dural
sinuses. (B) Average number of arachnoid granulations in dural sinuses
(mean± standard deviation). (C) Proportions of arachnoid granulations of
different sizes in the superior sagittal sinus in different age groups. In C only
age groups in which the total number of all arachnoid granulations for the
whole group was greater than 10 were shown. Abbreviations: SSS, superior
sagittal sinus; TS, transverse sinus; SS, sigmoid sinuses.

arachnoid granulations in cranial bones along the superior
sagittal sinus are located predominantly in the frontoparietal
border area, the most cranial part of the cranium. Most of

FIGURE 3 | (A) Percentage of subjects with arachnoid granulation in the
cranial bones around dural sinuses. (B) Average number of arachnoid
granulations in the cranial bones around superior sagittal sinus
(mean± standard deviation). (C) Proportions of arachnoid granulations of
different sizes in the cranial bones around superior sagittal sinus in different
age groups. In (C) only age groups in which the total number of all arachnoid
granulations for the whole group was greater than 10 were shown.
Abbreviations: SSS, superior sagittal sinus; TS, transverse sinus; SS, sigmoid
sinuses.

them are located immediately next to the superior sagittal sinus,
but some are located more laterally from the midline (the
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maximum measurement distance of arachnoid granulation from
the midline was 1.5 cm).

The Average Number of Arachnoid
Granulations in Cranial Bones
Furthermore, our results show that the average number of
arachnoid granulations in the neurocranial bones (Figure 3B)
were significantly different with respect to age only in the bones
around the superior sagittal sinus (H(6) = 104.06, p < 0.0001).
The first arachnoid granulations in the cranial bones around
the superior sagittal sinus occur in the age group of 10 years
(0.6 ± 1.1). In subjects older than 10 years, the average
number of arachnoid granulations in the bones around the
superior sagittal sinus was significantly higher at the age of
20 years (U = 79.00, p = 0.0011) and 40 years (U = 35.00,
p < 0.0001) when 1.9 ± 2.1 and at 7.2 ± 3.7 arachnoid
granulations were measured. Analysis of the average number
of arachnoid granulations in the cranial bones around the
superior sagittal sinus shows an increase up to the age of 40.
Then the average number of arachnoid granulations decreases
(U = 55.00, p < 0.0001).

Size of Arachnoid Granulations in Cranial
Bones
Arachnoid granulations in the cranial bones around the
superior sagittal sinus differed significantly in size, from less
than a millimeter to the diameter of 15–20 mm. Figure 3C
shows a significant difference in the proportions of arachnoid
granulations of different sizes in the age groups from 10 to
80 years (χ2

(24) = 65.35, p < 0.0001). According to the data in
Figure 3C, the share of arachnoid granulations of larger diameter
is increasing in older age groups. At the age of 10 years, the total
proportion of arachnoid granulations that are less than 8 mm
make up 60% of all arachnoid granulations in the cranial bones
around the superior sagittal sinus. At the age of 80, the finding
is reversed so that the proportion of arachnoid granulations less
than 8 mm is 40%.

Comparison of Male and Female Subjects
Comparing results in male and female subjects did not show
statistically significant differences in the number, size, and
distribution of arachnoid granulations for different age groups.

DISCUSSION

Our results show that there is a large percentage of subjects
in the youngest and oldest age groups who have no arachnoid
granulations in the dural sinuses at all (Figure 2A). In the
neonates and the 2-year-old children, 85% of the subjects did
not have arachnoid granulations in the dural sinuses. Such
findings are consistent with previous studies, which showed
that before 18 months of age, arachnoid granulation was not
visible in most subjects even when the dural sinuses were
dissected and observed under a magnifying glass (le Gros Clark,
1920). Furthermore, Figure 2A shows that even in the oldest
groups of 60 and 80 years in 15–35% of subjects, there are
no arachnoid granulations in the dural sinuses. These findings

are also consistent with earlier anatomical studies showing
that in adulthood, about 1/3 of subjects have no arachnoid
granulations in the dural sinuses (Leach et al., 1996; Grossman
and Potts, 1974; Liang et al., 2002). The question arises as to
how such findings fit into the classical concept of cerebrospinal
fluid physiology, which considers arachnoid granulation to be
the most essential cerebrospinal fluid absorption site into the
venous system.

It should be noted that arachnoid granulations are considered
hypertrophied arachnoid villi. Patients without arachnoid
granulations may have much smaller villi which cannot be
visualized by MRI (Davson et al., 1973; Papaiconomou et al.,
2002). However, histological studies on embryos and fetuses have
shown neither arachnoid villi nor arachnoid granulations in the
dural sinuses (Osaka et al., 1980; Fox et al., 1996), although
choroid plexuses have developed since the third month of
gestation (Johanson, 2008). This finding also raises the question
of the significance of arachnoid granulations and arachnoid villi
in cerebrospinal fluid physiology at the earliest developmental
stage. From our results and data from the literature, it seems
that arachnoid granulations do not play a key role in absorbing
cerebrospinal fluid as assumed by the traditional concept of
cerebrospinal fluid physiology because a large number of subjects
in all age groups have no arachnoid granulation at all.

The number of arachnoid granulations in the dural sinuses
and surrounding bones varies significantly depending on the
subjects’ age. The dynamics of changes in the number of
arachnoid granulations is most pronounced in the superior
sagittal sinus and the cranial bones around it (Figures 2B,
3B). In Figure 2B it can be seen that the average number of
arachnoid granulations in the superior sagittal sinus increases
from neonatal to 40 years of age. Still, it is interesting that
even in the group of 40 years, the number of arachnoid
granulations in individual subjects ranges from 1 to 23. All
others age groups also have significant interindividual variations
in the number of arachnoid granulations. It is to be expected
that the small number of arachnoid granulations found in
individual subjects in all age groups is not sufficient for a
critical role in cerebrospinal fluid absorption as is traditionally
assumed. Also, a considerable number of arachnoid granulations
have been observed in the bones around the superior sagittal
sinus, which certainly do not participate in cerebrospinal fluid
absorption. Namely, in the age groups of 60 and 80, arachnoid
granulations in the bones around the superior sagittal sinus
are more numerous than in the superior sagittal sinus itself
(Figures 2B, 3B).

In the transverse and sigmoid sinuses, there is no significant
increase in the percentage of the subjects with arachnoid
granulations during life, and in the surrounding neurocranial
bones, no arachnoid granulations were found in any age group.
Although in clinical practice, they can sometimes be seen in
bones around transverse and sigmoid sinuses.

Presented results question the general physiological role
of arachnoid granulations. It is known that in other organ
systems, there are structures that are not present from birth.
Their development in later life does not necessarily mean that
they have a physiological role but may result from long-lasting
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pathophysiological processes. One example is the diverticula
that develop on the colon’s wall as small protrusions of
the mucosa and submucosa through the muscle layer at the
site of entry of blood vessels into the wall of the colon
(Brian West, 2006). Diverticula that have no physiological
role are extremely rare in children but are found in 58%
of people over 60 (Peery et al., 2016). Their development
is thought to be a consequence of the long-term interaction
of pressures within the intestinal lumen and biophysical and
genetic characteristics of the colon wall. Interestingly, arachnoid
granulations in the dural sinuses are also found predominantly
at the site where the drainage veins pass through the wall of
the dural sinuses (le Gros Clark, 1920). Therefore, it seems
to us that the development of arachnoid granulations could
be due to a long-term biophysical interaction of intracranial
cerebrospinal fluid pressure and surrounding bone-fibrous
and vascular structures. Consequently, it is very possible that
arachnoid granulations have no role at all in the physiology of
cerebrospinal fluid. When it comes to arachnoid granulations
in the cranial bones, it is even more difficult to find any
reasonable explanation for their physiological role, even on a
theoretical level.

One of the founders of the traditional concept of
cerebrospinal fluid physiology, Walter E. Dandy, was
very critical of the hypothesis that cerebrospinal fluid
is resorbed into the venous system through arachnoid
granulations. He considered that cerebrospinal fluid is
absorbed on the capillary network of the arachnoid meninges
(Dandy, 1929). Studies with protein markers have shown
that after their application into the interstitial space or
cerebrospinal fluid, these markers can later be found in
the extracranial lymphatic system, both in experimental
animals and in humans (Bradbury et al., 1981; Löwhagen
et al., 1994; Caversaecio et al., 1996). These findings have
resulted in the development of the concept of an alternative
cerebrospinal fluid drainage pathway into the lymphatic
system, predominantly via arachnoid sheaths that penetrate
the olfactory nerves through the cribriform plate of the
ethmoid bone (Gomez et al., 1985; Kida et al., 1993;
Brinker et al., 1997). Furthermore, research on rodents
and humans, using molecular markers of different sizes
and non-invasive brain imaging techniques, indicates the
existence of a glymphatic system within which substances
move along arterial perivascular spaces and are ultimately
removed through the meningeal or cervical lymphatic system
(Johnston et al., 2004; Iliff et al., 2012, 2013; Rasmussen et al.,
2018). Despite research indicating alternative cerebrospinal
fluid drainage pathways, the prevailing hypothesis is that
arachnoid granulations are the dominant site of cerebrospinal
fluid absorption.

Presented results fit well with 40-year-long research of our
group performed on different species of animals and humans,
which show that none of the classical concept settings is accurate.
Monitoring the fate of different markers, it seems that there is
no active secretion of cerebrospinal fluid predominantly in the
ventricles. Consequently, there is no unidirectional circulation
of cerebrospinal fluid from ventricles to subarachnoid spaces

(Orešković et al., 2002, 2001; Orešković and Klarica, 2010, 2011;
Bulat and Klarica, 2011; Orešković et al., 2017a,b,c; Klarica et al.,
2019). The distribution of test substances in all directions within
the cerebrospinal fluid system, and the neuroradiologically
demonstrated uniform oscillatory movement of cerebrospinal
fluid volume back and forth under physiological conditions,
indicate that there is no unidirectional net movement of
cerebrospinal fluid volume (Yamada, 2014; Yamada and Kelly,
2016). According to the Bulat-Orešković-Klarica hypothesis,
interstitial fluid is created at the capillary network within the
entire central nervous system. It means that each part of the
capillary network is both the site of secretion and the site of
absorption of interstitial fluid depending on the balance of
osmotic forces and hydrostatic pressures in the capillary system
and interstitium, which is very clearly shown in the model
of isolated brain ventricles (Klarica et al., 2009; Maraković
et al., 2010). The interstitial and cerebrospinal fluid spaces are
interconnected and could be considered a single functional unit.
Thus, according to this concept, cerebrospinal fluid absorption
can occur anywhere within the capillary network of neural tissue,
and it is entirely independent of arachnoid granulations and
arachnoid villi.

LIMITATIONS

There are several limitations to this study that should be
mentioned. The first limitation is that all patients came to the
MR exam due to a medical indication. Although their diagnoses
are not expected to affect CSF physiology, this effect cannot be
completely ruled out on a theoretical level.

The second limitation relates to sample size. Although almost
all comparisons examined in our study were established to be
significantly different, a larger sample size would reduce the
possibility of sampling errors.

The third limitation is that the same patients were MR
scanned only at the ages of 0 and 2 years when there was no
change in the number of arachnoid granulations. It is impossible
to say unambiguously from our study whether arachnoid
granulations appear or disappear over time in an individual
subject. This question could be answered only by conducting a
longitudinal study in which the same subjects would be followed
for a more extended period, ideally throughout life.

CONCLUSION

The results suggest that the number, size, and distribution
of arachnoid granulations in the superior sagittal sinus and
surrounding cranial bones change significantly over a lifetime.
However, numerous individuals do not have or have a
minimum number of arachnoid granulations in all age groups.
Furthermore, after the age of 60 years, arachnoid granulations
are predominantly located in the cranial bones. All of the above
suggests that arachnoid granulations do not seem to play a crucial
role in cerebrospinal fluid absorption as it is generally accepted.
Therefore, the lack of arachnoid granulations does not appear to
cause problems in intracranial fluid homeostasis.
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Orešković, D., Radoš, M., and Klarica, M. (2018). Reply to comment on ‘‘Role of
choroid plexus in cerebrospinal fluid hydrodynamics’’. Neuroscience 380:165.
doi: 10.1016/j.neuroscience.2018.02.040

Osaka, K., Hanila, H., Matsumoto, S., and Yasuda, M. (1980). Development of
the cerebrospinal fluid pathway in the normal and abnormal human embryos.
Childs Brain 6, 26–38. doi: 10.1159/000119881

Papaiconomou, C., Bozanovic-Sosic, R., Zakharov, A., and Johnston, M. (2002).
Does neonatal cerebrospinal fluid absorption occur via arachnoid projections
or extracranial lymphatics? Am. J. Physiol. Regul. Integr. Comp. Physiol. 283,
R869–R876. doi: 10.1152/ajpregu.00173.2002

Peery, A. F., Keku, T. O., Martin, C. F., Eluri, S., Runge, T., Galanko, J. A.,
et al. (2016). Distribution and characteristics of colonic diverticula in a united
states screening population. Clin. Gastroenterol. Hepatol. 14, 980.e1–985.e1.
doi: 10.1016/j.cgh.2016.01.020

Pollay, M. (2010). The function and structure of the cerebrospinal fluid outflow
system. Cerebrospinal Fluid Res. 7:9. doi: 10.1186/1743-8454-7-9
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