Scientific paper - Review paper
Machine Learning for Clinical Decision-Making: Challenges and Opportunities in Cardiovascular Imaging
Frontiers in Cardiovascular Medicine, 8 (2022); 765693. https://doi.org/10.3389/fcvm.2021.765693

Sanchez-Martinez, Sergio; Camara, Oscar; Piella, Gemma; Čikes, Maja; González-Ballester, Miguel Ángel; Miron, Marius; Vellido, Alfredo; Gómez, Emilia; Fraser, Alan G.; Bijnens, Bart

Cite this document

Sanchez Martinez, S., Camara, O., Piella, G., Čikes, M., González Ballester, M. Á., Miron, M. ... Bijnens, B. (2022). Machine Learning for Clinical Decision-Making: Challenges and Opportunities in Cardiovascular Imaging. Frontiers in Cardiovascular Medicine, 8.. doi: 10.3389/fcvm.2021.765693

Sanchez Martinez, Sergio, et al. "Machine Learning for Clinical Decision-Making: Challenges and Opportunities in Cardiovascular Imaging." Frontiers in Cardiovascular Medicine, vol. 8, 2022. https://doi.org/10.3389/fcvm.2021.765693

Sanchez Martinez, Sergio, Oscar Camara, Gemma Piella, Maja Čikes, Miguel Ángel González Ballester, Marius Miron, Alfredo Vellido, Emilia Gómez, Alan G. Fraser and Bart Bijnens. "Machine Learning for Clinical Decision-Making: Challenges and Opportunities in Cardiovascular Imaging." Frontiers in Cardiovascular Medicine 8 (2022). https://doi.org/10.3389/fcvm.2021.765693

Sanchez Martinez, S., et al. (2022) 'Machine Learning for Clinical Decision-Making: Challenges and Opportunities in Cardiovascular Imaging', Frontiers in Cardiovascular Medicine, 8. doi: 10.3389/fcvm.2021.765693

Sanchez Martinez S, Camara O, Piella G, Čikes M, González Ballester MÁ, Miron M, and sur.. Machine Learning for Clinical Decision-Making: Challenges and Opportunities in Cardiovascular Imaging. Frontiers in Cardiovascular Medicine [Internet]. 2022 January 04 [cited 2024 October 06];8. doi: 10.3389/fcvm.2021.765693

S. Sanchez Martinez, et al., "Machine Learning for Clinical Decision-Making: Challenges and Opportunities in Cardiovascular Imaging", Frontiers in Cardiovascular Medicine, vol. 8, January 2022. [Online]. Available at: https://urn.nsk.hr/urn:nbn:hr:105:785880. [Accessed: 06 October 2024]

Please login to the repository to save this object to your list.