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1. INTRODUCTION AND BACKGROUND FOR PROPOSED RESEARCH 

Botulinum toxin type A (BoNT/A) is a neuroparalytic bacterial exotoxin and a therapeutic 

protein. It is used for treatment of several hyperkinetic movement disorders, with recent 

expansion of its use in a wide array of other neurological disorders including chronic pain 

(Truong et al., 2009). Initially, the observed BoNT/A antinociceptive action was associated 

with reduction of muscle tone, e.g. in spasticity and dystonia (Mense, 2004). However, in the 

last 15-20 years, the use has been extended to non-muscular chronic pain disorders. After 

serendipitous discovery that it reduces symptoms of migraine headache in persons treated for 

reduction of facial wrinkles, BoNT/A has been clinically investigated in headache disorders 

(Silberstein et al., 2000). BoNT/A use for chronic migraine has been approved since 2010 

(Dodick et al., 2010). Its off-label use has confirmed the BoNT/A efficacy in clinical trials of 

other types of pain, such as osteoarthritis, low back pain, trigeminal neuropathy, myofascial 

pain, temporomandibular joint disorders, etc. (Jabbari and Machado, 2011). The biggest 

advantage of BoNT/A use is that, due to the long-term survival of toxin's enzymatic part 

within neurons, the clinical effects may last for 3-6 months after a single peripheral 

application. Its efficacy in chronic pain disorders occurs without serious side effects related to 

repeated use of conventional analgesics, such as the tolerance and medication overuse 

(reviewed by Matak and Lacković, 2014; Appendix VI). 

Surprisingly, although molecular mechanisms of BoNT/A action in peripheral cholinergic 

synapses have been well characterized, relatively little is known about the mechanism of its 

action in different pain disorders. In analogy with its well known effect on muscular paralysis, 

peripheral site of action and supposed local prevention of neurotransmitter release still 

dominate among current opinions (Aoki and Francis, 2011; Wheeler and Smith, 2013). In our 

laboratory, based on observed BoNT/A distant effect in bilateral pain models, and 

demonstrated necessity of axonal transport for BoNT/A efficacy, the idea of a central site of 

action has been conceived (Bach-Rojecky, 2006; Bach-Rojecky and Lacković, 2009; Bach-

Rojecky et al., 2010). In present PhD thesis, to make further mechanistic insights into 

BoNT/A action on pain in CNS, we set out to investigate the axonal transport of 

enzymatically active BoNT/A in sensory neurons and to elucidate the sites of BoNT/A 

activity in central sensory regions.  
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1.1 BoNT/A, botulism and historical overview  

BoNT/A and other serotypes of botulinum toxin (BoNT) are produced by a few species of 

sporogenous rod-shaped anaerobic bacteria from genus Clostridium (C. botulinum, C. baratii, 

C. butyricum, C. argentinense) (Popoff and Bouvet, 2005). BoNT exotoxin is a large protein 

complex formed inside the bacterial cell and released by secretion or bacterial lysis. It 

consists of neurotoxin part which invades neuronal terminals and blocks the vesicular release 

of neurotransmitters. Non-toxic part of BoNT complex formed by auxiliary proteins augments 

the stability of toxin prior to penetration into the systemic circulation (details explained in 

Section 1.2). Up to now, seven well known serotypes which induce a neuroparalytic disease 

called botulism in animals and humans have been characterized (A-G). These serotypes may 

also have several subtypes (for instance, BoNT/A has 5 subtypes designated as A1 through 

A5) (Dover et al., 2009; Kalb et al., 2011). Serotype H, which has been discovered only 

recently, has not yet been fully characterized and no antidotes have been produced up to now 

(Barash and Arnon, 2014; Dover et al. 2014). Due to their exquisite ability of to enter neurons 

and to block the neurotransmitter release in very low doses, BoNTs are among the most 

potent toxins known. Median intravenous lethal dose of serotype A in humans is only 1 ng/kg 

or 70 ng/70 kg person (Gill, 1982). This makes BoNT a potential threat if used as an 

inhalational bioweapon (Arnon et al., 2001; Bigalke and Rummel, 2005; Franz et al., 1997; 

Gill, 1982).  

Botulism is a neuroparalytic disease caused by systemic intoxication with different BoNT 

serotypes in animals and humans. In humans, intoxication has been reported for serotypes A, 

B, E and F (Sobel et al., 2005). BoNT serotype H has been characterized for the first time in a 

child suffering from mixed BoNT/B and BoNT/H toxo-infection (Barash and Arnon, 2014). 

Although nowadays a very rare disease, botulism may have a fatal outcome in 5 to 10% of 

cases. Due to its ability to invade peripheral cholinergic terminals, typical BoNT/A symptoms 

include flaccid symmetric paresis of skeletal and smooth muscles, and autonomic nervous 

system impairment (WHO 2013). The effects on sensory system have also occasionally been 

reported in humans (Goode and Shearn, 1982; Kuruoğlu et al., 1996; Martínez-Castrillo et al., 

1991). Relatively mild first symptoms include symmetric paresis of craniofacial muscles, 

followed by weakness and vertigo, dry mouth and difficulties in speaking and swallowing. In 

more severe cases, potentially fatal respiratory failure may occur due to the paralysis of 

respiratory muscles. Immediate treatment consists of early administration of neutralizing 
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antitoxin (useful only before BoNT enters the neurons), and subsequent respiratory support in 

the intensive care unit, if needed (WHO 2013). Respiratory support may be necessary for 

several months before the toxin’s effects wear off.  

Food-borne botulism was characterized for the first time by the early 19
th

 century German 

physician Justinus Kerner, who described the symptoms of food poisoning caused by 

ingestion of contaminated smoked sausages. J. Kerner himself coined a name of the disease 

according to the suspected cause of food poisoning (botulus = lat. sausage) (Erbguth, 2008). 

Intoxication with toxin-contaminated food associated with different types of inadequately 

sterilized home-made conserved food continues to be the most common form of BoNT 

poisoning. C. botulinum endospores are extremely heat-resistant, while the toxin itself is 

destroyed by boiling or heating (WHO 2013). Inhalational botulism, occurring due to toxin 

inhalation and its subsequent penetration into the systemic bloodstream, can occur due to 

accidental toxin exposure during industrial production. BoNT use as an inhalational biological 

weapon has been regarded as a possible biological threat (Arnon et al., 2001). Iatrogenic 

botulism may occur due to misuse or incorrect dosage of therapeutically used protein, which 

has been reported after cosmetic use of high-dose of uncharacterized illegal BoNT/A 

preparation, and in children treated with high dose of commercial BoNT/A product for 

spasticity (Chertow et al., 2006; Crowner et al., 2007).  

Apart from systemic intoxication with BoNT/A, botulism can also be caused by anaerobic 

toxo-infection with C. botulinum endospores germinating into viable bacteria, which generate 

the toxin inside the body. Due to initial anaerobic conditions and lack of normal 

gastrointestinal flora, after ingestion of toxin endospores the bacterium may grow in the 

child’s intestinal tract and induce infant botulism (WHO 2013). Intestinal toxemia botulism in 

adults may occur if the normal gut flora has been altered by abdominal surgical procedures or 

antibiotic therapy (WHO 2013). In intravenous drug abusers, needle wound infection may 

induce spore germination and subsequent systemic intoxication (Sobel, 2005; Wenham 2008).  

Development of clinical use. Nowadays, local use of purified BoNT/A in low doses has 

become a basis of its widespread use. Apart from BoNT/A, serotype B has been approved for 

clinical use, too. The long-term neuroparalytic activities of BoNT/A and BoNT/B in synapses 

lasting up to several months have been the basis of their clinical use in various neuromuscular 

and autonomous disorders. In the late 1960s and 1970s, an American physician and 
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ophthalmologist Allan B. Scott used low BoNT/A doses to treat strabismus in children by 

injecting small doses of purified BoNT/A into hyperactive lateral or medial rectus muscle 

(Scott et al., 1973; Scott, 1980). BoNT/A has been approved for this indication in 1989, and 

later in other types of muscular hyperactivity disorders like blepharospasm, hemifacial spasm, 

focal dystonia and upper limb spasticity (reviewed by Barnes 2003; Thengannat et al., 2012). 

Neuroparalytic effect on autonomic synapses has been employed for treatment of autonomic 

disorders such as primary axillar hyperhidrosis and urinary incontinence caused by 

neurogenic detrusor overactivity (Dressler 2013; Naumann et al., 2013; Seth et al., 2013). The 

ability of BoNT/A to paralyze neuromuscular junctions for a long period of time and induce 

the atrophy of mimic muscles has been turned into the most often cosmetic treatment of facial 

wrinkles, used yearly by millions of people worldwide. BoNT/A is approved for this 

indication since 2002. 

Presently, BoNT/A is one of the most commonly used therapeutic proteins produced by over 

20 manufacturers throughout the world (Truong et al., 2009). Potency units, based on mouse 

intraperitoneal LD50, are specific to each BoNT commercial preparation and cannot be 

compared or converted from one product to another. Therefore, BoNT preparations from 

different manufacturers have different generic names. European Medicines Agency (EMA) 

uses international nonproprietary names (INN) (EMA authorization and referral documents, 

www.ema.europa.eu), while in the United States, Food and Drug Administration uses United 

States Adopted Names (USAN) (FDA 2009; FDA 2013):  

- Botox® (INN: Clostridium botulinum type A neurotoxin complex); USAN: 

onabotulinumtoxinA (produced by Allergan Inc) 

- Xeomin® (INN: clostridium botulinum neurotoxin type A); USAN: incobotulinumtoxinA 

(produced by Merz Pharma GmbH & Co KGaA) 

- Neurobloc® (marketed as Myobloc® in the USA) (INN: botulinum toxin type B); USAN: 

rimabotulinumtoxinB (produced by Solstice Neurosciences, LLC)  
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1.2 Structural, pharmacokinetic and pharmacodynamic properties of BoNT/A 

1.2.1 Structure of BoNT/A complex 

BoNT/A molecular complex released from C. botulinum consists of the toxic part (150 kDa) 

and auxiliary proteins (750 kDa). The neurotoxic part of the BoNT/A complex is composed of 

two polypeptide chains joint covalently by a disulfide bridge. The larger, 100 kDa heavy 

chain binds to specific BoNT/A membrane acceptors via distinct carboxy terminal binding 

domain (HC), and mediates the toxin subsequent endocytotic internalization to nerve 

terminals. Translocation domain at the N terminal (HN), mediates the light chain translocation 

from the endocytotic vesicle into the neuronal cytosol (Tighe and Schiavo, 2013). 50 kDa 

light chain (BoNT/A LC) is a proteolytic enzyme which, by targeting the synaptic release 

machinery, prevents synaptic neurotransmitter release. Other BoNT serotypes (B-H), along 

with tetanus toxin (TeNT), related toxin produced by Clostridium tetani, share a similar 

homologous structure of the 150 kDa neurotoxic part with BoNT/A.  

Auxiliary proteins comprising haemaglutinins and non-haemaglutinins participate in the 

stabilization of BoNT/A complex and preservation outside the bacterial cell (Tighe and 

Schiavo, 2013). Throughout the GI tract, they protect the 

neurotoxic component from degradation by digestive 

proteolytic enzymes (Chen et al., 1998). 150 kDa 

neurotoxin by itself can be absorbed into the systemic 

circulation from the stomach, small intestine and lungs 

independently of auxiliary proteins. (Maksymowych et 

al., 1999; Al-Saleem et al., 2012).  

 

 

Figure 1 Schematic representation of structure of BoNT/A molecule. BoNT/A 150 kDa 

neurotoxin molecule is composed of a heavy chain 50 kDa C-terminal domain (Hc), 50 kDa 

N-terminal domain (HN), and 50 kDa light chain (LC). LC is attached to the heavy chain by a 

disulfide bridge (small yellow circles represent sulphur atoms). Dashed circle represents the 

auxiliary proteins of 750 kDa in total, not shown in details. 

 

 

1.2.2. Pharmacokinetics 

After BoNT/A reaches the gut by ingestion or production by bacteria, 150 kDa neurotoxin 
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penetrates the gut epithelial lining, usually in the small intestine. Similarly, BoNT/A may 

penetrate the alveolar lining after its inhalation. After that, it is transcytosed across the 

basolateral surface of epithelial cells, from where it enters the blood capillaries and systemic 

circulation. It then reaches the extracellular fluid of peripheral tissues throughout the body 

(Simpson et al., 2013). Only a small part of orally-ingested BoNT/A reaches the systemic 

circulation due to degradation or inactivation by low-pH conditions and digestive proteases in 

the gut (Sugii et al., 1977; Sobel et al., 2005) (estimated median oral lethal dose is 70 μg vs.  

0.07 μg i.v. dose, or 0.8-0.9 μg estimated inhalational dose) (Arnon et al., 2001, Gill, 1982).  

Systemic pharmacokinetic data from rodents suggest that the elimination half-life of active 

toxin in the bloodstream, after its i.v. administration, is around 4 hours. In the blood, only 5-

15% of toxin is bound to plasma proteins (Ravichandran et al., 2006). To investigate the time-

course of poisoning, BoNT/A neutralization with antibodies was performed at different time 

points. Antitoxin administered 10 min after high dose i.v. BoNT/A only partially prolonged 

the animal survival, while after 20 min it was completely unable to prevent botulism 

(Ravichandran et al., 2006). The data suggest that the long elimination half-life in plasma and 

low binding to plasma proteins are sufficient to induce systemic poisoning. Low efficiency of 

post-challenge antitoxin administrations suggests that the toxin enters peripheral nerve 

terminals quickly after entrance into the bloodstream.  

BoNT/A employed for therapeutic use may spread from the injection site, and induce 

localized side effects, such as the unwanted paralysis of nearby muscles (Brodsky et al., 2012; 

Majlesi et al., 2007). Appropriately chosen volume, dose and method of injection may reduce 

the incidence of side effects induced by toxin spread. BoNT/A auxiliary proteins, which 

quickly dissociate from 150 kDa neurotoxin under normal pH conditions, do not contribute 

significantly to the toxin spread in peripheral tissues (Brodsky et al., 2012; Carli et al., 2009). 

Although the circulating toxin may not penetrate the blood-brain barrier, it may reach the 

CNS by its axonal traffic in sensory and motor neurons (discussed in Section 5.1). BoNT/A 

pharmacokinetic is schematically shown in Fig. 2  

BoNT/A enters neurons as a 150 kDa neurotoxic component alone. Both binding and 

endocytosis into neurons are mediated by Hc subunit, which binds the specific dual protein-

sialoganglioside acceptors on the outer side of synaptic plasma membrane. BoNT/A 

establishes the initial contact with the outer side of plasma membrane by binding to  
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Figure 2 Pharmacokinetics of BoNT/A.  Ingested or inhaled BoNT/A complex reaches the 

lumen of intestines or lung alveoles, and the neurotoxic part enters the bloodstream by 

transcytosis across epithelial layers. This is followed by systemic distribution of toxin into the 

extracellular fluid of peripheral tissues, such as muscles (auxiliary proteins indicated by 

dashed circle line dissociate from 150 kDa neurotoxin). Systemically distributed or 

intramuscularly (i.m.) injected BoNT/A molecules then enter neuromuscular junctions and 

paralyses the muscles. Circulating BoNT/A cannot penetrate the blood-brain barrier, 

however, a portion of BoNT/A is retrogradely transported within peripheral nerves towards 

the CNS. Favorable pharmacokinetic properties for high BoNT/A toxicity are: the ability to 

survive harsh conditions of GI tract, to be able to cross the epithelial layersand enter  the 

bloodstream, sufficient half-life in the systemic bloodstream and specific recognition of 

neuronal terminals to promptly enter the cytosol of neuronal terminals.  
 

polysialogangliosids (glycosphingolipids with sialic acid residues), which anchors the toxin 

from extracellular fluid (Simpson et al., 2013). In addition, the HC subunit binds to high 

affinity membrane protein acceptors, synaptic vesicle protein 2 (SV2) and fibroblast growth 

factor receptor 3 (Dong et al., 2006; Jacky et al., 2013; Mahrhold et al., 2006). SV2 protein is 

present in 3 isoforms (SV2A-C). BoNT/A binding and endocytotic entry into neurons can be 

mediated by all three SV2 isoforms, with the highest affinity for SV2C (Dong et al., 2006). 

By a dynamin-dependent process, these protein acceptors are internalized together with 

BoNT/A into the lumen of recycled synaptic vesicles (Colasante et al., 2013; Harper et al., 

2011). The process is augmented by increased neuronal activity (Harper et al., 2011). 
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Subsequent BoNT/A internalization into neurons is followed by release of LC into the 

cytosol, mediated by the HN domain which serves as a chaperone channel (Fischer and 

Montal, 2007; Kalandakanond and Coffield, 2001). HN domain is inserted into the synaptic 

vesicle membrane and forms a pore, through which the unfolded LC is translocated into the 

cytosol. Under the influence of acidic pH in vesicles, disulphide bridge between the heavy 

and light chain is reduced during the translocation process (Fischer and Montal, 2007). 

 

1.2.3  Pharmacodynamics 

As the translocated LC polypeptide is refolded inside the cytosol, it becomes a Zn
2+

-

dependent metalloproteolytic enzyme. LC metalloprotease hydrolizes a single peptide bond 9 

aminoacids away from the C-terminal of a membrane-bound synaptic protein Synaptosomal-

associated protein of 25 kDa (SNAP-25) (Blasi et al., 1993). SNAP-25 is a 206 amino-acid 

(a.a.)-long palmitoylated membrane protein anchored to the cytosolic side of presynaptic 

plasma membrane, which, together with its binding partners:  membrane-associated protein 

syntaxin, and vesicle-associated membrane protein (VAMP)/synaptobrevin, forms complexes 

which mediate synaptic vesicle fusion with presynaptic plasma membrane. This 

heterotrimeric complex, necessary for Ca
2+

-dependent synaptic vesicular release of 

neurotransmitters, is known as the soluble N-ethylmaleimide-sensitive factor attachment 

protein receptor (SNARE) complex (Tighe and Schiavo, 2013).  Each of the BoNT serotypes 

(A-G), together with tetanus toxin, targets a distinct peptide bond on one of the three 

SNAREs. BoNT/A, BoNT/E and BoNT/C1 cleave SNAP-25, while BoNT serotypes B, 

D,F,G and TeNT, cleave VAMP (Binz et al., 1994; Pelizzari et al., 1999; Schiavo et al., 

1992). Apart from SNAP-25, BoNT/C1 cleaves syntaxin (Foran et al., 1996). Based on 

similarity of its primary sequence with BoNT/F5, it is predicted that newly discovered 

serotype BoNT/H cleaves VAMP (Barash and Arnon, 2013; Dover et al., 2014). By cleaving 

unique peptide bonds on SNARE-proteins, different BoNT serotypes and tetanus toxin 

(TeNT) prevent fusion of neurotransmitter-containing vesicles with presynaptic plasma 

membrane and subsequent neurotransmitter release. 

BoNT/A unique therapeutic effects after single peripheral therapeutical application last for 3-

6 months. In addition, minute amounts of toxin are needed to induce the therapeutic effect. 

Unique pharmacodynamic properties enable the high potency of BoNT/A at the synapse. 
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BoNT/A as a soluble enzyme may target many SNAP-25 molecules in the cytosol. Particular 

long-term efficacy and high potency at the synapse is due to remarkable longevity of BoNT/A 

LC in the cytosol, as well as the mechanistic consequences of BoNT/A-mediated SNAP-25 

cleavage in synaptic SNARE complexes. Importantly, BoNT/A effects in synapses are 

reversible, i.e. the synapse regains its original function after completion of protease effects. 

BoNT/A protease in the cytosol has a particularly long life: recent study indicated that 

proteolytic activities of different BoNT/A subtypes (1-5) in neuronal cultures may last for up 

to 10 months (Whitemarsh et al., 2014), while in vivo the protease may remain functional for 

up to 6 months in central neurons (Antonucci et al., 2008). Persistence of LC in the cytosol 

can be partially explained by its ability to evade ubiquitin-proteasome cellular protein 

degradation mechanism. Unlike BoNT/E, BoNT/A is not readily ubiquitinated by ubiquitin 

ligases. This property most likely mediates longer therapeutic effects of BoNT/A compared to 

BoNT/E (BoNT/E effects last for 2-3 weeks only) (Tsai et al., 2010). Dileucine motif in the 

primary sequence of LC appears to exibit a protective role on the protease longevity (Wang et 

al., 2011), which is associated with a newly-discovered LC interaction with cytoskeletal 

proteins called septins (Vagin et al., 2014). Another possible contributing mechanism is the 

unique mode of protein folding of LC at physiological conditions, which assumes a molten-

globule conformation (partially folded intermediate protein state). Molten globule state is 

proposed to mediate a remarkable stability and flexibility of BoNT/A structure in 

physiological solutions lasting for many months (Kumar et al., 2014).  

It seems that high potency of BoNT/A LC is also mediated by a small subset of synaptic 

SNAP-25 targeted by BoNT/A, however, highly relevant for synaptic function. Cleavage of 

only a small portion of synaptic SNAP-25 (10-20%) is sufficient to induce complete synaptic 

paralysis in muscles and cultured autonomic neurons (Kalandakanond and Coffield, 2001; 

Lawrence et al., 2013).  

While the SNARE proteolysis induced by most other BoNT serotypes prevents the SNARE 

complex assembly, truncation of 9 C-terminal amino acids by BoNT/A does not impair the 

assembly of heterotrimeric SNARE complex (Lawrence et al., 2002; Meunier et al., 2003). 

Rather, the mechanism of BoNT/A-induced prevention of SNARE-mediated transmitter 

release is the impaired Ca
2+

-induced triggering of vesicle membrane fusion with plasma 

membrane, which is mediated by interaction of Ca
2+

-sensing protein synaptotagmin with C-
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terminus of SNAP-25 (Gerona et al., 2000). Inactive SNARE complexes may persist for some 

time in the synapse and act as competitive inhibitors of the neurotransmitter release, thus, 

augmenting the BoNT/A-mediated synaptic paralysis (Keller and Neale, 2001). Following the 

inhibition of LC catalytic activity, the synapse regains its function in 4 days, which likely 

corresponds to the turn-over time of inactive SNARE complexes (Bartels et al., 1994; Keller 

and Neale, 2001). Several SNARE complexes forming a radial star-shaped oligomer (SNARE 

supercomplex) are necessary for the fusion of single synaptic vesicle with plasma membrane 

(Megighian et al., 2010). Hypothetically, occurrence of a single inactive SNARE complex 

within the oligomer may compromise the activity of the supercomplex.  

Classical symptoms of botulism had lead to the initial assumption that BoNT action is 

selective for cholinergic transmission, only. However, in line with the ubiquitous role of 

SNAREs in neurotransmitter release and presence of membrane acceptors in other types of 

neurons, BoNTs may block the neurotransmitter release of most neurotransmitters. In vitro 

and in vivo studies demonstrated the BoNT/A prevents the release of serotonin, dopamine, 

noradrenaline, glutamate, gamma-aminobutyric acid (GABA), enkephalin, glycine, Substance 

P and calcitonin gene-related peptide (CGRP) (Nakov et al., 1989, Mc Mahon et al., 1992; 

Welch et al., 2000; Morris et al., 2002; Durham et al., 2004; Verderio et al., 2007).  

BoNT/A exhibits a considerable selectivity for prevention of excitatory neurotransmission, 

such as cholinergic and glutamatergic, in comparison to GABA-ergic inhibitory 

neurotransmission. This is not due to different mechanism of neurotransmitter release in 

GABA-ergic neurons, since SNAP-25 mediates GABA release, and BoNT/A may also enter 

GABA-ergic neurons and cleave the SNAP-25. However, SNARE complexes containing 

BoNT/A-cleaved SNAP-25 (which lacks 9 C terminal aminoacids only) retain the ability to 

support the neurotransmitter release in GABA-ergic neurons. It seems that the functional 

ability of BoNT/A-cleaved SNAP-25 is mediated by higher Ca
2+

 concentrations in GABA-

ergic neurons compared to excitatory neurons. The Ca
2+

 transient increase is higher in 

GABA-ergic neurons in comparison to glutamatergic neurons, which overcomes the 

BoNT/A-mediated paralysis (Grumelli et al., 2010). At low Ca
2+

 concentrations present in 

excitatory neurons, loss of 9 C-terminal aminoacids impairs the interaction between SNARE-

complex and synaptotagmin, a Ca
2+

 sensor protein which triggers the neurotransmitter 

release,. In conditions of high Ca
2+

, such as the ones present in GABA-ergic neurons, this 

interaction is restored and the neurotransmitter release remains functional despite the SNAP-
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25 C-terminal truncation (Gerona et al., 2000; Grumelli et al., 2010; Lawrence et al., 2002). 

Reducing the Ca
2+ 

levels by chelators confers GABA-ergic neurons more sensitive to 

BoNT/A (Grumelli et al., 2010; Verderio et al., 2004). 

BoNT/A may also enter some non neuronal cells, and block the SNARE-dependent vesicular 

release from pancreatic beta cell lines (blockage of insulin release), astrocytes (glutamate) 

chromaffin cells and Schwann cells (acetylcholine) (He et al., 2008; Lawrence et al., 2002; 

Kanno and Nishizaki, 2012; Marinelli et al., 2012).  

Recent study suggested that BoNT/A-mediated prevention of neurotransmitter release 

BoNT/A is not confined only to synapses, and that it may also prevent the ectopic 

neurotransmitter release away from synaptic active zones. BoNT/A inhibits the ectopic 

vesicular release of glutamate and ATP from axons of olfactory receptor neurons (Thyssen et 

al., 2010). Since SNAP-25, apart from synapses, is present in axons, it was proposed that 

SNAP-25 may mediate many different membrane fusion events in the axonal compartment 

(Galli et al., 1995; Duc and Catsicas, 1995) 

SNAP-25 participates in the regulation of some additional processes other than vesicular 

neurotransmitter release. It modulates the activity of some voltage gated calcium channels, the 

effect which can be altered by BoNT/A (He et al., 2008; Ji et al., 2002; Pozzi et al., 2007; 

Zamponi, 2003). BoNT/A may prevent the SNARE-mediated translocation of receptors to 

plasma membrane, such as transient receptor potential vanilloid 1 (TRPV1) and N-methy-D-

aspartate receptor (Cheng et al., 2013; Morenilla-Palao et al., 2004; Shimizu et al., 2012). 

BoNT/A may also prevent the G protein interaction with SNARE-dependent exocytotic 

machinery (Gerachshenko et al., 2005). In addition to BoNT/A effects on the activity of ion 

channels, BoNT/A may prevent the process of neurite extension by impairing the activity of 

axonal growth cones. Similar effect is observed in the process of dendrite extension (Groose 

et al., 1999; Morihara et al., 1999). In conclusion, BoNT/A in vivo effects might be much 

more complex than the simple prevention of neurotransmitter release, which requires to be 

examined (Matak and Lacković, 2014).  

Several in vitro studies indicated a possibility that some of BoNT/A actions are not mediated 

by SNAP-25, at all. Several reports suggest that BoNT/A actions on some processes, such as 

phospholipase/arachidonic pathway-mediated neurotransmitter release, effect on apopotosis 

of prostate and breast cancer cells, and motoneuronal terminal sprouting, are not necessarily 
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mediated by SNAP-25 (Coffield and Yan, 2009; Ishida et al. 2004; Proietti et al., 2012; Ray et 

al., 1993; Ray et al., 1999; Zhang et al., 2013). In particularly, Coffield and Yan demonstrated 

that the binding activity of heavy chain subunit promotes the motoneuronal terminal sprouting 

similar to full-length BoNT/A neurotoxic complex. Observed connection of BoNT/A-

mediated prevention of  lysophosphatidic acid-promoted acetylcholine release with 

proteasomal degradation of a rho-GTP-ase enzyme RhoB (Ishida et al., 2004)., as well as the 

mechanism of promoted apoptosis in cell cultures of cancer cells lacking SNAP-25  is not 

fully understood (Bandala et al. 2013; Karsenty et al., 2009; Proietti et al., 2012). In prostate 

cancer cell lines BoNT/A promotes the phosphorylation of phospholipase A2, which might be 

associated with BoNT/A-induced apoptosis and inhibition of proliferation (Proietti et al., 

2012). A newly-discovered LC interaction with GTP-binding cytoskeletal proteins called 

septins (septin-2 and septin-7) (Vagin et al., 2014), offer the possibility for some unknown 

additional BoNT/A effects yet to be discovered. 

Few studies indicated that peripherally administered BoNT/A may promote distant changes in 

expression of different neuropeptides and neurotransmission-related elements. Bossowska and 

Majewski (2012) reported that BoNT/A injection into the pig bladder reduces the number of 

bladder-innervating dorsal root ganglion neuron somata expressing substance P, CGRP, 

calbindin, somatostatin, and neuronal nitric oxide synthase. In contrast to reduced protein 

expression in sensory ganglia, up-regulation of CGRP and enkephalin m-RNA expression in 

motoneurons has been observed after intramuscular BoNT/A injection. These changes have 

been interpreted as indirect consenquences of peripheral chemical denervation (Humm et al., 

2000; Jung et al., 1997; Palomar 2012; Zhang et al., 1993). However, the evidence for 

BoNT/A retrograde axonal transport in motoneurons (Antonucci et al., 2008) allow the 

possibility for direct BoNT/A action on gene expression in motoneuronal cell bodies.  

 

1.2.4 Comparison of BoNT/A and TeNT mechanisms of action 

Genes for different BoNT serotypes and TeNT, a clostridial toxin derived from C. tetani 

which induces a paralytic disease called tetanus, are derived from a common ancestral gene 

(Eisel et al., 1986). TeNT shares a similar di-chain neurotoxin structure with BoNT/A and 

other BoNT serotypes, mechanism of entrance into neurons, and the action on synaptic 

paralysis mediated by SNARE cleavage. TeNT and BoNT serotype B proteolytically cleave 
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the same peptide bond on VAMP/synaptobrevin SNARE protein (Schiavo et al., 1994). 

Similarly to BoNT/A, the entrance of TeNT into neurons may be mediated by SV2 protein 

(Yeh et al., 2010). However, clinical manifestation of tetanus is markedly different than 

botulism.  In motoneurons, the main action of TeNT is its retrograde axonal transport to 

motoneuronal bodies and apparently selective transcytosis to certain classes of inhibitory 

neurons within the ventral horn, such as Ia inhibitory neurons and Renshaw cells (Stöckel et 

al., 1977; Hassel 2013). Impairment of ventral horn inhibitory transmission results in 

motoneuron hyperactivity and consequent rigidity or spasticity of skeletal muscles. The most 

pronounced symptom of tetanus is the so-called “opisthotonus”, the backward bent, arch-like 

posture produced by hyperextension of the head, neck limb and spinal muscles, and trismus or 

the “lockjaw”- reduced jaw opening. Tetanus poisoning may lead to spasm of laryngeal and 

respiratory muscles, resulting in respiratory failure (Hassel, 2013). While spastic paralysis is 

induced at low TeNT doses, only at high peripheral doses it translocates into the cytosol of 

neuromuscular junction terminals, and induces mild flaccid paralysis similar to BoNTs 

(Matsuda et al., 1982) 

Both BoNT/A and TeNT influence autonomic nervous system. Symptoms of BoNT/A 

intoxication are associated with reduced function of peripheral parasympathetic synapses or 

smooth musculature leading to paralysis of excretion glands (salivatory, tear production), 

absence of peristalsis, ortosthatic hypotension etc.). TeNT intoxication can sometimes 

produce a fatal autonomic instability due to hyperactivation of sympathetic nervous system, 

leading to tachyarrhythmias, hypotension, sweating, constipation, cardiac arrest etc. (Hassel, 

2013; Rodrigo et al., 2014). This might occur due to TeNT retrograde axonal transport via 

sympathetic neurons, and toxin action in sympathetic nuclei (Stöckel et al, 1975).  

If injected directly into certain CNS regions in vivo, TeNT and BoNT/A have a considerably 

different action on neurotransmission, which induces behavioral and physiological effects 

related to function of injected regions. For instance, TeNT induced epilepsy if injected into 

the hippocampus (Ferecskó et al., 2014), or hyperalgesia after injection into the dorsal horn 

(Kryzhanovskii et al., 1975). Unlike TeNT, BoNT/A induces blockage of excitatory neuronal 

activity when injected into different central regions, like antiepileptogenic effect in 

experimental models of epilepsy (Kato et al., 2014, suppression of pathological rotation 

behaviors after striatal injection in a hemiparkinsonism model (Wree et al., 2011). In i.c.v.- 

treated rats, BoNT/A may induce slow onset, long-term cognitive impairment of spatial 
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memory (Lacković et al., 2009).  The experimental in vivo data point to the more pronounced 

action of TeNT on inhibitory neurotransmission, in comparison to relatively spared 

(incompletely reduced) glutamatergic excitatory transmission (Ferecskó et al., 2014). 

Interestingly, in vivo study suggested that TeNT inhibits only the synaptic neurotransmitter 

release, while BoNTs may inhibit both synaptic and extrasynaptic (ectopic) neurotransmitter 

release (Verderio et al., 1999, Thyssen, 2010). Given the ubiquitous presence of 

VAMP/synaptobrevin and SV2 in both excitatory and inhibitory neurons, the exact 

mechanism of selective TeNT action on inhibitory neurotransmission, in contrast to BoNT/A, 

is presently not known.  In addition, the exact cell sorting, axonal transport and transcytotic 

events explaining why TeNT is more efficient in inhibition of central synapses following 

transcytosis, than the peripheral nerve terminals, are yet uncharacterized.  

 

1.3 BoNT/A and pain 

1.3.1. Review of BoNT/A clinical use in chronic pain conditions 

As previously mentioned, small doses of purified BoNT/A are clinically used for treatment of 

neuromuscular disorders characterized by increased tonicity or overactivity of certain muscles 

(Barnes, 2003; Thengannat and Fahn, 2012). The beneficial effect on muscular hyperactivity 

was accompanied by prolonged pain relief, initially believed to be associated with reduced 

contraction of affected spastic or dystonic muscles (Mense, 2004). However, the  effect of 

BoNT/A on pain did not always co-occur simultaneously with beneficial effect on muscles, 

and in some cases it was longer than the muscular effect (Aoki, 2003; Freund and Schwartz, 

2003; Jankovic et al., 1990; Relja and Klepac, 2002). Relja and Klepac (2002) observed that 

the BoNT/A antinociceptive effect in dystonic torticollis occurred before the beneficial 

muscular effect, and at a lower BoNT/A dose administered. The duration of analgesic effect 

in temporomandibular disorders extended the duration of decreased voluntary bite force 

(Freund and Schwarz, 2003). These observations suggested that BoNT/A effect on pain do 

not necessarily involve its neuromuscular effects (Giladi, 1997; Mense, 2004). 

Antinociceptive effect of BoNT/A was, up to now, reported in several non-muscular pain 

conditions, such as different types of neuropathic pain, migraine, arthritis etc (Jabbari and 

Machado, 2011).  Experimental studies suggested that the BoNT/A effect on pain are 

mediated by its direct action on sensory neurons (Section 1.3.2).  
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Up to now, chronic migraine (migraine lasting >15 days per month) is the only non-muscular 

pain condition with approved BoNT/A use. The approval was based on the results of two 

large multicentric placebo controlled Phase III Research Evaluating Migraine Prophylaxis 

Therapy (PREEMPT) studies (Dodick et al., 2010). In mentioned trials BoNT/A was injected 

into fixed sites over several cranial and neck muscles (total dose of 155-195 units of 

onabotulinumtoxinA commercial preparation). Therapeutic outcome was a slight but 

significantly reduced mean number of migraine attacks per month and headache severity. 

Some other studies did not confirm the efficacy of BoNT/A for chronic migraine treatment 

(reviewed by Gady and Ferneini, 2013). Subpopulations which describe their pain as a 

pressure from outside may exhibit a higher benefit from BoNT/A treatment (Jakubowski et 

al., 2005; Burstein et al., 2009). In addition, it was suggested that the occurrence of 

pericranial allodynia, unilaterality of migraine pain and pericranial muscle tenderness in 

chronic migraine may be predictive markers for responsiveness to BoNT/A (Mathew et al., 

2008).  

Reports of off-label BoNT/A beneficial analgesic effects have demonstrated its efficacy in a 

wide array of painful conditions, such as  interstitial cystitis (Kuo, 2013, Russell et al., 2013), 

chronic arthritis (Chou et al., 2010), residual limb pain (Wu et al, 2012), different types of 

neuropathic pain (Ranoux et al, 2008; Zuniga et al., 2008) including diabetic neuropathy 

(Relja and Miletić, 2005; Yuan et al., 2009; Chen et al., 2013), masticatory pain etc. Most of 

clinical reports on BoNT/A effectiveness are based on a small number of patients or 

individual case studies. Some rare conditions such as Parry Romberg syndrome (Borodic et 

al., 2013), Morton neuroma (Climent et al., 2013), painful legs and moving toes syndrome 

(Rodriguez and Fernandez, 2013), post-thoracotomy pain (Fabregat et al., 2013), post-

amputation limb pain (Wu et al, 2012), etc. have been recently successfully treated with 

BoNT/A. Although BoNT/A seems to be a promising candidate for treatment of chronic pain, 

the results of systemic reviews and meta-analyses (Cochrane data base systemic reviews and 

other) are also mostly inconclusive (Table 1), and the majority of them concludes that more 

double blind placebo-controlled studies are needed to confirm BoNT/A efficacy. Apart from 

low sample size and limited number of randomized clinical trials, the reason for contradictory 

or negative findings might be the lack of standardized guidelines for BoNT/A application and 

dosage, and the inappropriate definition of study primary outcomes (Jabbari and Machado, 

2011). Despite the inconsistencies, unique long-term efficacy after single BoNT/A application 
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presents an obvious advantage over classical analgesics. In addition, the repeated use of 

conventional analgesics is often associated with compliance issues and occurrence of side 

effects such as the development of tolerance and medication overuse. The lack of serious side 

effects associated with BoNT/A use is particularly useful in the treatment of some chronic 

pain conditions. Potential important use of BoNT/A is its reported efficacy in cases of 

refractory chronic pain where other treatments have failed (Matak and Lacković, 2014; 

Appendix VI). These favorable BoNT/A properties drive the need for further research and 

improvement of BoNT/A clinical use. 

Table 1 Summary of systemic reviews and meta-analyses of BoNT/A efficacy in the 

treatment of different pain disorders (Matak and Lacković, 2014)  

Clinical condition N (trials 
analyzed) 

N 
(patients) 

Outcome 

 

References 

Myofascial pain 
syndromes 

4 233 
Inconclusive evidence for 
effectiveness 

(Soares et 
al., 2012) 

Subacute/chronic 
neck pain. 

9 503 
Lack of benefit (Langevin 

et al., 2011) 
low-back pain 
and sciatica 

3 123 
Low-quality evidence that 
BoNT/A is beneficial 

(Waseem et 
al., 2011) 

Shoulder pain 
due to spastic 
hemiplegia or 
arthritis 

6 164 
BoNT/A reduces pain and 
improves shoulder 
function  

(Singh and 
Fitzgerald 
(2011) 

Postoperative 
pain after 
subpectoral 
breast implants 

7 427 
Low-quality evidence that 
BoNT/A is beneficial 

(Winocour 
et al., 2014) 

Trigeminal 
neuralgia 

6 101 
BoNT/A may be 
beneficial in treatment of 
TN 

(Hu et al., 
(2013) 

Tension-type 
headache 

7 675 
No reduction in the 
number of headaches in 
comparison to placebo 

(Jackson et 
al., 2012) 

Episodic 
migraine 

9 1838 
No reduction in the 
number of headaches in 
comparison to placebo 

(Jackson et 
al., 2012) 

Chronic migraine 
5 1508 

Significant reduction in 
the number of headaches 
in comparison to placebo 

(Jackson et 
al., 2012) 

Chronic daily 
headache 

3 1115 
Significant reduction in 
the number of headaches 
in comparison to placebo 

(Jackson et 
al., 2012) 

 

 

1.3.2 Insights from in vitro studies and in vivo pain models  

In cell cultures of sensory neurons and ex vivo models of bladder preparation it was 

demonstrated that BoNT/A reduces the evoked release of SP and CGRP, neuropeptides which 
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modulate inflammation and pain.  In rat ex vivo bladder preparation BoNT/A reduced the 

spontaneous release of CGRP in animals with cyclophosphamide-induced cystitis, and evoked 

release of CGRP from HCl-treated naïve bladders (Rapp et al., 2006; Lucioni et al., 2008). In 

cultured sensory ganglia BoNT/A reduced the K
+
 and capsaicin-evoked SP and CGRP release 

(Purkiss et al., 2000; Welch et al., 2000; Durham et al., 2004; Meng et al., 2007). BoNT/A 

effects were dependent on the presence of extracellular Ca
2+

 (Purkiss et al., 2000). In acutely 

isolated slices of caudal brainstem BoNT/A altered the basal CGRP drive on secondary 

neurons. The increase of Ca
2+

 concentration prevented the BoNT/A-mediated inhibition of 

K
+
-stimulated CGRP release from trigeminal ganglion neurons (Meng et al., 2009). In 

cultured sensory ganglia BoNT/A reduces the plasma membrane expression of transient 

receptor potential vanilloid 1 (TRPV1). It was suggested that BoNT/A prevented the SNARE-

mediated TRPV1 translocation to the plasma membrane (Morenilla-Palao et al., 2004; 

Shimizu et al., 2012; Yiangou et al., 2011). 

Up to now, BoNT/A antinociceptive efficacy has been demonstrated in numerous models of 

inflammatory pain models (induced by formalin, carrageenan and capsaicin), CFA-induced 

knee arthritis, cyclophosphamide-induced prostatic pain, acetic acid-induced bladder pain and 

capsaicin-evoked prostatic pain. In addition, BoNT/A efficacy has been shown in peripheral 

nerve injury-induced neuropathic pain models, polyneuropathic pain models, mirror pain, 

postsurgical pain models (data and references summarized in Table 2).  

Interestingly, it was noticed that BoNT/A has peculiar analgesic properties in comparison to 

conventional analgesics (Matak and Lacković, 2014; Appendix VI). Firstly, unlike classical 

opioid analgesics or local anesthetics, BoNT/A does not alter normal mechanical or thermal 

thresholds in humans or animals (Cui et al., 2004; Bach-Rojecky, 2006; Blersch et al., 2002). 

Its effect on pain seems to be limited to reduction of facilitated pain states associated with 

allodynia and hyperalgesia, mediated by central sensitization (defined by Wolf (2011) as „ a 

prolonged, reversible increase in the excitability and synaptic efficacy of neurons in central 

nociceptive pathways”). Secondly, there is a lack of dose-response at peripheral BoNT/A 

doses which do not induce neuroparalytic effects. Bach-Rojecky described a lack of dose 

response in a model of carrageenan-evoked hind-paw inflammation. BoNT/A applied at 

3.5U/kg, the lowest effective dose, induces a similar analgesic activity at higher 5 and 7 U/kg 

BoNT/A doses. Similar conclusions were observed in models of neuropathic pain (Bach-

Rojecky et al., 2005; Bach-Rojecky et al., 2010). Bach-Rojecky (2006) in her PhD 
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dissertation reported the lack of dose response of BoNT/A after its intrathecal application, 

too.  

Table 2 BoNT/A antinociceptive efficacy in rodent experimental pain models. The pain 

type has been described in terms of etiology (inflammatory, neuropathic, etc.) and site 

(superficial somatic, deep somatic or visceral). Legend: s.c.=subcutaneous; i.c.v.=intra-

cerebroventricular; i.t.=intrathecal; i.a.=intraarticular; ↓= reduction 

Pain model & type Type of 
BoNT/A 
application 

Effect on pain Additional 
observations 

References 

Formalin-induced 
pain (acute 
inflammatory, 
superficial somatic) 

s.c.(hind-
paw or 
whisker pad) 
i.c.v., i.t.; 
pretreatment 

↓phase II pain 
behavior 

↓ glutamate rise 
and edema in the 
inflamed paw, ↓c-
fos second order 
neuronal 
activation 

Cui et al., 2004; 
Luvisetto et al., 
2006; Lee et al., 
2011; Vacca et 
al., 2012; 
Drinovac et al., 
2013) 

Carrageenan-
induced pain (acute 
inflammatory, 
superficial somatic) 

s.c.(hind-
paw) 
pretreatment 

↓mechanical 
and thermal 
hyperalgesia 

No effect on paw 
edema or 
inflammatory cell 
infiltration 

(Bach-Rojecky 
and Lacković, 
2005; Favre-
Guilmard et al., 
2009; Shin et al., 
2013 

Capsaicin-evoked 
hind-paw or facial 
pain (acute 
inflammatory, 
superficial somatic) 

s.c.(hind-
paw or. 
whisker pad) 
pretreatment 

↓mechanical 
and thermal 
hyperalgesia 
(paw); 
Reduced 
nocifensive 
behavior 

No effect on 
neurogenic 
plasma protein 
extravasation 

(Bach-Rojecky 
and Lacković, 
2005, Shimizu et 
al., 2012 

Prostate pain 
evoked by 
capsaicin  

Intraprostatic 
(visceral) 

↓pain behavior 
and 
hypolocomotion 

 Chuang et al., 
2007 

Freund’s adjuvant– 
induced knee 
arthritis (deep 
somatic) 

i.a. ↓joint 
tenderness, 
improved 
spontaneous 
wheel running 

 Krug et al., 2009.  

Partial sciatic 
nerve transection 
injury (peripheral 
neuropathic, 
somatic) 

s.c.(hind-
paw) 
post-
treatment 

↓mechanical 
and thermal 
hyperalgesia, ↓ 
mechanical and 
cold allodynia 

 Bach-Rojecky et 
al., 2005; 
Drinovac et al., 
2013) 

Spinal nerve 
ligation (peripheral 
neuropathic, 
somatic) 

s.c.(hind-
paw) 
post-
treatment 

↓mechanical 
and cold 
allodynia 

 Park et al., 2006 

Sciatic nerve 
constriction  injury 
(peripheral 
neuropathic, 
somatic) 

s.c.(hind-
paw) 
post-
treatment 

↓mechanical 
allodynia 

↓upregulation of 
pronociceptive 
opioid 
neuropeptides and 
SNAP-25 in the 
sensory ganglia, 
↓markers of glial 
activation in the 

Luvisetto et al., 
2007; Marinelli et 
al, 2010; Mika et 
al., 2011 
Vacca et al., 
2013 
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spinal cord; ↑ 
functional 
recovery of injured 
nerve 

Infraorbital nerve 
constriction injury 
(peripheral 
neuropathic, 
somatic) 

s.c. (whisker 
pad) post- 
treatment 

↓mechanical 
allodynia 
(bilaterally), 
thermal 
allodynia 

↓evoked vesicular 
release of 
neurotransmitters 
within sensory 
ganglia;  

Kitamura et al., 
2009; Filipović et 
al., 2012; 
Kumada et al., 
2012 

Ventral root 
transection ( 
neuropathic, 
somatic) 

s.c.(hind-
paw) 
post-
treatment 

↓Mechanical 
allodynia 
(bilaterally) 

↓expression of 
P2X3 and TRPV1 
receptors 

Xiao et al., 2011; 
Xiao et al., 2013 

Streptozotocin-
induced diabetic 
pain 
(polyneuropathic) 

s.c.(hind-
paw): i.t. 
post-
treatment 

↓mechanical 
hyperalgesia 
(bilaterally), 
and thermal 
hyperalgesia, 
formalin-
induced 
hypersensitivity 

 Bach-Rojecky et 
al.,, 2010) 

Chemotherapeutic-
induced pain 
(polyneuropathic) 

s.c.(hind-
paw) 
post-
treatment 

↓mechanical 
hyperalgesia 
(bilaterally) 

 Favre-Guilmard, 
(2009) 

Hyperalgesia  
induced by 
repeated acidic 
saline 
gastrocnemius 
injections (mirror 
pain, somatic) 

s.c.(hind-
paw) 
pre- and 
post-
treatment 

↓mechanical 
hyperalgesia 
(bilaterally) 

 Bach-Rojecky 
and Lacković, 
2009) 

Hyperalgesia 
evoked by 
gastrocnemius 
incision 
(postsurgical pain, 
somatic) 

s.c.(hind-
paw) 
pre- 
treatment 

↓mechanical 
hyperalgesia  

 Filipović et al., 
2010 

 

 

 

1.4.4. Peripheral theory of BoNT/A action 

According to a still dominating theory, BoNT/A, similarly to its effect in peripheral 

cholinergic synapses, reduces the neurotransmitter release from sensory nerve endings. This, 

in turn, mediates the BoNT/A action on pain and peripheral inflammation (Aoki and Francis, 

2011; Wheeler, 2013). This hypothesis was based primarily on the initial experimental study 

on BoNT/A antinociceptive activity from Cui et al. (2004). The authors reported the effect of 

BoNT/A on the second phase of formalin-induced flinching/licking behavior. In addition, 

they observed reduced peak increase of glutamate in the hind-paw tissue, and slight reduction 
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of hind-paw edema. At the time, it seemed logical to assume that BoNT/A local effects on 

peripheral neurotransmitter release and inflammation are causally associated with its 

antinociceptive effects. The observed reduced activation of second-order neurons (interpreted 

as a reduced central sensitization) was regarded as an indirect consequence of BoNT/A 

peripheral effects (Aoki, 2005; Cui et al., 2004). In some human experiments, BoNT/A 

mediated reduction of neurogenic flare was observed in normal human subjects (Gazerani et 

al., 2006, 2009)  

 

1.4.5. Dissociation between anti-inflammatory and antinociceptive actions of BoNT/A 

The antinociceptive efficacy of BoNT/A was confirmed in models of capsaicin and 

carrageenan-induced inflammatory pain. However, no anti-inflammatory effect on tissue 

inflammatory cell infiltration, edema, or neurogenic inflammation were observed, despite 

significant reduction or full reversal of mechanical and thermal hyperalgesia (Bach-Rojecky 

and Lacković, 2005; Bach-Rojecky et al., 2008; Favre-Guilmard et al., 2009). In the study of 

Cui et al. (2004) the discrepancy between the minimal anti-inflammatory and antinociceptive 

doses was observed (7 U/kg vs. 3.5 U/kg). The study of Krämer et al. (2003) reported that 

BoNT/A reduces neurogenic flare evoked by capsaicin in human subjects, however, with very 

limited analgesic effects. These studies demonstrated that the BoNT/A peripheral anti-

inflammatory effect is not necessarily connected to its analgesic activity.  

 

1.5. Central effects of BoNT/A 

1.5.1 Insights from bilateral and polyneuropathic pain models 

Dissociation between peripheral and anti-inflammatory effects of BoNT/A indicated that the 

mechanism of BoNT/A action on pain might be more complex that the simple prevention of 

peripheral neurotransmitter releaser. Strong evidence that BoNT/A antinociceptive efficacy 

involves a central activity has been suggested by bilateral pain models.  

Bach-Rojecky and Lacković (2009) investigated the effect of BoNT/A in a mirror pain model 

evoked by two intramuscular acidic saline injections into the gastrocnemius. Mentioned pain 

model is characterized by reduction of mechanical thresholds on both hind paws after two 

unilateral acidic saline gastrocnemius injections, without any detectable peripheral nerve or 
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tissue injury. In this model, ipsilateral injection of a local anesthetic lidocain does not reduce 

the experimental pain on the contralateral side, suggesting that the occurrence of distant 

contralateral pain is centrally mediated (Sluka et al., 2001). Da Silva et al. (2010) suggested 

the involvement of descending facilitatory pathways in the occurrence of acidic saline-

induced mirror pain.  

Bach-Rojecky and Lacković (2009) reported that BoNT/A applied unilaterally to the acidic 

saline-injected leg reduces the pain on both ipsilateral and contralateral hind-limb, the effect 

which is difficult to explain only by BoNT/A local effects. Interestingly, BoNT/A applied 

contralaterally to acidic saline injections prevented the pain only on that side, which 

demonstrated that the bilateral effect is not mediated by systemic BoNT/A diffusion.  

Similar bilateral effect was also observed in polyneuropathic models. BoNT/A reduced the 

mechanical hyperalgesia evoked by a chemotherapeutic drug paclitaxel (Favre-Guilmard et 

al., 2009). The authors ruled out a systemic effect by demonstrating that BoNT/A is not 

effective in carrageenan-induced inflammatory pain when injected contralaterally to the side 

of inflammation. Bach-Rojecky et al. (2010) demonstrated BoNT/A bilateral effect on 

mechanical hyperalgesia in a model of streptozotocin-evoked diabetic pain. Since the 

mechanism of pain induction in polyneuropathic pain models is related to bilateral peripheral 

and central changes leading to widespread sensitivity, bilateral effect of BoNT/A seems to be 

necessarily centrally mediated. Interestingly, BoNT/A contralateral effect on mechanical 

hyperalgesia had a similar intensity in both mirror and polyneuropathic pain models.  

More recently, BoNT/A bilateral effect was observed in ventral root transection-induced 

neuropathic pain, and infraorbital nerve constriction-induced trigeminal pain (Filipović et al., 

2012; Xiao et al., 2011, 2013,). It seems that BoNT/A bilateral effect in mirror or 

polyneuropathic pain models is a general phenomenon not dependent on the mechanism of 

pain induction. 

 

1.5.2. Evidence that the axonal transport is necessary for BoNT/A action in pain  

The above-mentioned experiments suggested that BoNT/A action in bilateral pain models 

involves a distant toxin activity, not mediated by systemic toxin diffusion. The only logical 

explanation is that BoNT/A action might be mediated by toxin’s movement to CNS. Early 

experiments suggested that radioactively labeled BoNT/A applied into the cat’s 
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gastrocnemius muscles may spread via sciatic nerve and ventral roots into the corresponding 

spinal cord segment (Habermann 1974; Wiegand et al., 1976). However, up to recently, it was 

believed that the axonal transport to CNS of BoNT/A is very limited or non-existent, and does 

not appear to involve the active toxin molecules (Tang Liu et al., 2003).  

In a model of mirror pain evoked by intramuscular acidic saline, the involvement of axonal 

transport in the toxin’s antinociceptive activity was conclusively demonstrated for the first 

time (Bach-Rojecky, 2006; Bach-Rojecky and Lacković 2009). The autors reported that 

injecting the low toxin dose (7 times lower than the smallest peripherally effective dose) into 

the stump of distally transected nerve reduces the mechanical pain on contralateral side. In 

addition, the bilateral effect of peripherally injected BoNT/A was prevented by injecting the 

axonal transport blocker colchicine into the sciatic nerve ipsilateral to acidic saline and 

BoNT/A treatment. Colchicine injected into the contralateral side sciatic nerve did not prevent 

BoNT/A bilateral effect. These experiments demonstrated the necessity of axonal transport 

for BoNT/A analgesic efficacy. The antinociceptive effect of BoNT/A on mechanical 

hyperalgesia was also prevented by colchicine in a model of carrageenan-induced 

inflammatory pain, suggesting that the BoNT/A action on pain in general is axonal transport-

dependent (Bach-Rojecky, 2006).  

In models of mirror pain and diabetic polyneuropathic pain, the authors also demonstrated 

that BoNT/A injected intrathecally induces a faster analgesic effect (within 24 h), in 

comparison to the delayed BoNT/A action after peripheral application (3-7 days after 

peripheral application). The authors explained the observed effect by progressive toxin axonal 

traffic into the CNS which takes several days (dependently on the distance of injected site 

from CNS).  
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2. HYPOTHESIS AND AIMS OF THE RESEARCH 

2.1 Hypothesis 

BoNT/A antinociceptive activity is dependent on retrograde axonal transport within primary 

sensory neurons. BoNT/A cleaves SNAP-25 at central afferent nerve endings, but not 

affecting fast transmission which transmits normal pain sensation, but rather slow pain 

transmission which mediates hyperalgesia and allodynia.  

 

2.2. Aims of research: 

-To investigate the presence of BoNT/A molecule and its activity in central sensory regions 

after its axonal transport from periphery 

- To examine the necessity of axonal transport in sensory neurons for BoNT/A 

antinociceptive activity 

- To examine the possibility of BoNT/A transcytosis to second order neurons in central 

sensory regions. 

- To characterize the cellular and regional sites of BoNT/A central antinociceptive activity  

- To examine the possible role of capsaicin-sensitive nociceptive neurons which mediate 

central sensitization and pain hypersensitivity without transmitting acute nociceptive pain, in 

BoNT/A antinociceptive action. 

-To examine the effect of BoNT/A on neuropeptide transmitters which participate in pain 

transmission, central sensitization and hyperalgesia.  
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3. MATERIALS AND METHODS 

3.1 Animals and BoNT/A treatment 

3.1.1 Animals 

Male Wistar rats (University of Zagreb School of Medicine, Croatia), weighing 300-400 g, 

kept on 12 h/12h light and dark cycle, were used in all experiments. The experiments were 

conducted according to the European Communities Council Directive (86/609/EEC) and 

recommendations of the International Association for the Study of Pain (Zimmerman, 1983). 

All efforts were made to reduce the number of animals used and to reduce their suffering. 

Animal procedures were approved by the Ethical Committee of University of Zagreb School 

of Medicine (permit No. 07-76/2005-43), and performed according to the Croatian law on 

animal protection (Zakon o zaštiti životinja NN 135/06). 

 

3.1.2 BoNT/A injections 

For peripheral administration, conscious, restrained rats were injected unilaterally with 20-30 

μl of saline-diluted BoNT/A therapeutic preparation (Botox®, INN: Clostridium botulinum 

type A neurotoxin complex, Allergan Inc., Irvine, CA, USA) using a 27
1
/2-gauge needle via 

different routes: 1. into the whisker pad, 2. Subcutaneously (s.c.) into the plantar hind paw 

side 3. Intramuscularly (i.m.) into the gastrocnemius. 1 unit (1 U) of mentioned BoNT/A 

preparation contains 48 pg of 900 kDa BoNT/A complex. 3.5 U/kg, 5 U/kg, and 15U/kg doses 

were chosen based on previous experiments by Cui et al., (2004) and from our laboratory 

(Bach-Rojecky and Lacković 2005, Bach-Rojecky et al., 2005).  

For intraganglionic (i.g.) and intraneural (i.n.) injections, animals were anesthetized with 

chloral hydrate (300 mg/kg i.p.). Trigeminal ganglion was injected similarly as described by 

Neubert et al. (2005) (Figure 3). 0-10 μl Hamilton syringe needle (Hamilton Microliter #701, 

Hamilton, Switzerland) was inserted through the skin overlying the medial part of zygomatic 

process, and inserted into the infraorbital foramen. The needle was then advanced (Figure 3) 

through the infraorbital canal and foramen rotundum directly into the trigeminal ganglion. 
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Figure 3 Percutaneous injection into the rat trigeminal ganglion. Hamilton syringe needle 

is inserted into the infraorbital foramen at an angle inclined 10º relative to the mediosagittal 

plane and passing in a direction 2-3 mm below the eye when viewed from profile. After 

advancement through the infraorbital canal and foramen rotundum, the needle tip stops at the 

medial wall of Meckel’s cave at the skull base, where the trigeminal ganglion is situated.     

Saline-diluted BoNT/A (1 U/kg, 2 μl) was slowly injected into the ganglion. Dose of 1 U/kg 

was chosen based on preliminary experiments and on the dose needed for antinociceptive 

effect after intrathecal application (Bach-Rojecky et al., 2010). Site of injection was verified 

by injecting 2 μl of methylene blue to 5 animals. The dye resided only in trigeminal ganglion. 

For i.n. injection sciatic nerve was exposed after skin incision at mid-femoral level and blunt 

dissection through the thigh muscles. Special care was made to check for possible leakage by 

placing piece of parafilm under the nerve prior to i.n. injection. 0-10 μl Hamilton needle 

(Hamilton, Bonaduz, Switzerland) was used to inject 2 μl of BoNT/A into the nerve (10 U/kg 

dose). 3 minutes following the treatment, parafilm was removed, the nerve returned to 

previous position and the skin sutured. 

 

3.2. Behavioral studies 

3.2.1 The role of axonal transport in sensory neurons 

The role of axonal transport within sensory neurons for BoNT/A antinociceptive activity was 

studied in rat trigeminal region. To selectively prevent the axonal transport in trigeminal 

sensory neurons, microtubule polymerization inhibitor colchicine (Sigma, St Louis, MO, 

USA; 5 mM) was injected percutaneously via infraorbital canal into the trigeminal ganglion 
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as described. Colchicine was injected 24 h prior to BoNT/A 3.5 U/kg into the whisker pad, or 

1 U/kg  i.g.  injection into the trigeminal ganglion. 

The effect of BoNTA was assessed in a model of formalin-induced orofacial pain. Prior to 

behavioral measurement, the rats were allowed to accommodate to testing cage environment. 

The rats were then briefly restrained and injected with 50 μl of saline-diluted 2.5% formalin 

(0.92 % formaldehyde) into the whisker pad ipsilateral to BoNT/A pretreatment and returned 

to cages for observation period of 45 min. The number of seconds of formalin-induced 

ipsilateral facial rubbing/grooming was measured in 3 min periods during phases I and II of 

formalin-induced pain (Rabboison and Dallel, 2004). Phase I (0-12 min) behavior represents 

the immediate pain response characterized by direct chemical stimulation of peripheral nerve 

endings with formalin.  Phase II (12-45 min) behavior is characterized by delayed 

hyperalgesic response maintained by ongoing afferent input and central sensitization. 

Formalin test was performed 1 and 2 days after BoNT/A i.g. injection, and 3 days after the 

BoNT/A whisker pad injection.  

 

3.2.2 Involvement of capsaicin-sensitive neurons in BoNT/A antinociceptive efficacy 

To examine the possible role of TRPV1-expressing sensory neurons in BoNT/A action on 

pain, the antinociceptive activity of BoNT/A was examined in animals desensitized with i.g. 

capsaicin. Anesthetized animals (chloral hydrate, 300 mg/kg) were administered 

percutaneously into the trigeminal ganglion (~1 μl/min) with 10 μl 2% capsaicin (Sigma, St. 

Louis, MO, USA) or vehicle (0.9% saline + 10% ethanol + 10% Tween-80). Following day 

the procedure was repeated. Four days after the completion of capsaicin i.g.-induced 

desensitization, animals were injected into the whisker pad with saline/5 U/kg BoNT/A. 

Desensitization of capsaicin-sensitive neurons was confirmed by capsaicin eye-wipe test. 

Orofacial formalin test was then performed 5-6 days after peripheral saline/BoNT/A 

treatment. Formalin test was employed as described in section 3.2.1. 

We examined the possibility that BoNT/A does not alter acute tactile or nociceptive 

sensitivity by its selective action on TRPV1-expressing sensory neurons. Therefore, we 

compared the effects of BoNT/A and the effect of selective denervation of TRPV1-expressing 

neurons on acute sensory responses. The acute innocuous and noxious sensitivity was 

measured in animals pretreated with BoNT/A, and/or submitted to different denervation 
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procedures: animals with selectively denervated TRPV1 neurons only, or the animals with 

non-selectively ablated all populations of trigeminal neurons. 5 days following the peripheral 

BoNT/A (15 U/kg) or saline injection into the whisker pad, rats were injected 

intraganglionically (i.g.) with either vehicle, 2% capsaicin (double vehicle or capsaicin 

treatment separated 24 h), or formalin (10 μl of 100% formalin, single i.g. treatment). 

Mechanical sensitivity of the facial area was examined 3-4 days after ganglion treatments. 

Prior to behavioral measurements, the rats were allowed to accommodate to testing cage 

environment until normal sniffing/no locomotion posture was assumed. The observer was 

blinded to the animal treatment. 

Whisker pad mechanical sensitivity was first monitored with Von Frey filaments (2 and 8 g 

bending forces), and then followed by pin-prick test (5-10 min. interval between each 

stimulus). Pin prick test was performed with a sterile 27 1/2 gauge needle pressed gently 

against the whisker pad without penetrating the dermis. 

Response to innocuous and nociceptive mechanical stimuli in the facial area was quantified 

by a behavioral scoring paradigm, originally devised by Vos et al. (1994). Aversive behavior 

was semi-quantified by descriptive categories consisting of one or more response elements (in 

brackets):  

0 = no response (no detection);  

1 = non-aversive response (detection);  

2 = mild-aversive response (detection + withdrawal)  

3 = strong aversive response (detection + withdrawal + escape/attack);  

4 = prolonged aversive behavior (detection + withdrawal + escape/attack + facial grooming); 

Capsaicin eye-wipe test was employed to validate the denervation of TRPV1-expressing 

neurons. The test consists of counting the number of ipsilateral eye wipe movements after 

application of a small drop (~10 μl) of 0.01% saline-diluted capsaicin to the rat corneal 

surface. The eye wiping response and eye closing in naïve animals lasts for 0.5-1 min, after 

which the animal resumes its normal behavior. The neurons are considered desensitized if the 

wiping movements are largely reduced or prevented. Prior to eye-wipe test, corneal reflex was 

examined bilaterally by assessing a blinking response after briefly applying a tipped sterile 

cotton wisp to the cornea. Cotton tip was applied 5 times (>30 second interval between 

consecutive applications), and the percentage of elicited blinking responses was used as a 
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measure of behavioral response. Normal blinking response suggested normal sensitivity to 

acute tactile stimuli of the corneal surface.  

 

3.2.3 Behavioral comparison of BoNT/A efficacy after single and repeated injection  

Repeated use of BoNT/A is the basis of its clinical use in pain treatment, however, in a recent 

study (Piovesan et al., 2011) it was reported that BoNT/A loses its efficacy in animals after 

repeated injection. We examined the BoNT/A antinociceptive action in animals pretreated 

once or twice with BoNT/A. In one animal group, BoNT/A 5U/kg was injected twice into the 

whisker pad with a separation period of 40 days. Single control group was injected with 

saline. After 6 days formalin orofacial test was performed as described previously.  Period of 

42 days between the two BTX-A injections was chosen based on study of Piovesan et al. 

(2011). 

 

3.3 Immunohistochemical localization of BoNT/A antinociceptive action in CNS 

3.3.1 Antibody characterization for cleaved SNAP-25 detection in central neurons  

The antibody used for immunohistochemical detection of BoNT/A-cleaved SNAP-25 (a kind 

gift from Assist. Prof. Ornella Rossetto, University of Padua, Italy) was used previously in 

study from Antonucci et al. (2008). The polyclonal antibody raised specifically against the C 

terminus of truncated SNAP-25 was used to demonstrate the presence of BoNT/A.protease in 

sensory regions.   

To characterize the specific detection of 24 kDa truncated SNAP-25 product in central 

neurons, the direct injection of BoNT/A into the rat hippocampus was employed. Rats were 

anesthetized, and the midline scalp incision was made to expose the frontal, parietal and 

occipital bone, so that bregma and lambda landmarks are visible. Small hole was drilled 

through the parietal bone overlying the cortex and dorsal hippocampus at position -4 mm 

relative to bregma, and -3 mm relative to midline, so that the cortical surface was exposed. 2 

µl of saline-diluted BoNT/A was slowly injected into the rat dorsal hippocampus by using a 

0-10 ml Hamilton syringe. The rats were then sutured and allowed to recover from anesthesia. 

One day following the BoNT/A injection rats were sacrificed and hippocampus was excised. 

Protein isolation, sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

and Western blots were performed as described previously (Antonucci et al., 2008, Constantin 
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et al., 2005). 

The nitrocellulose membranes were blocked and incubated firstly with rabbit anti-cleaved 

SNAP-25 (1:500) in blocking solution overnight at 4°C, and then the next day with goat-anti-

rabbit HRP -conjugated secondary antibody (Biosource, Invitrogen, USA). After visualization 

of 24 kDa fluorescent signal in chemoluminescent (Super Signal West Femto, Pierce, USA) 

by electrochemiluminescence camera (Biorad), membrane was washed and incubated with the 

mouse monoclonal antibody to total SNAP-25 (1:5000, overnight at 4°C). SMI-81 

Sternberger Monoclonals, USA). This antibody recognizes both intact and BoNT/A-cleaved 

SNAP-25 (Jurasinski et al., 2001). Then, the membrane was incubated with goat anti-mouse 

secondary antibody (BD Pharmingen, USA) and visualized. In a separate experiment, the 

membrane was incubated only with monoclonal antibody to total SNAP-25.   

 

Figure 4 Characterization of the antibody specificity for BoNT/A-cleaved SNAP-25 in 

central neurons by Western blot (Matak et al., 2011). Staining of saline vs BoNT/A-injected 

hippocampus A.) with polyclonal antibody to cleaved SNAP-25 B.) subsequent staining with 

SMI-81 monoclonal antibody to total SNAP-25 C.) separate experiment with SMI-81 staining 

only. 

Cleaved SNAP-25 (24 kDa band) was visible only in BoNT/A-injected hippocampus (A-C) 

and positioned under non-cleaved SNAP-25 (25 kDa band) (B,C). The intact and cleaved 

SNAP-25 band was also visible in membranes incubated only with total-SNAP-25 

monoclonal antibody (C) (Figure 4). This experiment suggests that the polyclonal antibody 

binds only the cleaved SNAP-25 in toxin-injected brain tissue.   

 

3.3.2 BoNT/A enzymatic activity in sensory nociceptive nuclei after its peripheral application 

Botulinum toxin's enzymatic activity in CNS was assessed using immunofluorescent detection 

of its cleaved substrate synaptosomal-associated protein 25 (SNAP-25) following injection 



    
 

30 

 

into the rat whisker pad, hind-paw, and intramuscular injection into the gastrocnemius. 

Rats were injected with BoNT/A into the whisker pad and sacrificed by perfusion at different 

time points (1, 3 or 5 days after BoNT/A), or at different doses (3.5, 5, 15, 30 U/kg). For hind-

limb injections BoNT/A was injected at 5 and 30 U/kg. Animals were anesthetized and 

transcardially perfused with physiological saline followed by 4% formaldehyde in phosphate-

buffered saline (PBS). Brain or lumbar spinal cord tissue was excised and cryoprotected with 

sucrose. Then, the tissue was placed at -80ºC until further use. Tissue was cut in a freezing 

cryostat in coronal slices (40 µm) and processed for free-floating immunohistochemistry. All 

washing steps and incubating was performed with PBS. Brainstem or spinal cord sections 

were blocked in 10% goat serum and incubated overnight at room temperature with the 

polyclonal antibody to cleaved SNAP-25 dissolved in 1% goat serum (1:400 – 1:1500 

concentrations). Next day the sections were incubated with 1:400 fluorescently labeled goat 

anti rabbit secondary antibody (Alexa 555 dye), washed and mounted on glass slides with 

Fluorogel mounting medium. Optionally, the tissue was processed further for neuronal 

counterstaining (mouse anti-NeuN antibody, 1:500 dilution, incubation overnight at 4 ºC, goat 

anti-mouse Alexa 488secondarries), or nuclear dye diamidinophenylindole (DAPI). The slides 

were visualized by Olympus BX-51 microscope equipped with appropriate filters and DP-70 

camera.  

 

3.3.3 Characterization of toxin’s axonal transport in sciatic nerve 

BoNT/A transport in axonal compartments of peripheral nerve was examined by employing a 

intraneural injection of BoNT/A (10 U/kg) into the sciatic nerve, as described in Section 

3.1.2.  To prevent the axonal transport of BoNT/A, a group of animals was injected with 2 µl 

of 5 mM colchicine into the more proximal part of sciatic nerve (2 cm apart). The animals 

were perfused for immunohistochemistry 3 days after intraneural BoNT/A. Occurrence of 

cleaved SNAP-25 was examined in dorsal and ventral lumbar horn.  

 

3.3.4 Cellular localization of truncated SNAP-25 in sensory and motor regions after toxin’s 

peripheral application 

We employed confocal study to examine the cellular sites of BoNT/A enzymatic activity. 

After BoNT/A injection into the trigeminal region, its occurrence was examined in relation to 
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markers of synapses (synaptophysin), dendrites (microtubule-associated protein 2 (MAP-2), 

astrocytes (glial-fibrillary acidic protein (GFAP)), and neuronal bodies (NeuN). Similarly, in 

ventral horn region BoNT/A-cleaved SNAP-25 was co-stained with antibodies to 

synaptophysin, MAP-2, GFAP, and additionally to total SNAP-25 (present in synapses and 

axons). Antibody to choline-acetyltransferase (ChAT) was employed to examine the position 

of BoNT/A relative to cholinergic neurons in ventral horn.  

BoNT/A-cleaved SNAP-25 staining was performed as previously described (Section 3.3.2). 

Co-staining procedures with monoclonal antibodies were performed with goat serum and goat 

secondary antibodies, while the incubation with goat anti- ChAT antibody was performed in 

donkey serum and secondary antibodies raised in donkey. All stainings were performed as a 

two-step procedure – cleaved SNAP-25 staining was completed first (overnight at room 

temperature), and then the second antibody (overnight at 4ºC).Images were taken with Leica 

SP2 AOBS confocal microscope.  

Table 3 Cellular structures and antibodies employed for co-staining with BoNT/A-

cleaved SNAP-25.    

Cellular/neuronal 
structure 

Marker Antibody clonality 
and dilution  

commercial 
supplier 

Presynaptic 
complexes 

Synaptophysin monoclonal, 1:500 Sigma 

Neuronal dendrites MAP-2 monoclonal, 1:1000 Sigma 

Neuronal bodies NeuN monoclonal, 1:500 Millipore 

Astrocytes GFAP monoclonal, 1:1000 Sigma 

Axons and synapses SNAP-25 monoclonal, 1:2000 Covance 

Cholinergic neurons  ChAT polyclonal, 1:100-
1:200 

Millipore 

 

 

3.3.5 Study of toxin’s transcytosis in CNS 

To examine the possible transcytosis of BoNT/A to second-order neurons in nociceptive 

nuclei, we examined the occurrence of cleaved SNAP-25 staining in trigeminal nucleus 

caudalis (TNC) after trigeminal nerve ablation procedure. Rats were injected into the whisker 

pad with 15 U/kg BoNT/A. After 5 days, the animals were anesthetized and injected with 10 

μl saline or formalin (37% formaldehyde) into the trigeminal ganglion, as described in section 

3.2.2. After additional 5 days the animals were perfused for immunohistochemistry. To 

confirm the ablation of primary afferents, nociceptive testing was performed as previously 

described (Section 3.2.2). In addition, staining of TNC with calcitonin gene-related peptide 

(CGRP) was performed, since at the examined brainstem level CGRP is present exclusively in 



    
 

32 

 

primary afferents (Jeffry et al., 2009) 

In addition, BoNT/A transcytosis and traffic to distant sensory regions was assessed by 

immunohistochemistry. The animals were injected with 5 and 15 U/kg BoNT/A, and perfused 

for immunohistochemistry after 5-15 days. Possible occurrence of BoNT/A cleaved SNAP-25 

was examined in thalamus, hypothalamus, sensory cortex, locus coeruleus and periaqueductal 

gray. 

 

3.3.6 BoNT/A activity in capsaicin-sensitive central afferent terminals 

To further assess the role of capsaicin-sensitive neurons in BoNT/A antinociceptive efficacy, 

the occurrence of BoNT/A in capsaicin-sensitive neurons was examined at the level of TNC. 

BoNT/A-cleaved SNAP-25 occurrence in TRPV1-expressing neurons was examined by 

colocalization using the antibody to cleaved SNAP-25 and goat anti-TRPV1 antibody (Santa 

Cruz). The staining was performed in donkey serum and donkey secondary fluorescent 

antibodies (anti-goat Alexa 555 and anti-rabbit Alexa 488) were used.  

The possibility that BoNT/A protease activity is located within capsaicin-sensitive primary 

afferents was studied by employing capsaicin-induced trigeminal desensitization. 5 days 

following the peripheral BoNT/A (15 U/kg) or saline injection into the whisker pad, rats were 

injected intraganglionically (i.g.) with either vehicle or 2% capsaicin (double vehicle or 

capsaicin treatment separated 48 h). Animals were perfused for immunohistochemistry 3 days 

after the completion of denervation procedure. The desensitization was confirmed by using 

the capsaicin eye-wipe test.  

 

3.3.7 BoNT/A action on pain-evoked neural activity in different sensory regions 

Orofacial formalin test was employed to examine the effect of BoNT/A on pain-evoked 

neural activity.  Animals were ijnected with saline/5 U/kg BoNT/A into the whisker pad, and 

orofacial formalin test was performed as described before 5-6 days after BoNT/A injection. 

Animals were perfused for immunohistochemistry 2 h after formalin injection. 

Immunohistochemistry was performed as previously described in different levels of 

brainstem, mesencephalon and diencephalon. Expression of c-Fos immediate early gene was 

employed as a marker of neuronal activity. Immunostaining of c-Fos was performed by using 
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a rabbit polyclonal antibody to c-Fos (Santa Cruz, 1:500, overnight at room temperature). 

Brain regions were identified in coronal sections using the rat stereotaxic atlas and 

appropriate landmarks for each region (central canal, obex, aqueduct, ventricles, etc.). C-Fos-

positive neuronal fluorescent profiles were automatically counted using cellSens Dimension 

software (Olympus, Tokyo, Japan). 

 

3.4 BoNT/A antinociceptive activity and neuropeptides 

We examined if the BoNT/A may modulate the central CGRP release in basal and painful 

conditions by measuring CGRP concentration in cerebrospinal fluid (CSF). CGRP 

concentrations were studied by employing the enzyme-linked immunosorbent assay (ELISA) 

and radioimmunoassay.  

BoNT/A effect on central CGRP release was studied in models of inflammatory pain 

(carrageenan-induced paw inflammation, orofacial formalin-induced pain and complete 

Freund’s adjuvant (CFA)-induced temporomandibular joint inflammation (TMJ), and 

neuropathic pain (infraorbital nerve constriction injury-induced trigeminal neuropathy).  

Approximately 100 μl of CSF was withdrawn from cisterna magna after induction and full 

development of experimentally-induced pain. CSF was immediately frozen in liquid nitrogen 

and kept on -80 until further use. In a model of CFA-induced TMJ inflammation, apart from 

CSF, tissues of trigeminal ganglia, caudal brainstem and cerebral dura were harvested for 

measurement of CGRP by radioimmunoassay.  

ELISA was performed with an ELISA kit (SPI Bio) according to manufacturer’s instructions. 

Preparation of tissue samples and radioimmunoassay was performed as previously described 

(Pozsgai et al., 2012).  

 

3.5 BoNT/A action on markers of synaptic plasticity and neural growth 

Dependently on the site of BoNT/A application, the toxin may promote the neurite sprouting 

(neuromuscular junction), or inhibit the axonal or dendritic outgrowth (neuronal cell culture). 

We hypothesized that similar changes may potentially affect the expression of growth and 

synaptogenesis-associated molecules in central sensory regions.  

We analyzed the expression of growth-associated protein-43 (GAP-43) which is highly 
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expressed in the axonal growth cones during neural growth and synaptophysin as a marker of 

presynaptic terminals by Western blot in excised tissue of trigeminal nucleus caudalis in 

control and BoNT/A (15 U/kg) – injected animals.     

 

3.6 Statistical analysis 

Parametric data were represented as mean ± standard error mean (SEM), and analyzed by 

unpaired t-test (for comparison between two groups) or one-way ANOVA followed by 

Newman-Keuls post hoc test (multiple group comparisons). Non-parametric data (response 

scores of aversive behavior to mechanical stimuli) were represented by scatter plot and 

median, and analyzed by Kruskall-Wallis test, followed by Dunn’s post hoc. p<0.05 was 

considered significant. 
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4. RESULTS 

4.1 Attempts to detect the BoNT/A molecule in nerve tissue and CNS after peripheral 

injection 

In the PhD study of Bach-Rojecky (2006), the direct immunodetection of 150 BoNT/A 

neurotoxin or its light chain (LC) fragments was attempted in the tissues of sciatic nerve, 

lumbar dorsal root sensory ganglia, and spinal cord, however, with irreproducible results and 

non-specific staining of the tissue belonging to both control and BoNT/A-treated animals. In 

this PhD study, we initially tried to continue these experiments by employing the antibodies 

to BoNT/A LC fragment. In one of the experiments, the animals were tightly ligated with a 

suture around the sciatic nerve at the mid-thigh level, and injected with high dose BoNT/A 

into the periphery. We expected that axonally transported BoNT/A might build-up in the 

nerve segment distant to the ligature, however, there was no specific staining corresponding 

to BoNT/A LC in distal sciatic nerve segments (Fig. 5, unpublished data). In this experiment 

and several other experiments (not shown), our attempts to detect the BoNT/A LC in neural 

tissue by Western blot or 

immunohistochemistry 

were unsuccessful, most 

likely due to the very 

small amounts of 

BoNT/A which were 

retrogradely transported 

towards the CNS. 

 

 

Figure 5 Study of BoNT/A axonal transport in sciatic nerve. BoNT/A (30 U/kg) was injected 

into the hind paw or into the gastrocnemius (i.m.). Sciatic nerve was tightly ligated with a 

single suture at the mid-thigh level. Detection of BoNT/A light chain was attempted in the 

sciatic nerve fragment near the ligation site at different time points (24-96h). Homogenized 

sciatic tissue was analyzed by Western blot using the primary antibody to LC (Anti BoNT/A 

LC polyclonal (Acris, 1:500 dilution). C, control (saline-injected); BOT; BoNT/A-injected; 

ish(prox.), proximal sciatic nerve fragment; ish(dist.), distal sciatic nerve fragment. 50 kDa 

– notch on the membrane corresponding to 50 kDa, which was the expected position of 

BoNT/A light chain (LC).  
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4.2 Detection of cleaved SNAP-25 in central nociceptive nuclei 

We examined the occurrence of BoNT/A-cleaved SNAP-25 in different sensory regions after 

different peripheral applicationsies. Following the toxin application into the whisker pad, 

BoNT/A was visible in TNC (Fig. 6) at different peripheral doses applied (3.5, 5, 15 and 30 

U/kg), starting from day 3 after toxin injection (Matak et al., 2011; Appendix I). The 

immunoreactivity of cleaved SNAP-25 was localized predominantly in laminae I and II of 

TNC, in the area of termination of maxillary branch of trigeminal nerve located in the middle 

part of TNC. This is in line with somatotopical organization of TNC and the site of toxin 

injection. BoNT/A-cleaved SNAP-25 was seldom visible contralaterally at higher dose 

applied (15 U/kg), possibly due to some toxin diffusion across the whisker snout into the area 

of contralateral trigeminal nerve. 

Although not quantified, the amount of 

cleaved SNAP-25 was higher at higher 

doses applied (Matak et al., 2011; 

Appendix I). Few fibers of BoNT/A 

cleaved SNAP-25 were visible also at 

C1-C2 levels, and in trigeminal nucleus 

oralis (not shown).  

 

 

 

 

 

Figure 6 Occurrence of BoNT/A-cleaved SNAP-25 in TNC 5 days after 

BoNT/A (15 U/kg) injection into the rat whisker pad. Red immunofluorescence 

= cleaved SNAP-25; blue fluorescence=DAPI nuclear counterstain. Scale 

bar =100 µm. 
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Figure 7 BoNT/A-cleaved SNAP-25 occurence in TNC and lack of BoNT/A activity in 

sensory regions upstream from TNC. Cleaved SNAP-25 was examined 6 days after 

peripheral BoNT/A injection (5 U/kg). Immunoreactivity of cleaved SNAP-25 (red fibers 

marked by arrows) was visible in TNC (A). Cleaved SNAP-25 was not visible in ipsilateral 

locus coeruleus (B), periaqueductal gray (C), or contralateral ventral posteromedial nucleus 

of thalamus (D). Green represents NeuN neuronal counterstaining. Scale bar = 50 μm.   

BoNT/A- cleaved SNAP-25 was not visible in trigeminal nucleus interpolaris (not shown). At 

higher levels examined (locus coeruleus, thalamus, hypothalamus, sensory cortex), BoNT/A 

cleaved SNAP-25 was not observed (Fig. 7). These data suggest the occurrence of BoNT/A 

proteolytic activity in the area of termination of central afferent terminals of trigeminal 

sensory nociceptive neurons, but not in supramedullary (supraspinal) sensory nuclei.   

After toxin intramuscular injection into the gastrocnemius, or subcutaneous injection into the 

hind-paw, BoNT/A-cleaved SNAP-25 occurred also in corresponding segments of the lumbar 

dorsal and ventral horn, demonstrating the axonal transport in dorsal horn sensory neurons 

and ventral horn motoneurons. BoNT/A-cleaved SNAP-25 was never observed in the 

contralateral dorsal or ventral horn (Matak et al., 2012; Appendix II). 
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Figure 8. Occurrence of BoNT/A-cleaved SNAP-25 in A. ipsilateral dorsal horn and B. 

ipsilateral ventral horn after 5 U/kg toxin injection into the rat gastrocnemius muscle 

(Matak et al., 2012). Red fibers (arrows) represent cleaved SNAP-25, green represents NeuN 

neuronal counterstaining. Scale bar = 100 μm.   

 

 

4.3. BoNT/A is transported to CNS via peripheral nerves by a microtubule-dependent 

mechanism 

We studied the BoNT/A axonal traffic via peripheral nerves by employing BoNT/A 

intrasciatic injection, and proximal application of colchicine. 10 U/kg BoNT/A injected into 

the nerve induced the cleaved SNAP-25 occurrence in dorsal and ventral lumbar horns. 

Truncated SNAP-25 occurrence in the spinal cord was prevented by microtubule 

depolymerizer colchicine (Fig. 9, similar to published in Matak et al, 2012, Appendix II). 

These observations confirm the presumed BoNT/A axonal transport within peripheral nerves. 

 

Figure 9. BoNT/A is axonally transported in peripheral nerve. Colchicine prevents the 

occurrence of BoNT/A-truncated SNAP-25(red) in ventral horn. BoNT/A and colchicine were 

injected into the same sciatic nerve at the mid-thigh level. Injection sites were spaced 2 cm in 

between, with colchicine injected more proximally. Scale bar = 100 μm. 
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4.4 Necessity of axonal transport in sensory neurons for BoNT/A antinociceptive efficacy  

 

Figure 10. BoNT/A antinociceptive action depends on axonal transport within sensory 

nerve (similar to Matak et al., 2011). Axonal transport blocker colchicine injected into the 

trigeminal ganglion prevents the antinociceptive activity of A.) peripherally applied BoNT/A 

(3.5 U/kg) and B.) intraganglionic BoNT/A (1 U/kg) in orofacial formalin test. Mean ± SEM; 

*-p<0.05 **-p<0.01 in comparison to saline control (One way ANOVA followed by Newman-

Keuls post-hoc) 

In a model of formalin-induced orofacial pain, we studied the effect of axonal transport 

prevention on the antinociceptive activity of BoNT/A. We took advantage of the unique 

anatomy and exclusively sensory character of the maxillary branch of trigeminal nerve- 

Therefore, BoNT/A was injected into the whisker pad, and colchicine was injected directly 

into the sensory trigeminal ganglion. Peripherally applied BoNT/A (3.5 U/kg) did not reduce 

the acute immediate nociceptive response occurring within the first 12 min of formalin-

induced pain. In line with previous findings in a model of peripheral hind-paw formalin-

induced inflammation, BoNT/A reduced the phase II delayed facial rubbing behavior 

associated with central sensitization. In animals injected with axonal transport blocker 

colchicine into the trigeminal ganglion, the antinociceptive activity of BoNT/A was 

completely prevented (Fig. 10A). This study suggested that the antinociceptive activity of 

BoNT/A depends on the axonal transport within trigeminal sensory nerve (Matak et al., 2011; 
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Appendix I) 

In line with proposed role of sensory neurons, injections of low-dose BoNT/A into the 

trigeminal ganglion (1 U/kg) 2 days prior to nociceptive testing  reduced the phase II 

hyperalgesic behavior in formalin test, again without any effect on phase I. The BoNT/A 

analgesic effect was delayed: it was not observed 1 day after BoNT/A injection. Again, the 

colchicine prevented BoNT/A antinociceptive activity even after intraganglionic BoNT/A 

application. The duration of formalin-induced nocifensive behavior was not altered by 

colchicine itself (Fig. 10B) (Matak et al., 2011; Appendix I) 

 

4.4. Cellular localization of cleaved SNAP-25 in central sensory and motor regions after 

BoNT/A peripheral application 

To study the cellular localization of toxin’s enzymatic activity we employed a double label 

study of cleaved SNAP-25 with various cellular and neuronal markers. Localization of 

BoNT/A-truncated SNAP-25 in sensory region was performed in TNC after toxin’s peripheral 

application into the whisker pad. We also performed a double label study of spinal cord 

ventral horn to characterize the occurrence of cleaved SNAP-25 after toxin injection into the 

hind-paw.  

In the TNC, BoNT/A-cleaved SNAP-25 colocalized partially with synaptophysin, the marker 

of presynaptic terminals. Punctate cleaved SNAP-25 immunoreactivity, most likely 

corresponding to synapses, co-occurred with synaptophysin. On the contrary, elongated 

cleaved SNAP-25 fibers did not colocalize with synaptophysin, which is most likely due to 

axonal occurrence of mentioned immunoreactivity. This suggests that BoNT/A-cleaved 

SNAP-25 occurs within both synaptic terminals and axons. We additionally examined the 

possible occurrence of BoNT/A-cleaved SNAP-25 in dendrites of secondary neurons in the 

TNC. We did not observe any colocalization of truncated SNAP-25 and dendritic marker 

MAP-2. BoNT/A-truncated SNAP-25 also did not occur within GFAP-immunoreactive 

astrocytes (Fig. 11A, Matak et al., 2014; Appendix IV). Since Marinelli et al., (2012) reported 

the occurrence of cleaved SNAP-25 in GFAP-immunoreactive astrocytes in mice subjected to 

nerve injury, we additionally examined the colocalization of cleaved SNAP-25 and GFAP in 

animals subjected to infraorbital nerve constriction, prepared as described previously 

(Filipović et al., 2012). In these animals we also did not observe any colocalization with 
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GFAP in the TNC (not shown).         

In the spinal cord, BoNT/A-cleaved SNAP-25 did not colocalize with MAP-2 (Fig. 11B left). 

It colocalized with total SNAP-25, and ChAT, marker of cholinergic neurons (Fig. 11B 

middle and right). It did not colocalize with GFAP, the marker of astrocytes (not shown). 

These data suggest that the BoNT/A enzymatic activity in the ventral horn, after its axonal 

transport from periphery, occurred in spinal cord axons (The data on cleaved SNAP-25 

colocalization with ChAT and GFAP were published in Matak et al. (2012); Apendix II), 

while the data on MAP-2 and total SNAP-25 in ventral horn are unpublished) 

 

Figure 11 Colocalization of cellular and neuronal markers with cleaved SNAP-25 (SNAP-

25(c) in A.) TNC (Matak et al., 2014) and B.) spinal cord ventral horn. Syp=synaptophysin 

(synapses); MAP-2=microtubule associated protein 2 (dendrites); GFAP=glial fibrillary 

acidic protein (astrocytes), SNAP-25 = total (cleaved + uncleaved SNAP-25); ChAT=cholin-

acetyltransferase (cholinergic neurons). Overlap of green and red resulting in yellow staining 

represents the sites of colocalization (indicated by arrows) Scale bar in A.) =20 μm; scale bar 

in B.)= 50 μm. 
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4.5 BoNT/A is enzymatically active in central afferent terminals 

Cellular colocalization study indicated that BoNT/A is present in synapses and along the 

axons of nerve terminals in the TNC. By employing the ablation procedure involving 

denervation of trigeminal ganglion with formalin, we studied the possible occurrence of 

enzymatically active BoNT/A in central afferent terminals (Matak et al., 2014; Appendix IV). 

The animals did not respond to ipsilateral noxious stimulation of whisker pad with pin prick, 

suggesting the denervation of trigeminal sensory nerve.  Ganglion treatment did not affect the 

atonic position of rat whiskers induced by peripheral neuromuscular paralysis of whisker pad 

muscles. Cleaved SNAP-25 immunoreactivity disappeared after formalin-induced ganglion 

denervation. In in line with its occurrence in primary afferents, the immunoreactivity of 

calcitonin gene-related peptide (CGRP) disappeared, as well (Fig. 12, Matak et al., 2014). 

Automatically quantified area covered by CGRP in ipsilateral side TNC was almost 

completely abolished by formalin (p<0.001 in comparison to vehicle treatment, t test for 

dependent samples) (Matak et al., 2014; Appendix V-Supplementary data). The 

immunoreactivity for dendrites and neuronal nuclei of the second order neurons in TNC was 

unchanged on the denervated side compared to control side (not shown) – indicating that the 

second order neurons were unaffected by the denervation procedure. (Matak et al., 2014; 

Appendix V – Supplementary data).  

These data suggest that the formalin injection into the trigeminal ganglion induced a 

denervation of primary trigeminal afferents, which was confirmed behaviorally and 

immunohistochemically. This procedure, applied 5 days following the BoNT/A peripheral 

treatment, induced the disappearance of cleaved SNAP-25 immunoreactivity in the TNC, 

suggesting that BoNT/A enzymatic activity is located in central afferent terminals. In 

addition, the complete disappearance of cleaved SNAP-25 immunoreactivity after nerve 

ablation indicates the lack of evidence for toxin’s transcytosis to central second order neurons 

(Matak et al., 2014; Appendix IV).      
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Figure 12 Proteolytic activity of BoNT/A in TNC is located in central afferent terminals of 

primary sensory neurons (Matak et al., 2014). A.) Immunoreactivity for CGRP (green), 

marker of peptidergic primary afferents, is almost completely eliminated from TNC 

ipsilaterally to formalin intraganglionic (i.g.) treatment, in comparison to i.g. saline 

treatment (right sides of coronal sections). Scale bar=200 μm. B.) Formalin i.g. abolishes 

cleaved SNAP-25 staining in TNC (red immunofluorescence, arrows) and CGRP terminals 

(green) . Saline or formalin (10 μl) was administered into the trigeminal ganglion 5 d 

following peripheral BoNT/A injection into the whisker pad (15 U/kg). N(animals per 

group)=4 (15-25 sections were examined per each animal). Scale bar=50 μm 

 

4.6 Involvement of vanilloid-1 receptor expressing neurons in BoNT/A antinociceptive 

action 

We examined possible involvement of capsaicin-sensitive (transient receptor potential 

vanilloid 1-expressing) neurons in the BoNT/A antinociceptive efficacy by employing 

capsaicin-induced desensitization of trigeminal nerve. Firstly, we examined the effect of 

BoNT/A pretreatment and capsaicin-induced denervation on normal sensory function (Matak 

et al., 2014; Appendix IV). 

Sensory testing of responsiveness to acute mechanical stimuli in whisker pad area performed 
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using Von-Frey filaments (2 g and 8 g bending force) demonstrated normal sensitivity to 

mechanical stimuli of vehicle and capsaicin treated animals, while the formalin-induced 

denervation produced lack of response to mechanical stimuli. Similarly, pin prick test evoked 

a normal nocifensive behavior, except in formalin-treated animals which did not respond to 

noxious stimulus. Sensitivity of corneal surface to cotton touch was also preserved in 

capsaicin and vehicle treated animals. Capsaicin (0.01%)-evoked ipsilateral eye wiping was 

strongly reduced in capsaicin-treated, and prevented in formalin-injected animals. BoNT/A 

pretreatment did not alter the mechanical sensitivity, similarly to capsaicin-induced 

denervation (Table 4, Matak et al., 2014; Appendix IV).   

Table 4 Sensory testing of animals injected with BoNT/A, and/or denervated with 

capsaicin or formalin (Matak et al., 2014; Appendix IV). BoNT/A 15 U/kg was injected into 

the whisker pad 5 days before the formalin or 2% capsaicin injection into the trigeminal 

ganglion. Testing was performed 3-4 days following the completion of denervation 

procedure.  Statistical analysis for non-parametric data was performed by employing Kruskal 

Wallis test followed by Dunn’s post hoc (scores), while parametric data were analyzed by 

ANOVA followed by Newman-Keuls post hoc. p<0.05 was considered significant.  The p 

values or n.s. (non significant) refer to comparison with saline + vehicle group. 

N(animals/group)=5-6 
Animal 
treatment 

Von Frey 
filament 2g 

Von Frey 
filament 8 g 

Pin-prick test Corneal 
reflex 

Capsaicin 
eye-wipe 
test 

saline + 
vehicle i.g. 

non-aversive 
response 
(Median 
score =1)  

non-aversive 
response 
(Median 
score 
=1)  

strong 
aversive 
response  
(Median score 
= 3) 

100% 
response 

No. of eye 
wipes=  
30±1 

BoNT/A + 
vehicle  

Score =1 
(n.s.) 

Score =1 
(n.s.) 

Score =3 (n.s.) 100% 
response  
(n.s.) 

35±3  
(n.s.) 

Saline + 
capsaicin 
i.g. 

Score =1 
(n.s) 

Score =1 
(n.s. ) 

Score =3 (n.s.) 100% 
response 
 (n.s.) 

6±3  
(p<0.001) 

BoNT/A + 
capsaicin 
i.g. 

Score =1 
(n.s.) 

Score =2 
(n.s.) 

Score =3 (n.s.) 100% 
response 
 (n.s.) 

4±2 
(p<0.001) 

Saline + 
formalin i.g. 

Score = 0 
(p<0.05) 

Score = 0 
(p<0.05) 

Score = 0 
(p<0.001)  

lack of 
response 
(p<0.001) 

0±0 
(p<0.001) 

BoNT/A + 
formalin i.g. 

Score = 0 
(p<0.05) 

Score = 0 
(p<0.05)  

Score = 0 
(p<0.001)  

lack of 
response 
(p<0.001)  

0±0 
(p<0.001) 

 

Capsaicin i.g. –induced denervation prevented the antinociceptive activity of BoNT/A in the 

phase II of orofacial formalin-induced pain, while the denervation itself did not influence the 

duration of nocifensive behavior in formalin test (Fig. 13). These data suggest that the 

BoNT/A antinociceptive efficacy is dependent on TRPV1-expressing sensory neurons  
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(Matak et al., 2014; Appendix IV).    

 

Figure 13 Chemical denervation with 2% i.g. capsaicin prevents BoNT/A’s antinociceptive 

activity in the phase II of orofacial formalin-induced pain (Matak et al., 2014). 

Capsaicin/vehicle pretreatment was completed 4 days prior to peripheral saline or BoNT/A (5 

U/kg) injection, and formalin test was performed 5-6 days after saline/BoNT/A injection. 

Number of animals per group = 4-6. Results are represented as mean ±SEM. ** - p<0.01 in 

comparison to vehicle control; + - p<0.05 in comparison to capsaicin i.g. + BoNT/A; # - 

p<0.05 in comparison to capsaicin i.g.+ vehicle (one way ANOVA followed by Newman-

Keuls post hoc). 

 

We examined if the central cleaved SNAP-25 in TNC is present in capsaicin-sensitive 

neurons. Double labeling of cleaved SNAP-25 and TRPV1 in TNC demonstrated the 

occurrence of products of BoNT/A enzymatic activity in TRPV1-expressing neurons (Fig. 

14). Similarly to formalin-induced ablation (Figure 12), animals subjected to chemical 

denervation with capsaicin 5 days following peripheral BoNT/A lacked the immunoreactivity 

for cleaved SNAP-25 in TNC (Matak et al., 2014, Appendix IV). This observation suggests 

that BoNT/A enzymatic activity occurs in capsaicin-sensitive central afferent terminals. 

Animals subjected to i.g. capsaicin-induced denervation prior to BoNT/A injection lacked the 

BoNT/A-cleaved SNAP-25 in TNC, suggesting that the occurrence BoNT/A enzymatic 

activity in the TNC is dependent solely on capsaicin-sensitive neurons (not shown). Area 

covered by CGRP in ipsilateral side TNC was reduced by i.g. capsaicin (p<0.001 in 

comparison to vehicle i.g. treatment, t test for dependent samples). (Matak et al., 2014, 

Appendix V – Supplementary data) 
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Figure 14 Enzymatic BoNT/A activity in the TNC is present in TRPV1-expressing neurons 

(Matak et al., 2014). Colocalization of cleaved SNAP-25 (green) and TRPV1 (red 

immunofluorescence) in TNC. Scale bar=20 μm 

 

4.7 BoNT/A reduces the pain–evoked neuronal activation in certain brain regions 

In a model of formalin-induced orofacial pain we examined the effect of BoNT/A on regional 

neuronal activation measured by c-Fos expression. In comparison to control, animals 

subjected to formalin-induced pain had an increased c-Fos expression in all sensory regions 

examined (Table 5). BoNT/A reduced the c-Fos expression in trigeminal dorsal horn 

(trigeminal nucleus caudalis), bilateral locus coeruleus, and periaqueductal gray, while the 

pain-evoked c-Fos expression was unaffected in thalamus (paraventricular nucleus), 

hypothalamus and central amygdaloid nucleus (Table 5). These data indicate a selective 

BoNT/A action only in certain sensory nociceptive nuclei (Matak et al., 2014; Appendix IV).   

 

Table 5 BoNT/A effect on neuronal activation in orofacial formalin-induced pain (Matak 

et al., 2014). Data represent the number of automatically counted c-Fos-positive profiles in 

each region (mean± SEM; one-way ANOVA followed by Newman-Keuls post hoc, p<0.05 

was considered significant); n.s. = non-significant.Values of p in green were shown for 

comparison with saline group, while p values in red were shown for comparison with saline + 

formalin group. N=(number of animals/group)  

  saline 
(N=3)  

saline + formalin 
(N=4)  

BoNT/A + formalin 
(N=4)  

trigeminal nucleus 
caudalis (ipsilateral) 

14.7±0.7  138.5±14.0 
(p<0.001) 

75.7±9.3  (p<0.01)  

locus coeruleus 
(ipsilateral) 

4.7±2.8  21.2 ±2.4 (p<0.01) 13.7±1.7  (p<0.05)  

locus coeruleus 
(contralateral) 

3.0±1.5  24.6±3.3 (p<0.001) 15.3±1.5  (p<0.05)  
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periaqueductal gray 90.7±26.4  290.9±20.4 
(p<0.001) 

149.7±8.9  (p<0.001)  

hypothalamus 
(ipsilateral) 

40.7±5.4  342±15.6 (p<0.001) 338.2±24.3  (n.s.)  

hypothalamus 
(contralateral) 

44.7 ±16.1  341.8±27.3 
(p<0.001) 

294.9 ±20.7  (n.s.)  

paraventricular thalamic 
nucleus 

19.2±2.5  132.5±17.7 (p<0.01) 110.1±11.8  (n.s.)  

central amygdaloid 
nucleus (contralateral) 

7.4±2.3  36.0±6.3 (p<0.01) 45.9±3.9  (n.s.)  

 

 

4.8 BoNT/A effect on central CGRP transmission  

By employing ELISA, we examined the release of CGRP into the cerebrospinal fluid after 

pain induction. In a model of paw inflammation 

induced by carrageenan, no significant increase 

of CGRP in CSF withdrawn from cistern magna 

was observed (data not shown). In addition, we 

did not observe the increased CGRP expression 

in models of orofacial formalin-induced pain or 

infraorbital nerve constriction-induced 

trigeminal neuropathy. BoNT/A by itself or in 

combination with pain did not alter the CGRP 

levels in the CSF. (Fig. 15, unpublished data) 

 

Figure 15 No significant changes of CGRP concentrations in the cerebrospinal fluid of 

animals subjected to infraorbital nerve constriction (IoNC) or orofacial formalin test. 

CGRP immunoreactivity was measured by enzyme-linked immunosorbent assay (ELISA). 

Animals were treated with either saline or 5U/kg BoNT/A. Data were analyzed by one-way 

ANOVA followed by Newman-Keuls post hoc.  

 

In a model of orofacial formalin-induced pain and CFA-induced temporomandibular joint 

inflammation, we examined the immunoreactivity of CGRP by radioimmunoassay. In the 

model of orofacial formalin test, no significant increase of CGRP was observed in CSF, dura 

mater, trigeminal ganglion or trigeminal nucleus caudalis. However, in a model of TMJ 

inflammation, CGRP levels were significantly increased in TNC and cerebral dura. Slight, but 



    
 

48 

 

not significant increase was seen in trigeminal ganglion and CSF. BoNT/A significantly 

counteracted the increased CGRP expression in cranial dura. Small but non-significant 

reduction of CGRP levels by BoNT/A were observed in the TNC, trigeminal ganglion and 

CSF (Table 6). Although the data studying the CGRP release into the CSF are inconclusive, it 

seems that BoNT/A may prevent the increase of CGRP in the trigeminovascular system, 

particularly in dura mater (unpublished data). 

 

Table 6 BoNT/A effects on the CGRP levels in trigeminovascular system of animals 

injected with complete Freund’s adjuvans (CFA) measured by radioimmunoassay.  Data 

are represented as mean±SEM; (p<0,05; p<0.01) – in comparison to saline;  (p<0,01) in 

comparison to saline + CFA (ANOVA followed by Newman Keuls post hoc). 

  saline 
(N=6)  

saline + CFA (N=6)  BoNT/A + CFA (N=6)  

trigeminal nucleus 
caudalis (ipsilateral) 
(fmol/mg) 

96±6.7  131.2±7.7 (p<0,05) 109.6±7.5 (n.s.) 

dura mater 
cerebri(fmol/mg) 

3.6±0.3  6±0.4 (p<0,01) 4±0.3  (p<0,01)  

trigeminal ganglion 
(ipsilateral) (fmol/mg) 

31.3±1.5  37.6±3 (n.s.) 31.5±2.1  (n.s.) 

temporomandibular joint 
(ipsilateral) (fmol/mg) 

4.7±0.2  4.7±0.6 (n.s.) 6±0.4  (n.s.) 

cerebrospinal fluid 
(fmol/ml) 

49.7±7.2  66.6±7.5 (n.s.) 52.9.2±7.7  (n.s.)  

 

In addition, we examined the colocalization of BoNT/A-cleaved SNAP-25 in trigeminal 

nucleus caudalis with CGRP. Except for in few neuronal terminals, majority of BoNT//A-

truncated SNAP-25 did not colocalize with CGRP peptide. These data suggest that BoNT/A 

effect on pain is not necessarily mediated by prevention of central CGRP release (Fig.16 

(Matak et al., 2014; Appendix IV).  
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Figure 16 SNAP-25 cleavage occurs outside of CGRP-expressing peptidergic terminals 

after BoNT/A injection into the whisker pad (Similar to published in Matak et al., (2014); 

Appendix V)). Fluorescent microphotographs of ipsilateral TNC 5 days after BoNT/A (15 

U/kg) injection into the rat whisker pad. Cleaved SNAP-25 localization (red) was studied in 

relation to CGRP (green), marker of peptidergic primary afferents. Although the majority of 

BoNT/A-cleaved SNAP-25 did not colocalize with CGRP (upper panel), occasionally, cleaved 

SNAP-25 profiles appeared to colocalize with bright fluorescent CGRP fibers (lower panel, 

arrow). Images are representative of microphotographs obtained from 4 animals (10-15 

sections per animals were examined). Scale bar (upper panel = 50 μm, lower panel =25 μm. 

To assess the possible BoNT/A axonal transport from periphery to dura mater, we examined 

the occurrence of BoNT/A-truncated SNAP-25 in dura mater after BoNT/A 5 U/kg injection 

into the temporomandibular joint (unpublished data). BoNT/A-truncated SNAP-25 occurred 

in vascular and non-vascular areas of lateral dura mater. Some cleaved SNAP-25 

immunoreactivity was also visible in parietal dura mater. In all observed neuronal terminals, 

truncated SNAP-25 colocalized with CGRP. These data suggest that BoNT/A may affect the 

release of neuropeptides in dura mater after its peripheral application (Fig. 17, unpublished 

data). 
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Figure 17 BoNT/A reaches CGRP-expressing dural afferent terminals after peripheral 

extracranial injection. Colocalization of BoNT/A-cleaved SNAP-25 (SNAP-25 (c)) and CGRP 

in ipsilateral dura mater after BoNT/A (5 U/kg) injection into the temporomandibular joint. 

Scale bar = 50 μm 

 

4.9 BoNT/A is equally effective after repeated injection and does not induce permanent 

functional changes 

A recent study from Piovesan et al. (2011) reported the lack of effectiveness of a repeated 

BoNT/A injection in orofacial formalin-induced pain. This study implied the possibility that 

repeated injections might induce either immunological resistance or putative permanent 

functional changes leading to BoNT/A inefficiency upon repeated injection. Since BoNT/A 

efficacy is connected with its axonal transport to CNS, these functional changes might be 

connected with central synaptic plasticity. We therefore studied BoNT/A effect after single 

and repeated injections of BoNT/A (Matak et al., 2013; Appendix III), and examined the 

possible BoNT/A effect on synaptogenesis or neurite outgrowth by measuring the effect on 

expression of synaptophysin and GAP-43, the markers of synapses and nerve growth 

(unpublished data).  

BoNT/A injection into the whisker pad area evoked a reduced ipsilateral movement of 

ipsilateral whiskers and their backward direction 1 day after BoNT/A injection. 42 days after 

the injection there was no visible reduction of whisker pad movement, suggesting that the 

effects of BoNT/A on the neuromuscular junction has worn off. After second BoNT/A 

injection, the whisker pad paralysis re-occurred, rulling out a possible immunological 

resistance to BoNT/A (Matak et al., 2013; Appendix III). 
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Figure 18 Repeated BoNT/A injections reduce the orofacial formalin (2.5%)-induced pain 

(Matak et al., 2013). Animals were pretreated into ipsilateral whisker pad one time or two 

times with 5 U/kg BTX-A (42 days period between the two injections). Nociceptive testing was 

performed 6 days following the single or second, repeated injection of BTX-A. Data are 

represented as mean±SEM, * - p<0.05 ** - p<0.01 in comparison to saline control (one way 

ANOVA followed by Newman-Keuls post hoc test). N (animals/group)=6. 

Animals injected once or twice with BoNT/A exhibited similar reduction of phase II behavior, 

demonstrating that the BoNT/A was effective after single and repeated injections (Fig. 17). 

These data do not confirm possible functional changes or immunological resistance to 

BoNT/A which might lead to inefficiency of repeated BoNT/A injections (Matak et al., 2013; 

Appendix III).   

 

Figure 19 BoNT/A does not induce measurable synaptogenesis or neuritogenesis in the 

TNC. Relative expressions (calculated as ratio to actin expression) of A.) synaptophysin 

(marker of synapses) and B.) GAP-43 (marker of neurite growth) in the ipsilateral TNC were 

measured by Western blot 5 days after 15 U/ kg BoNT/A injection into the whisker pad. Data 

are represented as mean±SEM; N (animals/group)=6.  
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Analysis of expression of markers of synapses and axonal growth cones (synaptophysin and 

GAP-43) do not confirm possible nerve growth or synaptic plasticity in the TNC (Fig. 17, 

unpublished data). These results, however, can be considered preliminary because of low 

spatial resolution, and a single time point of analysis. In present experiment, tissue of the 

whole TNC region was analyzed. Changes of expression of synaptic and axonal growth cone 

markers might have been more localized within the trigeminal dorsal horn. Possibly, changes 

might be restricted only to central afferent terminals, which comprise a small fraction of total 

number of neuronal terminals in the dorsal horn. Further studies with higher spatial resolution 

are needed to confirm or exclude possible BoNT/A-induced synaptic plasticity in the dorsal 

horn.  
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5. DISCUSSION  

5.1 Toxin’s traffic to CNS after its peripheral application 

In the present PhD thesis the axonal transport of BoNT/A from periphery to CNS has been 

characterized in details. Our experiments, enabled by detection of the product of BoNT/A 

enzymatic activity (cleaved SNAP-25), revealed BoNT/A axonal transport from periphery to 

CNS within sensory neurons (both trigeminal and spinal), as well as within spinal 

motoneurons. In addition, we discovered that BoNT/A is axonally transported to CNS via 

peripheral nerves by a microtubule-dependent mechanism. In the sensory system, BoNT/A 

enzymatic activity was localized in central afferent terminals (Figs. 6-12). 

BoNT/A axonal transport has for a long time been regarded as non-existent, due to the 

dominant peripheral effects in cholinergic synapses, and the lack of pronounced central 

effects. However, already 50 years ago subtle central effects have been proposed based on 

alterations of H-reflex in a man suffering from botulism (Tyler, 1963). In the 1970s, 

experiments involving intramuscular injection of  
125

I isotope-radiolabeled BoNT/A have 

demonstrated the progressive movement of radioactivity within sciatic nerve, ventral roots 

and ventral horn of corresponding spinal cord segments in cats (Habermann et al., 1974; 

Wiegand, 1976). Movement of radiolabelled BoNT/A has also been reported at 

ultramicroscopic level within the axonal compartment (Black and Dolly, 1986), however, it 

was proposed that BoNT/A molecule is inactivated during the axonal transport. The 

possibility that some active BoNT/A was transported to CNS has been demonstrated in cat 

abducens motoneurons. At high dose of toxin applied (3 ng) the spontaneous activity of 

abducens motoneurons was reduced, which was accompanied by build-up of synaptic vesicles 

at synapses contacting the motoneuronal cell bodies (Pastor et al., 1997; Moreno Lopez et al., 

1997). However, up to recently, there was no firm evidence that the axonally transported 

BoNT/A represented the enzymatically active toxin molecule. Along with behavioral 

experiments from our laboratory which suggested BoNT/A axonal transport in sciatic nerve 

(PhD thesis from Bach-Rojecky, 2006), detection of BoNT/A-truncated SNAP-25 by 

immunohistochemistry and Western blot in central neurons has provided the proof that 

enzymatically active BoNT/A is axonally transported within central neurons (limbic system 

and optic system involving tectum, optic nerve and retina) (Antonucci et al., 2008). In 

addition, when BoNT/A was applied in high doses into the rat whisker pad, authors 
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demonstrated the toxin movement and SNAP-25 cleavage in ipsilateral facial nucleus, 

suggestive of BoNT/A axonal transport in facial motoneurons (Antonucci et al., 2008). 

This study was later criticized due to the use of non-commercial BoNT/A, suggested lack of 

characterization of specificity of the antibody to BoNT/A-cleaved SNAP-25, and the use of 

high toxin dose not equivalent to the doses used clinically (Alexiades-Armenakas 2008; Aoki 

and Francis, 2011). In addition, study of BoNT/A and BoNT/E axonal transport within 

cultured sympathetic neurons suggested passive diffusion as the underlying mechanism of 

BoNT/A traffic within neuronal processes (Lawrence et al., 2011). However, passive 

diffusion is a very slow movement of molecules unlikely to happen over large distances in 

vivo. Experiments performed as a part of present PhD thesis have responded to all of the 

mentioned questions. By comparing the position of Western blot signals for intact and cleaved 

SNAP-25 in control and toxin-injected hippocampus we demonstrated that the antibody used 

by Antonucci et al. (2008) is specific for 24 kDa signal belonging to cleaved SNAP-25 (Fig. 

4, Matak et al., 2011; Appendix I). By using the same cleaved SNAP-25 antibody, we 

demonstrated toxin’s axonal transport at low 3.5 U/kg and 5 U/kg toxin doses in both 

trigeminal and spinal sensory neurons, after application of commercially available BoNT/A 

(INN: Clostridium botulinum type A neurotoxin complex) (Section 4.2; Figures 6 and 7). 

These doses are comparable to the doses used of therapeutical purposes in humans (Intiso, 

2012). In addition, we excluded the possibility that BoNT/A axonal transport was mediated 

by passive diffusion. By employing intraneural toxin and colchicine injections, we 

demonstrated that the axonal transport of BoNT/A within peripheral nerve is an active process 

mediated by microtubules (Figure 8). Moreover, long distance between the sites of toxin 

application and the CNS, and the time-course of occurrence of BoNT/A enzymatic activity in 

CNS (3-5 days after peripheral application) rule out the passive diffusion of toxin molecules. 

Interestingly, cleaved SNAP-25 has been observed in peripheral nerve terminals in the 

bladder after BoNT/A intrathecal injection (Coelho et al., 2014). These observations suggest 

that the long-distance axonal traffic of BoNT/A may be directed from CNS to periphery, as 

well. 

In further experiments Caleo and co-workers have demonstrated that BoNT/A is 

anterogradely transported and transcytosed within optic system (Restani et al., 2011). When 

BoNT/A was microinjected into the eye vitreous, cleaved SNAP-25 signal was found in 

second-order neurons in superior colliculus, suggesting the BoNT/A axonal transport through 
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the retina and optic nerve. The signal of cleaved SNAP-25 was unaltered following the 

degeneration of retinal terminals induced by optic nerve transection, suggesting the 

occurrence of BoNT/A in second-order neurons following transcytosis. Moreover, the cleaved 

SNAP-25, after its degradation by transiently active BoNT/E, re-appeared in superior 

colliculus, suggesting that the enzymatically active protease remained active for a long period 

in second order neurons after BoNT/A transcytosis. In addition, impaired neurotransmission 

was observed in second and third-order synapses in retina after toxin application into superior 

colliculus (Restani et al., 2012). In rat pups, it was demonstrated that BoNT/A injection into 

the optic tectum has prevented the cholinergic-driven activity in starbust amacrine cells, 

retinal interneurons which synapse with retinal ganglion neurons. This experiment suggested 

that BoNT/A prevented the release of acetylcholine in second order retinal cells after its 

transcytosis from retinal ganglion neurons. At ultrastructural level, swelling of synapses and 

build up of synaptic vesicles in second order terminals was observed (Restani et al., 2012a). 

Apart from experiments with BoNT/E which induced transient disappearance and re-

occurrence of BoNT/A-cleaved SNAP-25 in regions where the toxin was axonally 

transported, axonal transport of BoNT/A molecule was demonstrated more directly in a 

compartmentalized culture of motoneurons (Restani et al., 2012b). Fluorescently labeled 

BoNT/A was shown to be loaded as a cargo for fast axonal transport within non-acidic 

vesicles. The authors suggested that BoNT/A shares the same mechanism of axonal transport 

with tetanus toxin, viral pathogens and neurotrophic factors (Restani et al., 2012b).  

Axonal transport of BoNT/A was also suggested in patients treated for spasticity (Marchand-

Pauvert et al., 2013). The authors observed impairment of recurrent inhibition in muscles 

distant from injected site. They ruled out possible BoNT/A action on muscle spindles or toxin 

diffusion away from the injected site as the underlying explanation. The likely mechanism of 

BoNT/A action is its axonal transport to the cholinergic synapse between recurrent axon 

collaterals of motoneurons and Renshaw cells in the ventral horn (Marchand-Pauvert et al., 

2013). 

In addition to facial motoneurons (Antonucci et al., 2008), our study for the first time 

demonstrated the axonal transport of enzymatically functional BoNT/A within spinal 

motoneurons (Matak et al., 2012, Appendix II). This was based on occurrence of cleaved 

SNAP-25 immunoreactivity surrounding the motoneurons after BoNT/A injection into the 
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hind-limb (Figs. 8 and 9). Additionally, by employing confocal microscopy we found that the 

immunoreactivity colocalized with axons immunoreactive for ChAT (marker of cholinergic 

neurons) (Fig., 11B). The exact synapses affected by BoNT/A enzymatic action in ventral 

horn remain to be elucidated. Apart from possibility that BoNT/A might be active at the level 

of cholinergic synapses at recurrent collaterals (Marchand-Pauvert et al., 2013), additional 

sites and consequences of BoNT/A action in ventral horn remain to be investigated. This 

might lead to the better understanding of BoNT/A clinical efficacy in movement disorders 

such as dystonia and spasticity.  

 

5.2 BoNT/A actions on central nociceptive transmission 

Based on experiments from PhD study by Bach-Rojecky (2006) performed in our laboratory, 

a strong indication of BoNT/A central action on pain transmission was discovered. In models 

of mirror (acidic saline-induced muscular hyperalgesia) and inflammatory pain (induced by 

carrageenan-evoked paw inflammation), prevention of axonal transport within sciatic nerve 

by colchicine completely prevented the BoNT/A antinociceptive activity. After transection of 

sciatic nerve, BoNT/A low dose (0.5 U/kg) injection into the proximal stump of sciatic nerve 

reduced the contralateral mirror pain. These experiments demonstrated the necessity of axonal 

transport for BoNT/A antinociceptive action, and the lack of involvement of peripheral 

sensory nerve endings (Bach-Rojecky, 2006). In addition, BoNT/A antinociceptive action 

developed sooner if BoNT/A was injected intrathecally (Bach-Rojecky, 2006; Bach-Rojecky 

et al., 2010). The authors proposed that, in order to reduce pain, BoNT/A was axonally 

transported to CNS (Bach-Rojecky, 2006; Bach-Rojecky and Lacković, 2009). However, 

based on behavioral experiments it was not possible to respond to following questions: 

whether the axonal transport represented the enzymatically active BoNT/A molecules 

(hypothetically, some other molecule or catalytically inactive fragments of BoNT/A might 

mediate the central antinociceptive effect); whether the neurons involved in BoNT/A axonal 

transport and action on pain were sensory neurons (other types of neurons might have been 

involved, as well); in addition, the destination of axonally transported BoNT/A was unknown.  

In present PhD thesis we investigated the role of axonal transport within sensory neurons for 

BoNT/A antinociceptive action by using injections of BoNT/A and/or colchicine into the 

trigeminal sensory ganglion. Trigeminal craniofacial nociception was suitable for these 
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experiments due to the sensory character of trigeminal nerve, and the accessibility of 

trigeminal ganglion for pharmacological treatments via infraorbital foramen. Colchicine 

injected into the trigeminal ganglion prevented the BoNT/A antinociceptive activity in 

orofacial formalin-induced pain (Section 4.4, Figure 9). Similarly, we found that colchicine 

treatment prevented the BoNT/A antinociceptive activity in a model of trigeminal neuropathy 

induced by infraorbital nerve constriction (Filipović et al., 2012). These experiments 

suggested that the axonal transport within sensory neurons was responsible for BoNT/A 

antinociceptive activity, ruling out possible involvement of autonomic or motor neurons.  

Kitamura et al., (2009) suggested that prevention of vesicular neurotransmitter release within 

trigeminal ganglion may be involved in BoNT/A antinociceptive activity in a model of 

trigeminal neuropathy. We thus accessed the possibility that BoNT/A antinociceptive activity 

is located within the trigeminal ganglion by employing BoNT/A direct injections into the 

ganglion. Hypothetically, BoNT/A antinociceptive action, if mediated within the ganglion, 

should have a fast onset occurring within 24 h from BoNT/A i.g. injection, similarly to the 

effect visible after intrathecal injection. In addition, the antinociceptive action of i.g.-injected 

BoNT/A should not be prevented by inhibition of the axonal transport within the ganglion. 

The antinociceptive activity of BoNT/A was visible after the injection into the ganglion, 

which confirmed the necessary role of sensory neurons for its antinociceptive action. 

However, the onset of the effect on pain was delayed: it developed 2 days after the toxin 

injection (BoNT/A was inefficient if injected 24 prior to orofacial formalin test). Colchicine 

injection into the ganglion prevented the antinociceptive activity even if BoNT/A was injected 

into the ganglion, too (Section 4.1, Figure 5). This experiment suggested the possibility that 

BoNT/A is transported further from the ganglion into the CNS to exert the antinociceptive 

action. 

In parallel, we tried to confirm the supposed presence of BoNT/A molecules in CNS after 

toxin peripheral application. These experiments were in the beginning unsuccessfully 

attempted with immunodetection by antibodies to BoNT/A itself (Fig, 5, unpublished data). 

However, the amount of toxin which may exert a notable effect on pain transmission in the 

CNS may be well below the detection limit of classical Western blot or immunohistochemical 

methods. Detection of cleaved SNAP-25 – the product of toxin’s enzymatic activity, proved 

to be a better strategy since a single BoNT/A LC enzyme molecule may cleave many SNAP-

25 molecules, which can then be detected by immunohistochemistry. By immunofluorescent 
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histochemistry we demonstrated the enzymatic cleavage of SNAP-25 in sensory regions of 

brainstem and spinal cord after toxin peripheral or intraneural injections (Section 4.2, Figs 6-

9). In line with the delayed onset of antinociceptive action after toxin peripheral application, 

the occurrence of cleaved SNAP-25 molecules was not visible in CNS 24 h after BoNT/A 

facial injection (Matak et al., 2011, Appendix I). BoNT/A was active in the area of 

termination of central afferent terminals of sensory neurons connected via peripheral afferent 

endings to injected sites, suggestive of toxin traffic in sensory neurons.  

We examined whether supraspinal regions might also be involved in the BoNT/A 

antinociceptive action. Hypothetically, BoNT/A might be transported to distant supraspinal 

sensory regions following transcytosis and axonal transport via central projection neurons. 

Occurrence of cleaved SNAP-25 was examined in thalamus, hypothalamus, sensory cortex, 

locus coeruleus or periaqueductal gray. No evident cleaved SNAP-25 occurred within t 

mentioned regions (Fig. 7). However, our observation might be limited by the detection 

threshold of the antibody to cleaved SNAP-25, thus, direct BoNT/A effect on supraspinal 

sensory regions cannot be completely ruled out. The pain-evoked neuronal activation 

(assessed by c-Fos expression) was reduced in the TNC, bilateral locus coeruleus and 

periaqueductal gray in a model of orofacial formalin-induced pain. BoNT/A, though, did not 

prevent the neuronal activation in thalamus, hypothalamus or amygdale, the regions involved 

in stress response and the affective and emotional processing of pain (limbic system). 

Assuming that BoNT/A in sensory system is not transported further from dorsal horn, the 

indirect effect on neuronal transmission within central nociceptive regions may be more 

widespread compared to direct BoNT/A action mediated by central SNAP-25 cleavage.  

Occurrence of cleaved SNAP-25 in TNC suggested that BoNT/A may affect the nociceptive 

transmission from primary afferents to second order neurons, either 1.) by presynaptic activity 

in central afferent terminals or 2.) in second order synapses following transcytosis. We 

examined both possibilities by employing a non-selective trigeminal ganglion ablation 5 days 

after BoNT/A injection into the whisker pad. The BoNT/A-cleaved SNAP-25 in TNC 

disappeared after trigeminal denervation (Fig. 12), suggesting that the toxin’s enzymatic 

activity was localized within central afferent terminals. Moreover, this experiment does not 

support the BoNT/A transcytosis to second-order synapses within the TNC. Possible lack of 

transcytosis in trigeminal sensory neurons is not in line with data from Restani et al. (2011) 

and (2012) who reported the BoNT/A transcytosis to second order synapses in optic tectum 
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and retina.  

In line with presumed BoNT/A action in synapses, we observed cleaved SNAP-25 partial 

colocalization with synaptophysin in punctate terminals. However, we discovered possible 

BoNT/A activity also within non-synaptic sites. Elongated cleaved SNAP-25 

immunoreactivity, most likely situated along the axolemma, did not colocalize with 

synaptophysin. In line with axonal localization, we did not observe colocalization with MAP-

2-positive dendrites or NeuN-stained neuronal nuclei. A recent study from Marinelli et al., 

(2012) reported the occurrence of cleaved SNAP-25 in astrocytes of neuropathic mice. 

BoNT/A-cleaved SNAP-25 did not colocalize with GFAP-stained processes, suggesting the 

lack of transcytosis to astroglial cells. The difference between our experiments and data from 

Marinelli et al. (2012) may be due to different experimental setup, different region examined 

(lumbar vs trigeminal dorsal horn), or the animal species (rats vs. mice). 

By examining the effect of single and repeated injections of BoNT/A, we excluded possible 

permanent functional changes which might lead to altered antinociceptive efficacy of 

BoNT/A upon repeated application. Analysis of markers of synapses and axonal growth cones 

suggested that the BoNT/A effect in trigeminal dorsal horn is not associated with notable 

synaptogenesis or neurite outgrowth in TNC. However, this study has been performed at a 

low spatial resolution level (the entire nucleus), thus, more localized action within the dorsal 

horn, or within central afferent terminals only, should be further evaluated.   

In conclusion, these data suggest that the antinociceptive activity of BoNT/A involves 

prevention of SNARE-mediated neurotransmitter release from sensory afferent terminals in 

central nociceptive regions. Along with prevention of nociceptive transmission from primary 

afferents to second order neurons, other sensory regions involved in descending inhibitory 

control (locus coeruleus and periaqueductal grey) may be indirectly affected.  

 

5.3 Selectivity of BoNT/A action for hyperalgesia and allodynia is mediated by 

capsaicin-sensitive neurons 

Apart from the lasting BoNT/A efficacy a single peripheral application in chronic pain states, 

another important benefit of BoNT/A is the ability to normalize the pain hypersensitivity 

without altering normal sensory thresholds. The explanation why BoNT/A targets the pain 

hypersensitivity and not the normal sensory transmission has not been addressed in detail up 
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to now. Possibly, selectivity for hyperalgesic responses might be mediated by specific 

neuronal population of primary sensory neurons targeted by BoNT/A, important for 

development of central sensitization. We hypothesized that BoNT/A action might be selective 

for capsaicin-sensitive or TRPV1-expressing sensory neurons, since the deletion of this type 

of neurons does not alter the acute nociception (Bishnoi et al, 2014). Growing evidence 

suggests that central afferent terminals expressing the capsaicin receptor (also known as 

vanilloid-1 receptor or TRPV1), are important mediators of chronic pain and hyperalgesia 

(Kim et al., 2014). BoNT/A prevents capsaicin-evoked reduction of mechanical and thermal 

thresholds and nocifensive behavior in animals and pain in humans (Bach-Rojecky and 

Lacković, 2005; Gazerani et al., 2009; Shimizu et al., 2012). By performing a literature 

search, we compared the antinociceptive action of BoNT/A vs suppressed function of 

capsaicin-sensitive neurons induced by TRPV1 antagonists or denervation evoked by high-

dose agonists (Table 7). In summary, in vivo experiments indicate a considerable similarity of 

BoNT/A analgesic effects and the effect of suppression of capsaicin-sensitive neurons 

(reduction of allodynia and hyperalgesia, lack of effect on tactile and acute noxious stimuli).  

Table 7 Comparison of the antinociceptive activity of BoNT/A and suppression of 

TRPV1-expressing neurons performed by denervation or TRPV1 antagonists, on 

different types of experimental pain.  

 Peripheral BoNT/A  Denervation with 
TRPV1 agonists 

TRPV1 
antagonists 

Acute 
innocuous or 
nociceptive 
mechanical 
stimuli 

No effect  
(Blersch et al., 2002;  
Cui et al., 2004; Bach-
Rojecky and 
Lacković., 2005; 
Blersch et al., 2002), 
Table 4. 

No effect 
(Neubert et al., 
2008; Jeffry et al., 
2009; Mishra and 
Hoon 2010), Table 4. 

No effect  
(Tang et al., 2007) 

Acute 
nociceptive 
thermal stimuli 

No effect  
(Blersch et al., 2002;  
Cui et al., 2004; Bach-
Rojecky and 
Lacković., 2005],  
or  
reduction in trigeminal 
area in humans  
(Gazerani et al., 2009) 

Reduction after 
systemic agonist 
application 
(Bishnoi et al., 2011 
Mishra and Hoon 
2010]), 
 or 
No effect after 
intrathecal agonist 
application 
(Jeffry et al., 2009; 
Bishnoi et al., 2011) 

Reduction (Tang et 
al., 2007) 

Formalin-
induced phase 
I acute pain 

No effect  
(Cui et al., 2004; 
Matak et al., 2011;  
Drinovac et al., 2013), 
Table 4. 

No effect  
(Shields et al., 
2010), Fig. 11 

Reduction  
(Kanai et al., 2006, 
Tang et al., 2007) 
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Formalin-
induced phase 
II hyperalgesic 
behavior 

Reduction [Cui et al., 
2004; Matak et al., 
2011; Drinovac et al., 
2013), present study.. 

No effect  
(Shields et al., 
2010), Fig. 11 
or  
reduction 
 (Yaksh et al., 1979) 

Reduction  
(Kanai et al., 2006; 
Tang et al., 2007) 

Inflammatory 
thermal 
hyperalgesia 

Reduction  
(Bach-Rojecky and 
Lacković 2005; Bach-
Rojecky et al., 2008) 

Reduction  
(Jeffry et al., 2009) 

Reduction  
(Sugimoto et al., 
2013) 

Inflammatory 
mechanical 
hyperalgesia 
and allodynia 

Reduction  
(Bach-Rojecky and 
Lacković 2005; Bach-
Rojecky et al., 2008; 
Favre-Guilmard 2009] 

No reduction  
(Jeffry et al., 2009, 
Mishra and Hoon 
2010)  
or  
reduction 
 (Neubert et al., 
2008) 

Reduction  
(Pomonis et al., 
2003; Sugimoto et 
al., 2013) 

Capsaicin-
induced 
thermal and 
mechanical 
pain, 
hyperalgesic 
behavior 

Reduction  
(Bach-Rojecky and 
Lacković 2005; Bach-
Rojecky et al., 2008; 
Shimizu et al., 2012) 

Reduction  
(Jeffry et al., 2009) 

Reduction  
(Pomonis et al., 
2003; Tang et al., 
2007) 

Neuropathy-
induced 
thermal 
hyperalgesia 

Reduction  
(Bach-Rojecky et al., 
2005) 

Reduction  
(Kissin et al., 2007; 
Tender et al., 2008) 

Reduction  
(Pomonis et al., 
2003; Kanai et al., 
2005; Watabiki et 
al., 2011) 

Neuropathy-
induced 
mechanical 
hyperalgesia 
and allodynia 

Reduction  
(Park et al., 2006; 
Luvisetto et al., 2007; 
Filipović et al., 2012) 

Reduction  
(Kissin et al., 2007; 
Tender et al., 2008)  
or  
no effect  
(King et al., 2011) 

Reduction  
(Pomonis et al., 
2003; Kanai et al., 
2005; Watabiki et 
al., 2011) 

In support of presumed role of capsaicin-sensitive neurons, we found that neuronal terminals 

stained for cleaved SNAP-25 colocalize with TRPV1 receptor (Fig. 14). By employing high 

dose capsaicin, we found that the occurrence of cleaved SNAP-25 in TNC was prevented by 

denervation of TRPV1-expressing neurons (Matak et al., 2014; Appendix IV). These 

experiments suggested that the central terminals stained for cleaved SNAP-25 in the TNC are, 

indeed, sensitive to capsaicin. Moreover, in a model of formalin-induced pain we found that 

the denervation of capsaicin-sensitive neurons completely prevented the BoNT/A 

antinociceptive action on phase II hyperalgesic behavior (Fig. 13). Lack of BoNT/A effect on 

mechanical thresholds was similar to the effect of capsaicin-evoked TRPV1 denervation 

(Table 4.). These findings suggest that peripherally administered BoNT/A may modulate the 

nociceptive transmission of glutamate and other neurotransmitters associated with capsaicin-

sensitive neurons at the first sensory synapse in the CNS. Theoretically, since TRPV1 
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translocation to plasma membrane is mediated by SNAP-25 (Shimizu et al., 2012), BoNT/A 

might also block the TRPV1 receptor-mediated nociceptive transmission at central afferent 

terminals (Matak et al., 2014).  

As another potential mechanism for BoNT/A selective action on allodynia and hyperalgesia, 

hypothetically, its actions might have been mediated by direct prevention of central release of 

pronociceptive neuropeptides, such as CGRP and substance P, which partially colocalize with 

TRPV1-expresing neurons. Although in vitro or ex vivo experimental studies suggested that 

BoNT/A may prevent the neuropeptide release from sensory neurons (Durham et al., 2004; 

Lucioni et al., 2008), the causal relation between BoNT/A antinociceptive action and 

prevention of neuropeptide release either in periphery or CNS up to now has not been 

conclusively demonstrated. In the CNS, we examined possible colocalization of BoNT/A 

enzymatic activity and CGRP. The terminals stained for cleaved SNAP-25 mainly did not 

colocalize with CGRP (Fig. 16), suggesting that the direct prevention of central CGRP release 

is not the dominant mechanism of BoNT/A antinociceptive action in CNS.   

Some of BoNT/A’s effects cannot be explained only by prevention of neurotransmitter release 

from central afferent terminals, which at first might appear like a plausible explanation of 

BoNT antinociceptive mechanism (Marino et al., 2013). In a recent studies from our 

laboratory, antinociceptive effect of BoNT/A was prevented by systemically or intrathecally 

applied μ-opioid and GABA-A antagonists, suggesting the involvement of endogenous 

opioidergic and GABA-ergic system in the antinociceptive activity of BoNT/A (Drinovac et 

al., 2013; Drinovac et al., 2014). In addition, it was observed that BoNT/A suppresses 

morphine-induced tolerance and potentiates morphine analgesia (Auguet et al., 2008; Vacca et 

al., 2012; Vacca et al., 2013). The mechanism of observed involvement of GABA-ergic and 

opioidergic neurotransmission in the BoNT/A antinociceptive action is presently unknown. 

Interestingly, denervation of TRPV1-expressing neurons or chronic treatment with TRPV1 

antagonists exhibits the effects on morphine tolerance or opioid-induced analgesia similar to 

BoNT/A (Chen et al., 2006; Chen et al., 2007; Chen et al., 2008). Hypothetically, reduced 

neurotransmission in capsaicin-sensitive neurons might indirectly trigger the observed effect 

of BoNT/A on endogenous opioidergic and GABA-ergic systems.   
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Figure 20 Schematic representation of the possible mechanism of BoNT/A action on 

central nociceptive transmission.  Selectivity of BoNT/A action for allodynia and 

hyperalgesia, and the lack of effect on acute pain or other sensory thresholds, involves its 

selective action on TRPV1-expressing neurons. 

In conclusion, BoNT/A effect on pain is related to its axonal transport to capsaicin-sensitive 

central afferent terminals. The resulting prevention of pain transmission reduces the central 

sensitization (facilitated activation of second order sensory neurons leading to hyperalgesic 

response). This explain the selectivity of toxin’s effect to pain hypersensitivity and resulting 

allodynia and hyperalgesia, which is in line with toxin’s efficacy in chronic pain conditions 

associated with central sensitization (Fig. 20). 



    
 

64 

 

5.4 Central vs. peripheral BoNT/A action 

Up to now, there is still no consensus about the site and underlying mechanism of 

antinociceptive action of BoNT/A. Initial opinion, based primarily on the assumption that 

BoNT/A action is localized to the injection site, suggests that BoNT/A prevents the pain by 

inhibiting peripheral neurotransmitter/inflammatory mediator release (Aoki, 2005). 

Additionally, this opinion was modified by possibility that BoNT/A might prevent the local 

expression of pain receptors such as TRPV1 on peripheral sensory nerve endings by 

preventing their SNARE-mediated translocation to plasma membrane (Aoki and Francis, 

2011).  

Strong evidence against the peripheral site and mechanism of BoNT/A action was provided 

by findings from Bach-Rojecky and Lacković (2005), who discovered that BoNT/A effects on 

pain are not necessarily connected with local reduction of inflammation and peripheral 

neurotransmitter release. BoNT/A induces bilateral effects after unilateral injection in mirror 

or polyneuropathic pain of different origins. In addition, Bach-Rojecky and Lacković (2009) 

discovered that the antinociceptive effect of peripherally applied BoNT/A is dependent on 

axonal transport in peripheral nerves. In present PhD thesis, we confirmed the axonal 

transport of enzymatically active BoNT/A molecules to CNS, and found that the sensory 

neurons involved in toxin’s central action are sensitive to capsaicin (TRPV1-expressing). 

Enzymatic activity of BoNT/A has been immunohistochemically visualized in the spinal cord 

or brainstem areas receiving sensory input from toxin’s peripheral injection site. Additionally, 

BoNT/A’s antinociceptive activity is shown to be associated with central μ-opioid and 

GABA-A receptors (Drinovac et al., 2013, 2014). Summary of experimental data in favor of 

peripheral vs. central site of action is given in Table 9. While the experimental data show that 

BoNT/A may prevent the sensory neurotransmitter release from peripheral afferent terminals, 

the relation of mentioned effect and BoNT/A antinociceptive action is yet unknown. Based on 

experimental data obtained in present PhD thesis and the data available in the literature, we 

suggest that the peripheral site of action cannot explain the antinociceptive activity of 

BoNT/A.  
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Table 8 Summary of experimental data supporting peripheral hypothesis of BoNT/A 

action on pain (left) versus experimental data supporting central antinociceptive activity 

of BoNT/A (right) (Matak and Lacković, 2014). 

Evidence supporting 
peripheral hypothesis 

References Evidence supporting 
central hypothesis 

 References 

Analogy with the effect on 
neuromuscular junction and 
autonomous synapses  
 

(Aoki, 
2005; Aoki 
and 
Francis, 
2011) 

Bilateral effect of 
unilateral injection in 
neuropathic and mirror 
pain models  

(Favre 
Guilmard., 
2009; Bach-
Rojecky and 
Lacković, 2009; 
Bach-Rojecky 
et al., 2010) 

Reduction of formalin-induced 
increase in hind-paw 
glutamate peak concentration 
in rats, reduction of capsaicin-
induced glutamate release in 
human skin 

(Cui et al., 
2004; 
Bittencourt 
da Silva et 
al., 2014). 

Prevention of 
antinociceptive effect of 
peripheral BoNT/A by 
intraneural or 
intraganglionic colchicine 

(Bach-Rojecky 
and Lacković, 
2009, Matak et 
al., 2011, 
Filipović et al., 
2012) 

Decreased TRPV1 and P2X3 
sensory receptor expression 
in neurogenic bladder 

(Apostolidis 
et al., 
2005) 

Contralateral effect after 
BoNT/A injection into the 
distally transected sciatic 
nerve in a model of 
bilateral pain 

(Bach-Rojecky 
and Lacković, 
2009)  

Reduction of peripheral 
neuropeptide release   in  iris 
muscle  and urinary bladder 

(Ishikawa 
et al.,  
2000; 
Rapp et al., 
2006; 
Lucioni et 
al., 2008) 

Evidence of SNAP-25 
cleavage in caudal 
medulla and spinal cord 
sensory regions after low 
dose peripheral BoNT/A 
injection 

(Matak et al., 
2011; Matak et 
al., 2012; 
Marinelli et al., 
2012; Matak et 
al., 2014) 

Decreased  glutamate-evoked 
mechanical sensitivity of 
craniofacial muscle 
nociceptors  

(Gazerani 
et al., 
2010) 

Abolishment of trigeminal 
pain-evoked dural 
neurogenic inflammation 

(Filipović et al., 
2012) 

  Efficacy of intracerebro-
ventricular, intrathecal, or 
intraganglionic BoNT/A 
injections. Higher potency 
of intraneuronal and 
centrally applied BoNT/A 
in comparison to 
peripheral application 

(Luvisetto et 
al., 2006; 
Bach-Rojecky 
et al., 2010; 
Lee et al., 
2011; Matak et 
al., 2011; 
Coelho et al., 
2014) 

  Blockage of 
neurotransmitter release 
from distant synapses 
after retrograde axonal 
transport 

(Restani et al., 
2012) 

  Inhibition of 
antinociceptive activity of 
BoNT/A by intrathecally-
applied opioid or GABA-A 
antagonists, 
prevention of morphine-
induced tolerance 

(Drinovac et 
al., 2013; 
Drinovac et al., 
2014; Vacca et 
al., 2012;  
Vacca et al., 
2013) 
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5.5 Implications of present results for BoNT/A clinical use 

5.5.1 Therapeutic BoNT/A application into sensory nerves or ganglia.  

Present PhD study has conclusively confirmed the assumption that BoNT/A antinociceptive 

activity is mediated by toxin’s occurrence in CNS, provided by the axonal transport in 

sensory neurons. Increased potency of BoNT/A after application into the peripheral nerve 

(Bach-Rojecky and Lacković, 2009), intrathecal space (Bach-Rojecky, 2006) or ganglion 

(Matak et al., 2011) suggests that only a small portion of peripherally applied BoNT/A is 

axonally transported towards the CNS in order to exhibit its antinociceptive activity. Possible 

application of present discoveries is, by employing known anesthetic techniques like 

peripheral nerve or ganglion blocks, to inject smaller doses of BoNT/A directly into the nerve 

or ganglia in humans. Selective targeting of nerves or ganglia by BoNT/A may be employed 

for analgesia in the whole dermatome of injected sensory ganglion or the innervation area of 

injected nerve. In addition, selective BoNT/A application to sensory nerves may reduce the 

risk of unwanted autonomic or motor side-effects. Another potential benefit is the lower 

immunological titer of toxin, which may reduce the risk for development of immunological 

resistance to BoNT/A upon repeated injections. The major concern of such application of 

BoNT/A are potential central side effects after toxin axonal transport and transcytosis into 

distant brain regions. Although some studies suggested that BoNT/A may be transcytosed 

over two or more synapses in optic and motor system (Restani et al., 2012a; Akaike et al., 

2013), our results suggest that there are no detectable signs of toxin’s enzymatic activity in 

second order synapses in TNC or in distant central sensory regions (other than TNC) after 

toxin’s application into the trigeminal area.    

 

5.5.2 Synergism with centrally-acting analgesics 

Auguet et al. (2008) and Vacca et al. (2012,13) demonstrated synergistic antinociceptive 

effect of low, individually ineffective doses of BoNT/A and morphine. In addition, BoNT/A 

prevented the morphine-induced tolerance (Vacca et al., 2012, 2013). The mechanism of 

synergistic interaction of BoNT/A and morphine is most likely connected with the activation 

of endogenous opioid system at spinal cord level via µ-opioid receptors (Drinovac et al., 

2013).  

As previously discussed (Section 5.3), denervation of TRPV1-expresing neurons or chronic 
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application of TRPV1 antagonist have similar effect like BoNT/A on morphine-induced 

tolerance and potentiation of opioid analgesia (Chen et al., 2006; Chen et al., 2007; Chen et 

al., 2008). Since the synergistic effect of BoNT/A and low-dose morphine may be connected 

by action on TRPV1-expressing neurons, potential additive or synergistic activity of BoNT/A 

and low-dose TRPV1 antagonist needs to be examined. As the role of TRPV1-expressing 

neurons in development of morphine-induced tolerance has been demonstrated to be mediated 

by increased activity of presynaptic NMDA receptors (Zhao et al., 2012), synergistic effect of 

BoNT/A and presynaptic glutamatergic receptors like NMDA and AMPA should be 

evaluated, as well. In addition, potential synergistic or additive effect of BoNT/A and of other 

types of analgesics acting presynaptically of postsynaptically to central terminals of primary 

afferents, such as triptans, CGRP antagonists etc. should be assessed. Combination of 

BoNT/A with other types of analgesics could be a useful therapeutic strategy in humans, 

potentially reducing the risk of use of high dose classical analgesics associated with 

development of tolerance or medication overuse.     

 

5.5.3. Prediction of clinical response to BoNT/A treatment 

As previously discussed in Section 1.3.1, response to BoNT/A may vary between different 

patients suffering from the same chronic pain disorder, with some subpopulations more likely 

to respond to BoNT/A treatment. Theoretically, with better knowledge of the mechanism and 

types of neurons involved in the BoNT/A antinociceptive efficacy, clinicians might have a 

better understanding about chronic pain disorders and subpopulations of patients which are 

more likely to benefit from BoNT/A treatment. In present PhD thesis we found that BoNT/A 

antinociceptive action is associated with capsaicin-sensitive (TRPV1-expressing) primary 

sensory neurons, whose central terminals are involved in development of hyperalgesia and 

allodynia. As a first obvious consequence of present results, it can be predicted that chronic 

pain disorders with pathological involvement of TRPV1-expressing neurons resulting in 

allodynia and hyperalgesia could respond better to BoNT/A treatment. In addition, preserved 

function of TRPV1-expressing neurons may be necessary for response to BoNT/A treatment. 

We predict that BoNT/A could be less effective in neuropathies resulting in destruction of 

TRPV1-expressing primary afferents. 
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5.5.4 Implications for migraine treatment  

BoNT/A has been approved for chronic migraine treatment since 2010. However, relatively 

little is known about the mechanism of BoNT/A action in migraine. Although BoNT/A is 

injected based on a standard protocol into several extracranial head and neck muscles, 

peripheral site of action cannot explain the effect of BoNT/A on migraine headache, which 

involves intracranial activation of trigeminovascular system and dural neurogenic 

inflammation (Geppetti et al., 2012). Recent research from our laboratory suggests that 

BoNT/A, after its axonal transport within trigeminal nerve, prevents the neurogenic 

inflammation (measured as plasma protein extravasation) in dura mater induced by orofacial 

pain evoked by formalin and IoNC (Filipović et al., 2012). By radioimmunoassay, we have 

demonstrated that BoNT/A may prevent the increased expression of CGRP in dura mater 

evoked by CFA-induced inflammatory pain of temporomandibular joint (Table 6). This 

experiment suggests that, in models of trigeminal pain, BoNT/A reduces the CGRP-mediated 

activation of trigeminovascular system. In addition, we demonstrated the toxin enzymatic 

activity in CGRP-expressing dural afferents after low-dose BoNT/A peripheral injection to 

extracranial area. Present results suggest that  BoNT/A effect on migraine headache is 

mediated by its direct activity on CGRP-expressing afferents in dura mater, thereby, reducing 

the peripheral sensitization of trigeminal dural afferents perceived as intensive throbbing pain 

during migraine attack (Mathew, 2011). This is in line with recent clinical studies which 

reported that higher level of blood plasma CGRP may be a predictive marker for BoNT/A 

efficacy in chronic migraine (Cernuda-Morollón et al., 2014) as well as that BoNT/A may 

reduce the CGRP levels in saliva of migraine patients (Cady et al., 2014). In addition, within 

dural afferents BoNT/A may be axonally transported to central afferent terminals presynaptic 

to second order sensory neurons, and reduce the development of central sensitization leading 

to cutaneous allodynia. In support of reduction of central sensitization in the TNC by 

peripheral BoNT/A, we demonstrated reduced c-Fos expression in a model of orofacial 

formalin-induced pain (Table 5). BoNT/A, in addition to TNC, reduced the neuronal 

activation measured as c-Fos expression in some supraspinal regions related to migraine: 

periaqueductal grey and locus coeruleus (Table 5).  
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5.6 What is unknown about BoNT/A actions in CNS? 

Unlike previously simple idea which assumed the BoNT/A action in periphery localized to 

the injection site, recent discoveries in both animals and humans revealed a more complex 

mechanisms of action related to BoNT/A activity in the CNS. These findings lead to novel 

questions which need to be answered: 

1. Possibility that BoNT/A central action on pain, apart from prevention of SNARE-mediated 

neurotransmitter release from central afferent terminals, involves reduced expression or 

activation of TRPV1 receptors, as well as of other types of pain receptors or voltage-gated ion 

channels.    

2. The mechanism of BoNT/A interaction with opioidergic and GABA-ergic 

neurotransmission in the dorsal horn. 

3. Possible in vivo consequences of BoNT/A action in CNS along axons, away from synaptic 

zones 

4. The mechanism of BoNT/A bilateral action in bilateral mirror or polyneuropathic pain 

models.  

5. The exact basis for apparent lack of dose response in BoNT/A antinociceptive action at low 

peripheral and intrathecal doses.  

6. Transcytosis to distant sensory or motor regions in the CNS, with possible unknown effects 

in vivo. 

7. Unknown clinical significance of BoNT/A action in ventral horn, apart from reduced 

recurrent inhibition (Marchand-Pauvert et al., 2013). Hypothetically, additional actions on 

neuronal circuitry within ventral horn leading to reduced hyperexcitability of motoneurons 

may be at least in part responsible for BoNT/A beneficial effects in spasticity and dystonia.  

8. Recently, beneficial effects on major depression and impaired processing of emotional 

language have been reported after BoNT/A injections into facial muscles (Magid et al., 2014; 

Havas et al., 2012). In addition, BoNT/A-mediated preventive effect on vocal tics and 

associated premonitory urges in Gilles de la Tourette’s syndrome has been observed (Porta et 

al., 2004). Although authors proposed indirect effects due to neuroparalysis of injected 

muscles, it remains to be elucidated whether BoNT/A central activity in certain brainstem 

areas may be involved in observed effects.  
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9. Potential effects on synaptic sprouting. While at the neuromuscular junction BoNT/A 

induces axon sprouting, it prevents the outgrowth of dendrites and axons in cultured central 

neurons. It remains to be examined whether peripherally injected BoNT/A may induce either 

of these effects in vivo in CNS.  

10. Possible additional molecular targets of BoNT/A action. Are there any in vivo effects of 

BoNT/A action in the CNS not related to its effects on SNAP-25? 
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6. CONCLUSIONS 

 

In this PhD thesis we: 

1. found that BoNT/A action on pain involves a microtubule-dependent axonal transport 

within peripheral sensory neurons, and enzymatic activity of active BoNT/A molecules in 

central sensory nociceptive regions.  

2. observed the BoNT/A axonal transport from periphery to CNS in peripheral sensory and 

motor nerves at low peripheral doses injected, suggesting that it occurs commonly following 

the peripheral toxin application.  

3. found that BoNT/A is axonally transported from periphery to central afferent terminals of 

TRPV1-expressing sensory neurons. This explains its selective activity in chronic pain states 

accompanied by allodynia and hyperalgesia, and the lack of its effects on nociceptive acute 

pain thresholds.  

4. found that BoNT/A applied in the trigeminal extracranial area is axonally transported to 

CGRP-expressing afferents in dura mater, and prevents CGRP neurotransmission in 

trigeminovascular system. This finding might lead to the explanation of its beneficial effects 

in chronic migraine and other headache disorders. 

In summary, these results, together with experimental data from Bach-Rojecky (2006) have 

revealed that BoNT/A actions on pain is dominantly a central phenomenon, provided by 

axonal transport of enzymatically active toxin molecules in sensory neurons. These effects, 

selective to capsaicin-sensitive neurons, are involved in prevention of central sensitization 

leading to allodynic and hyperalgesic responses in chronic pain conditions. Although these 

findings have brought us closer towards the explanation of BoNT/A action on pain, the exact 

fine details of the mechanism of toxin’s antinociceptive activity remain to be further 

investigated.    
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7. ABSTRACT 

 

Central antinociceptive activity of botulinum toxin A 

Background: Botulinum toxin type A (BoNT/A) is an emerging long-acting therapeutic for 

chronic pain. In contrast to previously assumed local action, novel evidence point to the CNS 

as the possible site of BoNT/A action on pain after its axonal transport. The aim of this thesis 

was to characterize the sites and mechanisms of BoNT/A action on central pain transmission.   

Methods: BoNT/A antinociceptive activity was characterized by behavioral nociceptive 

assessment, immunodetection of BoNT/A enzymatic product (cleaved synaptosomal-

associated protein 25 (SNAP-25)) and c-Fos neuronal activation in different rat sensory 

regions. Peripheral, intraneural and intraganglionic BoNT/A injections, and microtubule-

blocker colchicine were employed to assess BoNT/A axonal transport in peripheral sensory 

nerves. By employing trigeminal nerve ablation we examined possible transcytosis of 

BoNT/A in sensory regions. Denervation of trigeminal afferents with capsaicin was employed 

to examine the potential role of capsaicin-sensitive (vanilloid 1-expressing) neurons.  

Results: Microtubule-dependent axonal transport of BoNT/A, necessary for its antinociceptive 

activity, occurred in sensory neurons. Following different toxin peripheral injections, cleaved 

SNAP-25 has been observed in corresponding sensory nuclei of brainstem (trigeminal nucleus 

caudalis) and spinal cord dorsal horn, but not in higher level sensory areas. BoNT/A enzyme 

activity was localized presynaptically in capsaicin-sensitive (vanilloid 1 receptor -expressing) 

central afferent terminals. BoNT/A reduced the pain-associated neuronal activation in TNC 

and supramedullary regions involved in descending pain control.  

Conclusion: After its axonal transport in sensory neurons, BoNT/A modulates pain 

transmission at the central synapse of primary afferents. Involvement of capsaicin-sensitive 

neurons is associated with the selectivity of BoNT/A action for pain hypersensitivity. These 

findings contribute to the explanation of BoNT/A mechanisms of action in pain and possible 

refinement of its clinical use.  

 

Key words: botulinum toxin A, antinociceptive activity, axonal transport, synaptosoma-

associated protein 25, capsaicin-sensitive neurons, central afferent terminals                 
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UVOD I CILJ ISTRAŽIVANJA: Botulinum toksin tipa A (BoNT/A), neurotoksin iz 

anaerobne bakterije Clostridium botulinum, je jedan od najpotentnijih bioloških toksina. 

Ulaskom u živčane terminale uzrokuje enzimsko cijepanje sinaptosomalnog proteina 

molekulske mase od 25 kDa (eng. synaptosomal-associated protein of 25 kDa; SNAP-25), što 

sprječava lučenje neurotransmitora. Intoksikacija organizma preko hrane ili infekcija sporama 

bakterija pri određenim uvjetima uzrokuje neuroparalitičku bolest botulizam koju 

karakterizira kljenut mišića. Pročišćeni farmakološki pripravak u malim dozama se koristi kao 

terapija određenih hiperkinetskih poremećaja pokreta i autonomnih poremećaja, te kao 

kozmetički pripravak za smanjenje bora. Zbog dugotrajnog djelovanja nakon jednokratne 

primjene koji traje nekoliko mjeseci BoNT/A se sve više koristi u liječenju određenih tipova 

kronične boli. BoNT/A je odobren za liječenje kronične migrene, a njegova učinkovitost je 

pokazana kod niza drugih bolnih poremećaja, poput različitih vrsta neuropatskih boli, artritisa, 

boli u leđima, temporomandibularnih poremećaja, miofascijalne boli, itd. Zajedničko obilježje 

svih navedenih poremećaja je postojanje bolne preosjetljivosti i centralne senzitizacije. 
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Posebne prednosti njegove primjene, osim dugotrajnog djelovanja, su manje nuspojave nego 

kod konvencionalnih analgetika poput opioida, te manjak utjecaja na transmisiju akutne 

nociceptivne boli.  

Unatoč sve značajnijoj kliničkoj uporabi, malo se zna o mjestu i mehanizmu 

antinociceptivnog djelovanja BoNT/A. Prevladavajuće hipoteze predložene od strane 

proizvođača farmakološkog pripravka su da BoNT/A sprječava lokalno lučenje 

neurotransmitora glutamata i neuropeptidnih posrednika upale s perifernih senzornih 

završetaka, te na taj način inhibira perifernu transmisiju boli. Novi eksperimenti, poglavito iz 

našeg laboratorija, upućuju na manjak povezanosti perifernog učinka BoNT/A s njegovim 

antinociceptivnim djelovanjem. U bilateralnim modelima boli, BoNT/A je nakon jednostrane 

primjene pokazao bilateralan antinociceptivni učinak, ovisan o aksonalnom transportu kroz 

periferne neurone. Ti eksperimenti, potvrđeni na nekoliko eksperimentalnih modela, su 

ukazali na moguće centralno mjesto djelovanja BoNT/A posredovano aksonalnim 

transportom. Stoga, cilj ovog  doktorata je bilo ispitati mogući aksonalni transport molekula 

BoNT/A u središnji živčani sustav kroz senzorne neurone, okarakterizirati mjesta njegova 

djelovanja na centralnu transmisiju boli, te ispitati mehanizam selektivnosti djelovanja na 

bolnu preosjetljivost u odnosu na akutnu senzornu transmisiju.  

METODE: Moguće djelovanje enzimski aktivnog BoNT/A u centralnim senzornim regijama 

štakora je istraženo imunodetekcijom enzimskog produkta djelovanja BoNT/A (pocijepani 

odn. krnji SNAP-25) nakon različitih načina periferne primjene: subkutanog davanja u 

područje trigeminusa (područje brkova na licu) ili u stražnju šapicu, te nakon injiciranja u 

mišić gastrocnemius ili nakon direktne injekcije u izolirani ishijadikus. Paralelno s 

mikroinjiciranjem u ishijadikus primijenili smo i kolhicin, kako bismo potvrdili mogući 

aktivni mikrotubularni mehanizam aksonalnog transporta kroz periferne živce. Da bismo 

potvrdili ulogu aksonalnog transporta BoNT/A kroz senzorne neurone, antinociceptivno 

djelovanje BoNT/A je ispitano u modelu orofacijalne boli uzrokovane formalinom nakon 

periferne i(ili) intraganglijske primjene BoNT/A, i intraganglijskog kolhicina.  

Nakon davanja toksina u područje lica, imunohistokemijskom lokalizacijom pocijepanog 

SNAP-25 smo pokušali utvrdili mjesto djelovanja BoNT/A u središnjem živčanom sustavu. 

Pojava pocijepanog SNAP-25, osim u kaudalnoj jezgri trigeminusa, je ispitana i u 

supraspinalnim senzornim regijama poput talamusa, moždane kore, hipotalamusa, locus 
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coeruleus-a itd. Ablacijom trigeminalnog živca smo provjerili mogućnost transcitoze BoNT/A 

u kaudalnoj jezgri trigeminusa. Pokusima u kojima smo primijenili konfokalnu mikroskopiju 

smo provjerili kolokalizaciju pocijepanog SNAP-25 s neuronskim i staničnim markerima 

sinapsi, aksona, dendrita, neuronskih jezgri, astrocita itd. Kako bismo dodatno istražili 

regionalna mjesta djelovanja BoNT/A na centralnu transmisiju boli, istražili smo neuronsku 

aktivaciju u trigeminalnoj jezgri i drugim supraspinalnim nociceptivnim regijama 

imunohistokemijskom analizom ekspresije c-Fos proteina nakon bolnog podražaja 

uzrokovanog formalinom.  

Budući da BoNT/A ne djeluje na akutnu transmisiju boli i ostalih senzornih podražaja, ispitali 

smo moguću povezanost njegova antinociceptivnog djelovanja s neuronima osjetljivim na 

kapsaicin. Nakon injekcije BoNT/A u trigeminalnu regiju, istražili smo pojavnost pocijepanog 

SNAP-25 u kapsaicin-osjetljivim neuronima kolokalizacijom pocijepanog SNAP-25 s 

vaniloidnim-1 receptorom prolaznog receptorskog potencijala (TRPV1), te denervacijom 

trigeminalnih aferentnih neurona s intraganglijskom injekcijom visoke doze kapsaicina (2%). 

Denervacijskim postupkom također smo istražili ulogu kapsaicin-osjetljivih nociceptora pri 

antinocicepcijskom djelovanju BoNT/A u modelu orofacijalne boli uzrokovane formalinom.  

Dalje, ispitali smo moguću povezanost djelovanja BoNT/A i neuropeptida povezanog s 

genom za kalcitonin (eng. calcitonin gene-related peptide, CGRP), koji posreduje središnju 

senzitizaciju kod boli i migrene. Mogući utjecaj BoNT/A na lučenje i ekspresiju CGRP-a smo 

istražili imunodetekcijskim mjerenjem koncentracije CGRP-a u cerebrospinalnom likvoru pri 

različitim bolnim podražajima metodama enzimske imunoadsorpcijske analize (ELISA) i 

radioimunološkog testa. Nadalje, ispitali smo kolokalizaciju CGRP-a i pocijepanog SNAP-25 

u trigeminalnoj jezgri i kranijalnoj duri, te utjecaj perifernog BoNTA na ekspresiju CGRP-a u 

gangliju, kranijalnoj duri i trigeminalnoj jezgri.  

REZULTATI: Pocijepani SNAP-25 se nakon različitih mjesta periferne primjene BoNT/A 

pojavio u odgovarajućim senzornim nociceptivnim regijama (trigeminalna kaudalna jezgra i 

stražnji rog leđne moždine. Također, pocijepani SNAP-25 se pojavio i u prednjem rogu leđne 

moždine. Pojava pocijepanog SNAP-25 u leđnoj moždini nakon primjene BoNT/A u periferni 

živac je spriječena blokadom aksonalnog transporta pomoću kolhicina. BoNT/A primijenjen 

periferno i intraganglijski je smanjio bolnu preosjetljivost kod štakora u drugoj fazi 

formalinskog testa. Kolhicin primijenjen intraganglijski spriječio je antinociceptivno 
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djelovanje BoNT/A na drugu fazu orofacijalnog formalinskog testa.  

Nakon ablacije trigeminalnog živca došlo je do unilateralne osjetne denervacije, ali i nestanka 

imunoreaktivnosti pocijepanog SNAP-25 u kaudalnoj jezgri trigeminusa, što ukazuje na 

enzimsku aktivnost BoNT/A u središnjim završecima osjetnih neurona. Kolokalizacija 

pocijepanog SNAP-25 je pokazala da je enzimski aktivni BoNT/A bio prisutan u središnjim 

sinapsama i aksonima. Pocijepani SNAP-25 nakon periferne primjene BoNT/A nije bio 

vidljiv u supraspinalnim regijama. BoNT/A je smanjio nociceptivnu aktivaciju neurona 

(mjerenu pomoću ekspresije c-Fos proteina) u kaudalnoj jezgri trigeminusa, locusu 

coeruleusu i periakveduktalnoj sivoj tvari.  

Pocijepani SNAP-25 se nakon facijalne primjene pojavio  u središnjim živčanim završecima 

neurona osjetljivih na kapsaicin koji izražavaju TRPV1 receptor. Učinak BoNT/A na 

orofacijalnu bol uzrokovanu formalinom, te pojava pocijepanog SNAP-25 u CNS-u su 

spriječeni denervacijom neurona osjetljivih na kapsaicin.    

Mjerenjem koncentracije CGRP-a u cerebrospinalnom likvoru nije bilo moguće utvrditi 

utjecaj BoNT/A na središnje lučenje neuropeptida. Kod eksperimentalne boli uzrokovane 

injekcijom Freundovog adjuvansa u područje čeljusnog zgloba, BoNT/A je značajno spriječio 

pojačanu ekspresiju CGRP-a u kranijalnoj duri. U trigeminalnoj jezgri nije bilo značajne 

kolokalizacije pocijepanog SNAP-25 i CGRP-a. dok se pocijepani SNAP-25 u kranijalnoj 

duri pojavio u aferentima koji sadrže CGRP. 

ZAKLJUČCI: Aksonalni transport enzimski aktivnog BoNT/A kroz senzorne neurone 

posredovan mikrotubulima odgovoran je za njegovo djelovanje na bol. Antinociceptivni 

učinak BoNT/A je povezan s njegovom enzimskom aktivnošću na centralnim završecima 

senzornih neurona osjetljivih na kapsaicin. Djelovanje BoNT/A na bol i centralnu 

senzitizaciju je praćeno smanjenjem aktivacije neurona u dorzalnom rogu i nekim 

supramedularnim regijama uključenima u silaznu inhibiciju boli. Selektivna uključenost 

neurona osjetljivih na kapsaicin objašnjava i selektivnost djelovanja BoNT/A na alodiniju i 

hiperalgeziju kod određenih kroničnih bolnih stanja, te manjak učinka na normalni prijenos 

akutne nociceptivne boli. Nalaz da BoNT/A smanjuje neurotransmisiju CGRP-a u kranijalnoj 

duri mogao bi objasniti njegov učinak na kroničnu migrenu. Ovi nalazi doprinose 

razumijevanju djelovanja BoNT/A na bolne poremećaje i mogućem poboljšanju njegove 

kliničke primjene.  
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Ključne riječi: botulinum toksin tipa A, antinociceptivno djelovanje, aksonalni transport, 

sinaptosomalni protein od 25 kDa, senzorni neuroni osjetljivi na kapsaicin, središnji završeci 

osjetnih neurona                      

 

Pojmovnik stručnih naziva koji dosad nisu prevedeni u stručnoj literaturi na hrvatskom 

jeziku 

 

Central afferent terminal – središnji završetak osjetnog neurona 

Enzyme-linked immunosorbent assay –enzimski vezana imunoadsorpcijska analiza 

Glial fibrillary acidic protein – kiseli vlaknasti protein glije 

Intraganglionic application – intraganglijsko davanje 

Intraneural application – intraneuralno davanje (u živac) 

Radioimmunoassay – radioimunonološki test 

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor – receptor koji veže 

topivi faktor osjetljiv na N-etilmaleimid  

Synaptosomal-associated protein of 25 kDa -sinaptosomalni protein od 25 kilodaltona 

Transient receptor potential – prolazni receptorski potencijal  

Trigeminal nucleus caudalis –kaudalna jezgra trigeminusa 
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BEHAVIORAL AND IMMUNOHISTOCHEMICAL EVIDENCE FOR
CENTRAL ANTINOCICEPTIVE ACTIVITY OF BOTULINUM TOXIN A
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Abstract—Botulinum toxin A (BTX-A) is approved for treat-
ment of different cholinergic hyperactivity disorders, and,
recently, migraine headache. Although suggested to act only
locally, novel observations demonstrated bilateral reduction
of pain after unilateral toxin injection, and proposed retro-
grade axonal transport, presumably in sensory neurons.
However, up to now, axonal transport of BTX-A from periph-
ery to CNS was identified only in motoneurons, but with
unknown significance. We assessed the effects of low doses
of BTX-A injected into the rat whisker pad (3.5 U/kg) or into
the sensory trigeminal ganglion (1 U/kg) on formalin-induced
facial pain. Axonal transport was prevented by colchicine
injection into the trigeminal ganglion (5 mM, 2 �l). To find the
possible site of action of axonally transported BTX-A, we
employed immunohistochemical labeling of BTX-A-truncated
synaptosomal-associated protein 25 (SNAP-25) in medullary
dorsal horn of trigeminal nucleus caudalis after toxin injec-
tion into the whisker pad. Both peripheral and intraganglionic
BTX-A reduce phase II of formalin-induced pain. Antinocice-
ptive effect of BTX-A was prevented completely by colchi-
cine. BTX-A-truncated SNAP-25 in medullary dorsal horn
(spinal trigeminal nucleus) was evident 3 days following the
peripheral treatment, even with low dose applied (3.5 U/kg).
Presented data provide the first evidence that axonal trans-
port of BTX-A, obligatory for its antinociceptive effects, oc-
curs via sensory neurons and is directed to sensory nocice-
ptive nuclei in the CNS. © 2011 IBRO. Published by Elsevier
Ltd. All rights reserved.

Key words: axonal transport, botulinum toxin A, synapto-
somal associated protein 25, antinociceptive activity, sen-
sory neurons.

Apart from its well known therapeutic use in muscular
hyperactivity and certain autonomic disorders (Ward et al.,
2006; Truong et al., 2009), botulinum toxin A (BTX-A) was
recently registered for migraine treatment (Dodick et al.,
2010). Besides migraine, its beneficial effects not associ-
ated with cholinergic neurotransmission were reported in
cluster headache, neuropathic pain, joint pain, back pain,

etc (Querama et al., 2010). It was suggested that BTX-A,
similar to its activity in cholinergic neurons, inhibits the
local neurotransmitter release from sensory nerve endings
by peripheral SNAP-25 (Synaptosomal Associated Protein
of 25 kDa) cleavage (Cui et al., 2004; Aoki, 2005).

Recent studies of rat “mirror pain” (muscular hyperal-
gesia) and polyneuropathy models (paclitaxel-induced
polyneuropathy, diabetic neuropathy) demonstrated bilat-
eral effects following unilateral BTX-A injection (Bach-Ro-
jecky and Lacković, 2009; Favre-Guilmard et al., 2009;
Bach-Rojecky et al., 2010). Obviously, such effects cannot
be explained only by local action on the sensory nerve
endings adjacent to the site of injection. Importantly,
BTX-A effects were prevented by colchicine-induced
blockage of axonal transport in the sciatic nerve, suggest-
ing that retrograde axonal transport of BTX-A is necessary
for its antinociceptive action (Bach-Rojecky and Lacković,
2009). However, neurons involved in axonal transport are
unknown as well as the destination of transported BTX-A.
So far, axonal transport of BTX-A from periphery to the
CNS was demonstrated only in motoneurons (Antonucci et
al., 2008), but with unknown functional significance.

Aims of this study were to investigate (a) in which
neurons does BTX-A axonal transport, essential for its
antinociceptive effects, take place, and (b) to locate the
destination of axonally transported BTX-A. Therefore, we
examined the effects of low doses of BTX-A injected into
the whisker pad or trigeminal ganglion on formalin-induced
orofacial pain, and used intraganglionic colchicine to pre-
vent the axonal transport in trigeminal sensory neurons. To
investigate the possible site of BTX-A antinociceptive ac-
tion we employed immunolabeling of BTX-A-truncated
SNAP-25 in trigeminal nucleus caudalis.

EXPERIMENTAL PROCEDURES

Animals

Male Wistar rats (University of Zagreb School of Medicine, Croatia),
weighing 300–400 g, kept on 12 h/12 h light and dark cycle, were
used in all experiments. The experiments were conducted according
to the European Communities Council Directive (86/609/EEC) and
recommendations of the International Association for the Study of
Pain (Zimmerman, 1983). All efforts were made to reduce the num-
ber of animals used and to reduce their suffering. Animal procedures
were approved by the Ethical Committee of University of Zagreb
School of Medicine (permit No. 07-76/2005-43).

BTX-A injections

For peripheral administration, conscious, restrained rats were in-
jected unilaterally with 30 �l of saline-diluted BTX-A 3.5 U/kg
(Botox®, Allergan Inc., Irvine, CA, USA) into the whisker pad

*Corresponding author. Tel: �385-1-45-66-843; fax: �385-1-45-66-843.
E-mail address: lac@mef.hr (Z. Lacković).
Abbreviations: BTX-A, botulinum toxin A; CGRP, calcitonin gene-re-
lated peptide; i.g., intraganglionic (in trigeminal ganglion); SDS-PAGE,
sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SNAP-25,
synaptosomal-associated protein 25.
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tissue using a 271/2-gauge needle. 3.5 U/kg dose was chosen
based on previous experiments by Cui et al. (2004) and from our
laboratory (Bach-Rojecky and Lacković, 2005; Bach-Rojecky et
al., 2005). For intraganglionic (i.g.) injections, animals were anes-
thetized with chloral hydrate (Sigma-Aldrich, St. Louis, MO, USA;
300 mg/kg, i.p.). Trigeminal ganglion was injected as described by
Neubert et al. (2005). In brief, 0–10 �l Hamilton syringe needle
(Hamilton Microliter #701, Hamilton, Bonaduz, Switzerland) was
inserted through the skin into the infraorbital foramen, which lies in
the medial part of zygomatic process, and through the infraorbital
canal and foramen rotundum directly into the trigeminal ganglion.
Saline-diluted BTX-A (1 U/kg, 2 �l) was slowly injected into the
ganglion. Dose of 1 U/kg was chosen based on preliminary ex-
periments and on the dose needed for antinociceptive effect after
intrathecal application (Bach-Rojecky et al., 2010). Site of injection
was verified by injecting 2 �l of Methylene Blue (Sigma-Aldrich, St.
Louis, MO, USA) to five animals. The dye resided only in trigem-
inal ganglion.

Behavioral testing

Antinociceptive activity of BTX-A was assessed in a model of
formalin-induced facial pain. Conscious rats were injected with 50
�l of saline-diluted 2.5% formalin (Kemika, Zagreb, Croatia)
(0.92% formaldehyde) into the whisker pad ipsilateral to BTX-A
pretreatment and placed in transparent cages for observation (45
min). Observer was blind to the animal treatment (however, ex-
perienced observer could see slightly atonic rat whisker move-
ment in BTX-A peripherally treated animals). The number of sec-
onds of formalin-induced ipsilateral facial rubbing/grooming was
measured in 3 min periods during phases I and II of formalin-
induced pain (Raboisson and Dallel, 2004). Phase I (0–12 min)
represents the acute nociceptive pain characterized by direct
stimulation of nerve endings with formalin, while phase II (12–45
min) is characterized by the release of inflammatory mediators
and sensitization (Cui et al., 2004; Raboisson and Dallel, 2004).

● For testing of peripherally applied BTX-A (3.5 U/kg), rats
were divided in three groups (five to six animals per group):
(1) saline (i.g.)�saline peripherally, (2) saline (i.g.)�BTX-A
peripherally, (3) colchicine (i.g.)�BTX-A peripherally.

● For intraganglionic BTX-A testing (1 U/kg), rats were divided
into five groups (four to seven animals per group): (1) saline
(i.g.), (2) BTX-A (i.g.) 1 day, (3) BTX-A (i.g.) 2 days, (4)
colchicine (i.g.)�BTX-A (i.g.) 2 days, (5) colchicine
(i.g.)�saline (i.g.) 2 days.

Colchicine (Sigma-Aldrich, St. Louis, MO, USA) was injected
i.g. (5 mM, 2 �l), as described above, 24 h prior to second injection
(BTX-A or saline), ipsilaterally. To reduce the number of animals
used, effects of intraganglionic colchicine (colchicine�saline
group) on formalin-induced pain were tested only in the experi-
ment with intraganglionic BTX-A application. Rats were tested 3
days after peripheral BTX-A injection based on data of Antonucci
et al. (2008) and our preliminary experiments, and 1 and 2 days
after intraganglionic BTX-A injection.

Characterization of the antibody specificity to BTX-A-
cleaved SNAP-25 by Western blot

The antibody used for immunohistochemical detection of BTX-A-
cleaved SNAP-25 (a kind gift from Assist. Prof. Ornella Rossetto,
University of Padua, Italy) was used previously in study from
Antonucci et al. (2008). One of the questions to the authors,
regarding the specificity of the antibody to cleaved SNAP-25, is
the lack of controls to differentiate between cleaved and non-
cleaved SNAP-25. Thus, using the similar protocol as Antonucci et
al. (2008), we injected BTX-A (4 U/rat) in rat dorsal hippocampus.
One day following the treatment rats were sacrificed and hip-
pocampus excised. Protein isolation, SDS-PAGE and Western

blots were performed as described previously (Antonucci et al.,
2008; Constantin et al., 2005). To visualize cleaved SNAP-25, and
then the total SNAP-25, two sequential Western blots were per-
formed on the same membrane. Membranes were blocked and
incubated firstly with rabbit anti-cleaved SNAP-25 (1:500) in block-
ing solution overnight at 4 °C, and then with goat-anti-rabbit
horseradish peroxidase (HRP)-conjugated secondary antibody
(BioSource, Invitrogen, Carlsbad, CA, USA). After development in
chemoluminescent (Super Signal West Femto, Pierce, Rockford,
IL, USA) and visualization by ECL camera (BioRad, Hercules, CA,
USA), membrane was washed and incubated with the mouse
monoclonal antibody to total SNAP-25 (1:5000, overnight at 4 °C).
Antibody to total SNAP-25 (SMI-81, Sternberger Monoclonals,
Baltimore, MD, USA) is well characterized and recognizes both
intact and BTX-A-cleaved SNAP-25 (Jurasinski et al., 2001).
Then, the membrane was incubated with goat anti-mouse sec-
ondary antibody (BD Pharmingen, San Diego, CA, USA) and
visualized.

As shown in a Fig. 1, cleaved SNAP-25 (approximately 24
kDa band) was visible only in BTX-A-treated hippocampus and
positioned under non-cleaved SNAP-25 (25 kDa band).

Immunohistochemistry

For the time-course experiment rats were injected into the whisker
pad with 15 U/kg BTX-A, and sacrificed 1, 3, or 5 days after BTX-A
injection. To access the BTX-A effects at different peripheral
doses, rats were injected with 3.5 U/kg, 15 U/kg, and 30 U/kg into
the whisker pad and sacrificed after 5 days. Doses were chosen
based on study from Cui et al. (2004). Rats were deeply anesthe-
tized using chloral hydrate (300 mg/kg, i.p.) and transcardially
perfused with 250 ml saline, followed by 250 ml of fixative (4%
paraformaldehyde (Sigma-Aldrich, St. Louis, MO, USA) in 0.01 M
phosphate buffer saline (PBS), pH 7.4). Brainstems with upper
cervical spinal cords were dissected and cryoprotected at 4 °C
overnight in 15% sucrose in fixative, followed by 30% sucrose in
PBS the next day, until the tissue sank. Immunohistochemical
protocol was similar to that previously described (Antonucci et al.,
2008). 40 �m coronal sections (medullas caudal from obex and
upper cervical spinal cords) were cut on a cryostat and collected
for free floating in PBS. Sections were washed 3�5 min in 0.25%
Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA) in PBS (PBST),
blocked in 10% normal goat serum (Monosan, Uden, Holland)
(NGS) for 1 h and incubated overnight at room temperature with
1:400 anti-BTX-A-cleaved SNAP-25 rabbit polyclonal antibody in

Fig. 1. Characterization of specificity of polyclonal antibody to cleaved
SNAP-25 fragment. (A) Western blot membrane processed with pri-
mary antibody to cleaved SNAP-25 (1:500 dilution) and appropriate
secondary antibody; (B) the same membrane subsequently, before
secondary antibody, incubated with antibody to total SNAP-25 (SMI-
81, 1:5000 dilution) which recognizes both cleaved and intact SNAP-
25; (C) Separate experiment with the membranes incubated only with
primary antibody to total SNAP-25 (the same as in experiment B) and
appropriate secondary antibody. Control– hippocampus from saline
injected animal; BTX– hippocampus injected with BTX-A.
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1% NGS. The next day, sections were washed, blocked with 1%
NGS for 30 min and further incubated with 1:400 goat anti-rabbit
Alexa Fluor-555 (Invitrogen, Carlsbad, CA, USA), in the dark for
2 h at room temperature. Sections were then washed with PBST,
mounted on glass slides with anti-fading agent (FluoroGel, Elec-
tron Microscopy Sciences, Hatfield, PA, USA) and visualized with
fluorescent microscope (Olympus BX51, Olympus, Tokyo, Japan)
connected to digital camera (Olympus DP-70, Olympus, Tokyo,
Japan).

To obtain high-resolution image of the whole section, parts of
brainstem sections were photographed using 10� magnification,
and subsequently connected using Microsoft Paint software. Im-
ages were processed for brightness and contrast using Adobe
Photoshop software.

Statistical analysis

The results of orofacial formalin test were presented as
mean�SEM. Between-group differences were analyzed by the
Newman–Keuls post hoc test. P�0.05 was considered significant.

RESULTS

BTX-A reduces formalin-induced orofacial pain:
necessity of axonal transport in sensory neurons

BTX-A had no significant antinociceptive effects during
phase I of formalin-induced pain. However, peripheral
BTX-A pretreatment (3.5 U/kg) significantly reduced the
time of facial grooming during phase II of formalin-induced
pain (measured 3 days post BTX-A injection). Injection of
colchicine (5 mM) into trigeminal ganglion abolished the
effect of subsequently applied BTX-A (Fig. 2).

Intraganglionic BTX-A (1 U/kg) reduced the formalin-
induced face grooming 2 days after the injection (Fig. 3).
Pain was not significantly reduced when BTX-A was ap-
plied i.g. 1 day before the formalin test. Intraganglionic
pretreatment with 5 mM colchicine prevented the antinoci-
ceptive effect of intraganglionic BTX-A. Intraganglionic in-
jection of colchicine (5 mM) alone did not alter formalin-
induced pain (Fig. 3).

Central SNAP-25 cleavage in trigeminal nucleus
caudalis (TNC) after BTX-A peripheral application

Following application of BTX-A into the rat whisker pad (15
U/kg), fiber-like cleaved SNAP-25 immunoreactivity, ap-
parently with varicosities, appeared in dorsal horn of ipsi-
lateral TNC (Figs. 4 and 5). Occurrence of truncated
SNAP-25 in dorsal horn was evident starting on day 3 after
the injection but not on day 1 (Fig. 5A). Truncated
SNAP-25 in TNC also appeared at lower and higher pe-
ripheral doses (3.5 and 30 U/kg) (Fig. 5B). We did not
quantify the immunoreactivity; however, our impression
was that 3.5 U/kg dose produces less intensive cleaved
SNAP-25 immununofluorescence than higher doses (15
U/kg and 30 U/kg). Cleaved SNAP-25 was present
throughout the rostro-caudal length of the TNC and con-
fined to the middle part of the medullar dorsal horn coronal
section (TNC according to rat brain atlas (Paxinos and
Watson, 2005)). This is in accordance with the dorso-
ventral somatotopic organization of spinal trigeminal nu-
clei, whose middle portion belongs to maxillary branch of
trigeminal nerve, which innervates the whisker pad (Flor-
ence and Lakshman, 1995; Capra and Dessem, 1992). In
some sections only few immunoreactive fiber-like struc-
tures were visible in contralateral dorsal horn. Some im-
munoreactivity was also observed inconsistently in C1 up-
per cervical dorsal horn.

Fig. 2. Effects of peripherally applied BTX-A on pain (facial rubbing) in
first and second phase of orofacial formalin test and essential role of
axonal transport. Facial pain was produced by formalin injection into
the whisker pad (2.5% formalin, 50 �l). BTX-A (3.5 U/kg) was also
applied into the whisker pad. Colchicine was injected into the trigem-
inal ganglion (5 mM, 2 �l) 24 h prior to BTX-A or saline injection into
the whisker pad. Measurements were performed 3 d after BTX-A
injection. i.g., intraganglionic application into the trigeminal ganglion;
periph, peripheral application into the whisker pad. Data are repre-
sented as mean�SEM, n�5–6, * P�0.05 (Newman–Keuls post hoc).

Fig. 3. Efects of intraganglionic BTX-A on pain (facial rubbing) in first
and second phase of orofacial formalin test and essential role of
axonal transport. Facial pain was produced by formalin injection into
the whisker pad (2.5% formalin, 50 �l). BTX-A (1U/kg) was injected
into the trigeminal ganglion. Colchicine was also injected into the
trigeminal ganglion (5 mM, 2 �l) 24 h before BTX-A or saline. Effect
of BTX-A were measured on first and second day after the application.
BTX 1 day—BTX-A applied 1 d before the formalin test; BTX 2 days—
BTX-A applied 2 d before the formalin test. Data are represented as
mean�SEM, n�4–7, * P�0.05 (Newman–Keuls post hoc).
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DISCUSSION

Cleavage of SNAP-25 at neuromuscular junctions or au-
tonomic synapses, induced by enzymatic activity of BTX-A
light chain, results in blockade of acetylcholine (ACh) re-
lease. Analogous mechanism was proposed as an expla-
nation of antinociceptive activity in peripheral sensory neu-
rons (Cui et al., 2004; Aoki, 2005). In formalin-induced
inflammatory pain, peripheral BTX-A pretreatment had no
effect on the acute nociceptive pain in phase I but it re-
duced pain during inflammatory phase II, accompanied by
lowered peripheral glutamate release and reduction of
edema in inflamed paw tissue. The most logical explana-
tion was that both antinociceptive and anti-inflammatory
actions of BTX-A are mediated by blockage of neurotrans-
mitter and inflammatory mediator release from sensory
nerve endings, as a consequence of peripheral SNAP-25
cleavage (Aoki, 2005).

However, further studies with other inflammatory pain
models showed dissociation between anti-inflammatory
and antinociceptive activity of BTX-A. When applied in
doses that effectively reduced pain, BTX-A had no effect
on capsaicin-induced neurogenic inflammation and carra-
geenan-induced edema (Bach-Rojecky and Lacković,
2005; Bach-Rojecky et al., 2008; Favre-Guilmard et al.,
2009). Since inflammation is a peripheral phenomenon,
the lack of the BTX-A effect on inflammation while con-
comitantly reducing pain brought into question the inhibi-
tion of peripheral exocytosis as a main mechanism of the
antinociceptive action.

Involvement of CNS and importance of axonal
transport for BTX-A antinociceptive activity

Evidence of antinociceptive activity distant from the site of
peripheral unilateral BTX-A injection was found in pacli-
taxel-induced polyneuropathy (Favre-Guilmard et al.,

Fig. 4. Immunofluorescently labeled truncated SNAP-25 (light red) in coronal sections of rat caudal medulla 5 d after BTX-A (15 U/kg) injection into
the whisker pad. Contra—TNC contralateral to the site of injection. Ipsi—TNC ipsilateral to the site of injection; Section approx. 1.4 mm caudal from
obex. Yellow scale bar, 500 �m (10� magnification); green scale bar, 100 �m (40� magnification).
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2009), acidic saline-induced muscular hyperalgesia (Bach-
Rojecky and Lacković, 2009), and diabetic neuropathy
(Bach-Rojecky et al., 2010). In those reports, apart from
the injected side, BTX-A reduced the pain on contralateral
side, too. Also, BTX-A injection into the distally cut sciatic
nerve was still able to reduce contralateral pain in a model
of bilateral muscular hyperalgesia, thus excluding the in-
volvement of peripheral nerve endings (Bach-Rojecky and
Lacković, 2009). In this model, effect of peripheral BTX-A
was prevented by colchicine injection into the sciatic nerve
(Bach-Rojecky and Lacković, 2009). These observations
demonstrated the necessity of retrograde axonal transport
for BTX-A antinociceptive activity, and probably a central
site of toxin’s action. In line with that, antinociceptive ac-
tivity of BTX-A is obtained with lower doses and with faster
onset after intrathecal than after peripheral injection (Bach-
Rojecky et al., 2010). Recently, it was found that increased
vesicular release from trigeminal ganglionic cells acutely
isolated from rats with experimental trigeminal neuropathy
was prevented if animals were pretreated with peripherally
applied BTX-A (Kitamura et al., 2009). The authors sug-
gested BTX-A retrograde transport from periphery and
transcytosis within ganglionic somata as a possible expla-
nation. Most recent studies of BTX-A effects on regener-
ative processes in sciatic nerve and neuroimmunological
changes in dorsal root ganglia and lumbal dorsal horn of
rats with experimental neuropathy also suggest the possi-

ble direct BTX-A action distant from the site of injection due
to retrograde axonal transport (Marinelli et al., 2010; Mika
et al., 2011; Pavone and Luvisetto, 2010).

Observations described up to now suggest that anti-
nociceptive action of BTX-A is centrally mediated and ax-
onal transport-dependent. To verify the hypothesis that
BTX-A is axonally transported through sensory neurons, in
present experiments we investigated BTX-A effects in tri-
geminal sensory system. In a model of pain induced by
formalin injection into the whisker pad, peripherally applied
BTX-A (3.5 U/kg) reduced inflammatory phase II of forma-
lin pain. Effects of peripheral BTX-A were completely abol-
ished by colchicine injection into the trigeminal sensory
ganglion (Fig. 2). Intraganglionic BTX-A in a dose of 1 U/kg
in our experiment had similar effect like peripheral dose of
3.5 U/kg BTX-A. These observations confirm the assump-
tion that in present experiments, axonal transport of BTX-A
occurs via trigeminal sensory neurons and rules out the
importance of axonal transport via motor or sympathetic
neurons for antinociceptive effects of BTX-A.

Since Kitamura et al. (2009) suggested blockage of
vesicular release and BTX-A transcytosis within ganglionic
somata, we investigated whether BTX-A antinociceptive
activity is caused by its actions inside the ganglion. We
speculated that direct i.g. delivery of BTX-A would cause
the spread of toxin within the ganglion and should enable
fast antinociceptive effect. However, in the present exper-

Fig. 5. Evidence of central enzymatic activity of BTX-A in ipsilateral TNC after peripheral application. (A) Time course: occurrence of truncated
SNAP-25 1, 3 and 5 d after BTX-A injection into the whisker pad (15 U/kg). (B) Effect of different doses: truncated SNAP-25 in ipsilateral TNC 5 d after
peripheral BTX-A application at different doses (3.5, 15 and 30 U/kg). Sections approx. 1–1.5 mm caudal from obex. 40� magnification; scale bar (gray
line), 100 �m.
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iment this action was delayed, occurring after 2 days,
opening the possibility that the ganglion itself is not the
main site of BTX-A antinociceptive activity. Moreover, by
blocking axonal transport with colchicine pretreatment, ef-
fect of intraganglionic BTX-A was prevented (Fig. 3), sug-
gesting that BTX-A, even when delivered directly to the
ganglion, still requires axonal transport to exert its antino-
ciceptive effects. Thus, we hypothesized that BTX-A could
be axonally transported, via sensory root, to trigeminal
nociceptive projections in central nervous system.

Occurrence of truncated SNAP-25 in the CNS after
BTX-A injection in trigeminal innervation area

To verify our assumption about the axonal transport of
peripherally applied BTX-A to central trigeminal projec-
tions, we employed immunohistochemical labeling of trun-
cated SNAP-25 in TNC, the region that predominantly
receives facial nociceptive input. By demonstrating
SNAP-25 cleavage in TNC we found that peripherally ap-
plied BTX-A, or its catalytically active fragments, most
probably reach central projections of primary sensory neu-
rons by axonal transport (Figs. 4 and 5). Time of occur-
rence of truncated SNAP-25 in our experiment (Fig. 5A) is
similar to the time course of BTX-A traffic in central neu-
rons and motoneurons (Antonucci et al., 2008).

Theoretically it might be possible that, instead of
BTX-A, the truncated SNAP 25—product of its proteolytic
activity, was axonally transported to central trigeminal nu-
clei. However, previously it was shown that BTX-A injec-
tion into the sciatic nerve, which was cut distally to the
place of toxin’s injection, still reduces pain on contralateral
side (Bach-Rojecky and Lacković, 2009). This experiment
rules out the possibility that cleaved SNAP-25, transported
from peripheral nerve endings, would be involved in anti-
nociceptive effects of BTX-A. Possibility of contribution of
SNAP-25 cleavage in trigeminal ganglion cannot be ruled
out completely.

Confinement of cleaved SNAP-25 immunoreactivity to
medullary dorsal horn excludes possible systemic spread-
ing of BTX-A. Moreover, animals injected into whisker pad
with 3.5 and 15 U/kg did not exhibit impaired rotarod
performance (results not shown). However, in some sec-
tions, few immunoreactive fiber-like structures were also
visible in contralateral dorsal horns (data not shown),
which could be associated with contralateral crossing of
central afferent terminals (Jacquin et al., 1990).

Occurrence of truncated SNAP-25 in TNC suggests
that peripherally applied, axonally transported BTX-A can
affect second order central sensory neurons, either pre-
synaptically by SNAP-25 cleavage in central terminals of
primary afferent neurons, or following transcytosis. Trans-
cytosis of BTX-A to second-order synapses has been sug-
gested in retinal ganglionic cells after axonal transport
within visual system (Antonucci et al., 2008). Recently
Kitamura et al. (2009) on the basis of in vitro experiments
proposed existence of BTX-A transcytosis in trigeminal
ganglia, too.

SNAP-25 cleavage in medullary dorsal horn (Figs. 4
and 5) suggests that BTX-A can alter central nociceptive

transmission of presently unknown neurotransmitters,
which requires further investigation. There is evidence
that, when applied directly to brainstem slices or intrathe-
cally at the level of spinal cord, BTX-A alters release and
expression of CGRP (calcitonin gene-related peptide), a
neuropeptide involved in pain transmission (Meng et al.,
2009; Lee et al., 2011).

Importantly, we found that BTX-A-truncated SNAP-25
appeared in TNC even at 3.5 U/kg, the lowest peripheral
antinociceptive dose (Bach-Rojecky and Lacković, 2005).
Therefore, the axonal traffic of BTX-A from periphery to the
CNS is not a phenomenon occurring only at high doses, as
proposed by Alexiades-Armenakas (2008). Although com-
parison of doses in rats and humans can always be ques-
tioned, dose used in our experiment (3.5 U/kg) corre-
sponds to 245 U dose in 70 kg human. BTX-A doses
typically used in migraine treatment range from 100 to 260
U (Aurora et al., 2007), and in recent study which resulted
in FDA approval for migraine treatment, from 155 to 195 U
(Dodick et al., 2010).

CONCLUSION

Antinociceptive effect of BTX-A requires axonal transport
through sensory neurons and it is associated with occur-
rence of truncated SNAP-25 in central sensory nociceptive
nuclei.
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a b s t r a c t

Axonal transport of enzymatically active botulinum toxin A (BTX-A) from periphery to the CNS has been
described in facial and trigeminal nerve, leading to cleavage of synaptosomal-associated protein 25
(SNAP-25) in central nuclei. Aim of present study was to examine the existence of axonal transport of
peripherally applied BTX-A to spinal cord via sciatic nerve.

We employed BTX-A-cleaved SNAP-25 immunohistochemistry of lumbar spinal cord after intramuscu-
lar and subcutaneous hind limb injections, and intraneural BTX-A sciatic nerve injections. Truncated
SNAP-25 in ipsilateral spinal cord ventral horns and dorsal horns appeared after single peripheral BTX-
A administrations, even at low intramuscular dose applied (5 U/kg). Cleaved SNAP-25 appearance in
the spinal cord after BTX-A injection into the sciatic nerve was prevented by proximal intrasciatic injec-
tion of colchicine (5 mM, 2 ll). Cleaved SNAP-25 in ventral horn, using choline-acetyltransferase (ChAT)
double labeling, was localized within cholinergic neurons.

These results extend the recent findings on BTX-A retrograde axonal transport in facial and trigeminal
nerve. Appearance of truncated SNAP-25 in spinal cord following low-dose peripheral BTX-A suggest that
the axonal transport of BTX-A occurs commonly following peripheral application.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

It is a textbook knowledge that botulinum toxin type A (BTX-A)
in botulism, as well as in therapeutic applications, exerts the neu-
romuscular paralysis by enzymatic cleavage of peripheral synapto-
somal-associated protein 25 (SNAP-25), involved in
neuroexocytosis. Unlike related tetanus toxin, which is known to
be retrogradely transported and transcytosed to second-order syn-
apses (Schwab et al., 1979), it was generally accepted that BTX-A
acts directly only on peripheral nerve endings. Nevertheless, al-
ready in the 70-ties some authors reported axonal transport of
radioactively labeled botulinum toxin A (BTX-A) within peripheral
nerves to spinal cord (Habermann, 1974; Wiegand et al., 1976).
Those observations remained forgotten and questioned in later
studies (Tang Liu et al., 2003). Main objections to these early stud-
ies were that it was not known if radioactively labeled BTX-A re-
tained the enzymatic activity by the time it reached spinal cord.

However, axonal transport of functional BTX-A molecules was re-
cently found in hippocampus, visual system and in facial motoneu-
rons (Antonucci et al., 2008). BTX-A axonal transport followed by
enzymatic cleavage in CNS has been demonstrated in trigeminal
sensory neurons (Matak et al., 2011). Recent in vitro study suggests
spread of BTX-A within cell bodies and distal processes of cultured
sympathetic neurons (Lawrence et al., 2012).

Retrograde axonal transport of low dose BTX-A in spinal sensory
neurons has been suggested by behavioral experiments in models
of bilateral muscular hyperalgesia (Bach-Rojecky and Lacković,
2009) and diabetic neuropathy (Bach-Rojecky et al., 2010).

In present study we found the enzymatic activity of BTX-A in rat
motor and sensory regions of the spinal cord after intramuscular,
subcutaneous, or intraneural toxin application.

2. Materials and methods

2.1. Animals

Eighteen male Wistar rats (University of Zagreb School of Med-
icine, Croatia), weighing 300–400 g, kept on 12 h/12 h light and
dark cycle with unlimited access to food and water, 3 months
old, were used. Experiments were conducted according to the
European Communities Council Directive (86/609/EEC). Animal

0197-0186/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
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procedures were approved by the Ethical Committee of University
of Zagreb, School of Medicine (Permit No. 07-76/2005-43). All ef-
forts were made to reduce the suffering of animals and the number
of animals used.

2.2. Experimental procedure

Animals were injected unilaterally with BTX-A (Botox, Allergan,
Irvine, CA, USA) diluted in 0.9% saline. One international unit (1 U)
of BTX-A, equal to mouse LD50, contains approximately 48 pg of
900 kDa neurotoxin. Animals were divided into 6 treatment groups
(3 animals per group): group 1: BTX-A injected subcutaneously
(s.c.) into the plantar side of hind-paw pad (30 U/kg, in volume
of 30 ll); groups 2 and 3: BTX-A injected intramuscularly (i.m.)
into the gastrocnemius (5 U/kg and 30 U/kg, 30 ll). In groups 4
and 5 BTX-A was injected intraneurally (i.n.) into the sciatic nerve
(10 U/kg, 2 ll). 2 ll of 5 mM axonal transport blocker colchicine
(Sigma, St. Louis, MO, USA) (group 4) or saline (group 5) were in-
jected into the sciatic nerve 24 h prior to the more distal i.n. injec-
tions of BTX-A. To reduce the number of animals in the experiment,
single control group (group 6) consisting of 0.9% saline (i.m.) –
treated animals was used.

5 U/kg low dose and 30 U/kg BTX-A high dose was chosen based
on previous experiments (Cui et al., 2004; Bach-Rojecky and
Lacković, 2005), and 10 U/kg dose was chosen based on prelimin-
ary data. 5 U/kg dose in humans (350 U for a 70 kg average human)
is within the dose-range regularly used for treatment of spasticity
(Intiso, 2012).

For i.m. and s.c. injections rats were restrained, while for the i.n.
injections animals were deeply anesthetized (chloral hydrate, Sig-
ma, St. Louis, MO, USA; 300 mg/kg intraperitoneally). Sciatic nerve
was exposed after skin incision at mid-femoral level and blunt dis-
section through the thigh muscles. Special care was made to check
for possible leakage by placing piece of parafilm under the nerve
prior to i.n. injection. 0–10 ll Hamilton needle (Hamilton, Bonad-
uz, Switzerland) was used to inject saline/colchicine and BTX-A
into the nerves. 3 min following the treatment, parafilm was re-
moved, the nerve returned to previous position and the skin su-
tured. After the operation animals were left to recover from
anesthesia under warm bulb light and returned to their cages.

2.3. Immunohistochemistry

Animal preparation and immunohistochemistry was performed
similarly as previously described (Matak et al., 2011; Antonucci
et al., 2008). In brief, 5 days after BTX-A s.c. and i.m. injections or
3 days following i.n. injections, rats were deeply anesthetized with
chloral hydrate and transcardially perfused with 0.9% saline fol-
lowed by fixative (4% paraformaldehyde in 0.01 M phosphate-buf-
fered saline (PBS)). Lumbal spinal cords were removed,
cryoprotected in sucrose (15% in fixative for 1 day and 30% in
PBS for 2 days), and kept on �80 �C until further use. 40 lm spinal
cord coronal sections were cut on a freezing microtome and trans-
ferred to PBS-filled wells for free floating. Following blocking in
PBS-diluted 10% normal goat serum (NGS), the sections were incu-
bated with 1: 600 anti-BTX-A-cleaved SNAP-25 rabbit polyclonal
antibody (a kind gift from prof. Ornella Rossetto, University of Pad-
ua, Italy) diluted in PBS with 1% NGS, overnight at room tempera-
ture, and the following day with fluorescently-labeled secondary
antibody in dark (goat anti-rabbit Alexa-Fluor 555, Invitrogen,
Carlsbad, CA, USA). Sections were then blocked again and counter-
stained with mouse monoclonal antibody for neurons (Anti-NeuN,
Millipore, Temecula, CA, USA) (1:500 dilution overnight at 4 �C),
and the next day with secondary anti-mouse Alexa-Fluor 488
(Invitrogen, Carlsbad, CA, USA).

Sections were washed with PBS, mounted on glass slides with
antifading agent (Fluorogel, Electron Microscopy Sciences, Hatfield,
PA, USA), and visualized with fluorescence microscope equipped
with appropriate filters (Olympus BX51, Olympus, Tokyo, Japan)
and digital camera (Olympus DP-70). Double-label images were
composed with Olympus DP Manager software, assembled with
Microsoft Paint and then processed for brightness and contrast
using Adobe Photoshop. We checked for the appearance of cleaved
SNAP-25 immunoreactivity in 20–25 lumbal spinal cord sections
from each animal. In the figures, to show the data of one experi-
mental group, representative image from single animal was chosen.

2.4. Colocalization study

Colocalization study of spinal ventral horns was performed with
confocal laser scanning microscope (Leica TCS SP2 AOBS, Leica,
Wetzlar, Germany), using 488 and 543 nm lasers. L5 spinal cord
sections from animals injected with 30 U/kg s.c. were blocked with
donkey serum and incubated overnight at room temperature with
primary antibodies for cleaved SNAP-25, and for choline acetyl-
transferase (Millipore, Temecula, CA, USA), produced in goat,
1:100 dilution. The next day sections were incubated with second-
aries: donkey anti-rabbit Alexa Fluor 488 and donkey anti-goat
Alexa Fluor 546 (Invitrogen, Carlsbad, CA, USA). In second experi-
ment sections were blocked with goat serum and incubated with
anti-cleaved SNAP-25 and mouse anti-glial fibrilary acidic protein
(Sigma, St. Louis, MO, USA, 1:1000) overnight at room temperature.
The next day sections were incubated with secondary goat anti-
mouse Alexa Fluor 546 and goat anti-rabbit Alexa Fluor 488 (Invit-
rogen, Carlsbad, CA, USA).

3. Results

Slight ipsilateral flaccidity of rat distal hind limb was visible
only following the i.m. treatment (5 and 30 U/kg of BTX-A), but
not following the i.n. or s.c. injections.

BTX-A-cleaved SNAP-25 immunoreactivity appeared in ipsilat-
eral lumbal ventral horns of s.c., i.m. and i.n.- BTX-A treated ani-
mals (Figs. 1 and 2). Cleaved SNAP-25 immunoreactivity was
visible around motoneuronal nuclei of lamina 9 in the form of
dense, small fibers, and long neuronal processes. Following i.m.

Fig. 1. Immunofluorescently labeled truncated SNAP-25 (red) in ipsilateral ventral
horn of rat spinal cord (L5 segment) 5 days after subcutaneous BTX-A (30 U/kg)
injection into the hind-paw pad. Green represents NeuN neuronal staining.
Contralateral = ventral horn contralateral to the site of injection; ipsilateral = ipsi-
lateral to the site of injection. Blue scale bar, 500 lm; yellow scale bar, 200 lm.
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and i.n. injections, truncated SNAP-25 occurred in L4, mainly in
laminas 7 and 9, while following s.c. injection, strongest immu-
nolabeling occurred in L5 segment ventral horn lamina 9 (Fig. 1).
Following intrasciatic saline + BTX-A injection at mid-thigh level,
truncated SNAP-25 immunoreactivity was more widespread ros-
tro-caudally (L3-L5).

Intramuscularly applied low-dose BTX-A (5 U/kg) also resulted
in ventral horn SNAP-25 cleavage (Fig. 2B). Intensity of cleaved
SNAP-25 in ventral horn following 5 U/kg i.m. injection, although

not quantified, was apparently lower than after higher doses
(30 U/kg i.m. and s.c.).

BTX-A enzymatic activity in the form of individual fibers ap-
peared in ipsilateral dorsal horn even at small peripheral i.m.
(5 U/kg) dose (Fig. 2A), and following higher dose i.m., i.n. and
s.c. injections (not shown), thus, indicating the axonal transport
in spinal sensory neurons.

Intrasciatic colchicine pretreatment abolished the cleaved
SNAP-25 immunoreactivity in spinal cord of BTX-A (i.n.) treated
animals, thus, demonstrating the microtubule-dependent retro-
grade axonal transport of BTX-A through sciatic nerve (Fig. 2C
and D).

To examine the cellular localization of cleaved SNAP-25 in
spinal cord motor region, we performed colocalization study with
markers of cholinergic neurons and astrocytes. Cleaved SNAP-25
was found to colocalize with choline acetyl transferase (ChAT) -
positive fibers (Fig. 3A). Cleaved SNAP-25 did not colocalize with
glial fibrillary acidic protein (GFAP), marker of astrocytes (Fig. 3B).

4. Discussion

4.1. Occurrence of cleaved SNAP -25 in the spinal cord after BTX-A
peripheral injections

Cleavage of central SNAP-25 in ipsilateral spinal cord segments
after single peripheral application of BTX-A suggests the long-dis-
tance axonal traffic of enzymatically active BTX-A fragments from
periphery to the spinal cord. These results extend recent findings
on retrograde axonal transport of functionally active BTX-A in cra-
nial nerves (Antonucci et al., 2008; Matak et al., 2011). Importantly,
apart from cranial nerves in facial region with relatively short axons
which project to the rat brainstem, this study shows BTX-A axonal
transport to CNS over longer distances. Present immunohistochem-
ical evidence of axonal transport to spinal cord is in line with previ-
ous behavioral findings, where inhibition of axonal transport in the
rat sciatic nerve abolished BTX-A antinociceptive effects in a model
of bilateral pain (Bach-Rojecky and Lacković, 2009).

To examine the traffic within peripheral nerves we applied BTX-
A directly into the sciatic nerve. Occurrence of truncated SNAP-25
in spinal cord after i.n. injection, preventable by proximally applied

Fig. 2. Truncated SNAP-25 in ipsilateral L4 spinal cord segment. (A) Dorsal horn
after intramuscular BTX-A (5 U/kg) injection into the gastrocnemius; (B) ventral
horn after intramuscular BTX-A (5 U/kg) injection into the gastrocnemius; (C)
ventral horn after saline and BTX-A (10 U/kg) injection into the sciatic nerve and (D)
ventral horn after colchicine (5 mM) and BTX-A (10 U/kg) injection into the sciatic
nerve. White arrows point to cleaved SNAP-25 fibers (red immunoreactivity). Green
represents NeuN neuronal staining. Scale bar, 100 lm.

Fig. 3. Truncated SNAP-25 occurs within cholinergic neurons, but not astrocytes. (A) Confocal image of 2 lm optical section of ventral horn ipsilateral to BTX-A treatment
(30 U/kg, sc.), showing colocalization of cleaved SNAP-25 (green immunofluorescence) and ChAT (red) fiber. (B) Cleaved SNAP-25 (green) did not colocalize with GFAP (red),
marker of astrocytes. Scale bar, 50 lm.
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colchicine, shows that BTX-A is retrogradely transported through
the peripheral nerve by means of microtubule-dependent axonal
transport.

The effect of intrasciatic injection of BTX-A on pain behavior
was reported before (Bach-Rojecky and Lacković, 2009). How the
BTX-A enters the sciatic axons is unknown. BTX-A uptake into
the peripheral nerve endings is mediated by SV2C-receptor medi-
ated endocytosis (Mahrhold et al., 2006). If the similar mechanism
exists in axons is not known. Another possibility is that BTX-A dif-
fuses into the axoplasm through damaged axons, caused by i.n.
injection itself.

In this study we found that cleaved SNAP-25 was localized in
ChAT- positive cholinergic fibers surrounding the motoneuronal
cell bodies (Fig. 3), probably belonging to proximal dendrites of
motor neurons. This finding indicates that, after axonal transport
from periphery, botulinum toxin cleaves SNAP-25 most likely in
primary motor neurons. But, the possibility that botulinum toxin,
following transcytosis, enters cholinergic nerve terminals of neu-
rons other than motoneurons cannot be ruled out completely. No-
vel study reported the cleavage of SNAP-25 in the muscles of
contralateral forelimb following peripheral BTX-A forelimb injec-
tion, thus, indicating the possibility of transcytosis within the mo-
tor neurons (Torii et al., 2011).

In this study an indirect method of BTX-A detection (by cleaved
SNAP-25 immunolabeling) was used. Antibody specificity to BTX-
A-truncated and not to the intact SNAP-25 was previously
confirmed by BTX-A injections into the rat hippocampus and SDS
polyacrylamide gel electrophoresis followed by Western blot
(Matak et al., 2011). Single 24 kDa band corresponding to trun-
cated SNAP-25 was visible only in BTX-A-treated animals, and po-
sition of that band was confirmed using antibody which recognizes
both cleaved and intact SNAP-25. This experiment excluded possi-
ble immunostaining due to the non-specific binding to intact
SNAP-25, or due to endogenously cleaved SNAP-25 (Fig. 1 from
Matak et al., 2011).

It can be argued that, instead of BTX-A, truncated SNAP-25 was
transported from periphery to the spinal cord. Axonal transport of
BTX-A was demonstrated previously in the visual system.
Antonucci et al. (2008) injected BTX-A into the superior colliculus,
and examined the occurrence of truncated SNAP-25 in the rat ret-
ina. Then, they cut the optic nerve and depleted the retina from
truncated SNAP-25 by transiently active botulinum toxin E
(BTX-E), which cleaves both intact and BTX-A-cleaved SNAP-25.
After completion of BTX-E effects, BTX-A-cleaved SNAP-25
re-appeared in the retina, demonstrating the presence of BTX-A
protease.

Low dose BTX-A (0.5 U/kg) injection into the distally cut rat sci-
atic nerve reduced contralateral pain in a bilateral pain model
(Bach-Rojecky and Lacković, 2009), which, obviously, cannot be
associated with peripheral SNAP-25 cleavage.

In sensory system, occurrence of truncated SNAP-25 in CNS
seems to be associated with toxin’s antinociceptive activity (Matak
et al., 2011). On the other hand, significance of SNAP-25 cleavage in
central motor regions remains to be investigated.

5. Conclusion

Appearance of truncated SNAP-25 in spinal cord following low
dose i.m. BTX-A (5 U/kg) administration suggests that the axonal
transport of toxin to CNS commonly occurs following peripheral
administration.
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Abstract Long-term effectiveness and repeated admin-

istration of botulinum toxin A are the basis for its use in

both neuromuscular disorders and certain painful condi-

tions. Botulinum toxin A has been recently approved for

migraine treatment, and its off-label use extends to other

craniofacial pain disorders. However, recently it was

reported that, after repeated injection, botulinum toxin

loses its antinociceptive efficacy in rats. In present study

with a similar design, we compared the effects of single

and repeated injections of botulinum toxin in formalin-

induced orofacial pain. No statistically significant differ-

ences were found between single or repeatedly treated

animal groups. Our results are in line with the clinical

experience and suggest that botulinum toxin can be

re-administered in orofacial pain treatment.

Keywords Antinociceptive activity � Botulinum toxin A �
Orofacial pain � Repeated injection

Introduction

Botulinum toxin A (BTX-A) is used in neuromuscular and

autonomous disorders characterized by cholinergic hyper-

activity, and in treatment of some forms of pain (Jankovic

2004; Jabbari and Machado 2011). Important for its clinical

application is the long-term effectiveness and repeated use

(Naumann et al. 2006). Its off-label use extends to various

painful conditions, such as peripheral neuropathies, low

back pain, various types of headache, etc. (Allam et al.

2005; Dodick et al. 2005; Foster et al. 2001; Jabbari and

Machado 2011). BTX-A has been recently approved for

chronic migraine treatment (Dodick et al. 2010).

In experimental animals, it has been shown that BTX-A

exhibits long-term reduction of inflammatory acute pain,

neuropathic pain, visceral and deep somatic pain (Cui et al.

2004; Bach-Rojecky and Lackovic 2005; Bach-Rojecky

et al. 2005; Chuang et al. 2008; Krug et al. 2009).

In a recent report its effectiveness was demonstrated in

orofacial formalin pain 8 days after the BTX-A pretreat-

ment. However, when toxin was re-administered 42 days

after the first treatment, the effect of BTX-A was not

reproduced (Piovesan et al. 2011). Mentioned report that

BTX-A loses its analgesic effect upon repeated injection in

experimental animals is potentially very important for its

clinical use in migraine and in some other chronic pain

conditions, where repeated use is of high importance.

The aim of this study was to compare the effects of

single or repeated injections of BTX-A in formalin-induced

orofacial pain.

Materials and methods

Animals

Adult male Wistar rats (University of Zagreb School of

Medicine, Croatia) weighing 300 g at the beginning of

experiment were used. Animals were kept in 12 h/12 h

light and dark cycle, with unlimited access to food and

water. Experiment was conducted according to the Euro-

pean Communities Council Directive (86/609/EEC) and

recommendations of the International Association for the

Study of Pain (Zimmerman 1983). Animal procedures were
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approved by the Ethics Committee of University of Zagreb

School of Medicine (Permit No. 07-76/2005-43).

Drugs

100 units of Botulinum toxin type A (Botox�, Allergan

Inc., Irvine, CA, USA) were dissolved in 1 ml of 0.9 %

saline. 5 U/kg dose was administered unilaterally as 20 ll

bolus into the whisker pad tissue using a 27 1/2 gauge

needle. 20 ll of 0.9 % saline solution was injected to

control rats. Facial formalin injection was carried out using

50 ll of saline-diluted 2.5 % formalin (Kemika, Zagreb,

Croatia).

Treatment and behavioral testing

Three months old adult rats were divided into three groups,

each consisting of five to six animals. First group of six

conscious rats was injected with BTX-A into the left

whisker pad tissue, while other two groups were left

untreated. After 42 days, first group of rats underwent their

second treatment of BTX-A, while the second and third

group were injected with BTX-A and saline, respectively.

Instead of using two control groups (single and double

injection of saline), to reduce the number of animals we

used a single control group pretreated only once with

saline. In our published experiments, double versus single

pretreatment with saline was not found to affect the painful

response or BTX-A efficacy (Filipović et al. 2012; Bach-

Rojecky and Lacković 2009; Matak et al. 2011). Period of

42 days between the two BTX-A injections was chosen

based on the study of Piovesan et al. (2011).

After a period of 6 days, orofacial formalin test was

performed to assess the antinociceptive activity of BTX-A.

Animals were placed inside transparent chambers for

10-min acclimatization period. Following the acclimati-

zation, conscious, restrained rats were injected with forma-

lin into the whisker pad ipsilateral to BTX-A pretreatment

and immediately returned to the transparent chamber for a

45-min observation period. Observers were blind to the

animal treatment. Observation period was divided into 15

blocks of 3 min, and the number of seconds the animal spent

in ipsilateral face rubbing or grooming was measured during

phase I (0–12 min) and phase II (12–45 min) of formalin-

induced pain (Raboisson and Dallel 2004).

Statistical analysis

Data were represented as mean ± SEM, and analyzed

by one-way ANOVA followed by Tukey’s HSD test

(p \ 0.05).

Results

Injection of BTX-A into whisker pad resulted in reduced

movement of ipsilateral whiskers and their backward

direction (Fig. 1). In group receiving two injections of

BTX-A no visible reduction of whisker movement was

visible 42 days after the first treatment (prior to second

BTX-A injection). Whisker paralysis after second BTX-A

injection occurred again, as proof of efficiency of

re-administered BTX-A (Fig. 1c).

In orofacial formalin test, phase I of rubbing/grooming

behavior was not affected by BTX-A treatment, while

phase II in both BTX-A treated groups revealed significant

reduction in number of seconds spent rubbing/grooming, in

comparison with control (Fig. 2). There was no statistically

significant difference in time of facial grooming between

the animals administered once or twice with BTX-A

(Fig. 2).

Discussion

According to experimental results recently published by

Piovesan et al. (2011), BTX-A injections 8 days before

formalin test inhibit orofacial pain. However, repeated

treatment after 42 days had no effect. This observation

could have far reaching clinical consequences because it

Fig. 1 Whisker appearance 1 day after administration of a physiological saline, b BTX-A first injection, c BTX-A second injection. Saline and

BTX-A (5 U/kg) were administered to the left whisker pad
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questions the usefulness of repeated injections of BTX-A in

pain conditions. Basically, it is also intriguing because it

might suggest that, after single injection, BTX-A makes

permanent functional changes. Such putative changes

might be connected either with mechanism of its uptake by

peripheral sensory nerves mediated by SV2 proteins

(Mahrhold et al. 2006), or with the mechanism of antino-

ciceptive action, which is connected with axonal transport

from periphery to central sensory nuclei, and likely with

central SNAP-25 cleavage (Bach-Rojecky et al. 2009;

Matak et al. 2011; Filipović et al. 2012). It might also

suggest immunoresistance to BTX-A or possibly yet

unknown long-term effect on synaptic plasticity caused by

BTX-A.

However, in contrast to the results from Piovesan et al.

(2011), both single and repeated injection of BTX-A were

equally effective in our study, which is in line with the

clinical experience in pain treatment. It also suggests that

BTX-A does not induce permanent functional changes that

could lead to ineffectiveness of repeated injection. The

presence of ipsilateral whisker paralysis after second

injection of BTX-A verifies that no immune resistance

towards BTX-A occurred and the second bolus showed

equal effectiveness on neuromuscular junction as in ani-

mals that were injected only once, which is in agreement

with the repeated clinical use in muscular disorders (Nau-

mann et al. 2006).

There are few basic differences between the two studies

performed. Adult rats of the same age were used in our

experiment, whereas the animals used in study from

Piovesan et al. (2011) were juvenile when treated with

BTX-A and tested with formalin for the first time. In the

aforementioned study, formalin was applied twice to the

same experimental animals. Cellular protein precipitation

and possible permanent peripheral nerve ending damage in

rats treated with formalin upon the first nociceptive testing

might have interfered with second nociceptive testing or

BTX-A uptake into the sensory neurons after second

injection. Therefore, in our study, the formalin test was

conducted only once in all experimental groups. As

described in previous literature phase I of the formalin test,

caused by direct stimulation of nerve endings with for-

malin, is measured for the first 12 min of the test, while

phase II represents central sensitization induced by

peripheral nerve activity and is measured for the next

33 min (12–45 min) (Raboisson and Dallel 2004). In our

experiments, formalin-induced pain was measured during

the whole period of 45 min while Piovesan et al. (2011)

measured pain for 30 min only.

Our results did not confirm recent preclinical study from

Piovesan et al. (2011), and suggest that BTX-A can be

re-administered in orofacial pain and probably in BTX-A

treatment of other forms of pain.

References

Allam N, Brasil-Neto JP, Brown G, Tomaz C (2005) Injections of

botulinum toxin type A produce pain alleviation in intractable

trigeminal neuralgia. Clin J Pain 2:182–184
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a b s t r a c t

Unlike most classical analgesics, botulinum toxin type A (BoNT/A) does not alter acute nociceptive
thresholds, and shows selectivity primarily for allodynic and hyperalgesic responses in certain pain
conditions. We hypothesized that this phenomenon might be explained by characterizing the sensory
neurons targeted by BoNT/A in the central nervous system after its axonal transport. BoNT/A’s central
antinociceptive activity following its application into the rat whisker pad was examined in trigeminal
nucleus caudalis (TNC) and higher-level nociceptive brain areas using BoNT/A-cleaved synaptosomal-
associated protein 25 (SNAP-25) and c-Fos immunohistochemistry. Occurrence of cleaved SNAP-25 in
TNC was examined after nonselective ganglion ablation with formalin or selective denervation of capsa-
icin-sensitive (vanilloid receptor-1 or TRPV1-expressing) neurons, and in relation to different cellular and
neuronal markers. Regional c-Fos activation and effect of TRPV1-expressing afferent denervation on tox-
in’s antinociceptive action were studied in formalin-induced orofacial pain.

BoNT/A-cleaved SNAP-25 was observed in TNC, but not in higher-level nociceptive nuclei. Cleaved
SNAP-25 in TNC disappeared after formalin-induced trigeminal ganglion ablation or capsaicin-induced
sensory denervation. Occurrence of cleaved SNAP-25 in TNC and BoNT/A antinociceptive activity in for-
malin-induced orofacial pain were prevented by denervation with capsaicin. Cleaved SNAP-25 localiza-
tion demonstrated toxin’s presynaptic activity in TRPV1-expressing neurons. BoNT/A reduced the c-Fos
activation in TNC, locus coeruleus, and periaqueductal gray.

Present experiments suggest that BoNT/A alters the nociceptive transmission at the central synapse of
primary afferents. Targeting of TRPV1-expressing neurons might be associated with observed selectivity
of BoNT/A action only in certain types of pain.

� 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

1. Introduction

Botulinum toxin type A (BoNT/A) proteolytically cleaves synap-
tosomal-associated protein 25 (SNAP-25), part of the soluble
N-ethylmaleimide sensitive factor attachment protein receptor
(SNARE) complex involved in vesicular neurotransmitter release
[13,31]. Subsequent prevention of SNARE-mediated neurotrans-
mitter release mediates BoNT/A’s toxicity in botulism and its ther-
apeutic effects associated with hyperactive neuromuscular and
autonomic cholinergic synapses. Small amounts of peripherally

applied BoNT/A are used for treatment of different painful disor-
ders (review by Jabbari and Machado [30]). In the craniofacial
region, BoNT/A was approved for chronic migraine treatment
[17]. Off-label BoNT/A use may be beneficial in other craniofacial
painful disorders, such as temporomandibular joint disorders and
trigeminal neuralgia [23,67].

Based on the preclinical model of formalin-induced pain [16], it
was suggested that BoNT/A reduces both pain and inflammation by
preventing local neurotransmitter release from peripheral sensory
nerves [2]. However, further studies questioned the association of
BoNT/A antinociceptive activity with its antiinflammatory effects.
At BoNT/A doses that reduced carrageenan- and capsaicin-induced
pain, no significant antiinflammatory effects were observed
[4,5,20]. Central antinociceptive activity has been suggested by
contralateral BoNT/A effects in experimental bilateral pain after
unilateral toxin injection [6,8,20,68,69]. Blockage of axonal

http://dx.doi.org/10.1016/j.pain.2014.04.027
0304-3959/� 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
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transport within sciatic and trigeminal nerve with colchicine pre-
vented the antinociceptive activity of peripherally applied toxin
[6,21,39]. BoNT/A-induced SNAP-25 cleavage was demonstrated
immunohistochemically in trigeminal nucleus caudalis (TNC) and
lumbar dorsal horn [37,39,40]. These observations demonstrated
that the BoNT/A’s antinociceptive effects are dependent on toxin’s
axonal transport within sensory neurons directed to central noci-
ceptive regions.

BoNT/A is not active in all forms of pain and does not alter
normal acute sensory thresholds [5,7,14,16]. We hypothesized
that the antinociceptive effects of BoNT/A might be mediated
by capsaicin-sensitive transient receptor potential vanilloid 1
(TRPV1)-expressing neurons, since this type of neuron does not
convey acute responses to innocuous or noxious stimuli [12,44].
Therefore, we studied formalin-induced hypersensitivity and the
occurrence of cleaved SNAP-25 in TNC after peripheral BoNT/A
alone or in combination with capsaicin-induced desensitization.
We found that the BoNT/A’s antinociceptive action and the occur-
rence of cleaved SNAP-25 in central nociceptive regions are both
associated with capsaicin-sensitive primary afferents, which is
consistent with the reduction of hyperalgesia and allodynia by
BoNT/A, and the lack of its effects on acute mechanical sensitivity.

2. Methods

2.1. Animals

Adult male Wistar rats (Department of Pharmacology,
University of Zagreb School of Medicine, Zagreb, Croatia) weighing
300–400 g (12-hour day/night cycle, free access to food and water)
were used in all experiments. Experiments were performed
according to the 2010/63/EU Directive on the protection of ani-
mals used for scientific purposes and recommendations of the
International Association for the Study of Pain [71], and approved
by the Ethical Committee of University of Zagreb School of
Medicine (permit no. 07-76/2005-43).

2.2. BoNT/A injections

Conscious, restrained animals were injected subcutaneously
into the whisker pad with 20 lL of 0.9% saline-diluted BoNT/A
(Botox; Allergan Inc, Irvine, CA, USA), using a 27 ½-gauge needle.
Five- and 15-U/kg doses were chosen based on previous experi-
ments [39,41]. One unit (1 U) of BoNT/A preparation contains
48 pg of purified Clostridium botulinum neurotoxin type A complex.

2.3. Intraganglionic denervation of trigeminal nerve with formalin and
capsaicin

To study the occurrence of cleaved SNAP-25 in trigeminal central
afferent terminals, rats were injected into the whisker pad with
15 U/kg BoNT/A, and formalin was injected intraganglionically
(i.g.) 5 days after peripheral BoNT/A delivery (sufficient period for
cleaved SNAP-25 occurrence in the central nervous system (CNS)
[39]). Anesthetized animals (chloral hydrate, 300 mg/kg) were
administered slowly (�1 lL/min) with 10 lL formalin (37% aqueous
solution of formaldehyde) (Formalin; Kemika, Zagreb, Croatia) into
the trigeminal ganglion with a Hamilton syringe, using a percuta-
eous infraorbital approach [39,45]. Animals were deeply anesthe-
tized and perfused for immunohistochemistry 5 days post
formalin-induced denervation (10 days after peripheral BoNT/A).

A procedure similar to the formalin-induced denervation was
used to investigate the possible truncated SNAP-25 occurrence in
capsaicin-sensitive central afferent terminals. Anesthetized ani-
mals (chloral hydrate, 300 mg/kg) were administered percutane-
ously into the trigeminal ganglion (�1 lL/min) with 2 injections

of 10 lL 2% capsaicin (Sigma, St. Louis, MO, USA) or vehicle (0.9%
saline + 10% ethanol + 10% Tween-80), separated by 48 hours. First
injection of capsaicin was administered i.g. 5 days after BoNT/A
(15 U/kg) peripheral treatment. In comparison to 0.5% and 1%
doses of capsaicin, which evoked gradual recovery of eye-wipe
response within 1 week, 2% capsaicin was chosen for further
experiments due to the long-term loss of response (monitored up
to 12 days after denervation). Animals were sacrificed 10 days post
peripheral BoNT/A (3 days post second capsaicin i.g. injection).

We examined whether the occurrence of BoNT/A enzymatic
activity in TNC is dependent on capsaicin-sensitive neurons. In a
separate experiment, the denervation of TRPV1-expressing pri-
mary sensory neurons was performed before the peripheral
BoNT/A injection. Animals were subjected to chemical denervation
with 2% capsaicin 5 and 3 days prior to BoNT/A (15 U/kg) treat-
ment, and sacrificed by perfusion 5 days post peripheral BoNT/A.

2.4. Behavioral assessment of the effects of trigeminal primary afferent
denervation

We assessed the effects of trigeminal denervation procedures
on the animal response to mechanical innocuous and noxious
stimuli, as well as TRPV1-sensitive sensory function.

Measurements were performed 3–4 days following the
trigeminal ganglion ablation with formalin or desensitization of
TRPV1-expressing neurons with capsaicin. Prior to behavioral
measurements, rats were allowed to accommodate to testing cage
environment until normal sniffing/no locomotion posture was
assumed. The observer was blinded to the animal treatment.

Whisker pad mechanical or nociceptive sensitivity was first
monitored with Von Frey filaments (2 and 8 g bending forces),
and then followed by pinprick test (5–10-minute interval between
each stimulus). Von Frey filament-bending forces (2 and 8 g) were
chosen based on the preliminary experiment with a series of Von
Frey filaments (1–15 g) in intact animals. Within the 2 to 8 g range,
the filaments elicited a nonpainful response in all control animals
(nonaversive behavior, few animals reacted by slow head with-
drawal). Von Frey filaments with bending forces higher than 8 g
(10 and 15 g) elicited head deflection (filament-bending force
was stronger than the rat neck muscles). Pinprick test was
employed by using a sterile 27 ½-gauge needle pressed gently
against the whisker pad without penetrating the dermis.

Response to innocuous and nociceptive mechanical stimuli in
the facial area was quantified by using a semiquantitative behav-
ioral scoring paradigm, originally devised and described in detail
by Vos et al. [65]. Aversive behavior was quantified by the follow-
ing descriptive categories: (1) no response; (2) nonaversive
response; (3) mild-aversive response; (4) strong aversive response;
(5) prolonged aversive behavior, which consists of a sum of follow-
ing response elements: (a) detection (exploratory/sniffing behavior
directed to stimulating object), (b) withdrawal (animal slowly
moves head away from stimulating object), (c) escape/attack
(avoids further contact/biting and grabbing movement towards
stimulation object), (d) facial grooming (3 or more asymmetric
grooming movements).

Each descriptive category, based on sum of present response
elements, was assigned a score [65]:

0 ¼ no response ðno detectionÞ;
1 ¼ nonaversive response ðdetectionÞ;
2 ¼ mild-aversive response ðdetectionþwithdrawalÞ;
3 ¼ strong aversive response ðdetectionþwithdrawal
þ escape=attackÞ;

4 ¼ prolonged aversive behavior ðdetectionþwithdrawal
þ escape=attackþ facial groomingÞ:
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Corneal reflex was employed to check for the normal sensitivity
of corneal surface to tactile stimuli prior to capsaicin eye-wipe test.
Corneal reflex was examined bilaterally by briefly applying a
tipped sterile cotton wisp to the cornea, which elicited a blinking
response. To prevent the visual contact-evoked reaction, the rat’s
head was approached by the experimenter’s hand from the pos-
terolateral side, and the cotton tip was gently applied to the cornea
across the lateral eye corner. The cotton tip was applied 5 times
(>30-second interval between consecutive applications), and the
percentage of elicited blinking responses was used as a measure
of behavioral response.

Capsaicin eye-wipe test was used to examine the sensory func-
tion of TRPV1-expressing trigeminal neurons. A small drop
(�10 lL) of saline-diluted 0.01% capsaicin was released on the cor-
neal surface, and the number of ipsilateral eye wipes was counted
[15,45]. TRPV1-expressing neurons are considered to be desensi-
tized if the wiping response is greatly reduced or prevented [15,45].

To study the possible role of TRPV1-expressing sensory neurons
in BoNT/A antinociceptive activity, the effect of BoNT/A on orofa-
cial formalin test was examined in animals desensitized with i.g.
capsaicin. Four days after the completion of capsaicin i.g.-induced
desensitization (2 injections within 24 hours), animals were
injected into the whisker pad with saline/5 U/kg BoNT/A. Orofacial
formalin test was performed 5–6 days after peripheral saline/
BoNT/A treatment. Formalin test was employed as described previ-
ously [39,41,51]. Animals were injected into the whisker pad with
50 lL of saline-diluted 2.5% formalin and observed for 45 minutes
in a transparent cage. Total duration of ipsilateral facial rubbing
and grooming evoked by facial formalin was assessed during 3-
minute periods divided into phase I (0–12 minutes) and phase II
(12–45 minutes). Observer was blinded to the animal treatment.

2.5. Immunohistochemistry of cleaved SNAP-25 in the brain

For the assessment of cleaved SNAP-25 localization, animals
were injected with BoNT/A subcutaneously into the whisker pad,
and sacrificed after 5–6 days. Apart from TNC, possible occurrence
of cleaved SNAP-25 was studied in thalamus, hypothalamus, sen-
sory cortex, locus coeruleus, and periaqueductal gray. Since Mari-
nelli et al. [37] reported the occurrence of cleaved SNAP-25 in
lumbar spinal astrocytes of neuropathic mice, we examined the
colocalization of cleaved SNAP-25 with marker of astrocytes in ani-
mals with trigeminal neuropathy induced by infraorbital nerve
constriction, as previously described [21].

Anesthetized animals (chloral hydrate 300 mg/kg intraperito-
neal) were perfused transcardially with saline, followed by 4%
paraformaldehyde in phosphate-buffered saline (PBS). Brain tissue
was excised, cryoprotected with sucrose, and kept at�80 �C as pre-
viously described [39,40].

Cryostat-cut 40-lm coronal sections of brainstem and dien-
cephalon were collected for free floating in PBS with 0.25% Triton
X-100 (PBST), washed and blocked with 10% normal goat serum
(NGS) in PBST. Sections were incubated overnight at room temper-
ature in 1% NGS with 1:1500 rabbit polyclonal antibody to cleaved
SNAP-25 (produced by O. Rossetto), which was previously well
characterized and recognizes specifically the BoNT/A-truncated
SNAP-25 [39]. The following day, the sections were incubated with
fluorescent secondary antibody (goat anti-rabbit Alexa Fluor 555;
Molecular Probes, Invitrogen, Carlsbad, CA, USA). The tissue was
then incubated overnight at 4 �C with mouse monoclonal antibod-
ies to synaptophysin (1:500, Sigma), microtubule-associated pro-
tein 2 (MAP-2) (1:1000, Sigma), glial fibrillary acidic protein
(GFAP) (1:1000, Sigma), and neuronal nuclear protein (NeuN)
(1:500, Millipore, Temecula, CA, USA). The next day, the sections
were incubated with goat anti-mouse Alexa fluor 488. Co-staining
of cleaved SNAP-25 and TRPV1 was performed with goat anti-

vanilloid receptor 1 (TRPV1) polyclonal antibody (1:400, Santa
Cruz Biotechnology, Dallas, TX, USA), and donkey anti-rabbit Alexa
488/donkey anti goat Alexa 555 secondary antibodies.

Co-staining of cleaved SNAP-25 with calcitonin gene-related
peptide (CGRP) was performed with rabbit polyclonal anti-CGRP
(Sigma). To prevent the cross-reactivity of primary antibodies
raised in rabbit, a modified antibody elution procedure was used
[48]. In brief, after incubation with antibodies to cleaved SNAP-
25 and secondary goat anti-rabbit Alexa 555, sections were
washed, transferred to Superfrost Plus glass slides (Thermo Fisher
Scientific Inc, Waltham, MA, USA), and allowed to adhere and dry.
Cleaved SNAP-25 immunoreactivity was photographed in glycerol-
coverslipped slides for later comparison. Coverslips were then
removed. Slides were washed in PBS and incubated in darkness
in preheated acidic elution buffer (50 �C, pH = 2) containing 1%
sodium dodecyl sulfate and 25 mM glycine for 30 minutes without
shaking. After elution, sections were blocked again and incubated
overnight at 4 �C with CGRP antibody (1:5000). Cross-reactivity
controls were incubated with 1% NGS. The next day, the sections
were incubated with goat anti-rabbit Alexa Fluor 488. In cross-
reactivity controls (omitted CGRP antibody), no binding of Alexa
fluor 488-labeled secondary antibody was observed. Morphology
of cleaved SNAP-25 fibers before elution and after completed
immunostaining remained the same.

In studies involving cleaved SNAP-25 immunostaining, sections
from 3–4 animals per group (15–25 sections/animal) were exam-
ined. Immunostained sections were visualized with an Olympus
BX-51 epifluorescent microscope coupled to DP-70 digital camera
(Olympus, Tokyo, Japan) or TCS SP2 AOBS confocal microscope
(Leica, Wetzlar, Germany). Double-label images were composed
using cellSens Dimension software (Olympus). Images were pro-
cessed for brightness and contrast with Adobe Photoshop (Adobe
Systems Incorporated, San Jose, CA, USA).

2.6. C-Fos immunohistochemistry after orofacial formalin test

BoNT/A effects on neural activation evoked by orofacial forma-
lin were assessed by quantifying the c-Fos expression in different
brain regions of animals injected with 5 U/kg BoNT/A or saline.
Immunohistochemical staining for c-Fos was performed on coronal
sections from caudal medulla, pons, mesencephalon, and dien-
cephalon, using rabbit anti-c-Fos primary antibody (dilution
1:500, incubation overnight at room temperature; Santa Cruz Bio-
technology) and goat anti-rabbit Alexa Fluor 488 fluorescent sec-
ondary antibody.

Immunostained sections were visualized with Olympus BX-51
fluorescent microscope coupled to DP-70 digital camera (Olym-
pus). C-Fos-positive neuronal fluorescent profiles were automati-
cally counted using cellSens Dimension software (Olympus). In
each region, c-Fos-positive profiles were counted from 4 randomly
selected sections per animal. Brain regions were indentified in
coronal sections using the rat stereotaxic atlas [47] and appropri-
ate landmarks for each region (central canal, obex, aqueduct, ven-
tricles, etc.).

2.7. Immunohistochemistry of CGRP-expressing central afferent
terminals and brainstem neurons after trigeminal ganglion
denervation

Denervation of primary afferents in the TNC after formalin-
induced ablation of trigeminal ganglion was verified using the
immunohistochemistry of CGRP, which is present in central affer-
ent terminals [25]. Since approximately 70% of the CGRP-express-
ing trigeminal sensory neurons are TRPV1 positive [50], we
checked for the reduced CGRP expression after desensitization of
capsaicin-sensitive primary afferents.
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Ipsilateral and contralateral TNC of each coronal section were
visualized with epifluorescent microscope by employing the low-
magnification objective (4�) to obtain microphotographs contain-
ing the entire TNC region. Images were processed using cellSens
Dimension software. Surface area of TNC containing green CGRP
immunoreactivity was quantified by using green channel pixel
thresholding. To quantify the extent of degeneration, the surface
area of the ipsilateral, denervated side was divided by the surface
area of the contralateral side, which served as a control.

To assess the possible postsynaptic degeneration of central
neurons in the TNC region after i.g. treatment with formalin or
capsaicin, NeuN and dendritic (MAP-2) staining was performed.

2.8. Statistical analysis

Parametric data were represented as mean ± SEM, and analyzed
by unpaired t-test (for comparison between 2 groups) or one-way
analysis of variance followed by Newman-Keuls post hoc test
(multiple group comparisons). Nonparametric data (response
scores of aversive behavior to mechanical stimuli) were repre-
sented by scatter plot and median, and analyzed by Kruskal-Wallis
test, followed by Dunn’s post hoc. P < 0.05 was considered
significant.

3. Results

3.1. Intraganglionic denervation of trigeminal nerve with formalin and
capsaicin

3.1.1. Behavioral effects of trigeminal primary afferent denervation
The animals injected with i.g. formalin showed no response to

the ipsilateral whisker pad stimulation with Von Frey filaments,
independently of the filament-bending force (2 or 8 g) (Fig. 1A,
B). In addition, formalin i.g.-treated animals did not respond to
the pinprick test ipsilaterally to formalin-induced ablation
(Fig. 1C). Ipsilateral response to capsaicin eye-wipe test in i.g. for-
malin-treated animals was abolished (Fig. 2). Corneal reflex (blink-
ing response to cotton whip stimulation of cornea) was almost
completely prevented (not shown). Contralaterally, the animals
responded to whisker pad and corneal mechanical stimulation
similarly to control animals (not shown). In addition, capsaicin-
evoked eye-wipe response was preserved on the nondenervated
side (not shown). Formalin is a chemical fixative that immediately
kills the living cells by cross-linking of biological molecules and
protein precipitation [57]. In line with that, insensitivity to
mechanical and capsaicin-induced stimulation after i.g. formalin
suggested a nonselective denervation of trigeminal primary
afferents.

Acute mechanical sensitivity was unaltered after i.g. capsaicin-
evoked desensitization. Capsaicin i.g.-treated animals showed
nonaversive response to whisker pad mechanical stimulation with
Von Frey filaments (Fig. 1A, B), responded to noxious pinprick
stimulus with strong aversive behavior (Fig. 1C), and exhibited
100% preserved corneal reflex response, similarly to vehicle-trea-
ted animals (not shown). Facial BoNT/A pretreatment did not sig-
nificantly alter the mechanical responses in either vehicle i.g. or
capsaicin i.g.-treated animals.

Animals desensitized with 2% capsaicin had a largely reduced
response to capsaicin eye-wipe test on the ipsilateral side (Fig. 2),
in line with the effects of capsaicin-induced desensitization of
TRPV1-expressing neurons [15,45,58]. On the contralateral side,
animals responded similarly to vehicle-treated controls (not
shown). Present data indicated that the unilateral i.g. capsaicin
selectively desensitized TRPV1-expressing neurons only, without
altering primary afferents that mediate the acute mechanical
sensitivity.

Fig. 1. Mechanical sensitivity of facial area in rats is unaltered by capsaicin-induced
desensitization of transient receptor potential vanilloid 1-expressing neurons, and it
is abolished after nonselective ablation of trigeminal primary afferents. Five days
after the peripheral botulinum toxin type A (BoNT/A; 15 U/kg) or saline injection into
the whisker pad, rats were injected intraganglionically (i.g.) with either vehicle, 2%
capsaicin (double vehicle or capsaicin treatment separated 24–48 hours), or formalin
(single i.g. treatment). Mechanical sensitivity of the facial area was examined
3–4 days after ganglion treatments. (A) Response to ipsilateral whisker pad stimu-
lation with 2-g filament; (B) response to ipsilateral whisker pad stimulation with 8-g
filament; (C) response to ipsilateral whisker pad pin-prick stimulation. N (animals
per group) = 5–6. Behavioral scores are represented as median (horizontal line), and
individual values were represented by scatter plot (dots). ⁄P < 0.05 in comparison to
vehicle i.g.; +P < 0.05 in comparison to capsaicin i.g.; ++P < 0.01 in comparison to
capsaicin i.g. (Kruskal-Wallis test followed by Dunn’s post hoc, P < 0.05).
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In animals injected i.g. with vehicle, BoNT/A reduced phase II of
formalin-induced orofacial pain, whereas phase I pain was not
affected, as previously described [16,39,41]. Capsaicin i.g.-induced
denervation prevented the antinociceptive activity of BoNT/A in
orofacial formalin-induced pain, while the denervation itself did
not influence the duration of nocifensive behavior in formalin test
(Fig. 3). These data suggest that the BoNT/A antinociceptive effi-
cacy is dependent on TRPV1-expressing sensory neurons.

3.1.2. Effects of trigeminal ganglion denervation on CGRP-expressing
central afferent terminals and brainstem neurons

In line with the abolished unilateral sensory response, trigeminal
ganglion ablation with formalin resulted in almost complete unilat-
eral disappearance of CGRP immunoreactivity in the TNC, which is
expressed in a subpopulation of central afferent terminals (Fig. 4A).

Capsaicin-evoked denervation induced a large, but in contrast
to formalin-induced denervation, incomplete, reduction of CGRP
immunoreactivity (Fig. 5B, C).

Decrease of CGRP immunostaining of the ipsilateral TNC in
response to i.g. capsaicin is in line with previous studies that
reported reduced neuropeptide content in the dorsal horn after
desensitization of capsaicin-sensitive central afferent terminals
with high-dose TRPV1 agonists [22,32]. Remaining CGRP staining
possibly corresponded to the peptidergic afferent population not
expressing TRPV1 [50].

Quantification of CGRP immunoreactivity supports the loss of
CGRP in i.g. formalin-treated animals (Supplementary Fig. 1A),
and CGRP reduction in capsaicin i.g.-treated animals (Supplemen-
tary Fig. 1B). Immunostaining of dendrites (MAP-2) and cell bodies
(NeuN) of brainstem neurons in the TNC was unaltered by i.g. for-
malin (Supplementary Fig. 2A, B). Dendritic and somatic staining of
central neurons in the TNC was unaffected by i.g. capsaicin (not
shown), similarly to i.g. formalin.

3.1.3. Occurrence of BoNT/A enzymatic activity in the TNC after
denervation of trigeminal nerve with formalin and capsaicin

Previously, we found the occurrence of BoNT/A-cleaved SNAP-
25 in the TNC after toxin injection into the whisker pad [39]. By

employing the trigeminal nerve ablation we examined if the
BoNT/A’s enzymatic activity in TNC was located within primary
afferent terminals. Formalin-induced ganglion ablation performed
5 days following BoNT/A peripheral injection induced complete
disappearance of cleaved SNAP-25 staining in the TNC (Fig. 4B),
indicating that the BoNT/A-cleaved SNAP-25 was located in central
afferent terminals.

Double labeling of cleaved SNAP-25 and TRPV1 in TNC demon-
strated the occurrence of products of BoNT/A enzymatic activity in
TRPV1-expressing neurons (Fig. 5A). Animals subjected to chemi-
cal denervation with capsaicin 5 days following peripheral BoNT/
A lacked the immunoreactivity for cleaved SNAP-25 in TNC
(Fig. 5B), which suggests that BoNT/A enzymatic activity occurs
in capsaicin-sensitive central afferent terminals.

Hypothetically, some other types of afferents, which are cap-
saicin insensitive, might mediate the occurrence of cleaved
SNAP-25 in the TNC when the capsaicin-sensitive afferents are
desensitized with capsaicin before injection of BoNT/A. However,
animals subjected to i.g. capsaicin-induced denervation prior to
BoNT/A injection lacked the BoNT/A-cleaved SNAP-25 in TNC
(Fig. 5C), suggesting that the occurrence of BoNT/A enzymatic
activity in the TNC is dependent solely on capsaicin-sensitive
neurons.

3.2. Immunohistochemical localization of cleaved SNAP-25 in the brain

Cleaved SNAP-25 immunoreactivity appeared either as punc-
tate immunoreactivity or fiber-like profiles. Punctate immunoreac-
tivity colocalized with synaptophysin, a presynaptic marker. On
the other hand, fiber-like profiles showed no colocalization with
synaptophysin (Fig. 6A). Cleaved SNAP-25 was absent from MAP-
2-stained dendrites of TNC neurons (Fig. 6B). In BoNT/A-injected
naïve (Fig. 6C) and infraorbital nerve constriction-induced neuro-
pathic animals (not shown), cleaved SNAP-25 was detected outside
of GFAP-immunoreactive astrocytes.

Cleaved SNAP-25 mainly did not colocalize with neuropeptide
CGRP, except in few neuronal terminals (Supplementary Fig. 3).
After 5 U/kg peripheral BoNT/A injection, cleaved SNAP-25 was
detected in TNC only, but not in other sensory regions (not shown).

Fig. 2. Capsaicin-induced eye-wipe response after capsaicin or formalin-induced
denervation of trigeminal nerve. Five days after peripheral botulinum toxin type A
(BoNT/A; 15 U/kg) or saline injection into the whisker pad, rats were injected
intraganglionically (i.g.) with vehicle, 2% capsaicin (double vehicle or capsaicin
treatment), or formalin (single i.g. treatment). Capsaicin-evoked sensitivity of the
eye corneal surface was examined 3–4 days after ganglion treatment. Eye-wipe
response (number of eye wipes) was measured after ipsilateral capsaicin applica-
tion to corneal surface (0,01%, 10 lL). N (animals per group) = 5–6. Results are
represented as mean ± SEM. ⁄⁄⁄P < 0.001 in comparison to vehicle i.g. (one-way
analysis of variance followed by Newman-Keuls post hoc, P < 0.05).

Fig. 3. Antinociceptive activity of botulinum toxin type A (BoNT/A) in orofacial
formalin-induced pain is mediated by capsaicin-sensitive sensory neurons. Chem-
ical denervation with 2% i.g. capsaicin prevents BoNT/A’s antinociceptive activity in
phase II of orofacial formalin-induced pain. Capsaicin/vehicle pretreatment was
completed 4 days prior to peripheral saline or BoNT/A (5 U/kg) injection, and
formalin test was performed 5–6 days after saline/BoNT/A injection. Number of
animals per group = 4–6. Results are represented as mean ± SEM. ⁄⁄P < 0.01 in
comparison to vehicle control; +P < 0.05 in comparison to capsaicin i.g. + BoNT/A;
#P < 0.05 in comparison to capsaicin i.g.+ vehicle (one-way analysis of variance
followed by Newman-Keuls post hoc, P < 0.05).
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3.3. BoNT/A effects on regional c-Fos expression in the orofacial
formalin test

In the present study, we have examined the effect of BoNT/A on
c-Fos expression in the TNC and upstream sensory regions after
formalin injection into the orofacial area (Fig. 7, Table 1).
Formalin-evoked c-Fos expression in TNC, locus coeruleus, peri-
aqueductal gray, medial thalamus (paraventricular nucleus),
amygdala, and hypothalamus was increased 3–9 times compared
to saline controls (Table 1, middle column). Increased c-Fos expres-
sion in examined regions is in agreement with previous studies
involving peripheral formalin test [11].

Similarly to previous findings in spinal cord dorsal horn
[2,18,64], in the present experiment, BoNT/A lowered the pain-
evoked neural activation (measured by c-Fos expression) in the
TNC. Additionally, BoNT/A reduced the formalin-evoked neural
activation in locus coeruleus and periaqueductal gray. BoNT/A
did not affect the expression of c-Fos in paraventricular nucleus
of thalamus, ipsilateral and contralateral hypothalamus, and con-
tralateral central amygdala (Fig. 7, Table 1).

4. Discussion

In contrast to classical analgesics such as opioids, BoNT/A does
not alter the acute nociceptive thresholds, but it selectively
reduces the allodynic and hyperalgesic responses in certain pain
conditions [5,7,14,16]. We previously discovered that the antinoci-
ceptive activity of BoNT/A is mediated by its axonal transport to
central sensory nociceptive nuclei [6,21,39]. In the present study
we investigated the possibility that the selectivity of BoNT/A antin-
ociceptive action is mediated by specific subtypes of sensory neu-
rons targeted by BoNT/A.

4.1. Enzymatic activity of BoNT/A in TNC occurs in central afferent
terminals

Occurrence of cleaved SNAP-25 in TNC and lumbar dorsal horn,
the regions that receive afferent nociceptive input, suggests that
BoNT/A alters central nociceptive transmission [39]. However,
the localization of this action in TNC was, up to now, unknown.
In the present study, we examined whether BoNT/A’s enzymatic
activity in the TNC is located in primary sensory neurons. Loss of
cleaved SNAP-25 in the TNC after formalin-induced ablation of pri-
mary afferents demonstrated that the BoNT/A enzymatic activity
occurs in central primary afferent terminals (Fig. 4).

In the present experiments, we did not observe any truncated
SNAP-25 remaining after ganglionic denervation, thus, our results
do not support possible transcytosis to second-order synapses in
the TNC. However, transcytosis of BoNT/A in rats was demon-
strated after both anterograde and retrograde axonal transport in
the optic system [52,53]. Recently, a decrease of spontaneous and
evoked inhibitory glycinergic potentials in isolated rat lumbar sub-
stantia gelatinosa neurons following peripheral BoNT/A injection
was reported [1]. The authors suggested toxin’s transcytosis to gly-
cinergic interneurons.

4.2. BoNT/A’s antinociceptive activity is associated with capsaicin-
sensitive neurons

After demonstrating that BoNT/A’s proteolytic activity in TNC
was located within central afferent terminals of trigeminal neu-
rons, we found that the terminals involved are sensitive to capsa-
icin and express TRPV1 (Fig. 5A, B). Moreover, chemical
denervation with i.g. capsaicin prevented the occurrence of cleaved
SNAP-25 in the TNC, as well as the antinociceptive activity of

Fig. 4. Proteolytic activity of botulinum toxin type A (BoNT/A) in trigeminal nucleus caudalis (TNC) is located in central afferent terminals of primary sensory neurons. (A)
Immunoreactivity for calcitonin gene-related peptide (green), marker of peptidergic primary afferents, is almost completely eliminated from TNC ipsilaterally to formalin
intraganglionic (i.g.) treatment, in comparison to i.g. saline treatment (right sides of coronal sections). Scale bar = 200 lm. (B) Formalin i.g. abolishes cleaved synaptosomal-
associated protein 25 (SNAP-25) in medullary dorsal horn (red immunofluorescent staining, arrows). Saline or formalin (10 lL) was administered into the trigeminal ganglion
5 days after peripheral BoNT/A injection into the whisker pad (15 U/kg). N (animals per group) = 4 (15–25 sections were examined per each animal). Scale bar = 50 lm.
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BoNT/A in formalin-induced orofacial pain (Figs. 3, 5C). Mentioned
experiments demonstrate that the BoNT/A’s antinociceptive activ-
ity, mediated by toxin’s axonal transport to CNS [6,21,39], involves
capsaicin-sensitive (TRPV1-expressing) central afferent terminals.

Enzymatic activity of BoNT/A in capsaicin-sensitive neurons sup-
ports the reduction of capsaicin-evoked pain [5,24,55]. It was
reported that BoNT/A reduces TRPV1 expression in peripheral sen-
sory neurons, possibly by preventing SNARE-mediated receptor
translocation to the cell membrane [3,56,69,70]. Similar effect may
occur in central afferent terminals, where BoNT/A might regulate
the TRPV1 receptor-mediated central nociceptive transmission.

TRPV1-expressing neurons are primarily glutamatergic [26],
but might contain other transmitters such as Substance P or CGRP
[9,25,32,50]. Thus, BoNT/A might prevent glutamate as well as
other co-transmitters’ release from a distinct set of nerve endings
[19,21,29]. Recently, it was proposed that BoNT serotype B reduces

spinal substance P release from TRPV1-expressing neurons in mice
[38].

4.3. BoNT/A selectivity for hyperalgesia and allodynia is associated
with capsaicin-sensitive neurons

Since only 16–20% of trigeminal neurons express TRPV1
[9,26,28,50], our observations might suggest a preferential target-
ing of BoNT/A to TRPV1-expressing central terminals in the TNC.
Selective targeting of TRPV1-expressing nerve endings might
explain the activity of BoNT/A in only certain types of pain. Com-
parison between the antinociceptive effects of BoNT/A and sup-
pressed function of TRPV1-expressing neurons in different types
of experimental acute nociceptive, inflammatory, and neuropathic
pain indicates a considerable agreement of the effects of BoNT/A
and TRPV1-mediated antinociceptive effects:

Fig. 5. Botulinum toxin type A’s (BoNT/A) proteolytic activity in trigeminal nucleus caudalis (TNC) is associated with transient receptor potential vanilloid 1 (TRPV1)-
expressing (capsaicin-sensitive) primary afferents. (A) Fluorescent images of cleaved synaptosomal-associated protein 25 [SNAP-25(c)] and TRPV1-double labeling in
ipsilateral TNC 5 days after peripheral injection of BoNT/A (15 U/kg). Cleaved SNAP-25 immunoreactivity (green) in the dorsal horn is localized within TRPV1-expressing
neurons (red). Scale bar = 20 lm. (B) Capsaicin 2% i.g. treatments performed 5 and 7 days after administration of peripheral BoNT/A (15 U/kg) eliminates cleaved SNAP-25
(red immunostaining, arrows) in the TNC and reduces calcitonin gene-related peptide (CGRP) immunostaining (green). Animals were sacrificed 10 days post BoNT/A. Scale
bar = 50 lm. (C) Chemical denervation with 2% i.g. capsaicin prior to BoNT/A treatment prevents the occurrence of cleaved SNAP-25 in the TNC. Capsaicin 2%/vehicle double
pretreatment was completed 3 days before BoNT/A injection (15 U/kg) into the whisker pad, and animals were sacrificed 5 days post peripheral BoNT/A. Red immunostaining
represents cleaved SNAP-25 (arrows). CGRP staining (green) was lower in capsaicin i.g.-pretreated animals, in comparison to vehicle control. N (animals per group) = 3–4 (15–
25 sections were examined per each animal). Scale bar = 50 lm.
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– BoNT/A and suppression of TRPV1-expressing neurons (evoked by
denervation of TRPV1-expressing neurons, or TRPV1 antagonists)
do not affect acute mechanical thresholds [5,7,14,16,32,43,45,59].
In the present study, we observed preserved acute mechanical
sensitivity upon either BoNT/A treatment or denervation of capsa-
icin-sensitive primary afferents (Fig. 1). Transmission of acute
mechanical stimuli by neurons that are not capsaicin-sensitive
might explain the lack of effect of BoNT/A on acute innocuous or
nociceptive mechanical thresholds.

– BoNT/A, denervation of TRPV1-expressing neurons, and TRPV1
agonists, reduce the nocifensive behavior and mechanical
hyperalgesia evoked by capsaicin [4,5,24,32,49,55,59], and ther-
mal hyperalgesia evoked by inflammatory or neuropathic pain
[4,5,7,15,34,36,49,56,59,60,66].

– BoNT/A and TRPV1 antagonists reduce the inflammatory and
neuropathic mechanical allodynia and hyperalgesia [7,18,21,
34,46,49,66]. The results are ambiguous after denervation with
high-dose TRPV1 agonists: some studies report the reduction of
mechanical allodynia [36,60], while others do not [35].

– BoNT/A and TRPV1 receptor antagonists reduce formalin-
induced pain [16,18,33,39,41,59,63]. However, in present
experiments, 2.5% formalin-induced nocifensive response was
unaltered by i.g. capsaicin (Fig. 5). This is in accordance with
a recent similar study employing i.g. resiniferatoxin (a more
potent capsaicin analog) and 2.5% orofacial formalin [15].
Effect of desensitization of TRPV1-expressing neurons on the
duration of formalin-evoked nociceptive behavior in mice
was shown to be dependent on formalin concentration [54].
While intrathecal capsaicin reduced the 0.5% formalin-evoked
behavior, it did not reduce the behavior evoked by higher for-
malin dose (2%) [54]. Unaltered response to formalin test
might be associated with central plastic changes occurring
after denervation of TRPV1-expressing afferents, such as the
abnormally increased receptive fields of dorsal horn neurons
[42]. Another theoretical possibility is that the denervation of
TRPV1-expressing neurons might result in compensatory noci-
ceptive activation of other primary afferent types in the forma-
lin test.

Fig. 6. Cleaved synaptosomal-associated protein 25 (SNAP-25) localization in relation to presynaptic terminals, dendrites, and astrocytes. Confocal images of ipsilateral
trigeminal nucleus caudalis (TNC) 5 days after botulinum toxin type A (BoNT/A; 15 U/kg) injection into the rat whisker pad. Cleaved SNAP-25 (SNAP-25(c)-red
immunofluorescence) partially colocalizes with synaptophysin (arrows), a presynaptic marker (A). Cleaved SNAP-25 did not colocalize with MAP-2, marker of dendrites (B),
and glial fibrillary acidic protein (GFAP), marker of astrocytes (C). Images are representative of confocal microphotographs obtained from 4 animals. Scale bars = 20 lm.
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4.4. Cleaved SNAP-25 cellular and regional localization

Herein we examined the localization of truncated SNAP-25 in
relation to cellular markers in the TNC. Cleaved SNAP-25 punctate

immunoreactivity colocalized with presynaptic terminals immu-
nolabeled with synaptophysin, consistent with well-known
BoNT/A activity in synapses [10]. Cleaved SNAP-25 fiber-like pro-
files, most likely corresponding to axons, were not immunoreactive

Fig. 7. Botulinum toxin type A (BoNT/A) reduces pain-evoked neural activity in trigeminal nucleus caudalis and locus coeruleus, but not in thalamus. Fluorescent images of
orofacial formalin-induced neural activity (assessed with c-Fos expression [green]) in (A) ipsilateral trigeminal nucleus caudalis; (B) ipsilateral locus coeruleus and (C)
paraventricular thalamic nucleus. Five U/kg BoNT/A or saline was applied into the whisker pad 5–6 days prior to formalin injection into the whisker pad. N (animals per
group) = 3–4. Scale bar = 200 lm.

Table 1
Botulinum toxin type A (BoNT/A) differentially alters regional c-Fos activation in orofacial formalin test. Orofacial formalin test was performed 5 days following the saline or 5 U/
kg BoNT/A injection into the whisker pad, and animals were perfused 2 hours after formalin injection. Number of immunofluorescently stained c-Fos-positive neuronal profiles in
examined regions was automatically quantified in 4 randomly selected sections per animal.

Saline (n = 3) Saline + formalin (n = 4) BoNT/A + formalin (n = 4)

Trigeminal nucleus caudalis (ipsilateral) 14.7 ± 0.7 138.5 ± 14.0 75.7 ± 9.3 (P = 0.003)
Locus coeruleus (ipsilateral) 4.7 ± 2.8 21.2 ± 2.4 13.7 ± 1.7 (P = 0.045)
Locus coeruleus (contralateral) 3.0 ± 1.5 24.6 ± 3.3 15.3 ± 1.5 (P = 0.023)
Periaqueductal gray 90.7 ± 26.4 290.9 ± 20.4 149.7 ± 8.9 (P = 0.001)
Hypothalamus (ipsilateral) 40.7 ± 5.4 342 ± 15.6 338.2 ± 24.3 (n.s.)
Hypothalamus (contralateral) 44.7 ± 16.1 341.8 ± 27.3 294.9 ± 20.7 (n.s.)
Paraventricular thalamic nucleus 19.2 ± 2.5 132.5 ± 17.7 110.1 ± 11.8 (n.s.)
Central amygdaloid nucleus (contralateral) 7.4 ± 2.3 36.0 ± 6.3 45.9 ± 3.9 (n.s.)

Data are represented as mean ± SEM. n = number of animals per group. For BoNT/A + formalin group, P values are shown in comparison to saline + formalin group (one-way
analysis of variance followed by Newman-Keuls post hoc, P < 0.05 was considered significant); n.s. = nonsignificant.
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to synaptophysin (Fig. 6A). This is in line with extrasynaptic occur-
rence of SNAP-25 along the axons [61]. Cleaved SNAP-25 did not
colocalize with either MAP-2-positive dendrites of secondary neu-
rons or GFAP, marker of astrocytes (Fig. 6B, C). A recent study by
Marinelli et al. [37] reported BoNT/A-truncated SNAP-25 occur-
rence in spinal astrocytes of neuropathic mice. Differences
between the studies might be associated with experimental setup,
animal species (mice vs rats), and sensory region examined
(lumbar spinal dorsal horn vs TNC).

Following BoNT/A subcutaneous injection into the whisker pad
area, we did not observe convincing cleaved SNAP-25 colocaliza-
tion with CGRP-containing peptidergic afferents (Fig. 4,
Supplementary Fig. 3). In rats, a significant portion of TRPV1-
expressing trigeminal neurons (�30–56%) does not express CGRP
[9,50]. Lack of colocalization could be associated with the site of
toxin administration, since TRPV1-expressing afferents that inner-
vate cutaneous structures are primarily nonpeptidergic [9,27,62].
Our results suggest that BoNT/A’s antinociceptive action, at least
in the present experimental setup, is not mediated primarily by
direct prevention of central CGRP release.

Cleaved SNAP-25 in sensory regions examined above the level
of TNC (locus coeruleus, periaqueductal gray, thalamus, hypothal-
amus, sensory cortex) was not observed. However, pain-evoked
neural activity (assessed with c-Fos expression) was decreased
by BoNT/A in locus coeruleus and periaqueductal gray (but not in
thalamus, hypothalamus, and amygdala) (Fig. 7; Table 1).
Reduction of pain-evoked neural activity in regions where BoNT/
A enzymatic activity was not observed suggests that the toxin’s
indirect effects in CNS may be more widespread compared to its
direct effects mediated by central SNAP-25 cleavage.

4.5. Conclusion

Present results suggest the association of BoNT/A’s antinocicep-
tive activity with capsaicin-sensitive central afferent terminals.
This could explain the selective action of BoNT/A on only some
forms of pain.
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Supplementary figure 1- Quantification of reduction of CGRP immunoreactivity after 

unilateral trigeminal ganglion ablation with formalin (A.) or desensitization with capsaicin 

B.). Surface areas of ipsilateral and contralateral trigeminal nucleus caudalis covered by 

CGRP were calculated using pixel thresholding. Surface area of ipsilateral CGRP 

immunoreactivity was divided by the surface area of CGRP immunoreactivity from 

contralateral side of the same coronal section.  CGRP immunoreactivity was almost 

completely eliminated by formalin .g. treatment, and largely reduced by i.g. capsaicin.  

N(animals per group)=3-4, 4-6 coronal sections per animal were analyzed. 

Data are represented as mean ± SEM; ***- p<0.001 in comparison to saline or vehicle i.g. 

treatment (A. t-test or B. one-way ANOVA followed by Newman-Keuls post hoc, p<0.05).   

 

 

 

 

 Supplementary figure 2 Ablation of primary 

afferents does not alter secondary brainstem 

neurons.   

A.) and B.) Formalin i.g. does not alter the 

immunoreactivities of dendrites (MAP-2) or 

neuronal bodies (NeuN) of secondary neurons in 

the TNC (green). C. Immunoreactivity for CGRP 

(red) is almost completely eliminated from TNC 

ipsilaterally to formalin i.g. treatment (right). 

N(animals)=3, 10-15 coronal sections per animal 

were examined. Scale bar=200 μm. 

 

 

 

 

 

 



 

Supplementary figure 3 SNAP-25 

cleavage occurs outside of CGRP-

expressing peptidergic terminals after 

BoNT/A injection into the whisker 

pad. Fluorescent microphotographs of 

ipsilateral TNC 5 days after BoNT/A 

(15 U/kg) injection into the rat whisker 

pad. Cleaved SNAP-25 localization 

(red) was studied in relation to CGRP 

(green), marker of peptidergic primary 

afferents. Although the majority of 

BoNT/A-cleaved SNAP-25 did not 

colocalize with CGRP (upper panel), 

occasionally, cleaved SNAP-25 profiles 

appeared to colocalize with bright 

fluorescent CGRP fibers (lower panel, 

arrow). Images are representative of 

microphotographs obtained from 4 

animals (10-15 sections per animals 

were examined). Scale bar (upper panel 

= 50 μm, lower panel =25 μm 
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A B S T R A C T

Botulinum neurotoxin type A (BoNT/A) is one of the most potent toxins known and a potential biological

threat. At the same time, it is among the most widely used therapeutic proteins used yearly by millions of

people, especially for cosmetic purposes. Currently, its clinical use in certain types of pain is increasing,

and its long-term duration of effects represents a special clinical value. Efficacy of BoNT/A in different

types of pain has been found in numerous clinical trials and case reports, as well as in animal pain

models. However, sites and mechanisms of BoNT/A actions involved in nociception are a matter of

controversy. In analogy with well known neuroparalytic effects in peripheral cholinergic synapses,

presently dominant opinion is that BoNT/A exerts pain reduction by inhibiting peripheral

neurotransmitter/inflammatory mediator release from sensory nerves. On the other hand, growing

number of behavioral and immunohistochemical studies demonstrated the requirement of axonal

transport for BoNT/A’s antinociceptive action. In addition, toxin’s enzymatic activity in central sensory

regions was clearly identified after its peripheral application. Apart from general pharmacology, this

review summarizes the clinical and experimental evidence for BoNT/A antinociceptive activity and

compares the data in favor of peripheral vs. central site and mechanism of action. Based on literature

review and published results from our laboratory we propose that the hypothesis of peripheral site of

BoNT/A action is not sufficient to explain the experimental data collected up to now.

� 2014 Elsevier Ltd. All rights reserved.

Abbreviations: BoNT/A, botulinum toxin type A; LC, light chain; SV2, synaptic vesicle protein 2; SNAP-25, synaptosomal-associated protein of 25 kDa; SNARE, soluble

N-ethylmaleimide-sensitive factor attachment protein receptor; VAMP, vesicle-associated membrane protein; TeNT, tetanus toxin; GABA, g-aminobutyric acid; CGRP,

calcitonin gene-related peptide; TRPV1, transient receptor potential vanilloid 1; PC-12, pheochromocytoma-12.
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1. Introduction

In the last 15–20 years, therapeutic use of botulinum toxin type
A (BoNT/A) has expanded to cover different painful disorders.
Initially it was reported that BoNT/A relieves pain associated with
spasticity and cervical dystonia. Based on the discovery that
BoNT/A may reduce the frequency of chronic migraine attacks and
associated pain, its efficacy has been clinically investigated in
chronic migraine treatment (Dodick et al., 2010) and approved in
USA in 2010. Additionally, in off-label studies BoNT/A beneficial
effect has been reported in many clinical disorders, such as lower
back pain, myofascial pain, trigeminal neuropathy, temporoman-
dibular joint disorders, osteoarthritis, etc. (Section 4.1.2). In
different clinical conditions, reduction of pain hypersensitivity
lasting for several months after single application makes BoNT/A a
unique antinociceptive drug. Although the effect of BoNT/A on
peripheral cholinergic synapses in different muscular and
autonomous disorders has been well characterized, the mecha-
nism of BoNT/A action on pain is still unknown. In this review we
will focus on the most relevant findings and current hypotheses
on the mechanism of BoNT/A antinociceptive actions. Though the
BoNT/A action on pain is still dominantly believed to be of
peripheral origin (Aoki and Francis, 2011; Francisco et al., 2012;
Wheeler and Smith, 2013), novel experiments demonstrated that
BoNT/A is axonally transported to central sensory regions, and
proposed that its antinociceptive action is centrally mediated
(Bach-Rojecky et al., 2008; Drinovac et al., 2013; Marinelli et al.,
2012; Matak et al., 2011). These new findings raise many
additional questions on the mechanism of BoNT/A antinociceptive
action, and possibly some other CNS effects, which need to be
answered.

2. Botulinum toxin: from the most potent poison to clinical use

Botulinum toxin (BoNT) is produced by a Gram-positive rod-
shaped anaerobic bacterium Clostridium botulinum and few similar
Clostridia (C. butyricum, C. baratii and C. argentinense) (Popoff and
Bouvet, 2013). BoNT is a protein complex consisting of neurotoxic
part (which proteolytically targets synaptic proteins involved in
vesicular neurotransmitter release) and auxiliary proteins (in
details explained in Section 3). There are seven well known
antigenically distinct BoNT serotypes (A–G), with the most recent
serotype H being reported and currently characterized (Dover
et al., 2014; Barash and Arnon, 2014). Additionally, six serotypes
may have additional subtypes (Dover et al., 2009; Kalb et al., 2011).

BoNT/A is one of the most potent toxins known. Estimated
intravenous (i.v.) median lethal dose in humans is only 1 ng/kg or
70 ng/70 kg person (Gill, 1982). One gram of toxin could kill more
than one million people via inhalational route, making BoNT a
potential biological threat (Arnon et al., 2001; Bigalke and Rummel,
2005; Franz et al., 1997; Gill, 1982).

2.1. Botulism

Systemic BoNT intoxication induces botulism, a neuroparalytic
disease with a low incidence, but fatal outcome in 5–10% of cases
(WHO, 2013). Main features of botulism, caused primarily by
inhibition of peripheral cholinergic transmission, are the long-
term flaccid paralysis of skeletal muscles, and the impairment of
gastrointestinal and autonomic nervous system functions. Effects
on sensory system have also been reported occasionally (Goode
and Shearn, 1982; Kuruoğlu et al., 1996; Martı́nez-Castrillo et al.,
1991). Symptoms of botulism usually appear within 12–36 h
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following the exposure to toxin, but in some cases may occur with
a delay of up to 8 days. First symptoms are relatively mild
(weakness and vertigo, dry mouth and difficulty in swallowing and
speaking), leading to progressive paralysis of skeletal muscles, and
ending in respiratory failure in more severe cases. Immediate
treatment consists of early administration of antitoxin and
intensive respiratory support (WHO, 2013). In humans, botulism
is mostly caused by BoNT serotypes A, B, E, and rarely F (Sobel,
2005). Known types of botulism are:

1. Food-borne botulism (intoxication with toxin-contaminated food),
characterized accurately for the first time by the early 19th
century German physician Justinus Kerner, who described
symptoms of food poisonings caused by ingestion of contami-
nated smoked sausages (botulus – lat. sausage) (Erbguth, 2008). It
is the most common form of BoNT poisoning associated with
different types of mainly home-made food preserved in anaerobic
conditions. Spores of Clostridium botulinum are heat-resistant,
while the toxin itself is destroyed by boiling (WHO, 2013).

2. Inhalational botulism is very rare, and it can occur due to
exposure during industrial production of toxin. Theoretically, it
might become a very serious threat if the toxin is used as a
biological weapon (Arnon et al., 2001).

3. Iatrogenic botulism has been reported after cosmetic use of high-
dose of illegal BoNT/A preparation, and in pediatric patients
treated with high dose of BoNT/A for spasticity (Chertow et al.,
2006; Crowner et al., 2007).

In addition to poisoning with BoNT, botulism can also be
caused by anaerobic toxo-infection with C. botulinum endo-
spores, which germinate and produce the toxin inside the body.

4. ‘‘Infant botulism’’ is associated with anaerobic conditions
adequate for ingested spore germination in the intestinal tract
of infants under 6 months of age (Brook, 2007). Up to 20% of the
honey specimens from different countries may contain spores of
botulinum toxin (Nakano et al., 1990). Parents and caregivers
are warned not to feed infants before the age of 1 year with
honey (WHO, 2013).

5. Adult intestinal toxemia botulism can occur if the normal gut flora
has been altered as a result of surgical procedures or antibiotic
therapy (WHO, 2013).

6. Wound botulism occurs due to wound infection with C.

botulinum. It has been reported in intravenous drug abusers
(Sobel, 2005; Wenham, 2008).

2.2. BoNT/A as a useful drug

Ability to purify botulinum toxins (serotypes A and B) and use
them locally in very low doses, as well as their long term activity
(lasting up to several months), have been the basis of their clinical
use in various neuromuscular and autonomous disorders. The idea
of using small doses of BoNT for therapeutic purposes was
proposed for the first time by Kerner in 1822 (Kerner, 1822;
reviewed by Erbguth, 2008). C. botulinum was characterized in
1897, and different BoNT serotypes were identified and purified in
the 20th century (Erbguth, 2008). In the late 1960s and 1970s,
based on preclinical experiments with monkeys, injections of small
doses of purified BoNT/A into the lateral or medial rectus muscle
have been initially used in the treatment of strabismus (Scott et al.,
1973; Scott, 1980). BoNT/A has been approved for the use in
strabismus in 1989, and later in other types of muscular
hyperactivity disorders like blepharospasm, hemifacial spasm,
focal dystonia and upper limb spasticity (reviewed by Barnes,
2003; Thenganatt and Fahn, 2012). Apart from movement
disorders, BoNT/A has been used for treatment of autonomic
system disorders (approved in primary axillar hyperhidrosis and

urinary incontinence caused by neurogenic detrusor overactivity)
(Dressler, 2013; Naumann et al., 2013; Seth et al., 2013), and in
non-muscular pain conditions (reviewed in detail in Section 4).
Cosmetic use of BoNT/A for wrinkle correction was approved in
USA in 2002. Today, due to its applications for medical and
cosmetic purposes, BoNT/A is one of the most commonly used
therapeutic proteins. Botulinum toxin’s growing market is
estimated to reach the profit/the sales of $2.9 by 2018 (Chapman,
2012). Presently, BoNT/A is produced by over 20 manufacturers in
US, Europe, and other parts of the world (Truong et al., 2009).
Although they contain the same active molecule, potency units for
each of the BoNT products are specific, and cannot be compared or
converted between different products. Therefore, Food and Drug
Administration (FDA) approved new names for different BoNT
products registered in USA (FDA, 2009, 2013):

- Botox (botulinum toxin type A); new name: onabotulinumtoxinA
- Botox cosmetic (botulinum toxin type A); new name: onabotu-

linumtoxinA
- Dysport (botulinum toxin type A); new name: abobotulinum-

toxinA
- Xeomin (botulinum toxin type A); new name: incobotulinum-

toxinA
- Myobloc (botulinum toxin type B); new name: rimabotulinum-

toxinB

3. Mechanism and molecular targets of BoNT/A action

3.1. Pharmacokinetics

3.1.1. Structure of BoNT/A complex

BoNT/A molecular complex of 900 kDa consists of toxic part
(150 kDa) and auxiliary proteins (750 kDa). The toxic part consists
of two polypeptide chains connected with disulphide bridge
(Fig. 1). The larger, heavy chain (100 kDa) contains a carboxy

Fig. 1. Schematic representation of 150 kDa BoNT/A neurotoxin molecule consisting

of light chain (50 kDa, Zn-endopeptidase, dark red) coupled with heavy chain

(100 kDa, light red) by sulphur bridge. S, sulphur; Zn, zinc. Accessory proteins of

750 kDa comprising the rest of 900 kDa complex are not shown.
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terminal membrane acceptor-binding domain (HC) and a translo-
cation domain at the N terminal (HN), which mediate the toxin
binding to nerve terminals and translocation of light chain into the
cytosol (Gu and Jin, 2013; Lee et al., 2013).

50 kDa light chain (LC) enters the cytosol and prevents
neurotransmitter release by enzymatic cleavage of synaptosom-
al-associated protein of 25 kDa (SNAP-25) (Section 3.2). Auxiliary
proteins containing hemaglutinins and non-hemaglutinins partic-
ipate in the stabilization of the BoNT/A complex and preservation
in extracellular space and throughout the gastrointestinal tract
(Chen et al., 1998; Gu and Jin, 2013; Lee et al., 2013).

3.1.2. Absorption and distribution

In the gut, BoNT/A 150 kDa neurotoxin passes from the lumen
of small intestine across epithelial lining into the bloodstream by
transcytosis. Similarly, inhaled BoNT/A may enter the bloodstream
across lung alveolar epithelium. It then reaches extracellular fluid
in various tissues and targets peripheral nerve endings (Simpson,
2013). Differences in estimated human LD50 doses of BoNT/A
delivered orally and intravenously (70 mg vs. 0.09–0.15 mg in 70 kg
human, respectively) (Arnon et al., 2001) suggest that only a small
fraction of orally ingested active BoNT/A can cross from the
gastrointestinal tract into the systemic bloodstream. This is due to
the inactivation of a large portion of orally ingested BoNT/A by the
low pH HCl in the stomach or degradation by digestion enzymes
(Sugii et al., 1977). Dose necessary for inhalational poisoning (0.8–
0.9 mg) (Arnon et al., 2001) suggests higher rate of bloodstream
penetration than after oral administration. Auxiliary proteins are
not necessary for 150 kDa toxin absorption from small intestine
and lungs (Maksymowych et al., 1999; Al-Saleem et al., 2012).

Experimental assessment of systemic pharmacokinetic of i.v.-
administered BoNT/A was performed in rodents (Ravichandran
et al., 2006). The bloodstream elimination half-life of active, non-
metabolized toxin was around 4 h. Majority of the toxin was
unbound to plasma proteins (85–95%).

The time course of BoNT/A poisoning was studied using i.v.
administration of polyclonal neutralizing antibody (BoNT/A
antitoxin) at different time points following high-dose toxin i.v.
delivery. Antitoxin administered 10 min after BoNT/A only
partially prolonged the animal survival. After 20 min it was almost
completely unable to prevent the symptoms of BoNT/A poisoning
in experimental animals (Ravichandran et al., 2006). This signifies
that the process of BoNT/A distribution and entrance into the tissue
target peripheral nerve endings occurred within minutes.

Dependently on the volume and dose, therapeutically used
BoNT/A may spread from the injection site and induce local side
effects (Brodsky et al., 2012; Majlesi, 2008). Peripheral spread away
from the site of toxin injection is not dependent on auxiliary proteins
(Brodsky et al., 2012; Carli et al., 2009). BoNT/A traffic from
periphery to the CNS via axonal route is discussed in Section 6.

3.1.3. BoNT/A internalization into nerve terminals

BoNT/A makes the first contact with neuronal terminals by
binding to polysialogangliosides in the outer side of plasma
membrane, which anchor the toxin from extracellular fluid
(Simpson, 2013). Subsequently, the toxin heavy chain binds its
high affinity membrane protein acceptors, synaptic vesicle protein
2 (SV2) and fibroblast growth factor receptor 3, which govern
BoNT/A binding and endocytotic entry into neurons (Dong et al.,
2006; Jacky et al., 2013; Mahrhold et al., 2006). BoNT/A
internalization into neurons may be mediated by all three isoforms
of SV2 (SV2A–C), with the strongest affinity for SV2C (Dong et al.,
2006). After binding to protein acceptors on neuronal membrane,
BoNT/A undergoes dynamin-dependent endocytosis into the acidic
compartment of small synaptic vesicles (Colasante et al., 2013;
Harper et al., 2011). The process of BoNT/A endocytosis is

augmented by neuronal activity, which promotes synaptic vesicle
recycling (Harper et al., 2011).

50 kDa BoNT/A light chain (LC) is translocated from small
synaptic vesicle into the cytosol by a pH-dependent active process
mediated by N-terminus translocation domain of heavy chain (HN)
(Kalandakanond and Coffield, 2001; Fischer and Montal, 2007). HN

domain is inserted into the vesicle membrane and acts as a
chaperone channel, which unfolds the three-dimensional structure
of LC into a polypeptide chain and translocates it from the inside of
small synaptic vesicle into the cytosol. Under the influence of
acidic pH in vesicles, disulphide bridge between the heavy and
light chain is reduced during the translocation process (Fischer and
Montal, 2007).

3.2. Pharmacodynamics

3.2.1. Proteolytic activity

After its translocation into the cytosol, LC polypeptide is refolded
into a soluble Zn2+-dependent metalloprotease (Kalandakanond and
Coffield, 2001). At the cytosolic side of presynaptic plasma
membrane, LC protease hydrolyses a distinct peptide bond on
membrane-associated protein SNAP-25 (Blasi et al., 1993; Sudhof,
2013). SNAP-25 is a part of the Soluble N-ethylmaleimide-sensitive
factor attachment protein receptor (SNARE) heterotrimeric com-
plex, which has a pivotal role in fusion of vesicular and plasma
membrane lipid bilayers during Ca2+-dependent exocytosis. By
cleaving unique peptide bonds on SNARE-proteins, different BoNT
serotypes and tetanus toxin (TeNT) prevent the fusion of neuro-
transmitter-containing vesicles with presynaptic plasma membrane
(Fig. 2). Along with SNAP-25 (targeted by BoNT serotypes A, E and
C1), SNARE complex is comprised of two additional proteins:
membrane-associated syntaxin (targeted by BoNT/C1) and vesicle-
associated membrane protein (VAMP)/synaptobrevin (targeted by
BoNT serotypes B, D, F, G, and TeNT) (Binz et al., 1994; Foran et al.,
1996; Pellizzari et al., 1999; Schiavo et al., 1992).

3.2.2. Duration and extent of BoNT/A-induced synaptic paralysis

BoNT/A-mediated cleavage of SNAP-25 in cholinergic synapses
leads to reversible long-term prevention of acetylcholine release
which, in case of neuromuscular paralysis, can last up to 6 months
in humans.

Based on experiments involving introduction of anti-BoNT/A LC
antibodies into the cytosol (Bartels et al., 1994), it was found that,
after inhibition of BoNT/A catalytic activity, the paralysis may persist
for up to 4 days. The delay in recovery was attributed to the time
course of synaptic turnover of cleaved SNAP-25 (Keller and Neale,
2001). Thus, this period is not sufficient to explain the long lasting
effect of BoNT/A (4 days vs. several months). The dominant
mechanism for the long-term duration of BoNT/A activity is the
unusual stability of its proteolytic light chain in the cytosol. It may
persist for at least 180 days in vivo, and 80 days in vitro in rodents
(Antonucci et al., 2008; Keller et al., 1999). Persistence of BoNT/A
protease in the cytosol is presumably mediated by toxin’s light chain
resistance to proteasomal degradation (Tsai et al., 2010). BoNT/E LC
is more susceptible to proteasomal degradation which mediates the
shorter duration of its effects compared to BoNT/A (Tsai et al., 2010).

It is estimated that BoNT/A-mediated cleavage of less than 10%
of SNAP-25 is able to cause an almost complete muscular paralysis
(>90%) (Kalandakanond and Coffield, 2001). Additionally, in vitro

spontaneous cholinergic neurotransmission in cultured autonomic
neurons is blocked >80% by 1 pM BoNT/A despite cleaving only
<20% of the SNAP-25 (Lawrence et al., 2013). These observations
suggest that only a portion of functional SNAP-25 needs to be
cleaved to induce a near-complete synaptic paralysis. Truncated
SNAP-25 lacks only 9 C-terminal amino acids, which does not impair
the forming of heterotrimeric complex with other two SNAREs

I. Matak, Z. Lacković / Progress in Neurobiology 119–120 (2014) 39–5942



(Lawrence et al., 2002; Meunier et al., 2003). Inactive SNARE
complex by itself may inhibit the neurotransmitter release (Keller
and Neale, 2001). This is augmented by finding that cell transfection
with BoNT/A-truncated SNAP-25 induces the inhibition of vesicular
release similar to BoNT/A (Huang et al., 1998). It is estimated that
several SNARE complexes forming a star-shaped oligomer (SNARE
supercomplex) are necessary for the fusion of a single synaptic
vesicle with plasma membrane (Megighian et al., 2010).

3.2.3. Toxicity and clinical potency of BoNT/A

BoNT/A dose required to produce clinical symptoms of botulism
are minute – required quantities are in order of nanograms (i.v.
LD50 is 70 ng/70 kg person). Effective therapeutic doses are much
lower – in some clinical conditions like spasmodic dysphonia in
order of picograms (Upile et al., 2009). Main pharmacokinetic and
pharmacodynamic factors which summate and result in high
BoNT/A potency are summarized in Sections 3.1.2–3.2.2. These are:

- although it is a large protein, fraction of the toxin penetrates into
the bloodstream through epithelial barriers (Section 3.1.2);

- long elimination half-life of BoNT/A in the systemic circulation
allows distribution to peripheral tissues and entry into periph-
eral nerve terminals (Section 3.1.2);

- high affinity of BoNT/A heavy chain to dual ganglioside-protein
acceptors at the peripheral nerve terminals (Section 3.1.3);

- BoNT/A light chain is an enzyme which may target many SNAP-
25 molecules (Section 3.2.1);

- in the cytosol, BoNT/A light chain is very stable and resistant to
proteasomal degradation, which mediates the long-term effect of
BoNTA (Section 3.2.2);

- cleavage of only a small portion of SNAP-25 is required for
synaptic paralysis (Section 3.2.2).

3.3. BoNT/A activity is not restricted to inhibition of SNAP-25-

mediated acetylcholine release

3.3.1. Effect on neurotransmitters other than acetylcholine

Classically, it was assumed that BoNT/A enters cholinergic
motor and autonomic neurons only. However, the toxin enters

many different neuronal types and blocks the neurotransmitter
release from non-cholinergic synapses, too. Mostly in vitro

experiments demonstrated that BoNT/A prevents the release
of serotonin, dopamine, noradrenaline, glutamate, gamma-
aminobutyric acid (GABA), enkephalin, glycine, substance P,
ATP and calcitonin gene-related peptide (CGRP) (Durham and
Cady, 2004; McMahon et al., 1992; Morris et al., 2002; Nakov
et al., 1989; Thyssen et al., 2010; Verderio et al., 2007; Welch
et al., 2000).

3.3.2. Preferential effect on excitatory vs. inhibitory neurons

BoNT/A is more efficient in impairing the release of excitatory
neurotransmitters like acetylcholine and glutamate, in contrast
to GABA (Verderio et al., 2007). This was proposed to result from
higher transient increase in calcium concentration upon
depolarization in GABA-ergic neurons, in comparison to excit-
atory neurons (Grumelli et al., 2010). High concentrations of
intracellular Ca2+, in turn, have the ability to overcome the
cleaved SNAP-25-mediated paralysis (Gerona et al., 2000;
Grumelli et al., 2010; Lawrence et al., 2002). Loss of SNAP-25
C-terminus affects the Ca2+-dependent interaction of SNARE
complex with synaptotagmin I, a protein involved in triggering
of Ca2+-mediated neurotransmitter release. This interaction can
be restored by increasing the Ca2+-concentration (Gerona et al.,
2000).

Since SNAP-25 is also a negative regulator of calcium channels
(Pozzi et al., 2008), higher level of SNAP-25 in excitatory neurons
makes them more BoNT/A-sensitive in comparison to inhibitory
neurons. Reducing the calcium levels by chelators induces a higher
sensitivity of GABA-ergic neurons to BoNT/A action (Grumelli et al.,
2010; Verderio et al., 2004).

3.3.3. Activity outside of synaptic active zone

Thyssen et al. (2010) demonstrated that BoNT/A activity on
neurotransmitter release in neuronal compartments is not
confined only to synapses. Authors showed that BoNT/A inhibits
the ectopic vesicular release of glutamate and ATP from axons of
olfactory receptor neurons (Thyssen et al., 2010). BoNT/A effect in
axons suggests its activity on neurotransmitter release outside of
active synaptic zones.

Fig. 2. Mechanism of botulinum toxin type A (BoNT/A)-mediated prevention of neurotransmitter release. Left: Schematic representation of 150 kDa BoNT/A neurotoxin (red)

consisting of heavy chain and light chain coupled with disulphide bonds (yellow). Light chain contains zinc ion (green). BoNT/A heavy chain recognizes the dual ganglioside-

protein acceptors (gray oval shape) on the outer side of plasma membrane and it is internalized into synaptic vesicles. BoNT/A LC is then translocated into the cytosol. Right:

Light-chain cleaves membrane-associated synaptosomal-associated protein of 25 kDa (SNAP-25) which prevents vesicle fusion with membrane. This induces prevention of

neurotransmitter release and build-up of synaptic vesicles in the synapse. 100, 100 kDa BoNT/A heavy chain; 50, 50 kDa BoNT/A light chain; SNAP-25; synaptosomal-

associated protein of 25 kDa (black rectangle); light green rectangle represents syntaxin, brown rectangle represents vesicle associated membrane protein/synaptobrevin,

blue pentamer represents postsynaptic neurotransmitter receptor; red pentagon represents neurotransmitter. Sizes of schematic representations of proteins, atoms and

neurotransmitter are not drawn to scale compared to synaptic structures and vesicles.
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3.3.4. Effects on cell types other than neurons

BoNT/A blocks the vesicular release from non-neuronal cell
types containing SNAP-25-dependent exocytotic machinery, such
as pancreatic beta cell lines (blockage of insulin release),
chromaffin cells (acetylcholine) and astrocytes (glutamate) (He
et al., 2008; Lawrence et al., 2002; Kanno and Nishizaki, 2012).
BoNT/A effect on acetylcholine release from sciatic Schwann cells
has also been reported (Marinelli et al., 2012).

3.3.5. Additional actions of BoNT/A mediated by SNAP-25

Besides its role on neurotransmitter release, SNAP-25 mod-
ulates the activity of Ca2+ channels and possibly other voltage
gated ion channels (He et al., 2008; Ji et al., 2002; Pozzi et al., 2008;
Zamponi, 2003). By targeting SNAP-25, BoNT/A may prevent the
SNARE-mediated translocation of receptors to plasma membrane,
such as N-methy-D-aspartate receptor and transient receptor
potential vanilloid 1 (TRPV1) (Cheng et al., 2013; Morenilla-Palao
et al., 2004; Shimizu et al., 2012). In addition, it may prevent the G
protein interaction with SNARE-dependent exocytotic machinery
(Gerachshenko et al., 2005).

Process of neurite extension through the axonal growth cone
was shown to be dependent on SNAP-25 and sensitive to BoNT/A
action. BoNT/A inhibits axonal cone growth in cultured hippocam-
pal, dorsal root ganglion cells, or differentiated pheochromocyto-
ma-12 (PC-12) cells. In addition, BoNT/A prevented the dendritic
growth in hippocampal neurons (Grosse et al., 1999; Morihara
et al., 1999). The fact that SNAP-25 is not localized at presynaptic
sites only, but also along the axons and dendrites (Galli et al., 1995;
Duc and Catsicas, 1995) suggests that SNAP-25 might be a
multifunctional protein. It was proposed that SNAP-25 (or the
whole SNARE complex) may mediate various types of membrane
fusion events in the entire axonal compartment (Duc and Catsicas,
1995). Consequently, BoNT/A-cleaved SNAP-25 presence along
neuronal processes (Fig. 3) suggests that BoNT/A might also have
some additional in vivo effects which remain to be investigated.

3.3.6. Possible additional targets of BoNT/A action other than SNAP-25

Up to now, SNAP-25 is the only definitively accepted molecular
target of BoNT/A action. However, according to several in vitro

studies there is a defined effect of BoNT-A on cellular processes like
neuroexocytosis, apoptosis and neurite sprouting which do not

necessarily depend on enzymatic cleavage of SNAP-25 (Coffield
and Yan, 2009; Ishida et al., 2004; Proietti et al., 2012; Ray et al.,
1993, 1999; Zhang et al., 2013).

Several studies have shown that the BoNT/A effect on
acetylcholine release mediated by arachidonic acid pathway
may be independent of SNAP-25. In PC12 cell line, arachidonic
acid or phospholipase A2 activation-induced exocytotic release of
acetylcholine was found to be prevented by BoNT/A (Ray et al.,
1993). Acetylcholine release promoted by arachydonic acid or by
phospholipase A2 activation was found to be present even when
the expression of SNAP-25 was prevented by antisense oligonu-
cleotides (Ray et al., 1993, 1999). The authors proposed the
existence of additional anti-exocytotic mechanisms of BoNT/A
action not dependent on SNAP-25 (Ray et al., 1999). Recently, it
was shown that phospholipase A2 activator mastoparan-7
partially reverses the BoNT/A-mediated impairment of cholinergic
transmission in cultured spinal cord cells (Zhang et al., 2013). The
effect was suggested to be unrelated to the activity of BoNT/A
proteolytic effect on SNAP-25 (Zhang et al., 2013).

It was suggested that BoNT/A blocks the lysophosphatidic acid-
promoted acetylcholine release from differentiated PC12 cells by
inhibiting RhoB-dependent signaling pathway (Ishida et al., 2004).
RhoB protein is a member of Rho kinases/GTP-ases involved in
intracellular signaling pathways leading to actin reorganization.
The authors demonstrated that BoNT/A, by an unknown mecha-
nism, promotes the proteasomal degradation of RhoB (Ishida et al.,
2004).

BoNT/A induces apoptosis in cell cultures derived from prostate
cancer and breast cancer (Bandala et al., 2013; Karsenty et al.,
2009; Proietti et al., 2012). Lack of neural elements in the cell
culture suggests that BoNT/A effect are mediated through
mechanisms independent from neurotransmitter release. In
prostate cancer cell lines, BoNT/A increases the concentration of
phosphorylated phospholipase A2, which is proposed to be
associated with BoNT/A-mediated apoptosis and inhibition of
proliferation (Proietti et al., 2012).

In another in vitro experiment, neuritogenic sprouting of motor
nerve terminals, previously believed to be associated with toxin’s
paralytic activity on neuromuscular junctions, was proposed to be
independent of toxin’s light chain (Coffield and Yan, 2009). BoNT/A
heavy chain subunit was shown to promote the neurite sprouting
in cultured motor neurons similarly to the native 150 kDa toxin.
Authors proposed that the binding activity of BoNT/A heavy chain
alone is sufficient to promote neuritogenesis (Coffield and Yan,
2009).

Bossowska and Majewski (2012) reported that, at the level of
sensory ganglia, BoNT/A bladder injection reduces the expression
of substance P, CGRP, calbindin, somatostatin, and neuronal nitric
oxide synthase in sensory neurons innervating the bladder in pigs.
The mechanism of these changes might be connected with altered
gene expression. Up-regulation of CGRP and enkephalin m-RNA
expression in motoneurons after intramuscular BoNT/A has been
interpreted as an indirect consenquence of peripheral chemical
denervation (Humm et al., 2000; Jung et al., 1997; Palomar and
Mir, 2012; Zhang et al., 1993).

4. Evidence of the antinociceptive action of BoNT/A

4.1. Clinical evidence of BoNT/A’s antinociceptive activity

4.1.1. First clinical observations

As previously mentioned in Section 2.2, small doses of purified
BoNT/A are clinically used for treatment of neuromuscular
disorders characterized by increased tonicity or overactivity of
certain muscles (Barnes, 2003; Thenganatt and Fahn, 2012). Along
with the neuroparalytic effect, it was observed that BoNT/A

Fig. 3. Fluorescent microphotograph of cleaved SNAP-25 in the ipsilateral

trigeminal nucleus caudalis 5 days after BoNT/A (15 U/kg) injection into the rat

whisker pad. Immunohistochemical procedure is previously published (Matak

et al., 2011). Red fluorescent signal represents cleaved SNAP-25, while blue

fluorescence represents nuclear counterstaining with diamidino-2-phenylindole

(DAPI). Lateral edge of brainstem section is visible in the upper right corner. Scale

bar = 100 mm.
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reduces the pain associated with the neuromuscular hyperactivity
disorders, such as dystonic torticollis (Tsui et al., 1986; Brin et al.,
1987; Tarsy and First, 1999). BoNT/A-mediated pain relief was
initially believed to be associated with decreased contraction of
affected muscles (Arezzo, 2002; Cohen et al., 1989; Mense, 2004). It
was proposed that BoNT/A, by inhibiting the release of acetylcho-
line in hyperfunctional muscular end plates, may indirectly
prevent the painful ischemia caused by muscle contractures in
spasticity and dystonia (Mense, 2004). However, it was reported
that the observed pain relief in patients treated for spasmodic
torticollis was not concurrent with neuromuscular effects, since it
was present in some patients even when dystonic posture of the
neck was not improved (Stell et al., 1988). Additionally, BoNT/A-
mediated pain relief does not always occur simultaneously with
the observed paralytic effect in focal dystonias, and it sometimes
even persists after the neuromuscular benefit is no longer visible
(Aoki, 2003; Freund and Schwartz, 2003; Relja and Klepac, 2002).
In a dose response double blind study of Relja and Klepac (2002), it
was observed that BoNT/A effect on pain in spasmodic torticollis
occurs after one week, while the beneficial effect on motor function
started after 2 weeks. Moreover, it was discovered that the dose
necessary to induce beneficial effect on pain (50 U) was lower than
the doses needed for motor improvement (100 and 150 U). In
patients treated with BoNT/A for temporomandibular disorders it
was observed that the beneficial effects on pain persisted longer
than the decreased voluntary bite force (Freund and Schwartz,
2003). Additionally, based on the effectiveness of BoNT/A
injections into the trigger points in treatment of myofascial pain,
BoNT/A effect was proposed to be linked to either indirect or direct
effects on pain fibers rather than muscles themselves (Giladi,
1997). Since the onset of BoNT/A action on pain did not correspond
to the onset of paralytic muscular effects or lasted longer than the
paralysis, toxin’s action on sensory or vegetative nerves was
suggested (Giladi, 1997; Mense, 2004).

Independently from pain which might be related to increased
muscle contraction, antinociceptive effect of BoNT/A was reported
in different types of chronic pain not associated primarily with
muscular hyperactivity, such as migraine and different types of
neuropathic pain (Argoff, 2002; Silberstein et al., 2000). Along with
experimental knowledge obtained from pre-clinical in vitro and in

vivo studies (Section 5.2), it is now accepted that BoNT/A effects on
pain may be mediated by its direct effects on sensory system.

4.1.2. Current clinical experience

Migraine. Based on results of large (1384 patients) multicentric
Phase III Research Evaluating Migraine Prophylaxis Therapy
(PREEMPT) studies (Dodick et al., 2010), BoNT/A was approved
by the FDA for the treatment of chronic migraine (migraine having
>15 headache days per month) in 2010. Therapeutic outcome was
a significantly reduced mean number of migraine attacks per
month and headache severity, suggesting that BoNT/A may be used
as a prophylactic treatment of chronic migraine. In mentioned
studies BoNT/A was injected into fixed sites over several cranial
and neck muscles and in fixed doses (total dose of 155–195
onabotulinum toxin A preparation units – 1 unit (U) corresponds to
intraperitoneal mouse LD50 dose, which equals 48 pg of 900 kDa
toxin complex).

The value of PREEMPT study, supported by onabotulinumtox-
inA manufacturer, was highly prized (reviewed by Láinez-Andrés,
2012) and questioned at the same time because the outcome of
some other randomized controlled experiments was mild or not
found at all (reviewed by Gady and Ferneini, 2013). As pointed out
by Frampton (2012) ‘‘Debate surrounding the PREEMPT studies has
centered on the small treatment effect of BoNTA relative to
placebo, the possibility that blinding was inadequate and
relevance of the evaluated population’’. It is also possible that

some patient subpopulations exhibit a larger benefit from BoNT/A
use in comparison to others. The directionality of pain may be a
marker for predictability of BoNT/A responsiveness in the
treatment of migraine headache (Jakubowski et al., 2006; Burstein
et al., 2009). In the subpopulation of responders, it was reported
that most of them (84%) described their headache as a pressure
build-up from outside (imploding headache), while in the
subpopulation of non-responders, 83% of patients described their
pain as a pressure from inside (exploding headache) (Burstein
et al., 2009). It was also suggested that pericranial allodynia,
unilaterality of migraine pain and pericranial muscle tenderness in
chronic migraine may be the predictive markers for BoNT/A
responsiveness (Mathew et al., 2008).

Other types of pain. In the past decade, several hundreds of
reports of pain relief due to BoNT/A off-label use in various clinical
conditions have been published. Beneficial effects in pain have
been reported in interstitial cystitis (Kuo, 2013; Russell et al.,
2013), chronic arthritis (Chou et al., 2010), residual limb pain (Wu
et al., 2012), different types of peripheral neuropathic pain (Ranoux
et al., 2008; Zúñiga et al., 2008), diabetic neuropathy (Chen et al.,
2013; Relja and Miletić, 2006; Yuan et al., 2009), masticatory pain
(Freund and Schwartz, 2003), etc. Although several double-blind,
placebo controlled studies have been performed (review by Jabbari
and Machado, 2011), clinical reports on BoNT/A efficacy are
dominated by studies based on case series or individual case
reports. In the literature there is an increasing number of rare
conditions with reported BoNT/A efficacy such as Parry Romberg
syndrome (Borodic et al., 2014), Morton neuroma (Climent et al.,
2013), painful legs and moving toes syndrome (Rodriguez and
Fernandez, 2013), post-thoracotomy pain (Fabregat et al., 2013)
post-amputation limb pain (Wu et al., 2012), etc.

Although BoNT/A seems to be a promising candidate for
treatment of chronic pain, the results of clinical studies are
contradictory, such as the effects on myofascial pain (Cheshire
et al., 1994; Göbel et al., 2006; Wheeler et al., 1998) and tension
type headache (Relja, 1997; Relja and Telarović, 2004; Schulte-
Mattler and Krack, 2004).

Results of systemic reviews and meta-analyses (Cochrane data
base systemic reviews and other) are also mostly inconclusive:

- Winocour et al. (2014) published a systemic review of 7 clinical
trials on 427 women with subpectoral breast implants. The
results suggest that BoNT/A may alleviate postoperative pain but
this outcome is inconsistent and lacks methodological rigor.

- Soares et al. (2012) and Gerwin (2012) analyzed the efficacy of
BoNT/A in myofascial pain syndromes in adults. Based on data from
four studies with a total of 233 participants, authors concluded
that ‘‘there is inconclusive evidence to support the use of
botulinum toxin in the treatment of myofascial pain syndromes
. . .. Meta-analyses were not possible due to the heterogeneity
between studies’’.

- Subacute/chronic neck pain. Nine randomized and quasi-random-
ized controlled trials (503 participants) were included in the
systemic review performed by Langevin et al. (2011). However
‘‘evidence fails to confirm either a clinically important or a
statistically significant benefit of BoNT-A injection for chronic
neck pain associated with or without associated cervicogenic
headache. Likewise, there was no benefit seen for disability and
quality of life at four week and six months’’.

- In systemic review of low-back pain and sciatica (Waseem et al.,
2010) included three randomized trials (N = 123 patients). Only
one of the three trials had a low risk of bias and demonstrated
that BoNT injections reduced pain at three and eight weeks and
improved function at eight weeks compared to saline injections.
The second trial showed that BoNT/A injections were better than
injections of corticosteroid plus lidocaine or placebo in patients
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with sciatica attributed to piriformis syndrome. The third trial
concluded that BoNT/A injections were better than traditional
acupuncture in patients with third lumbar transverse process
syndrome. Heterogeneity of studies prevented the meta-
analysis.

- Singh and Fitzgerald (2010) analyzed BoNT/A efficacy in shoulder

pain. They analyzed six randomized controlled trials with 164
patients receiving either BoNT/A or placebo. BoNT/A decreased
pain and improved shoulder function in patients with chronic
shoulder pain due to spastic hemiplegia or arthritis, but the
sample size was small, and authors concluded that more studies
with safety data are needed.

- Hu et al. (2013) published a systemic review analyzing the
outcome of BoNT/A treatment of 101 patients with trigeminal

neuralgia (6 studies: five prospective studies and one double-
blind, randomized, placebo-controlled). Beneficial effect was
observed in ‘‘approximately 70–100% of patients’’. However,
randomized, controlled, double-blinded studies are still lacking.

- In an extensive meta-analysis involving 23 studies and more than
5000 patients, Jackson et al. (2012) analyzed the BoNT/A efficacy
in episodic migraine, chronic migraine, chronic daily headache
and tension type headache. They concluded that BoNT/A may
reduce the mean number of headache days per month in chronic
migraine and chronic daily headache, in comparison to placebo.
BoNT/A was not beneficial in the treatment of episodic migraine
and tension-type headache.

In addition to the small sample size and limited number of
randomized controlled clinical trials, the reason for contradictory
or negative findings can be the lack of standardized guidelines for
BoNT/A application and dosage, and the appropriate definition of
study primary outcomes (Jabbari and Machado, 2011).

In spite of controversies, clinical reports on the use of BoNT/A
suggest a unique long-lasting pain reduction after a single
peripheral application, lasting 3–6 months. This represents the
most obvious advantage over classical analgesic drugs, which have
a shorter duration of action and need to be taken regularly.
Prolonged activity in comparison to other analgesics drives the
need for further development of the BoNT/A use in treatment of
chronic pain. Another advantage of BoNT/A use may be the lack of
serious side effects often associated with certain classic analgesic
drugs, such as the development of tolerance and medication
overuse. Potential important use of BoNT/A is its reported efficacy
in some types of chronic pain refractory to other treatments.

4.2. Preclinical studies

Up to now, the clinical use of BoNT/A in pain has occurred
largely empirically. Hundreds of clinical reports on the BoNT/A
action on pain (including migraine) can be found In the PubMed
database. In contrast to that, if we subtract review articles and
commentaries, there are only few dozens of preclinical publica-
tions related to BoNT/A and pain in total.

4.2.1. Ex vivo and in vitro studies

Ex vivo and in vitro studies showed that BoNT/A inhibits the
evoked release of neuropeptides which modulate the inflamma-
tion and pain. In the rabbit iris sphincter muscle, BoNT/A inhibited
substance P-ergic component of contraction evoked by electric
pulse field (Ishikawa et al., 2000), suggesting that BoNT/A may
reduce the peripheral SP release from trigeminal afferents. In rat
bladder preparation from rats with cyclophosphamide-induced
chronic cystitis, or in bladder preparations treated with HCl,
incubation with BoNT/A prevented the ex vivo release of SP and
CGRP (Rapp et al., 2006; Lucioni et al., 2008). BoNT/A inhibited the
release of SP evoked by capsaicin and K+ in cultured dorsal root

ganglion cells (Purkiss et al., 2000; Welch et al., 2000). The toxin’s
effects were dependent on the presence of extracellular Ca2+

(Purkiss et al., 2000). BoNT/A was similarly effective in reducing K+

or capsaicin-stimulated CGRP release from sensory neurons
isolated from trigeminal ganglion, while the basal CGRP release
was unaffected (Durham and Cady, 2004). In another study, BoNT/
A inhibited the CGRP release from trigeminal sensory neurons
evoked by K+, bradykinin, and to a lesser degree by capsaicin (Meng
et al., 2007). In brainstem slices BoNT/A altered the electrophysio-
logically measured basal CGRP drive on secondary trigeminal
neurons, but was unable to alter capsaicin-evoked CGRP drive
(Meng et al., 2009). In the same study it was shown that the
increase of Ca2+ concentration can overcome the BoNT/A-mediated
inhibition of K+-stimulated CGRP release from trigeminal ganglion
neurons (Meng et al., 2009). In cultured sensory ganglia BoNT/A
prevented the SNARE-mediated TRPV1 translocation to the plasma
membrane, which might contribute to its analgesic activity in vivo

(Morenilla-Palao et al., 2004; Shimizu et al., 2012; Yiangou et al.,
2011).

In vitro effect on evoked CGRP release has been screened for
different BoNT serotypes: BoNT/A, BoNT/B, BoNT/C1, BoNT/D and
BoNT/E (Meng et al., 2007, 2009). It was shown that BoNT/E cannot
inhibit the evoked CGRP release in sensory neurons, since SV2A
and SV2B protein isoforms, the ectoacceptors for BoNT/E
endocytosis, are not present in sensory neurons which express
SV2C (2009). In contrast to BoNT/E, BoNT/A binds all three SV2
isoforms, with highest affinity for SV2C. The effect of BoNT/E
protease on capsaicin-evoked CGRP release in cultured sensory
neurons was established after coupling BoNT/E light chain to
BoNT/A heavy chain receptor binding domain (HC(A)), which
yielded EA recombinant chimeric protein (Meng et al., 2009).

4.2.2. In vivo models

Chemically induced pain. First preclinical observation of in vivo

antinociceptive effect of BoNT/A was reported in a model of
formalin-induced inflammatory pain. Subcutaneous BoNT/A was
found to reduce the inflammatory hyperalgesia during the second
phase of formalin test (Cui et al., 2004; Drinovac et al., 2013;
Luvisetto et al., 2006; Vacca et al., 2012). Intracerebroventricular
injection of BoNT/A, in comparison to peripheral injection, had
similar efficacy in reducing formalin-induced pain (Luvisetto et al.,
2006). The effect of intrathecal BoNT/A injection on formalin-
induced pain has also been reported (Lee et al., 2011). Efficacy of
BoNT/A in reducing thermal and mechanical hyperalgesia was also
reported in models of acute inflammatory somatic pain evoked by
carrageenan and capsaicin (Bach-Rojecky and Lacković, 2005;
Favre-Guilmard et al., 2009; Shin et al., 2013). A recent study
reported that BoNT/A is equally effective after single and repeated
injections in a model of formalin-induced orofacial pain (Matak
et al., 2013).

Neuropathic pain. BoNT/A effectiveness in nerve injury-evoked
neuropathic pain was found in the partial sciatic nerve transection
model (Bach-Rojecky et al., 2005a,b), wherein it reduced the
thermal and mechanical hyperalgesia. In the same model BoNT/A
was also shown to reduce the mechanical and cold allodynia
(Drinovac et al., 2013). Further studies of neuropathic pain
reported that BoNT/A reduced the mechanical and cold allodynia
in spinal nerve ligation model (Park et al., 2006). Later, its efficacy
in reducing mechanical allodynia was reported in sciatic nerve
constriction injury-evoked neuropathy (Luvisetto et al., 2007;
Marinelli et al., 2010; Mika et al., 2011). It was observed that BoNT/
A accelerates the functional recovery of injured sciatic nerve in a
model of sciatic constriction injury-induced peripheral neuropa-
thy, assessed by using sciatic static index and regeneration-
associated markers (Marinelli et al., 2010; Mika et al., 2011; Pavone
and Luvisetto, 2010). In addition, BoNT/A prevented the sciatic
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nerve injury-induced upregulation of pronociceptive opioid
neuropeptides and SNAP-25 in the sensory ganglia, and markers
of glial activation in the spinal cord (Mika et al., 2011; Vacca et al.,
2013). These effects were proposed to contribute to the analgesic
activity of BoNT/A in neuropathic pain. In a model of chronic
constriction injury of the infraorbital nerve, BoNT/A reduced the
mechanical allodynia and thermal hyperalgesia (Filipović et al.,
2012; Kitamura et al., 2009; Kumada et al., 2012). Along with its
analgesic activity, it also reduced the accompanying neurogenic
inflammation of cranial dura mater (Filipović et al., 2012).

Bilateral or polyneuropathic pain. BoNT/A efficacy in bilateral
pain induced by repeated intramuscular acidic saline injection and
diabetic pain evoked by streptozootocin was reported after both
peripheral and intrathecal injections (Bach-Rojecky and Lacković,
2009; Bach-Rojecky et al., 2010). BoNT/A was effective in reducing
polyneuropathic pain evoked by chemotherapeutic drug paclitaxel
(Favre-Guilmard et al., 2009). BoNT/A reduced the bilateral pain
evoked by ventral root transection (Xiao et al., 2011, 2013). In these
models, unilateral peripheral BoNT/A injection exerted a bilateral
antinociceptive effect. (For details on these studies see Section 5.3.)

Other types of pain. Apart from somatic pain, its efficacy was
reported in animal models of acute and chronic visceral pain. BoNT/A
prevented the acetic acid-induced bladder pain and capsaicin-
evoked prostatic pain, as well as chronic cystitis evoked by
cyclophosphamide (Chuang et al., 2004, 2008, 2009). Additionally,
BoNT/A efficacy was reported in postsurgical pain (Filipović et al.,
2010) and CFA-induced chronic knee arthritis (Krug et al., 2009).

In vivo efficacy of other BoNT serotypes and their recombinantly

engineered combinations. BoNT/B efficacy was investigated for the
first time in a model of formalin-induced pain in mice (Luvisetto
et al., 2006). Peripherally administered BoNT/B, in contrast to
BoNT/A, reduced the phase I of formalin-induced pain, while it had
no effect on phase II hyperalgesia. Intracerebroventricularly
administered BoNT/B had a pro-hyperalgesic activity on the
interphase between phase I and phase II of formalin-induced pain
(Luvisetto et al., 2006). In a mouse model of chronic knee arthritis
induced by collagenase IV intraarticular injection, BoNT/B reduced
the joint tenderness and significantly improved the gait score
(Anderson et al., 2010). In mice, intrathecally applied BoNT/B
reduced the phase II of formalin induced pain and neurokinin-1
receptor internalization in the dorsal horn evoked by central
substance P release (Huang et al., 2011). In the in vivo model of
capsaicin-evoked pain it was shown that a recombinant protein
chimera consisting of BoNT/E LC coupled to proteolytically inactive
full length BoNT/A may induce a prolonged analgesic activity
(Dolly et al., 2011). It seems that proteolytically inactive BoNT/A
facilitated the BoNT/E LC entrance into sensory neurons. Addition-
ally, BoNT/A part of the molecule protected the BoNT/E LC from
proteasomal degradation, enabling its prolonged activity (Dolly
et al., 2011). Recently, analgesic efficacy of chimeric BoNT/A LC
coupled to TeNT Hc was demonstrated in complete Freund’s
adjuvant-induced inflammatory pain (Ferrari et al., 2013).

4.3. Peculiar properties of BoNT/A antinociceptive activity

Unlike most analgesics which affect acute nociceptive pain
thresholds, BoNT/A shows a considerable selectivity only in lasting
types of pain associated with central sensitization. BoNT/A
primarily seems to lower hyperalgesic or allodynic responses in
acute inflammatory or chronic pain. It does not alter normal
nociceptive thresholds or acute nociceptive pain in both humans
and animals, as well as phase I of formalin-induced experimental
pain (Blersch et al., 2002; Cui et al., 2004; Bach-Rojecky et al.,
2005a,b).

Together with the observed lack of effect on acute nociceptive
pain, another important difference between conventional analgesics

and BoNT/A is the lack of defined dose-response effects on pain, i.e.

the correlation between the dose of peripherally delivered toxin and
observed antinociceptive effect (Bach-Rojecky et al., 2005a,b, 2010;
Bach-Rojecky and Lacković, 2005). At lower toxin doses which do not
impair the motor performance, it seems that the full analgesic effect
is exerted already at the lowest effective dose (Bach-Rojecky and
Lacković, 2005; Bach-Rojecky et al., 2010). For example, at 3 U/kg
BoNT/A seems not to affect the carrageenan and capsaicin-evoked
pain, but at slightly higher dose (3.5 U/kg), and further increased
doses (5 and 7 U/kg) BoNT/A exerts similar and maximal analgesic
activity (Bach-Rojecky and Lacković, 2005). Similar antinociceptive
effect of 3.5, 7 and 15 U/kg BoNT/A doses was reported in formalin
test (Cui et al., 2004). In few studies the authors described the
increased analgesic effects occurring at high doses of toxin applied
(20–40 U/kg) (Cui et al., 2004; Park et al., 2006). However, systemic
spread of BoNT/A impaired the animal motor performance, which
most likely interfered with the ability to produce a nocifensive
reaction (Cui et al., 2004). Up to now, clinical trials also did not
address the dose response of BoNT/A, and the doses employed were
defined only empirically.

5. Peripheral or central mechanism of BoNT/A’s antinociceptive
activity

5.1. Peripheral theory of BoNT/A’s antinociceptive effects

As an explanation of its antinociceptive effect it was suggested
that BoNT/A, similarly to well-known prevention of acetylcholine
release from neuromuscular junction, inhibits the local neuro-
transmitter release from sensory nerve endings by peripheral
SNAP-25 cleavage (Cui et al., 2004; Aoki, 2005; Aoki and Francis,
2011; Wheeler and Smith, 2013). This suggestion was based
primarily on the observation of Cui et al. (2004), who found that
subcutaneous injection of BoNT/A reduces the licking activity
during the second (inflammatory) phase of pain induced by
subcutaneous injection of formalin. BoNT/A did not reduce the
initial phase of licking behavior caused by direct chemical
stimulation of peripheral nerve endings with formalin. Selective
reduction of inflammatory pain was accompanied by inhibition of
formalin-induced increase of peak glutamate concentration in the
rat hind-paw, and reduction of paw edema, assumed to be a
consequence of neurogenic inflammation. Antinociceptive activity
of BoNT/A was therefore suggested to be linked with its peripheral
anti-inflammatory effects (Aoki, 2005; Cui et al., 2004). It was
proposed that cleavage of SNAP-25 at peripheral endings of
sensory nerves results in consecutive prevention of release of
neurotransmitters which mediate pain and inflammation (Aoki,
2005; Aoki and Francis, 2011; Wheeler and Smith, 2013). The
authors hypothesized that BoNT/A may reduce the peripheral
release of not only glutamate, but also of neuropeptides involved in
neurogenic inflammation such as substance P (SP) and calcitonin
gene-related peptide (CGRP) (in the report of Cui et al. (2004),
peptides were not directly measured) (Aoki, 2005; Cui et al., 2004).
The effect of BoNT/A on the release of proinflammatory mediators
was demonstrated mostly in in vitro and ex vivo experiments
(Section 4.2.1). In addition, the suppressive effect of BoNT/A on
neuronal activation, measured as formalin-induced c-Fos expres-
sion or electrophysiologically measured activation of wide
dynamic range neurons in lumbar dorsal horn was reported (Aoki,
2005). The authors proposed that BoNT/A, by preventing the
peripheral release of neurotransmitters, indirectly reduces the
central sensitization (Aoki, 2005; Aoki and Francis, 2011).

Antinociceptive and anti-inflammatory effects of BoNT/A were
reported in human models of capsaicin-induced pain (Gazerani
et al., 2006, 2009; Tugnoli et al., 2007). Gazerani et al. (2009)
reported a reduction of pain and capsaicin-induced vasomotor
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reactions in the human skin within the trigeminal area. Similar
anti-inflammatory effects were observed by Tugnoli et al. (2007),
who reported that BoNT/A reduced pain and capsaicin-induced
neurogenic effects in human skin in the area pre-treated by BoNT/
A. Contrary to these reports, studies of Schulte-Mattler et al. (2007)
and Voller et al. (2003) did not report significant anti-inflamma-
tory or antinociceptive effects of BoNT/A on capsaicin-evoked pain
in humans. The differences between the described studies might be
related to the experimental setup regarding the mode of toxin
injection (subcutaneous, intramuscular or intradermal) or differ-
ent BoNT/A doses (Gazerani et al., 2006, 2009; Schulte-Mattler
et al., 2007; Tugnoli et al., 2007; Voller et al., 2003). Additionally,
BoNT/A does not reduce the experimental inflammatory pain
evoked by UV light in humans (Sycha et al., 2006).

5.2. Dissociation of BoNT/A antinociceptive activity and peripheral

anti-inflammatory effects

As mentioned in the previous section, BoNT/A was found to
reduce the formalin-induced inflammation, increased glutamate
content in hind paw tissue, and inflammatory phase hyperalgesia
(Aoki, 2005; Cui et al., 2004). At the time, it was logical to assume
that the relation between BoNT/A effect on inflammation and pain
was causal – BoNT/A reduces the pain and indirectly the central
sensitization by reducing peripheral neurotransmitter/inflamma-
tory mediator release. However, the link between the effects of
BoNT/A on peripheral inflammation and pain could not be
confirmed in subsequent reports (Bach-Rojecky et al., 2005a,b,
2008; Favre-Guilmard et al., 2009; Shin et al., 2013).

In experimental carrageenan or capsaicin-induced inflamma-
tory pain, BoNT/A normalized the mechanical and thermal
hyperalgesia, but neither local tissue inflammatory edema and
proinflamatory cell infiltration evoked by carrageenan, nor plasma
protein extravasation induced by capsaicin were reduced (Bach-
Rojecky et al., 2005a,b, 2008; Favre-Guilmard et al., 2009; Shin
et al., 2013). These experiments demonstrated that the anti-
nociceptive and anti-inflammatory effects of BoNT/A are not
necessarily connected as it should be expected if both were
mediated by reduced peripheral release of proinflammatory
neuropeptides (Bach-Rojecky et al., 2008). In the study of Cui
et al. (2004), there seems to be a difference between the minimal
BoNT/A doses needed to produce anti-inflammatory and anti-
nociceptive effects. Reduction of formalin-evoked paw edema was
significant at a 7 U/kg dose, and was not different from control at
3.5 U/kg. Both doses produced the antinociceptive effect without
significant difference.

Dissociation between anti-inflammatory and antinociceptive
effects of BoNT/A was also reported by a human experimental
studies. Tugnoli et al. (2007) observed pain reduction only when
capsaicin was administered to toxin-pretreated area, but not when
injected in the area adjacent to toxin treatment. On the contrary,
neurogenic flare and vasodilatation was reduced even if capsaicin
was administered adjacently to the toxin-pretreated area, but the
pain was not affected. Based on this observation the authors
proposed that the toxin’s anti-inflammatory effect on neurogenic
flare and vasodilatation do not significantly contribute to BoNT/A-
mediated pain reduction (Tugnoli et al., 2007). Similar conclusion
was proposed in the human study of Krämer et al. (2003) which
reported that BoNT/A reduced the neurogenic flare evoked by
cutaneous electrical stimulation, however, with very limited
analgesic effect. The authors suggested that the reduction of
neuropeptide-mediated peripheral neurogenic inflammation does
not contribute significantly to BoNT/A analgesic effects observed in
clinical pain syndromes (Krämer et al., 2003).

Independently of the potential connection between its anti-
inflammatory and antinociceptive effects, it was observed that

peripherally delivered BoNT/A has significant antinociceptive
effect in types of pain where neither peripheral neurotransmitter
release nor peripheral inflammation have important role, such as
bilateral hyperalgesia induced by intramuscular acidic saline
(described in Section 5.3).

5.3. Effects on bilateral pain: indication of central action of BoNT/A

Bilateral pain model studies reported bilateral effects of
unilaterally administered BoNT/A (Bach-Rojecky et al., 2005a,b,
2010; Lacković et al., 2006; Bach-Rojecky and Lacković, 2009;
Favre-Guilmard et al., 2009; Xiao et al., 2011; Filipović et al., 2012;
Xiao et al., 2013). BoNT/A’s distant contralateral effects, obviously,
cannot be explained only by BoNT/A action on peripheral nerve
endings of injected side.

Bilateral hyperalgesia induced by intramuscular acidic saline.

Mirror pain is defined as the occurrence of mechanical sensitivity
in the uninjured contralateral ‘‘mirror image’’ body structures after
unilateral injury, possibly mediated by diffusible signaling
molecules or bilateral neural pathways at the spinal cord level
(Koltzenburg et al., 1999). Mirror pain might also involve bilateral
supraspinal structures and descendent facilitatory pathways (Da
Silva et al., 2010).

In our laboratory, the effect of BoNT/A on centrally mediated
mirror pain was examined in a model of bilateral muscular
hyperalgesia (Bach-Rojecky et al., 2005a,b; Bach-Rojecky and
Lacković, 2009). In this model, two injections of acidic saline
(pH = 4) into the gastrocnemius lead to development of bilateral
mechanical hyperalgesia on both hind-limbs (Sluka et al., 2001).
Bilateral hyperalgesia induced by intramuscular acidic saline
injections was proposed to be mediated by central sensitization
and supraspinal bilateral pathways (Da Silva et al., 2010; Sluka
et al., 2001). Hypothetically, if the BoNT/A antinociceptive action is
mediated by the prevention of peripheral neurotransmitter
release, then it should not reduce the contralateral acidic saline-
induced bilateral hyperalgesia. Toxin’s effect at the level of CNS
seems the only convincing explanation. The puzzling fact is that
the toxin injected into the contralateral limb reduced the pain on
that side only, ruling out a possible systemic diffusion of BoNT/A.

Paclitaxel-induced polyneuropathy. Bilateral effects of unilateral
toxin injection were also observed in a model of peripheral
polyneuropathy induced by chemotherapeutic drug paclitaxel
(Favre-Guilmard et al., 2009). Paclitaxel-induced polyneuropathy
in rats develops after intraperitoneal high-dose injection of
chemotherapeutic, resulting in bilateral decrease of hind-paw
mechanical withdrawal thresholds. After BoNT/A injection into
one hind-paw, decrease in mechanical withdrawal thresholds was
reversed on both hind-paws. Since BoNT/A injected contralaterally
failed to reduce pain evoked by unilateral carrageenan, the authors
ruled out possible systemic spread of BoNT/A as the mechanism of
bilateral effect (Favre-Guilmard et al., 2009).

Experimental diabetic pain. In a model of beta-cytotoxic drug
streptozotocin-induced type I diabetes accompanied by neuropa-
thy, BoNT/A injected unilaterally induced the bilateral effect on
mechanical pain. The effect of BoNT/A was delayed: it was evident
on 5th day after BoNT/A injection, but not after 24 h. However,
after intrathecal injection of peripherally ineffective low dose (1 U/
kg), BoNT/A effect occurred within 24 h.

Due to systemic polyneuropathic effect of paclitaxel, and
widespread neuropathy occurring in experimental diabetes type I,
pathological neural changes are bilaterally symmetric regarding
the side of BoNT/A injection. Bilateral effect of unilaterally
delivered BoNT/A is therefore difficult to explain without
considering a central site of action. Bilateral effects after unilateral
toxin injections were also reported in models of neuropathic pain
induced by ventral root transection (Xiao et al., 2011, 2013), and
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infraorbital nerve constriction (Filipović et al., 2012). It seems that
BoNT/A bilateral effect on bilateral and mirror pain models is a
general rule, i.e. not dependent on the type of experimental pain.

In some studies, the onset of the antinociceptive effect in
formalin-induced pain and experimental model of inflammatory
pain (Cui et al., 2004; Mika et al., 2011) started within 24 h.
However, most of other studies reported the delay of antinoci-
ceptive activity of up to 5–7 days, while peripheral neuromuscular
paralysis in animals usually occurs within 24 h (Bach-Rojecky
et al., 2005a,b, 2010; Bach-Rojecky and Lacković, 2009; Chuang
et al., 2004; Filipović et al., 2012). In addition, BoNT/A’s
antinociceptive activity occurred within 24 h when applied
intrathecally at peripherally ineffective doses (Bach-Rojecky
et al., 2010). The observed faster onset of antinociceptive activity
of BoNT/A after central application is difficult to explain by
presumed peripheral site of BoNT/A action (Bach-Rojecky et al.,
2010). Based on the bilateral effect and faster onset of action of
intrathecally applied small BoNT/A dose, the authors proposed that
BoNT/A effect was centrally mediated (Bach-Rojecky et al., 2010).

6. Axonal transport of BoNT/A

Behavioral data obtained from bilateral pain models suggested
that BoNT/A effect on pain might involve the toxin movement and
its direct activity in the CNS. Hematogenous route as the
underlying pathway for penetration into the CNS is unlikely since
experimentally used low doses of BoNT/A do not induce systemic
poisoning. In addition, BoNT/A is a large protein (150 kDa) which
cannot cross the blood-brain barrier. Other possible explanation is
the axonal transport of BoNT/A from periphery to CNS. However,
the axonal transport of BoNT/A, up to recently, was classically
believed to be non-existent or very limited, and its activity in the
brain following peripheral delivery was questionable (Section 6.1).

6.1. Early studies of BoNT/A axonal transport to CNS

It is widely known that BoNT/A induces local paralysis when
injected into the muscles treated for neuromuscular disorders or
cosmetic use. In the literature, due to the prevailing opinion that
BoNT/A axonal transport is either too slow or non-existent, and the
lack of clinically observable central side-effects, the possibility of
direct central action of BoNT/A has been largely neglected.
Although the possibility of retrograde axonal traffic to the spinal
cord was hypothesized during the early preclinical research of
BoNT/A, prevailing opinion remained that BoNT/A effects are
exclusively locally mediated (Aoki and Francis, 2011; Tang-Liu
et al., 2003).

As suggested by some earlier studies, the toxin might penetrate
into the central nervous system by axonal transport (Habermann,
1974; Wiegand et al., 1976; Wiegand and Wellhöner, 1977). To
trace the possible spread of BoNT/A into the CNS, the authors
employed 125I-radiolabeled BoNT/A injections into the cat
gastrocnemius muscles. Following injection of 125I-labeled
BoNT/A, progressive movement of radioactivity was detected
along the neuronal pathway directed to CNS: firstly in the sciatic
nerve, followed by ipsilateral spinal ventral roots. In the end,
radioactivity was detected in the corresponding ipsilateral spinal
cord segments 48 h following the toxin injection. However, these
studies could not demonstrate that the enzymatically active BoNT/
A reached the CNS. Other studies also reported that the
peripherally injected BoNT/A is transported retrogradely within
the axonal compartment (Black and Dolly, 1986). Nevertheless,
due to the slow axonal traffic it was argued that the toxin is likely
to be inactivated before it reaches the CNS (Black and Dolly, 1986).
More recently, Tang-Liu et al. (2003) injected radioiodinated
neurotoxin complex into the gastrocnemius muscle of rats (70 U)

and eyelids of rabbits (24 U). The diffusion of radioactivity from the
site of injection was measured at different time-points (0.5, 2, 6, 24
and 48 h post-injection). The authors reported that the majority of
neurotoxin remained localized at the site of injection. Following
the intramuscular injection, radioactivity was detected in sites
distal to the injection site. In particular, significant amounts were
recovered from thyroid gland and contralateral muscles. However,
the authors suggested that this radioactivity did not appear to
represent an intact neurotoxin and it was assumed that the signal
may be associated with non-toxic proteins of the complex, or 125I
which dissociated from the complex (Tang-Liu et al., 2003).

6.2. Behavioral and pharmacological evidence for the necessity of

BoNT/A axonal transport for its antinociceptive activity

6.2.1. Axonal transport necessary for BoNT/A antinociceptive activity

occurs in sensory neurons

The importance of axonal transport of BoNT/A for its
antinociceptive activity was demonstrated behaviorally for the
first time in a model of acidic saline-induced bilateral mechanical
hyperalgesia (Bach-Rojecky and Lacković, 2009). In line with the
proposed central site of action, injection of small dose BoNT/A
(0.5 U/kg) into the stump of a distally transected sciatic nerve
reduced the acidic saline-induced hyperalgesia on the contralat-
eral side. This experiment excluded the involvement of peripheral
nerve endings as the indirect site of BoNT/A action on the
contralateral side. In addition, it suggested BoNT/A retrograde
axonal movement within peripheral nerve. Indeed, the axonal
transport blocker colchicine injected into the sciatic nerve
ipsilaterally to BoNT/A peripheral treatment eliminated the
antinociceptive effect on both sides. This observation suggested
that BoNT/A requires axonal transport along the sciatic nerve in
order to exhibit its antinociceptive effect. Colchicine injected into
the contralateral sciatic nerve did not affect BoNT/A action on
either side, ruling out the possibility of toxin spread to nerve
endings of contralateral hind-limb. This set of observations
indicated that BoNT/A axonal transport occurs through peripheral
nerves and is directed to CNS, but it has remained unknown
whether the transport occurs in motor neurons or sensory neurons
(Bach-Rojecky and Lacković, 2009).

To investigate whether the BoNT/A traffic occurs through
sensory neurons, its axonal transport was further studied in
trigeminal system. Injections of low doses of BoNT/A into the
whisker pad (3.5 U/kg) reduced formalin-induced orofacial pain
and allodynia induced by experimental trigeminal neuropathy
(Filipović et al., 2012; Matak et al., 2011). Effect on pain was
prevented by axonal transport blocker colchicine injected into the
trigeminal ganglion (Filipović et al., 2012; Matak et al., 2011)
Sensory character of trigeminal ganglia suggests that axonal
transport occurs indeed in sensory axons. In line with that
suggestion, antinociceptive effect in orofacial formalin test
occurred also after direct BoNT/A injection (1 U/kg) into the
trigeminal sensory ganglion (Matak et al., 2011). The onset of
antinociceptive action of intraganglionic BoNT/A was, however,
delayed. It occurred 2 days after toxin delivery into the ganglion.
Intraganglionic colchicine again prevented the BoNT/A antinoci-
ceptive effect when toxin was delivered directly into the ganglion.
Delayed action upon ganglionic delivery and necessity of axonal
transport suggested that BoNT/A, in order to reduce pain, must be
anterogradely transported further from ganglion into the CNS.

Interestingly, peripherally induced pain in trigeminal area was
accompanied by neurogenic extravasation of plasma proteins
(measured spectrophotometrically with Evans blue dye) in the
cranial dura mater. Peripherally delivered BoNT/A prevented this
phenomenon and the action was, again, colchicine sensitive i.e.

axonal transport dependent (Filipović et al., 2012).
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6.2.2. Effects of BoNT/A in sensory ganglia

Kitamura et al. (2009) showed that BoNT/A inhibits the
vesicular release from trigeminal ganglion neurons acutely
isolated from animals with experimental trigeminal neuropathy
and pretreated with BoNT/A peripherally. As the explanation for
the effect on vesicular release (measured by FM4-64 dye), the
authors proposed BoNT/A axonal transport from periphery and
transcytosis within the trigeminal ganglion. Novel study reported
reduction of TRPV1 expression within the trigeminal ganglion
neurons projecting to cerebral dura mater after BoNT/A facial
injection (Shimizu et al., 2012). Since neurons innervating the dura
and periphery are different, the authors suggested axonal transport
of BoNT/A to trigeminal ganglion, but, also, a possible transcytosis
of BoNT/A between different sensory neurons in the ganglion. It
was proposed that BoNT/A may reduce the TRPV1-expression in
sensory neurons which innervate dura by modulating the SNARE-
mediated TRPV1 translocation to plasma membrane (Shimizu
et al., 2012).

BoNT/A effects at the level of sensory ganglion were also
reported in a model of ventral root transection-induced neuropa-
thy. It was found that BoNT/A prevented the up-regulation of pain
receptors purinergic receptor P2X3 and transient receptor TRPV1.
The authors proposed that BoNT/A-mediated pain reduction may
be linked to reduced expression of receptors and ion channels
involved in pain pathophysiology (Xiao et al., 2011, 2013).

6.3. Neurophysiological evidence for axonal transport of BoNT/A

6.3.1. Studies in humans

Studies performed in animals suggest that retrograde axonal
transport of BoNT/A occurs regularly after low-dose peripheral
injections and via different routes of administration (Bach-Rojecky
et al., 2008; Filipović et al., 2012; Matak et al., 2011). Although the
BoNT/A axonal transport in humans has never been assessed
directly, several neurophysiological studies reported central
effects after peripheral BoNT/A application. Already in 1963 Tyler
reported alterations of the H reflex in a man with botulism,
indicative of alterations at the spinal level (Tyler, 1963). Similar
observations suggested that the axonal transport of BoNT/A to CNS
might also exist in humans treated clinically for neuromuscular
disorders or intoxicated with BoNT/A (Garner et al., 1993;
Marchand-Pauvert et al., 2013; Santini et al., 1999; Wohlfarth
et al., 2001; reviewed recently by Caleo and Schiavo, 2009; Palomar
and Mir, 2012). By employing single fiber electromyography,
Garner et al. (1993) reported reduced activity of the distant, non-
injected muscle (extensor digitorum brevis) in patients treated
with BoNT/A for focal dystonia in the head and neck region.
Authors discussed the possibility of a very efficient local uptake of
BoNT/A and retrograde axonal transport to the CNS (Garner et al.,
1993). In another study performed in patients treated with BoNT/A
for spasmodic torticollis and writer’s cramps, the remote changes
in motoneuronal excitability (F-wave changes) were observed
(Wohlfarth et al., 2001). Authors ruled out possible BoNTA
diffusion to remote muscles or distant muscle spindle afferents.
As a possible explanation, BoNT/A action on the level of
motoneuronal bodies in CNS was proposed (Wohlfarth et al., 2001).

Recently, possible existence of BoNT/A axonal transport via

motoneuronal axons to their recurrent axonal collaterals in the
CNS was reported by Marchand-Pauvert et al. (2013). They
measured recurrent inhibition in the injected and non-injected
leg muscles in patients treated for spasticity. The authors observed
depressed recurrent inhibition of distant, non-injected muscles.
Although it cannot be completely ruled out, they argued against
indirect peripheral or systemic BoNT/A effect. Distant changes of
recurrent inhibition suggest a direct BoNT/A effect at the
cholinergic synapse between recurrent collaterals of primary

motoneurons and Renshaw interneurons in the ventral horn
(Marchand-Pauvert et al., 2013). Possibility that peripherally
delivered BoNT/A may target the SNAP-25 in ventral horn
cholinergic synapses was experimentally confirmed by immuno-
histochemistry in rats (Matak et al., 2012).

6.3.2. Neurophysiological evidence for BoNT/A axonal transport in

animals

Few neurophysiological studies in experimental animals
employing high doses of BoNT/A reported indicated a possibility
of BoNT/A retrograde spread into the CNS. BoNT/A 3 ng injection
into the cat abducens muscle produced alterations in the discharge
pattern of abducens motoneurons. This was accompanied by
ultrastructural synaptic alterations at the level of motoneuronal
cell bodies (Moreno-López et al., 1997; Pastor et al., 1997). The
authors suggested retrograde and possible transsynaptic spread of
high-dose BoNT/A.

Recently, possible retrograde and transsynaptic traffic of BoNT/
A was reported (Torii et al., 2011; Akaike et al., 2013). Injection of
BoNT/A subtypes A1 and A2 at high doses into rat forelimb or
hindlimb exhibited a dose-dependent bilateral muscle relaxation.
Interestingly, contralateral effects of BoNT/A1 (commercially
available onabotulinumtoxin A) were partially mediated by axonal
transport. Contralateral effects of BoNT/A2 serotype, occurring
only at very high doses, were mediated by systemic diffusion. The
authors suggested that BoNT/A1 is retrogradely transported to the
CNS, and then anterogradely into the contralateral muscle (Akaike
et al., 2013; Torii et al., 2011). The authors also reported BoNT/A
distant effect on glycinergic transmission in the dorsal horn, and
suggested toxin’s transcytosis to glycinergic synapses (Akaike
et al., 2013).

6.4. Axonal transport of enzymatically active BoNT/A in the CNS and

motoneurons

By employing BoNT/A enzymatic activity detection, axonal
transport of active BoNT/A molecules was found in the rodent
visual system and facial nerve using an antibody specific to the
product of BoNT/A proteolytic activity (Antonucci et al., 2008).
Unlike radioactively labeled toxin, cleaved SNAP-25 detection
suggests presence of enzymatically active BoNT/A protease. Single
BoNT/A molecule may enzymatically cleave many SNAP-25
molecules, leading to higher sensitivity of detection. Cleaved
SNAP-25 can then be detected by immunohistochemistry and
Western blot.

Antonucci et al. (2008) demonstrated that the unilateral
hippocampal injection of BoNT/A resulted in the toxin traffic to
contralateral hippocampus and ipsilateral entorhinal cortex via

direct axonal projections. Moreover, BoNT/A applied into the
unilateral hippocampus reduced the neuronal hippocampal
activity in contralateral hemisphere. Additionally, BoNT/A injected
into the superior colliculus was axonally transported to the
contralateral retina and ipsilateral visual cortex (Antonucci et al.,
2008). BoNT/A injected into the facial whisker muscles resulted in
occurrence of cleaved SNAP-25 in the facial motor nucleus 3 days
after the peripheral injection. This observation suggested that
peripherally administered BoNT/A may be retrogradely trans-
ported to the brainstem via facial motor neurons (Antonucci et al.,
2008).

Study of Antonucci et al. (2008) was, however, criticized due to
the use of high doses of non-commercial preparation of BoNT/A
(Alexiades-Armenakas, 2008). Additional questions were raised
regarding the ability of antibody-based detection method to
discriminate between cleaved and non-cleaved SNAP-25 protein
(Aoki and Francis, 2011). In later studies which employed the same
antibody to cleaved SNAP-25 as in study from Antonucci et al.
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(2008), these questions were answered (Matak et al., 2011, 2012).
Central SNAP-25 cleavage was detected in CNS even at low doses of
peripherally injected commercially available onabotulinumtoxinA
(Matak et al., 2011, 2012). When BoNT/A was injected into the
gastrocnemius muscle (5 U/kg), cleaved SNAP-25 was detected in
corresponding ipsilateral segments of lumbar spinal cord. These
studies indicated that BoNT/A axonal transport to CNS occurs
regularly at low peripheral doses of commercially available BoNT/
A, comparable to doses used clinically (Matak et al., 2011, 2012).
Antibody specificity for BoNT/A-cleaved form of SNAP-25 was
verified by comparing Western blot signals of control and BoNT/A-
injected rat hippocampus (Matak et al., 2011). 24 kDa signal
belonging to cleaved SNAP-25 appeared only in toxin-injected
brain tissue. Position of the 24 kDa signal, detected first by the
antibody to cleaved SNAP-25, was subsequently confirmed by a
well-characterized antibody which binds both intact and cleaved
SNAP-25. This experiment demonstrated that the antibody
specifically targets the BoNT/A-cleaved sequence of C-terminal
SNAP-25 and not the whole SNAP-25 protein (Matak et al., 2011).

Based on an in vitro study of BoNT/A movement in sympathetic
neurons, Lawrence et al. (2012) suggested that BoNT/A and BoNT/E
spread within cell bodies and distal neuronal processes may occur
due to passive diffusion. However, it was demonstrated in vivo that
BoNT/A enzymatic activity in ipsilateral lumbar spinal cord,
occurring after its injection into the sciatic nerve, can be prevented
by intrasciatic colchicine. Prevention of occurrence of central
cleaved SNAP-25 by colchicine demonstrated that the traffic of
BoNT/A within peripheral nerves to CNS involves a colchicine-
sensitive, microtubule-dependent axonal transport (Matak et al.,
2012). Time required for occurrence of truncated SNAP-25 product
in the CNS after peripheral injections in rats (3–5 days), and the
long distance from the injection site to central regions where the
toxin’s proteolytic activity was observed, rule out the possibility of
passive intraneuronal diffusion (Antonucci et al., 2008; Matak
et al., 2012).

Studies involving cleaved SNAP-25 detection lacked the direct
evidence for toxin traffic via axonal transport. Immunohistochem-
istry of BoNT/A-truncated SNAP-25 in regions distant from the
injection site provided only the indirect evidence of toxin’s axonal
traffic. Theoretically, instead of BoNT/A, truncated SNAP-25 could
have been transported along nerves. Strong in vivo evidence in
favor of BoNT/A traffic was provided by experiments demonstrat-
ing the long-term activity of BoNT/A protease in different parts of
optic system distant from injection site (Antonucci et al., 2008;
Restani et al., 2011). After tectal injection, toxin’s proteolytic
activity was detected in retina (Antonucci et al., 2008). The authors
then cut the optic nerve to prevent the additional axonal transport
from toxin-injected tectum. Subsequently, they employed eye
intravitreal injection of transiently active BoNT/E, which cleaves
SNAP-25 at a cleavage site further from C-terminal compared to
BoNT/A. BoNT/E is therefore able to cleave both intact and BoNT/A-
cleaved SNAP-25 and convert them to a single population of BoNT/
E-cleaved SNAP-25 (Keller et al., 1999). Intravitreal BoNT/E
transiently reduced the immunoreactivity of BoNT/A-truncated
SNAP-25 in retina. Re-appearance of BoNT/A-truncated SNAP-25
upon completion of BoNT/E effects demonstrated that the BoNT/A
protease itself had been axonally transported to the retina. BoNT/
A-truncated SNAP-25 re-occurred due to longer intracellular
duration of proteolytic action of BoNT/A LC in comparison to
BoNT/E LC (Antonucci et al., 2008; Keller et al., 1999). In a similar
experiment it was demonstrated that BoNT/A protease was
anterogradely transported within the optic nerve and transcytosed
to second-order synapses in the superior colliculus (Restani et al.,
2011). BoNT/A proteolytic activity was demonstrated in optic
tectum 3 days after BoNT/A application in the eye. The optic nerve
was then transected to prevent the additional axonal transport

from retina. Subsequent BoNT/E application into the superior
colliculus transiently depleted the immunoreactivity of BoNT/A-
truncated SNAP-25. Re-occurrence of BoNT/A-truncated SNAP-25
after completion of BoNT/E effects demonstrated the long-term
presence of anterogradely transported and transcytosed BoNT/A.

Further studies on the BoNT/A activity in the optic system
provided the evidence for axonal transport and transcytosis to
higher order synapses in CNS, with resulting blockage of
neurotransmitter release in distant synapses (Restani et al.,
2012a). When BoNT/A was injected into the optic tectum,
ultrastructural analysis demonstrated swelling and accumulation
of synaptic vesicles inside retinal terminals, indicative of impaired
neuroexocytosis (Restani et al., 2012a). Additionally, BoNT/A
injected into the tectum of rat pups induced an inhibition of
cholinergic-driven wave activity in retina. This study demonstrat-
ed BoNT/A transcytosis from retinal ganglion neurons to choliner-
gic amacrine cells, and subsequent inhibition of acetylcholine
release (Restani et al., 2012a).

In addition to the indirect in vivo evidence involving
immunodetection of BoNT/A-cleaved SNAP-25, axonal transport
of BoNTs was directly visualized in vitro by examining the traffic of
Alexa Fluor-fluorescently labeled BoNT/A and BoNT/E within the
compartmentalized culture of primary motor neurons (Restani
et al., 2012b). It was observed that both full-length toxins, as well
as their heavy chains, were internalized into the neuronal non-
acidic vesicles. Vesicles containing toxins were then redirected to
the fast retrograde axonal transport machinery in motoneuronal
axons (Restani et al., 2012b). The authors suggested that BoNT/A
and BoNT/E share similar intra-vesicular axonal trafficking path-
ways with different neurotrophic factors, viral pathogens and
TeNT.

6.5. Immunohistochemical evidence for axonal transport of

enzymatically active BoNT/A to central nociceptive regions

Behavioral data involving colchicine and intraneural or
intraganglionic BoNT/A injections suggested that BoNT/A-mediat-
ed antinociceptive activity involves axonal transport of active toxin
molecule within peripheral sensory neurons, possibly to the CNS
(Section 6.2.1). Evidence that the axonally transported BoNT/A
molecules are directed to central sensory regions was provided by
immunohistochemistry of cleaved SNAP-25. By employing the
same antibody as Antonucci et al. (2008), central cleaved SNAP-25
was detected in spinal trigeminal nucleus caudalis after toxin
injection into the trigeminal area (Fig. 3; Matak et al., 2011).
Cleaved SNAP-25 in CNS was observed starting from 3 days after
toxin peripheral injection. BoNT/A-truncated SNAP-25 occurred in
trigeminal nucleus caudalis even at 3.5 U/kg, the lowest peripheral
dose able to induce the antinociceptive effect in rats (Bach-Rojecky
and Lacković, 2005; Matak et al., 2011). Similarly, hind-limb
injection of BoNT/A resulted in cleavage of SNAP-25 in lumbar
dorsal horn at low peripheral dose (5 U/kg) (Matak et al., 2012),
suggesting a long-distance axonal traffic in spinal sensory neurons.
BoNT/A enzymatic activity in lumbar dorsal horn and trigeminal
sensory nuclei indicated that BoNT/A may interfere with nocicep-
tive neurotransmission between peripheral and central sensory
neurons, most likely by preventing the SNARE-mediated vesicular
neurotransmitter release (Matak et al., 2011).

In mice, it was reported that BoNT/A-mediated SNAP-25
cleavage is present along the nociceptive pathway: in the injected
hind-paw skin, along the sciatic nerve, in peripheral ganglia and
within the spinal cord (Marinelli et al., 2012). Most recent study
suggested that BoNT/B, applied at high peripheral dose, may also
be axonally transported in mouse sensory neurons. Marino et al.
(2014) reported reduction of VAMP/synaptobrevin immunoreac-
tivity in dorsal root ganglia after BoNT/B intraplantar injection in
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mice, suggesting BoNT/B enzymatic activity in the ganglia. In
addition, the authors showed reduced spinal neurokinin 1 receptor
internalization evoked by intraplantar formalin or intrathecal
capsaicin, and suggested that BoNT/B may reduce the spinal
substance P presynaptic release (Marino et al., 2014).

7. What is the mechanism of BoNT/a antinociceptive action in
CNS? Possible role of opioidergic and GABA-ergic
neurotransmission

In this review we have discussed the evidence that BoNT/A
antinociceptive effect is centrally mediated. However, up to now,
the mechanism of central antinociceptive action has remained
unknown. Recently, it was found that it might be connected with
opioid and GABA-ergic system in the CNS.

Few experimental studies demonstrated the synergistic activity
of ineffective doses of morphine and BoNT/A on inflammatory pain
induced by carrageenan and formalin, and neuropathic pain
evoked by chronic constriction sciatic injury (Auguet et al., 2008;
Vacca et al., 2012, 2013). In addition, peripherally applied BoNT/A
prevented the development of morphine-induced tolerance and
associated glial activation in lumbar spinal cord (Vacca et al., 2012,
2013). These studies indirectly suggested that BoNT/A’s anti-
nociceptive action might be connected with the endogenous opioid
system. Study from our laboratory (Drinovac et al., 2013) showed
that opioid antagonist naltrexone, injected both systemically or
intrathecally, dose-dependently prevented the BoNT/A-mediated
reduction of second phase nocifensive behavior (paw licking and
flinching) in a model of formalin-induced pain. Demonstrated
efficacy of low intrathecal dose of naltrexone suggested that the
effect is mediated at the spinal level. BoNT/A activity was also
prevented by more selective m-antagonist naloxonazine. Reduc-
tion of dorsal horn c-Fos expression by BoNT/A in a model of
formalin-induced pain was also prevented by naltrexone. Addi-
tionally, systemically injected naltrexone prevented the BoNT/A’s
antinociceptive effects on mechanical hypersensitivity and cold
allodynia in a model of partial nerve transection-induced
neuropathic pain. These observations suggested that BoNT/A’s
antinociceptive activity in acute inflammatory and neuropathic
pain is associated with the enhanced function of endogenous

opioid system involving central m-opioid receptors (Drinovac et al.,
2013).

In addition, we examined the possible role of GABA-ergic
inhibitory neurotransmission in BoNT/A action because of its wide
involvement in chronic pain patophysiology (Drinovac et al.,
2014). Similarly to opioid antagonists, GABA-A receptor antagonist
bicuculline prevented the BoNT/A-mediated antinociceptive effect
in formalin test and sciatic nerve transection-induced neuropathy.
Intrathecal bicuculline prevented the BoNT/A action similar to
systemic bicuculline, while intracisternal application had no effect,
suggesting that BoNT/A interacts with GABA-ergic transmission at
the spinal cord level. Enhancement of inhibitory neurotransmis-
sion might be associated with BoNT/A efficacy in relieving chronic
pain and hypersensitivity (Drinovac et al., 2014).

BoNT/A effect in CNS, along with proposed inhibition of SNARE-
mediated central neurotransmitter release (Matak et al., 2011,
2012; Fig. 4), seems to involve enhanced endogenous opioidergic
and GABA-ergic transmission (Drinovac et al., 2013, 2014). These
data at first might seem counter-intuitive, since BoNT/A is a
selective blocker of neurotransmitter release, with preference for
excitatory synapses. We speculate that BoNT/A-mediated blockage
of excitatory synapses might lead indirectly to enhanced inhibitory
neurotransmission via yet unknown mechanism.

8. Concluding overview

8.1. Central vs. peripheral action of BoNT/A

Main arguments for the peripheral site of BoNT/A action on pain
are based on its inhibitory effects on peripheral glutamate and
neuropeptide release, and its presumed analogy to widely known
BoNT/A anticholinergic effects on peripheral motor nerve endings
and autonomic synapses (Table 1, left column). This hypothesis
was modified with the assumption that repeated stimulation,
inflammation or nerve injury may sensitize peripheral nerve
endings resulting in excess stimulation of CNS leading to central
sensitization (Aoki and Francis, 2011). Accordingly, BoNT/A ‘‘may
directly inhibit primary sensory fibers, leading to a reduction of
peripheral sensitization, and an indirect reduction in central

Fig. 4. Suggested mechanism of BoNT/A analgesic activity on the level of central sensory afferent terminals. (A) Neurotransmission of lasting inflammatory and chronic pain.

Painful signal from the stimulated peripheral nerve endings (red) is transmitted along pseudounipolar sensory neuron to the spinal cord dorsal horn central afferent terminals

(intensive red), where it induces central sensitization, leading to hyperalgesic responses. (B) By entering sensory neurons and axonal transport to the dorsal horn, followed by

subsequent central SNAP-25 cleavage, BoNT/A prevents nociceptive neurotransmitter release from central afferent terminals. Different color (gray vs. red) indicates possible

change in neuronal activity.

I. Matak, Z. Lacković / Progress in Neurobiology 119–120 (2014) 39–5952



sensitization, receptor field expansion, and allodynia’’ (Aoki and
Francis, 2011).

Evidence for central site of BoNT/A action are based on
behavioral studies which reported distant BoNT/A effect on
bilateral pain of different origins, necessity of axonal transport,
increased potency after intraneuronal or central application, and
immunohistochemical evidence of toxin’s enzymatic activity in
central sensory nociceptive nuclei after peripheral application
(Table 2, right column).

The assumption that BoNT/A has only a primary peripheral site
of action fails to explain some clinical data, too. For example,
migraine is by definition a CNS disease and it remains unclear why
peripherally acting BoNT/A can have a long lasting beneficial effect
on it. Few reports on the beneficial effect of BoNT/A on phantom
pain (Jin et al., 2009; Wu et al., 2012) additionally indicate the
limitations of the peripheral hypothesis.

Some contradictory experimental data regarding the time-
course of onset of BoNT/A action and the anti-inflammatory
activity in different inflammatory pain models is summarized in
Table 3.

8.2. Is there any predictive value of preclinical discoveries about the

central mechanism of BoNT/A action?

Targeting nerves and ganglia for pain treatment. BoNT/A injected
directly into peripheral nerves or sensory ganglia has an increased
potency and similar efficacy on pain compared to peripheral
injections in rats (Sections 5.3 and 6.2). In humans, by employing a
procedure similar to classical nerve blocks, Kapural et al. (2007)
found that the BoNT/A injection into the perineural space of greater
occipital nerve reduced the pain associated with occipital
neuralgia. Thus, BoNT/A perineural use may be an effective

Table 1
Systemic reviews and meta-analyses of BoNT/A efficacy in treatment of pain disorders.

Clinical condition N (trials

included)

N (patients

included)

Outcome Reference

Myofascial pain syndromes 4 233 Inconclusive evidence for effectiveness. Soares et al. (2012)

Subacute/chronic neck pain 9 503 Lack of benefit. Langevin et al. (2011)

Low-back pain and sciatica 3 123 Low-quality evidence that BoNT/A is beneficial. Waseem et al. (2010)

Shoulder pain due to spastic

hemiplegia or arthritis

6 164 BoNT/A reduces pain and improves shoulder function. Singh and Fitzgerald (2010)

Postoperative pain after

subpectoral breast implants

7 427 Low-quality evidence that BoNT/A is beneficial. Winocour et al. (2014)

Trigeminal neuralgia 6 101 BoNT/A may be beneficial in treatment of TN. Hu et al. (2013)

Tension-type headache 7 675 No reduction in the number of headaches in

comparison to placebo.

Jackson et al. (2012)

Episodic migraine 9 1838 No reduction in the number of headaches in

comparison to placebo.

Jackson et al. (2012)

Chronic migraine 5 1508 Significant reduction in the number of headaches in

comparison to placebo.

Jackson et al. (2012)

Chronic daily headache 3 1115 Significant reduction in the number of headaches in

comparison to placebo.

Jackson et al. (2012)

Table 2
Summary of experimental data supporting peripheral hypothesis of BoNT/A action on pain (left) and experimental data supporting central antinociceptive activity of BoNT/A.

Evidence supporting peripheral hypothesis References Evidence supporting central hypothesis References

Analogy with the effect on neuromuscular

junction and autonomous synapses.

Aoki (2005), Aoki and

Francis (2011)

Bilateral effect of unilateral injection in

polyneuropathic and mirror pain models.

Favre-Guilmard et al. (2009),

Bach-Rojecky and Lacković (2009),

Bach-Rojecky et al. (2010),

Xiao et al. (2011),

Filipović et al. (2012)

Reduction of formalin-induced increase in

peripheral glutamate concentration.

Cui et al. (2004). Prevention of antinociceptive effect of

peripheral BoNT/A by intraneural or

intraganglionic colchicine.

Bach-Rojecky and Lacković (2009),

Matak et al. (2011),

Filipović et al. (2012)

Decreased TRPV1 and P2X3 sensory receptor

expression in neurogenic bladder.

Apostolidis et al. (2005) Contralateral effect after BTX-A injection into

the distally transected sciatic nerve in a model

of bilateral pain.

Bach-Rojecky and

Lacković (2009)

Reduction of peripheral neuropeptide release

in iris muscle and urinary bladder.

Ishikawa et al. (2000),

Rapp et al. (2006),

Lucioni et al. (2008)

Evidence of SNAP-25 cleavage in caudal

medulla and spinal cord sensory regions after

low dose peripheral BTX-A injection.

Matak et al. (2011,2012),

Marinelli et al. (2012)

Decreased glutamate-evoked mechanical

sensitivity of craniofacial muscle nociceptors.

Gazerani et al. (2010) Abolishment of trigeminal pain-evoked dural

neurogenic inflammation, dependently on

axonal transport in trigeminal nerve.

Filipović et al. (2012)

Effectiveness of central intracerebroventricular

and intrathecal BoNT/A injections. Efficacy of

low dose injection into the sensory ganglion.

Higher potency of intraneuronal and centrally

delivered BoNT/A in comparison to peripheral

delivery.

Luvisetto et al. (2006),

Bach-Rojecky et al. (2010),

Lee et al. (2011),

Matak et al. (2011)

Blockage of neurotransmitter release from

distant synapses after retrograde axonal

transport.

Restani et al. (2012a)

Inhibition of antinociceptive activity of

peripherally administered BTX-A by

intrathecally applied opioid or GABA-A

antagonists, prevention of morphine-induced

tolerance.

Drinovac et al. (2013, 2014),

Vacca et al. (2012, 2013)
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alternative for treatment of focal neuropathies attributable to a
locally damaged nerve branch. Treatment of neuromas and nerve
stumps in damaged or transected nerves has also been clinically
reported, suggesting a possible use in dentistry, treatment of
phantom limb pain, etc. (Climent et al., 2013). These preclinical and
clinical observations suggest that a more proximal (intraneuronal
or intraganglionic), or even central delivery of low dose BoNT/A
may be a useful therapeutic strategy for pain treatment. However,
these options should be carefully considered before proceeding
with further clinical research. There are unresolved issues in
human and animal research regarding the BoNT/A traffic and
potential consequences of its action in the CNS (Lacković et al.,
2009). Experimental data suggests that BoNT/A, following axonal
transport, may be transcytosed within the CNS and reach second-
order or even third-order synapses (Akaike et al., 2013; Restani
et al., 2012a). Since the possible transcytosis and traffic to distant
regions in the CNS have not been characterized in sensory and
motor system of animals or humans, their potential clinical
relevance and safety issues need to be examined.

Synergism with analgesics. We reported a connection between
BoNT/A action and endogenous opioid system involving m-opioid
receptors (Drinovac et al., 2013). Additionally, experimental
studies suggested that BoNT/A acts synergistically with morphine
and may counteract the tolerance associated with use of high doses
of opioids (Auguet et al., 2008; Vacca et al., 2012, 2013). These
observations suggest that BoNT/A may be combined with lower
doses of opioids for increased clinical efficacy. In addition, it
prevents the development of tolerance to opioid analgesics. This is
in line with clinical observations that BoNT/A is effective in
treatment of chronic migraine in patients with reported medica-
tion overuse (Silberstein et al., 2013). BoNT/A even reduced the
amount of triptans used in migraine patients (Silberstein et al.,
2013). Potential beneficial pharmacological interactions of BoNT/A
with opioids, but also with other types of drugs in chronic pain
patients need to be assessed in the future.

Chronic migraine is at the moment the only approved indication
for BoNT/A use in non-muscular pain conditions. However, the
mechanism of BoNT/A action on migraine is unknown. It was
hypothesized that BoNT/A may reduce the tension of pericranial
muscles and reduce the mechanical sensitivity of muscular
nociceptors (Gazerani et al., 2010). In contrast to the suggested
peripheral site of BoNT/A action, it is widely believed that the
patophysiologically most important cause of migraine pain is the
neurogenic vasodilation of dural blood vessels (Geppetti et al.,
2012). This is supported by clinical effectiveness of antimigraine
drugs like triptans and CGRP antagonists, which target dural
neurogenic vasodilatation (Geppetti et al., 2012).

Recently, we found that neuropathic and inflammatory pain in
trigeminal area, evoked by infraorbital nerve constriction and
formalin, was shown to be accompanied by dural neurogenic
inflammation (Filipović et al., 2012, 2014). Single peripheral BoNT/
A injection completely resolved the pain-evoked dural plasma
protein extravasation. Similarly to the reduction of allodynia,

BoNT/A’s suppressive action on dural neurogenic inflammation
was found to be mediated by toxin’s axonal transport in trigeminal
nerve (Filipović et al., 2012). In addition, few studies reported the
action of peripherally applied BoNT/A at the level of trigeminal
ganglion (Section 4.3).

During migraine attack, peripheral sensitization occurs due to
activation of trigeminal nerve fibers innervating dura mater and
blood vessels, leading to throbbing pain (Mathew, 2011).
Prolonged peripheral sensitization leads to central sensitization
of second order trigeminal nucleus caudalis neurons, where the
extracranial and intracranial inputs converge. This in turn
induces cutaneous allodynia and scalp hypersensitivity in the
pericranial area (Mathew, 2011). BoNT/A-mediated reduction of
neurogenic inflammation suggests that it might be active on the
level of peripheral dural afferent terminals, thus, preventing
intracranial peripheral sensitization. In addition, after peripheral
delivery BoNT/A may be axonally transported centrally to
spinal trigeminal nucleus caudalis (Matak et al., 2011). Cleaved
SNAP-25 occurrence in TNC suggest that BoNT/A might be active
also at the level of second order neurons in the TNC, which
receive the convergent nociceptive input from trigeminal nerve
and mediate central sensitization (Filipović et al., 2012; Matak
et al., 2011).

Hyperalgesia and allodynia. BoNT/A does not alter normal
nociceptive thresholds or acute nociceptive pain in humans or
animals, as well as immediate painful response to formalin
injection (phase I). In contrast, there is a long-lasting BoNT/A
induced reduction of thermal and mechanical hyperalgesia and
allodynia, associated with central sensitization (Section 4.3). It can
be hypothesized that, in patients, pain (including migraine)
associated with hyperalgesia and allodynia might be more
sensitive to BoNT/A action.

8.3. What we do not know about BoNT/A and CNS

Discovery of axonal transport of BoNT/A to the CNS after
peripheral application of very small amount raises many new
questions about the significance of BoNT/A action in the brain:

� Clinical significance of axonal transport of BoNT/A in motoneur-
ons is not known. At present there is not even a hypothesis about
that.
� Possible transsynaptic transport of BoNT/A inside the brain after

peripheral injection. Up to now, such transport is clearly shown
only after application of BoNT/A directly to some brain areas
(including retina).
� The mechanism of BoNT/A bilateral effect in mirror and

polyneuropathic pain models remains unknown.
� After BoNT/A application in the craniocervical region, BoNT/A

might be axonally transported to brainstem/cervical sensory and
motor regions, depending on the innervation of injected sites.
After it reaches sensory or motor regions, the metabolism of
BoNT/A in the CNS remains unclear.

Table 3
Contradictory experimental data favoring either peripheral or central site of BoNT/A action (left vs. right).

Supporting peripheral hypothesis References Supporting central hypothesis References

Reduction of formalin-induced pain and edema,

reduction of capsaicin-induced pain and

vasomotor reactions

Cui et al. (2004),

Tugnoli et al. (2007),

Gazerani et al. (2006, 2009)

vs. No significant antiinflammatory action of

effective antinociceptive doses in

carrageenan and capsaicin-evoked pain

Bach-Rojecky and Lacković

(2005), Bach-Rojecky et al.

(2008), Favre-Guilmard et al.

(2009), Shin et al. (2013)

Fast onset of antinociceptive action following

peripheral application (within 24 h)

Cui et al. (2004),

Marinelli et al. (2010),

Mika et al. (2011)

vs. Delayed onset of antinociceptive action

after peripheral application (several days),

in comparison to intrathecal injection

(within 24 h).

Chuang et al. (2004),

Bach-Rojecky et al.

(2005a,b, 2010), Bach-Rojecky

and Lacković (2005),

Filipović et al. (2012)
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� In neuromuscular junction, BoNT/A induces a denervation
accompanied by sprouting of new synapses (Duchen et al.,
1975; reviewed by Meunier et al., 2002; Wright et al., 2007). In
contrary to sprouting, in neuronal cultures BoNT/A prevents
SNAP-25-mediated axonal and dendritic outgrowth (Grosse
et al., 1999; Morihara et al., 1999). It is not known whether
similar BoNT/A-induced morphological changes occur in the
brain in vivo. Beyond BoNT/A pharmacology, those issues might
be important since synaptic plasticity is suggested to be the
underlying mechanism of chronic pain, phantom pain, dystonia,
etc.

� The role of SNAP-25 away from classical synapses along axons or
dendrites is not clear. Accordingly, potential significance of
BoNT/A effects outside of synaptic zones in vivo needs to be
further characterized.
� Are there any additional targets/mechanisms of BoNT/A action in

the CNS, not necessarily connected with SNAP-25?

9. Conclusion

The dominant opinion suggests that the inhibition of peripheral
neurotransmitter/inflammatory mediator release is the underlying
primary mechanism of BoNT/A’s antinociceptive action, with the
secondary effects on central sensitization. However, present
literature overview suggests that the existing experimental and
clinical data on BoNT/A antinociceptive action cannot be adequately
explained by this hypothesis. Several reports demonstrated that
BoNT/A induces bilateral effects after unilateral injection in mirror or
polyneuropathic pain of different origins. In addition, the anti-
nociceptive effect of peripherally applied BoNT/A is shown to be
dependent on axonal transport in sensory nerves. Enzymatic activity
of BoNT/A has been immunohistochemically visualized in the spinal
cord or brainstem areas receiving sensory input from the toxin’s
peripheral injection site. Additionally, BoNT/A’s antinociceptive
activity is shown to be associated with central m-opioid and GABA-A
receptors. The discovery that the BoNT/A action on pain is
dominantly a central effect raises many new questions requiring
additional research concerning the mechanisms of toxin action in
CNS. Elucidation of antinociceptive mechanisms would be invalu-
able for further development of BoNT/A use in pain, and possibly
some other clinical indications. In addition, it might contribute to
better understanding of chronic pain pathophysiology.
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Bach-Rojecky, L., Relja, M., Lacković, Z., 2005b. Botulinum toxin type A in rat model
of muscle hyperalgesia. 16th International Congress on Parkinson’s disease and
Related Disorders. Berlin, J. Parkinsonism Relat. Disord. 11, 106.
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Gratzl, M., Bergmann, M., 1999. SNAP-25 requirement for dendritic growth of
hippocampal neurons. J. Neurosci. Res. 56, 539–546.
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