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1. Introduction 

The question of superior human abilities remains one of the main interests in evolutionary 

biology. The cerebral cortex is believed to be the primary location of human thought, ideas 

and feelings. In mice, monkeys and humans, its basic building blocks (neurons) are the 

same, and it has a similar six-layer structure. The most obvious difference in the mammalian 

order is the variability in size. As the brain size is determined by body size, experts have tried 

to link brain size beyond the mass related to body size, e.g. Jerison's ‘encephalization’ 

quotient (EQ) to the increase in cognitive capacities (Jerison, 1985; Lefebvre, 2012). 

Although the general size is not the answer to why humans possess superior cognition it 

shed the light onto possible selective expansion within the cortex. Since the prefrontal cortex 

is the origin of all of the cognition making us human its size and structure is still in the center 

of evolutionary neuroscience.  

 

1.1 Prefrontal cortex 

The prefrontal cortex (PFC) is the cerebral cortex which covers the front part of the frontal 

lobe and is divided into medial, orbital, dorsolateral and ventrolateral cortex. The prefrontal 

cortex contains the Brodmann areas 8, 9, 10, 11, 12, 13, 14, 24, 25, 32, 44, 45, 46, and 47. 

Prefrontal cortex is defined as the part of the cerebral cortex that receives reciprocal 

projections from the mediodorsal nucleus of the thalamus (Barbas, 2015; Fuster, 1980; 

Uylings and van Eden, 1990). The ontogenetic development of the prefrontal cortex reflects 

its phylogeny. Orbitomedial areas mature earlier than lateral ones. Furthermore, it seems 

likely that most mammals have a gross subdivision of the frontal areas into an “orbital-like” 

region involved especially with the control of socio-affective behaviors, a “dorsolateral-like” 

area involved especially in working memory, and an “anterior cingulate-like” area concerned 

primarily with visceromotor behaviors and some forms of motor sequencing. According to not 

only functional but also cytoarchitectonic criteria that include granular cortex and 

magnocellular layer IIIC, the dorsolateral and ventrolateral prefrontal cortex have no clear 

correlate in the rodent brain (Uylings et al., 2003; Uylings and van Eden, 1990)  

The primate dorsolateral prefrontal cortex (dlPFC) has long been implicated in higher 

cognitive functions, such as switching attention, working memory, maintaining abstract rules, 

and inhibiting inappropriate responses. As much as intelligence is manifested and tested by 

performance of logical goal-directed tasks and sequences of behavior and language, it is 

reasonable to assume that the dorsolateral prefrontal cortex is an important component of 

the neural substrate of intelligence. Indeed, it has been argued on the basis of empirical data 

from the human, that this cortex is the foundation of general intelligence, as measured by 
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Spearman (Duncan et al., 1996). The medial prefrontal cortex (mPFC) is involved in 

feedback categorization, performance monitoring, and task monitoring, and may contribute to 

the reinforcement learning that would affect decision-making processes in the lateral 

prefrontal cortex (lPFC). The medial prefrontal cortex also is a premotor area that projects to 

the rostral ventrolateral medulla, a major source of cardiovascular sympatho-excitatory 

neurons involved in emotional responses (Etkin et al., 2011).  

Areas of interest for this study were hierarchically and structurally different parts of the 

prefrontal cortex, all involved in the higher cognitive functions. Area 9 is located in the 

dorsolateral prefrontal cortex, extending medially to the paracingulate sulcus of humans and 

the cingulate sulcus of macaque monkeys (Petrides and Pandya, 1999; Rajkowska and 

Goldman-Rakic, 1995b). This cortical area is expanded in anthropoids (i.e. monkeys, apes, 

and humans) with no obvious homologue in other mammals (Goldman-Rakic, 1991). For this 

study, the part of area 9 sampled was located on the dorsal portion of the superior frontal 

gyrus in humans, and corresponded to area 9 in macaque monkeys as designated by 

Paxinos et al. (Paxinos et al., 2000). Based on functional imaging studies of humans, this 

area has been shown to be involved in several cognitive processes, including inductive 

reasoning and theory of mind (ToM) (Goel and Grafman, 1995) as well as the retrieval phase 

of episodic and working memory (Marklund et al., 2007).  

Area 32 is in human defined as the portion of the paralimbic cortex around limbic areas 

surrounding the genu of the corpus callosum (Carmichael and Price, 1994; Öngür et al., 

2003). Their function has been implicated in theory of mind, the ability to infer the mental 

states of others (Gallagher and Frith, 2003). Macaques do not possess a strict homologue to 

the portion of area 32 that is activated in human theory of mind studies (i.e. anterior cingulate 

area 32) (Öngür et al., 2003). However, because we chose this area to investigate the 

evolution of this unique human behavioral capacity, for comparative purposes, we were 

limited to the most similar anatomical territory of the medial prefrontal cortex of macaques, 

defined as prelimbic cortex (i.e. prelimbic area 32) (Carmichael and Price, 1994; Öngür et al., 

2003; Petrides and Pandya, 1999). 

Area 24 occupies most of the anterior cingulate gyrus in an arc around the genu of the 

corpus callosum (Carmichael and Price, 1994; Öngür et al., 2003; Vogt et al., 1987, 1995). It 

is characterized by the Von Economo neurons that are widely connected to neurons in many 

other parts of the brain (Fajardo et al., 2008). Anterior cingulate cortex has an important role 

in emotional self-control as well as focused problem-solving, error recognition, and adaptive 

response to changing conditions, functions are central to intelligent behavior (Allman et al., 

2006). 

2



    

 

   
 

1.2 Is human brain different from primate brain? 

The first step in the evolutionary ascent of the human cerebral cortex is its enlargement, 

especially of the prefrontal cortex, the cortical region related to some of remarkable cognitive 

abilities such as personality expression, planning, and decision making (Passingham and 

Smaers, 2014; Roth and Dicke, 2012). In absolute terms, the human frontal lobe is three 

times larger than that of our closest living relatives, the great apes, but the significance of this 

fact is unclear. Comparative studies showed that the gray matter of the human prefrontal 

cortex has the expected volume for a primate with the same brain size (Barton and Venditti, 

2013; Herculano-Houzel, 2009; Herculano-houzel et al., 2007; Semendeferi et al., 2002; 

Smaers et al., 2011; Uylings and van Eden, 1990). The debate on the size of prefrontal 

cortex regarding the grey matter and the white matter is still ongoing. There are studies that 

agree on larger-than-expected prefrontal cortex in humans (Deacon, 1997; Passingham and 

Smaers, 2014; Schoenemann, 2006 Uylings and van Eden, 1990), whereas others claim that 

the human prefrontal cortex does not diverge from the allometric rule of great apes (Barton 

and Venditti, 2013; Donahue et al., 2018; Herculano-Houzel, 2012).  

The general size studies cannot comprehend the possible primate – human differences 

(Gabi et al., 2016; Semendeferi et al., 2002) so the focus of research was moved onto the 

number of neurons – first in the whole cerebrum, then in the specific areas (Azevedo et al., 

2009; Gabi et al., 2016). Greater cortical size in humans compared with other primates does 

not reflect an increased relative number of cortical neurons and the ratios between glial cells 

and neurons in the human brain structures are similar to those found in other primates, and 

their numbers of cells match those expected for a primate of human proportions (Azevedo et 

al., 2009). The prefrontal region of both human and nonhuman primates holds about 8% of 

cortical neurons, with no clear difference across humans and other primates in the 

distribution of cortical neurons or white matter cells along the anteroposterior axis (Gabi et 

al., 2016). 

The cognitive abilities attributed to a frontal advantage may be due to differences in 

individual cortical areas and to a richer interconnectivity, none of which required an increase 

in the overall relative size of the frontal lobe during hominid evolution (Semendeferi et al., 

2002; Teffer and Semendeferi, 2012).  
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1.3 Cortical microcircuits 

An explanation of the cellular mechanism for the enormous cortical expansion in surface 

without a comparable increase in thickness has been offered by the radial unit hypothesis 

According to this model, an increase in the number of neural stem cells by symmetrical 

divisions before the onset of neurogenesis would result in an exponential increase in the 

number of founder cells that give rise to radial cortical columns (Rakic, 2009). Differences in 

the duration of neurogenesis, which increases more rapidly with brain size for the cerebral 

cortex than for subcortical areas, lead to a systematic increase in the ratio of the cortical to 

subcortical regions (Charvet and Finlay, 2012). It appears that the evolution of the human 

brain was accompanied by modifications in local circuitry and interconnectivity of selected 

parts of the brain (Schoenemann, 2006; Striedter, 2005). 

A brain microcircuit has been defined as the organization of nerve cells into specific patterns 

that carry out the information processing characteristic of a given brain region (Shepherd, 

2004).The cerebral cortex with each microcircuit is made of the main cellular elements: 

glutamatergic pyramidal cells and inhibitory GABAergic interneurons. Pyramidal cells 

represent about 80% of the neurons in the cortex and specialize in transmitting information 

between different cortical areas and to other regions of the brain. GABAergic interneurons, 

on the other hand, control and orchestrate the activity of pyramidal cells.  

Pyramidal cells and interneurons in the cerebral cortex are organized along two main 

dimensions – laminar and columnar. The first axis divides the cortex into a variable number 

of layers depending on the cortical area. Neurons within the same cortical layer share 

important features, including general patterns of connectivity (Molyneaux et al., 2007). The 

second axis reflects the vertical organization of neuronal circuits within a column of cortical 

tissue. Neurons within a given column are stereotypically interconnected in the radial 

dimension, share extrinsic connectivity, and function as the basic units underlying cortical 

operations. The idea was that neurons, glia, and their connections form a vertical system 

which unites the cells of each minicolumn into a coordinated functional unit (Mountcastle, 

1997). Evolutionary changes in connectivity of cortico-cortical network are speculated be 

connected to changes in the number and width of minicolumns (Buxhoeveden, 2012). In this 

context, the smallest unit of cortical anatomy is the minicolumn, defined as a narrow radial 

array of single neurons. Fundamentally uniform architecture of cortical minicolumn, with the 

number of neurons within (defined as the number of neurons within a strip of tissue 30-µm 

wide and 25-µm thick from pial surface to white matter) is nearly invariant at 110 neurons 

across cytoarchitectonic areas and species is indeed suggesting that functional differences 

are principally a result of wiring (Rockel et al., 1980). Analysis of the morphometric variability 

of minicolumns among macaque monkeys, humans, and chimpanzees confirmed that there 
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are differences in minicolumn width across species, but the core column space (i.e., the 

space that contains the majority of neurons and fibers and is distinguishable from the 

adjacent, cell-poor neuropil space) remains relatively invariant, suggesting that this 

subcomponent of the cortical minicolumn may be evolutionary conserved (Opris and 

Casanova, 2014; Raghanti et al., 2010).  

 

1.4 Interneurons 

It was already Ramon y Cajal who suggested that extraordinary human mental abilities are 

closely related to the increase in the number and diversity of cortical interneurons and not the 

pyramidal cells.  

Comparative studies furthermore indicate that variability in subtle subcomponents of the 

columnar organization in human and non-human primates, such as the composition of the 

interneuron subtypes, are a primary source of interspecies differences in minicolumn 

(Raghanti et al., 2010; Sherwood et al., 2012). Humans deviate from other primates in having 

a greater width of minicolumns in specific cortical areas, especially in the prefrontal cortex, 

owing to constituents of the peripheral neuropil space (Casanova et al., 2003; Teffer and 

Semendeferi, 2012). These findings support the idea that human evolution, after the split 

from the common ancestor with chimpanzees, was accompanied by discrete modifications in 

local circuitry and interconnectivity of selected parts of the brain. 

Interneurons come into place as intra- and inter-columnar processing supervisors of this 

highly complex cortical network comprised from minicolumns (Buzsaki and Draguhn, 2004; 

DeFelipe et al.; Hendry et al., 1987; Petilla Interneuron Nomenclature Group et al., 2008; 

Raghanti et al., 2010). These neurons are extremely heterogeneous and can be divided into 

subpopulations based on morphology, electrophysiology, synaptic connectivity and gene 

expression (DeFelipe et al., 2013; Markram et al., 2004; Petilla Interneuron Nomenclature 

Group et al., 2008). As majority of cortical GABAergic neurons only branches inside the 

cortex they are defined as local circuit neurons (interneurons) (Petilla Interneuron 

Nomenclature Group et al., 2008). In primates, the three calcium-binding proteins are 

expressed in largely non-overlapping subpopulations of cortical interneurons (DeFelipe et al., 

2013; Gabbott et al., 1997 a,1997b; Gabbott and Bacon, 1996a, 1996b; Hendry et al., 1987; 

Zaitsev et al., 2005). More than 80% of all cortical GABAergic neurons express one of three 

calcium-binding proteins (parvalbumin, calbindin and calretinin) making these molecules a 

suitable marker for identification of different main cortical GABAergic neuron subpopulations 

(Barinka et al., 2015; Rudy et al., 2011; Sherwood et al., 2010; Toledo-Rodriguez et al., 

2004). 
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Different classes of interneurons interact with pyramidal cells to modulate cortical circuit 

processing, with calbindin (CB) and calretinin (CR) neurons involved mostly in intra-columnar 

communication, and parvalbumin (PV) interneurons involved in trans-columnar signaling 

(Caputi et al., 2009; Kawaguchi and Kubota, 1997; Raghanti et al., 2008; Tremblay et al., 

2016). Their targets are mainly principal neuron compartments but they can also target other 

cortical GABAergic neurons (Caputi et al., 2009). 

Cortical parvalbumin expressing GABAergic neurons are predominantly multipolar and 

include large basket and chandelier cells (Conde et al., 1994; Gabbott and Bacon, 1997 

a,1997b). The large basket cells have long-range axons that extend horizontally, targeting 

the perikaryon of pyramidal cells of different minicolumns (DeFelipe, 1997; Lund and Lewis, 

1993; Somogyi et al., 1998). Chandelier cells, which are immunoreactive for parvalbumin, 

also provide lateral inhibition, making synaptic connections with the axon initial segments of 

pyramidal cells (Hu et al., 2014; Markram et al., 2004; Wang et al., 2018). These various 

morphological classes of parvalbumin cells regulate the rhythmic oscillations of pyramidal cell 

populations. Cortical calretinin interneurons have variable morphology and include bipolar, 

double bouquet, and Cajal-Retzius cells (DeFelipe, 1997; Rio and Defelipe, 1996). Bipolar 

and double bouquet calretinin expressing cells have axonal arbors that extend vertically, 

mostly targeting the dendrites of pyramidal cells in different layers of the cortex within a 

narrow column (DeFelipe, 1997; Gabbott et al., 1997 a,1997b; Rio and Defelipe, 1996). The 

characteristic phenotype of calbindin interneurons in primate cortex is the double bouquet 

cell (Gabbott and Bacon, 1997 a,1997b; Kawaguchi and Kubota, 1997). As with the calretinin 

double bouquet cells, calbindin double bouquet axons provide vertical inhibition to pyramidal 

cells within the minicolumn (Casanova et al., 2003; Favorov and Kelly; Opris and Casanova, 

2014). In most non-primates except carnivores, calbindin interneurons are mainly multipolar 

and bitufted (Yáñez et al., 2005). Both calretinin and calbindin interneurons exhibit 

characteristics of non-fast-spiking cells in nonhuman primate cortex, with longer spike 

frequency and spike adaptation, but without distinctive differences between the two 

subpopulations (Zaitsev et al., 2005).  

Since GABAergic network acts as intrinsic modulator of cortical output (DeFelipe et al., 2013) 

significant changes appear in organization and laminar distribution of GABAergic neurons. 

There are numerous studies analyzing laminar distribution and density of these neurons in 

mammals. However due to different methodology and lack of systematic approach these 

studies cannot comprehend interspecies differences (Gabbott et al., 1997 a,1997b; Gabbott 

and Bacon, 1996a, 1996b; Hof et al., 1999; Sherwood et al., 2010; Zaitsev et al., 2005).  
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Figure 1.1 Representative drawing of three major calcium binding interneuron subtypes of the 

cerebral cortex and their most common morphology. CB – calbindin, CR – calretinin, PV – 

parvalbumin. 

Copyright © 2010 Raghanti, Spocter, Butti,Hof and Sherwood. (Raghanti et al., 2010) 

Through mammalian evolution the number of GABAergic interneurons increases more than 

principal neurons. In the primate neocortex they exceed 20% of all cortical neurons whereas 

in rodents cortical interneurons represent around 15% of total neuron number (Gabbott et al., 

1997  a,1997b; Gabbott and Bacon, 1996a, 1996b; Hendry et al., 1987; Kawaguchi and 

Kubota, 1997; Rio and Defelipe, 1996; Tremblay et al., 2016). 

This large increase in proportion of GABAergic neurons is not affecting all subpopulations 

synchronously and is due principally to an increase in number of calretinin neurons (Džaja et 

al., 2014; Hladnik et al., 2014; Rio and Defelipe, 1996). Other two main subpopulations, (i.e. 

parvalbumin and calbindin/somatostatin), do not show such a robust increase in proportion. 
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1.5 Calretinin 

Del Rio and DeFelipe (1996) have estimated that GABAergic neurons in layers II and III of 

the human associative temporal cortex represent around 1/3 of the total neuron number, and 

almost half of them express calretinin. Calretinin positive neurons were present in greatest 

density in deep layer I and layer II, calbindin immunoreactive cells were most dense in layer 

II and superficial part of layer III, and parvalbumin containing neurons were present in 

greatest density in the middle cortical layers (Rio and Defelipe, 1996). In addition, the relative 

density of calretinin labeled neurons was approximately twice that of the calbindin and 

parvalbumin positive neurons. However, within each group of labeled neurons, their laminar 

distribution and relative density did not differ substantially across regions of the prefrontal 

cortex (Conde et al., 1994).  

 

 

Figure 1.2 There is 50% increase in cortical GABAergic neurons from rodents (≈16%) to primates 

(≈24%), which can be attributed to threefold increase in number of calretinin neurons (shown in red; 

from ≈4% in rodents to ≈12% of the total neuron number in primates). 

Copyright © 2014 Hladnik, Džaja, Darmopil, Jovanov-Milošević and Petanjek.(Hladnik et al., 2014) 

Most of the studies suggest that in the human, where higher order associative areas 

comprise at least 50% of the neocortical surface, calretinin becomes the dominant population 

representing almost 50% of cortical GABAergic neurons (Barinka et al., 2010a; Conde et al., 
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1994; Gabbott et al., 1997  a,1997b; Tremblay et al., 2016; Zaitsev et al., 2005). The 

substantial difference in methodological approach makes these studies almost incomparable. 

There is also empirical evidence that there is much greater phylogenetic variation in the 

number of neurons underneath 1mm2 of cortex than was previously thought (Herculano-

Houzel et al., 2008).  

A study by Ma et al. (2013) suggested, that in the human and monkey calretinin neurons are 

two times more numerous in the frontal and parietal cortical areas compared to the rest of 

the neocortex (Ma et al., 2013). Our previous study, comparing orbital frontal cortex in the rat 

with complementary area 14 in the rhesus monkey, showed a four to five fold increase in the 

proportion of calretinin neurons, mostly in upper cortical layers. In layers II/III of the human 

orbito-frontal cortex calretinin neurons cover more than 20% of the total number of neurons 

(Džaja, 2015), that is a 8 times more than in rat. 

 

 

Figure 1.3 The overview of literature data on GABAergic cells and calretinin neurons percentage. 

Data extrapolated from following articles: Džaja et al., 2014; Gabbott and Bacon, 1996a, 1996b, 1997; 

Kawaguchi and Kubota, 1997; Melchitzky et al., 2005; Uematsu et al., 2008; Zaitsev et al., 2005. 

 

All these data indicate that during evolution there is an increase in calretinin proportion in the 

upper cortical layers of higher associative regions. Nevertheless the relation between 

exponentially increased number of calretinin neurons within human associative areas and 

tremendous increase in cognitive capability in humans is still hypothetical (Forbes and 

Grafman, 2010). We presume that disproportional increase in the number of calretinin 

neurons is the basis for significant changes in neuronal network organization and 

substantially different processing modes (Burkhalter, 2008). 
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1.5.1 Molecular profile of calretinin neurons in the primate brain 

With raising numbers of calretinin neurons and increased efficiency in cortical networks the 

calretinin neuron neurotransmitter profile could be changed. In rodents, almost 100 % of 

calretinin neurons in the neocortex seem to use GABA as a neurotransmitter (Gonchar et al., 

2007; Gonchar and Burkhalter, 1997; Uematsu et al., 2008). On the other hand, in monkey 

and human neocortex, about 25 % of calretinin neurons were found not to express GABA 

(Melchitzky et al., 2005; Rio and Defelipe, 1996). So the GABAergic profile of calretinin 

neurons although often presumed by the literature was not directly confirmed in the primate 

neocortex. This question was addressed in this study where we confirmed the GABAergic 

profile showing that all these neurons in the primate brain express mRNAs for the vesicular 

GABA transporter (VGAT) and one of the synthesizing enzyme for GABA, the glutamic acid 

decarboxylase 67 (GAD67) as well as in study by Rocco et al. where they showed that 

calretinin neuron boutons express GAD67 (Rocco et al., 2016).  

 

1.5.2 Laminar distribution and interspecies studies 

Calretinin neurons in neocortex are mostly located in cortical layers II and III, both in rodents 

and primates. The density of calretinin neurons decreases with depth in neocortex and they 

are rare in infragranular layers, when compared to the supragranular ones. The calretinin 

neurons most commonly have bipolar or bitufted vertically oriented somatodendritic 

morphology, with fusiform or oval perikaryon (Barinka et al., 2010a; Conde et al., 1994; 

Gabbott et al., 1997  a,1997b; Gabbott and Bacon, 1996a, 1996b; Gonchar et al., 2007; 

Gonchar and Burkhalter, 1997; Rogers et al., 1990; Zaitsev et al., 2005). Their dendrites 

often extend to layer I superficially and to infragranular layers deeply. On the contrary, the 

dendritic tree is quite narrow in horizontal direction. Besides these bipolar neurons, other 

morphological types of calretinin neurons, typically multipolar and horizontally oriented 

neurons, were consistently found in the neocortex in the majority of the above cited studies. 

The distribution of calretinin neurons is similar but not absolutely homogenous among 

various neocortical areas.  

The idea that there is more calretinin cells in primates is not new but it was studied with 

different methodologies so the results are not directly comparable. In human general pattern 

of calretinin immunoreactivity was found to be similar, but the density of calretinin neurons 

was significantly lower in the frontal than in the temporal, occipital and parietal association 

cortices (Barinka et al., 2010b; Hof et al., 1993a). Gabbot and Bacon in 1996 and 1997 did a 

comparative study on medial prefrontal cortex in rat, monkey and human areas 24, 25 and 

32. They confirmed the resemblance in neocortical calretinin neuron morphology between 
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species, but they found a significant difference in proportion of neurons expressing calretinin 

between rat and primates. In medial prefrontal cortex, the calretinin neurons constituted 4% 

of the total neuronal population in the rat, but 11% in the monkey and 8% in the human, what 

is similar to other studies performed (Conde et al., 1994; Gabbott et al., 1997  a,1997b; 

Gabbott and Bacon, 1996a, 1996b; Gonchar et al., 2010; Rio and Defelipe, 1996). 

Altogether, the calretinin neurons are significantly more numerous in primate frontal cortex 

when compared to rodents, both absolutely and relatively to the other GABA interneurons. 

Since the prefrontal cortex is the location of human specific cognitive functions such as 

decision making, planning and emotional response (Barbas, 2000; Gallagher and Frith, 2003; 

Goel and Grafman, 1995; Goldman-Rakic, 1991; Hoshi, 2006) the idea is that if calretinin 

neurons do have a role in more efficient neuronal networks they should be more numerous in 

areas of high demand. The study comparing rodents to primates tested this hypothesis in 

orbitofrontal area 14 since it is the only part of prefrontal cortex with clear correlate in rodent 

brain. The results showed a major increase in calretinin population in primate brains. This 

was the main reason to keep trying to identify their role in primate brain (Džaja, 2015; Džaja 

et al., 2014).  

 

1.6 Calretinin neuron lifespan changes and pathology 

Executive abilities emerge from cortico-cortical interactions between laminar prefrontal 

cortical microcircuits and their disruption was linked to a broad spectrum of neurologic and 

psychiatric disorders such as depression, autism, schizophrenia, Alzheimer’s disease and 

drug addiction (Barinka et al., 2010b; Beasley et al., 2002; Brisch et al., 2015; Hof et al., 

1993b; Luscher et al., 2010; Rajkowska et al., 2007; Takano, 2015).  

The development of interneuron markers is protracted in the human dorsolateral prefrontal 

cortex, extending well into the toddlerhood and beyond the teenage years. Calretinin mRNA 

is down-regulated in the first few years of postnatal life, with a significant decrease in 

expression between the neonatal period and infancy, and also between infancy and all later 

developmental periods (Fung et al., 2010).The immunohistochemical analysis revealed a 

similar trend toward a decrease number of calretinin positive neurons in old brains when 

compared with the young (Bu et al., 2003). 

Majority of neurological and psychiatric disorders with cortical pathology involve some level 

of disorganization in GABAergic network (Ansen-Wilson and Lipinski, 2017; Friocourt and 

Parnavelas, 2011; Marín, 2012). Some disorders can only be found in humans, such as 

depression ,schizophrenia (Benes and Berretta, 2001; Brisch et al., 2015; Cotter et al., 2002; 

Eyles et al., 2002; Luscher et al., 2010; Rajkowska et al., 2007) and autism (Chahrour and 
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Zoghbi, 2007; Takano, 2015), and in others, such as epilepsy, symptomatology is more 

complex in humans (Barinka et al., 2010b; Kuchukhidze et al., 2015).  

There were many studies trying to link the number of certain GABAergic neuron population to 

psychiatric disorders. While they showed the change in calbindin and parvalbumin neuron 

numbers, the number of calretinin cells remained unaffected (Brisch et al., 2015; Cotter et al., 

2002; Hof et al., 1993a; Lewis et al., 2005; Luscher et al., 2010; Rajkowska et al., 2007). 

Their number were shown to increase in focal cortical dysplasia or other drug resistant forms 

of epilepsy (Barinka et al., 2010b).  

In the prefrontal cortex of patients with schizophrenia studies consistently showed decreased 

numbers of calbindin interneurons while calretinin interneuron density remains preserved 

(Beasley et al., 2002; Cotter et al., 2002; Eyles et al., 2002; Woo et al., 1998). 

Alzheimer's disease is also associated with a selective decrease of cortical calbindin neurons 

in humans (Beasley et al., 2002; Ferrer et al., 1993). It has also been reported in the canine 

expression of dementia of the Alzheimer's type (Pugliese et al., 2004) while both, 

parvalbumin and calretinin neuronal subpopulations are spared (Ferrer et al., 1993; Hof et 

al., 1993b; Pugliese et al., 2004).  

There are studies indicating that increased or unchanged number of calretinin or calbindin 

neurons in specific disorders may have a protective role (Hattori et al., 2017; Hof et al., 

1993a; Kuchukhidze et al., 2015). Therefore, it is important to understand human-specific 

features in organization and development of cortical GABAergic network, especially for 

calretinin neuron population. Whether they are resistant to general disorders or have a 

protective role or their role is crucial for cortical microcircuits work has still not been 

answered. 

The hypothesis of this research is that different higher order prefrontal cortical areas will 

differ in proportion of calretinin neurons inside and between primates. Therefore, the aim is to 

determine the proportion, density and laminar distribution in areas 9, 32 and 24 in monkey 

and human brain and to identify the molecular profile of calretinin neurons in the primate 

brain. For quantitative analysis, stereological approach was used and qualitative findings 

were based on immunohistochemistry or immunohistofluorescence and RNAscope methods. 
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2. Hypothesis 

 

There are differences in proportion and laminar distribution of calretinin neurons between 

higher associative areas of prefrontal cortex in monkey and humans that are principally 

related with molecularly specific subpopulation of GABAergic neurons. 
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3. General and specific aims 

3.1 General aim 

The aim of this study is to determine the proportion, laminar distribution and neurotransmitter 

phenotype of calretinin expressing neurons in mesocortical (area 24) and neocortical (area 9, 

area 32) associative frontal regions in Maccaca mulatta and Homo sapiens. 

3.2 Specific aims 

Specific aims for this study are: 

I. To determine the density and proportion of calretinin neurons in all cortical layers in 

areas 9, 24 and 32 in the prefrontal cortex of three human and three monkey brains. 

II. To determine if cortical calretinin neurons have GABAergic neurotransmitter 

phenotype using co-labeling with in-situ hybridization. 

III.  To determine the proportion of each main GABAergic neuron subpopulation and 

level of overlap between them (calretinin, calbindin/somatostatin and parvalbumin) in areas 

9, 24 and 32, using double labeling. 
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4. Materials and methods 

4.1 Histological samples 

Three postmortem adult human and three adult macaque monkey brain sections were used 

in this study. 

4.1.1 Human tissue samples 

Postmortem human brain tissue used in this study is a part of Zagreb Neuroembryological 

collection and includes 3 adult subjects (30-45 years old) with 6 hours postmortem delay 

(PMD, i.e. interval between death and fixation of the tissue). The tissue was collected from 

University of Zagreb Department of Forensic Medicine during routine autopsies. Medical 

records revealed no previous neurological and psychiatric history and neuropathological 

findings were unremarkable. All subjects died without preagonal state so the PMD represents 

the interval for neuron death. The tissue was obtained with the approval of the Ethics 

Committee of Zagreb University School of Medicine, and is currently regulated by Ethics 

Committee approval number 380-59-10106-14-55/152 from July 1, 2014. 

The information on the subject’s identity and history is stored in hidden records and the brain 

tissue is given a code name indicating only the age of the specimen. Specimens used in this 

study are:  

ČO 384 (male, 46 years, cause of death: sudden cardiac arrest, PMD 6 hours) 

ČO 386 (male, 37 years, cause of death: sudden cardiac arrest, PMD 6 hours) 

ČO 387 (male, 44 years, cause of death: methadone/benzodiazepine overdose, PMD 6 

hours) 

Whole brains were immersion-fixed using 4% paraformaldehyde in 0.1M phosphate buffer 

(pH 7.4). Subsequently, tissue blocks were cut following Talairach coordinates (Talairach 

and Szikla, 1980). Following a standard procedure the tissue blocs were then dehydrated in 

a graded series of sucrose (10%, 20%, and 30%) and afterwards cryoprotected, frozen and 

stored at -80°C until further processing. Serial sections of blocks containing frontal 

mesocortical Brodmann areas 24 and 32, and neocortical area 9, were cut at 60µm on 

cryostat and stored in cryoprotective solution at –20°C until histological processing.  
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4.1.2 Monkey tissue samples 

Postmortem monkey brain tissue used in this study is a part of Dr. Esclapez Brain Collection, 

INS, INSERM, Marseille, France. This study includes brain tissue from 3 adult Macaca 

mulatta monkeys aged 10-12 years that were purpose bred and maintained for experimental 

and other scientific purposes under controlled and standardized conditions with regard to 

their genealogy, health and care at Station de Primatology Centre National de la Recherche 

Scientific (SdP CNRS). Well documented breeding histories, sanitary backgrounds and 

individual records containing detailed information is stored for all the animals of the colony. 

All experimental procedures were in compliance with the National Institutes of Health’s Guide 

for the Care and Use of Laboratory Animals, guidelines of European Communities Council 

(86/609/EEC) and approved by Zagreb’s School of medicine Committee for animal welfare 

and the Comité d’éthique en Neurosciences INT-Marseille (Protocol A2-10-12).  

The monkeys were primarily used in electrophysiological studies. Following the end of the 

original experiments monkeys were deeply anesthetized and perfused transcardially with a 

fixative solution of 4% paraformaldehyde in 0.12M sodium phosphate buffer (PB), pH 7.4. 

After perfusion, the brains were removed from the skull, blocks of brains containing the 

frontal lobes were post-fixed in the same fixative for 2 hours at room temperature, rinsed in 

PB, cryoprotected in 20% sucrose overnight, frozen on dry ice and sectioned in frontal plane 

at 40μm with a cryostat (Microm). Serial sections containing the frontal mesocortical 

Brodmann area’s 24 and 32, and neocortical area 9 were rinsed in 0.01M phosphate-

buffered saline (PBS), pH 7.4, collected sequentially in tubes containing an ethylene glycol-

based cryoprotective solution and stored at −20°C until histological processing. 

 

4.2 Histological staining 

For both species, a cresyl violet histological staining was performed on every tenth section in 

order to delineate (determine) the different regions of interests (areas 24, 32 and 9) 

throughout the rostral-caudal extent of the brain. 
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4.2.1 Single labeling immunohistochemistry 

After determining the rostrocaudal and lateral borders of every tenth section (5 in total) and 

its adjacent sections (5 in total) were processed for immunohistochemical detection of the 

neuron-specific nuclear protein (NeuN) and of the calcium binding protein calretinin (CR) 

according to previously described protocol (Esclapez et al., 1994; Hsu and Raine, 1981). 

Free floating sections were rinsed in PB and pretreated for 30 minutes in 1% H202 in order to 

quench endogenous peroxidases. After being rinsed in PB and in 0.02M potassium 

phosphate-buffered saline (KPBS, pH 7.2-7.4) they were preincubated in 3% normal goat or 

horse serum (NGS, NHS, Vector Laboratories) diluted in KPBS containing 0.3% Triton X-100 

for 1 hour at room temperature and then incubated overnight at 4°C in the primary antibody 

(Table 2.1) diluted in KPBS containing 1% NGS or NHS and 0.3 % Triton X-100.  

 

Table 2.1. Primary antibodies and dilution used for single labeling immunohistochemistry. 

Antibody Human Monkey 

Rabbit anti-Calretinin - Polyclonal (Swant, 7699/3H)  1:5000 

Mouse anti-Calretinin - Monoclonal (Swant, 6B3) 1:2000  

Mouse anti-NeuN – Monoclonal – clone a60 (Merck, MAB377) 1:4000 1:8000 

 

After several rinses in KPBS, sections were incubated for 1 hour at room temperature in 

biotinylated goat or horse anti-rabbit or anti mouse immunoglobulin G (IgG; Vector 

Laboratories) diluted 1:200 in KPBS containing 3% NGS or NHS and then for 1 hours at 

room temperature in an avidin-biotin-peroxidase complex solution prepared in KPBS 

according to the manufacturer's recommendations (Vectastain ABC kit, Vector Laboratories). 

The peroxidase activity was visualized using Ni-3.3’-diaminobenzidine tetrahydrochloride 

(NiDAB, Sigma fast tablets; Sigma) for 15 minutes. Sections were rinsed in KPBS, mounted 

onto Superfrost Plus slides, dehydrated in graded series of alcohol, cleared in xylene and 

coverslipped with Permount or Histomount (National Diagnostics). Controls were included in 

all of experiments. In all cases, no cross-reactivity was detected when the primary antibodies 

were omitted. 
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4.2.2 Simultaneous immunohistofluorescent detection of calretinin, calbindin, parvalbumin 

and somatostatin 

Double labeling was used to determine the level of overlap between the different GABAergic 

neuron subpopulations containing calbindin, somatostatin, parvalbumin, and calretinin.  

Sections were processed for the simultaneous detection of calretinin with calbindin or 

parvalbumin or somatostatin, according to previously described protocol (Soussi, 2010). 

They were rinsed for 30 minutes in PB and 1 hour in KPBS. Sections were then incubated for 

1 hour at room temperature in 3% normal donkey serum (NDS, Vector Laboratories) and 

overnight at 4°C in the following solution of primary antibodies (calretinin-calbindin, calretinin-

parvalbumin, calretinin-somatostatin) diluted in KPBS containing 0.3% Triton X-100 and 1% 

NDS. 

 

Table 2.2 Primary antibodies and dilution used for double labeling immunohistochemistry. 

Antibody Monkey 

Mouse anti-Calbindin D-28k - Monoclonal (Swant, 300) 1:3000 

Mouse anti-Parvalbumin – Monoclonal (Swant, 235) 1:4000 

Rabbit anti-Somatostatin - Polyclonal (Penninsula, T-4103) 1:4000 

Rabbit anti-Calretinin – Polyclonal (Swant, 7699/3H) 1:3000 

Mouse anti-Calretinin – Monoclonal (Swant, 6B3) 1:3000 

 

Following several rinses in KPBS, sections were incubated for 1 hour at room temperature in 

Alexa 488 conjugated donkey anti-rabbit (1:100; Molecular Probes) and Cy3-conjugated 

donkey anti-mouse antibody (1/100; Jackson ImmunoResearch laboratories) diluted in 

KPBS. Sections were then mounted on Superfrost slides and dried overnight. After this they 

were rapidly hydrated in double distilled H2O (2-3 seconds) and cover slipped in Fluoromount 

G. 

Overall, the distribution, density and morphology of neurons labeled with monoclonal 

calretinin antibody did not differ from sections labeled with polyclonal calretinin antibody (see 

Figure 5.22). 
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4.2.3 Simultaneous detection of VGAT or GAD65/GAD67 mRNAs and calretinin combining 

fluorescent in situ hybridization (RNAscope technology) and immunohistofluorescent 

methods  

Sections were processed for simultaneous detection of vesicular GABA transporter (VGAT) 

or one of the synthesizing enzyme for GABA, the glutamic acid decarboxylase GAD65 and 

GAD67 mRNAs in combination with calretinin immunohistofluorescence as previously 

described (Billwiller et al., 2019). Free floating section were first treated with 3% H2O2 for 10 

minutes, rinsed in PB mounted on SuperFrost Plus slides (Fisher Scientific) and air dried at 

room temperature overnight. They were then processed for fluorescent RNAscope in situ 

hybridization according to manufacter’s protocol. Briefly, sections were treated with 100% 

ethanol incubated in antigen retrieval buffer maintained at a boiling temperature (100°C to 

103°C) for 10 minutes, rinsed in PB, and immediately treated with protease III for 30 minutes 

at 40°C. They were incubated in a solution containing both RNAscope® Probe - Hs-

SLC32a1-C3 for detection of VGAT mRNA or Mmu-GAD2-C2 for detection of GAD65 mRNA 

and in a different experiment the RNAscope® Probe Hs-GAD1-C2 probe for the detection of 

GAD67 mRNA. After hybridization, sections were then processed for visualization using the 

RNA-scope Multiplex Fluorescent reagent Kit v2 (Advanced Cell Diagnostics) and the 

Tyramide Signal Amplification (TSA™) Plus Cyanine 3 (Perkin Elmer, (Wang et al., 2012).).  

After the RNAscope assay, sections were rinsed in 0.02M potassium phosphate-buffered 

saline (KPBS, pH 7.2-7.4) and processed for immunohistofluorescent detection of calretinin. 

Sections were incubated for 1h at room temperature in 3% normal donkey serum (NDS, 

Vector Laboratories) and overnight at 4°C in the rabbit polyclonal antiserum directed against 

calretinin (1:3000) diluted in KPBS containing 0.3% Triton X-100 and 1% NDS. After several 

rinses in KPBS, the sections were incubated for 2 hours in Alexa 488-conjugated donkey 

anti-rabbit (1:200; Invitrogen). 

Two experiments were performed to simultaneously assess VGAT mRNA and calretinin in 

monkey and human prefrontal cortex. 
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4.3 Quantitative and qualitative analysis of histological sections 

4.3.1 Position of areas 9, 32 and 24 and their characterization 

In monkey analysis was performed on coronal sections of macaque monkey frontal lobe, 

where the most rostral sections were positioned 1 cm anterior to corpus callosum and the 

most caudal ones included the anterior part of genu (Figure 2.1A). Cortical regions of interest 

were identified based on topological location and distinctive regional cytoarchitecture 

recognizable on Nissl-stained sections. Cytoarchitectural features were relied upon for 

identification of cortical regions since there is great individual variation in their gross 

anatomical location. These sections encompass prefrontal Brodmann areas 9-14, 24, 25, 32 

and 46. The area 9 occupies a significant portion of the lateral frontal cortex continuing from 

area 46 around the sulcus principalis and on the medial prefrontal cortex that is composed of 

Brodmann areas 24 (anterior cingulate cortex or anterior limbic cortex) and area 32 

(prelimbic cortex) (Carmichael and Price, 1994; Öngür et al., 2003; Petrides et al., 2011; 

Petrides and Pandya, 1999; Vogt et al., 1987, 2013). 

In human analysis was done on coronal sections of the prefrontal cortex in a block 

encompassing dorsal part of frontal lobe (Figure 2.1B) above rostrum of corpus callosum 

according to Von Economo and Talairach (Mai et al., 2008; Talairach and Szikla, 1980; 

Triarhou, 2007). Here, Brodmann area 9 is located on the dorsal part, on both, lateral and 

medial surfaces at the top of the frontal lobe extending along the middle third of the superior 

frontal gyrus and adjacent portions of the middle frontal gyrus. Area 24 was positioned in the 

cingulate gyrus above anterior part of the genu of the corpus callosum, and area 32 was 

dorsal to area 24. The surface of the anterior cingulate gyrus is composed of areas 25 and 

24. In the depths of the rostral callosal sulcus is area 33. Surrounding the rostral and dorsal 

borders of areas 25 and 24 is the cingulofrontal transitional area 32 (Öngür et al., 2003; 

Petrides et al., 2011; Petrides and Pandya, 1999; Rajkowska and Goldman-Rakic, 1995a; 

Vogt et al., 1995, 2013). 
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A. Monkey Area 9

Area 24

Area 32

B. Human

Area 9

Area 32

Area 24

Figure 5.2 The position of Brodmann areas 9, 24, 32 on a monkey (A) and human (B) brain sections

stained with NeuN. Presented sections are at midlevel in blocks used for quantitative analysis (square

shown on schema).
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4.3.1.1 Stereology on single labeled sections 

Quantitative analysis was performed on serial sections’ reconstructions in rostrocaudal 

extent of each area of interest with defined lateral borders. After randomly choosing the first 

section every tenth was used for the analysis encompassing in total five sections stained with 

NeuN and its adjacent sections stained with calretinin (5 sections) in each area. This way the  

number of NeuN and calretinin neurons was estimated using the optical fractionator method 

(West et al., 1991). 

These analyses were performed with two computer-assisted systems using Stereo 

Investigator software (MicroBrightfield, Baltimore, MD). The first computer-assisted system 

included a PC connected to a digital video camera (DEI-479, Optronics, Santa Barbara, CA) 

and to a Nikon microscope (90i, Nikon, Melville, NY). The microscope was equipped with a 

motorized stage (MAC 2000, Ludl Electronics Products, Hawthorne, NY). The second system 

is equipped with MBF-DV-46 digital camera, attached to z-axis motorized Olympus BX61 

microscope and an x-y axis motorized stage, controlled by MAC 5000 controller (Ludl 

Eletronic Products Ltd.). Analysis was always done with a 60x air objective.  

The borders between cortical areas tend not to be sharp or distinct, thus, sampling was 

limited to a representative region within the cortical areas of interest. That is, once the 

cortical area was identified in each series of Nissl-stained sections, five sections from 

anterior to posterior (every 10th) were included in stereological analyses. The sections used 

in this study were chosen via systematic randomized approach. First section was randomly 

chosen and following ones were every 10th in a line along the area of interest. Calretinin 

labeled sections were in between Nissl and NeuN labeled ones. Cortical lamination was 

defined on NeuN stained sections because this staining reveals distinct features in each area 

that are not recognizable on Nissl stained sections. Thus, we analyzed the cortical layers 

separately as layers Ia, Ib II, III, IV, Va, Vb, VIa, VIb and WM (undelaying white matter) 

(Figure 5.10). 

Neurons were counted within a probe volume defined by the counting frame and the 

dissector height. The dissector height (20μm) used in this study is the real thickness of 

sections minus 2μm on each side of the section to exclude irregularities due to cutting 

processes. The real thickness of sections (14-24μm) resulted from shrinkage of the sections 

(40-60μm thick) following histological treatment. The size of the counting frame was 100 x 

100 μm. Only neurons within the counting frame or overlapping the right or superior border of 

the counting frame, and which came into focus while focusing down through the dissector 

height, were counted. To estimate the number of labeled neurons each region was entirely 

sampled randomly and systematically. 

22



    

 

   
 

Quantitative analysis included following data per each layer: total volume, total number and 

density of neuron (NeuN) and total number and density of calretinin neurons. Total number of 

NeuN positive cells accounts for total number of neurons (Sarnat et al., 1998). Based on 

these data following parameters were determined: neuron proportion in each layer (i.e. 

relation of number of neurons in particular layer to total neuron number), calretinin neuron 

proportion (i.e. relation of number of calretinin neurons to total neuron number in particular 

layer), and calretinin neuron distribution (i.e. number of calretinin neurons in particular layer 

to total number of calretinin neurons). Different areas and species were compared for all of 

the latter parameters in each layer. 

 

4.3.1.2 Neurolucida quantification on double labeled sections 

Quantitative analysis of double labeled neurons was performed as follows: single confocal 

images obtained from confocal microscope (Zeiss LSM 510) were imported in Neurolucida 

software. Three sections from each double labeling were used for quantification of each 

labeling and co-labeling in a column within each of the areas of interest. The lateral boundary 

of the virtual area was the line perpendicular between pia and white matter that followed 

positioning and orientation of cortical neurons (Bok, 1929). In the defined area all single and 

double labeled neurons were marked with different markers and the numbers automatically 

provided by the software. Density of particular neuron class was calculated as number of 

neurons per surface (mm2) of counted area in each section. Based on number of counted 

cells calretinin/parvalbumin and calretinin/calbindin and calretinin/somatostatin ratio was 

calculated for each section.  
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4.3.2 Image acquisitions 

Image from immunohistochemical labeled sections were acquired with an automatized 

Olympus-PROVIS system equipped with a high quality digital Nikon video camera (Eclipse 

DXM 1200) and Hamamatsu Nanozoomer 2.0 scanner using a single optical plane at 40x 

magnification, corresponding to 0.226µm/pixel resolution (Hamamatsu, Japan). Images from 

immunohistofluorescent labeled sections were acquired with laser confocal microscope 

(Zeiss, LSM 510 META). Sequential acquisitions of the different fluorophore were performed 

with Argon 458/477/488/514nm lasers using the tile scan function in order to image the entire 

region of interest. 

 

4.4. Statistical analysis 

In this study different statistical analyses were performed using the STATISTICA software 

version 10 (Statsoft, Tulsa, OK, USA, licensed to University of Zagreb School of Medicine). 

The one way ANOVA for parametric analysis and nonparametric rank transformation 

procedure according to Conover and Iman (Conover and Iman, 1981) was performed. The a 

posteriori (post-hoc) Student-Newman–Keuls (SNK) test for multiple comparisons was 

applied to determine statistical differences between areas and layers. 

For comparison between species student t-test was used to determine the differences 

between each layer and a total number of neurons and number of calretinin neurons.  
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5. Results 

5.1 Cytoarchitectonic organization of monkey areas 9, 32 and 24 assessed through Nissl and 

NeuN labeled sections  

Cytoarchitectonic organization was studied on NeuN (Figure 5.1) and Nissl (Figure 5.2) 

stained sections. The NeuN staining is labeling cell bodies of neurons while Nissl staining 

labels both neurons and glial cells. Therefore, the identification of cortical layers crucial for 

demarcation of neighboring areas is more reliable on NeuN sections. This was particularly 

useful for the characterization of layer I and identification of layer IV. 

Sublamination of layer I in an upper neuron sparse zone, and a lower more populated zone 

is clear on NeuN labeling in all three areas (Figure 5.3), whereas such sublamination is 

difficult to identify on Nissl staining (Figure 5.4). NeuN labeling was particularly useful to 

visualize such sublamination in area 9 (Figure 5.3A) where layer I is thinner than in other two 

areas. NeuN labeling showed that in area 32 (Figure 5.3B), neurons are clustered forming 

islands in both the deep-part of layer I and the upper-part of layer II making the border 

between the two layers difficult to identify. In contrast, in areas 9 and 24 (Figure 5.3C), the 

border between layer I and II is clear due to the difference in neuron density and intensity of 

labeling.  

Layer III is thicker in area 32 than in other two areas (Figure 5.1B), but neurons are less 

densely packed and not as intensively labeled as in area 9 (Figure 5.1A) and 24 (Figure 

5.1C). There is a superficial to deep increase in neuronal cell body size in areas 9 and 24 

whereas area 32 doesn’t show this feature. Area 9 is characterized by the presence of large 

and strongly labeled pyramids in layer IIIC that can be observed in both Nissl and NeuN 

labeling (more detailed description is given in following chapter). 

Layer IV (Figure 5.5) was clearly visible in area 9 and 32 on NeuN labeled sections. On Nissl 

sections of area 9, layer IV is continuous but thinner and is at points hard to identify (Figure 

5.6A). Nissl staining of area 32 (Figure 5.6B) reveals recognizable but discontinuous layer IV, 

showing large differences in thickness. When stained with NeuN, layer IV of area 32 (Figure 

5.5B) shows constant thickness though whole area, although it was thinner than in area 9 

(Figure 5.5A). In area 24, NeuN labeling (Figure 5.5C) revealed a cell sparse strip delineating 

layers III and V which was not visible on Nissl stained sections (Figure 5.6C). In addition to 

better recognition of layer IV, sublamination of layers V and VI was more prominent on NeuN 

slides. More detailed descriptions of laminar organization of NeuN labeled, including the cell 

morphology, is given hereafter.  
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5.2 Laminar organization and cell morphology of monkey areas 9, 32 and 24 on NeuN 

labeled sections  

Area 9 

Area 9 is granular cortex with a straightforward demarcation of six layers (Figure 5.7). There 

is a prominent sublamination of layer V and relatively thick transitional layer to white mater, 

layer VIb. 

Layer I can be clearly divided in two parts (Figure 5.3A). An upper part sparse in neurons 

and a lower one with neurons scattered near the border with layer II. The density of these 

neurons gradually decreases from the border with layer II to mid part of layer I. 

The upper border of layer II has a wavy appearance due to aggregates of very small cells 

intermixed with medium sized non-radially oriented (parallel with pial surface) pyriform-

bipolar neurons. Layer II is composed of heavily labeled small round, oval and triangular 

neurons. The upper part of layer III is also densely packed with neurons making the border 

between layer II and III indistinct. In contrast to the upper part of layer III which is compact, 

the lower part (IIIc) is not as dense and contains large pyramidal neurons with strongly 

labeled cell body and proximal apical and basal dendrites (Figure 5.5A). These pyramidal 

neurons are the most prominent neurons found in area 9, and the largest neurons across all 

three areas analyzed. In layer IIIc, very small, faintly labeled medium sized pyramidal-shaped 

neurons are intermixed with large heavy labeled cells. Such faintly labeled small pyramidal 

cells as well as round shaped neurons are forming narrow but clear layer IV, along with small 

heavily labeled pyramidal cells that seem as displaced from layer Va. Layers II and V are 

compact layers giving the area 9 its typical horizontally stratified cytoarchitectonic 

appearance. 

Layer V is divided into the upper sublayer Va formed by densely packed small to medium 

sized pyramidal neurons. The lower sublayer Vb, lighter in appearance than layer Va, 

contains numerous small round to oval shaped faintly labeled neurons and scattered, 

strongly labeled medium sized pyramids. 

Layer VI can be divided in two sublayers based on the cell density. In upper part, sublayer 

VIa is densely packed with a multipolar and spindle (fusiform) shaped cells. Layer VIb is 

composed of medium sized oval, triangularly shaped and multipolar neurons. The density of 

cells in layer VIb is lower than in layer VIa, showing a gradual dispersion of cells from layer 

VIa towards white matter. Therefore, borders of layer VIb, both with layer VIa and with white 

mater, are not sharp.  
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Figure 5.7 Area 9 in monkey, immunohistochemical anti-NeuN staining.
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Area 32 

Area 32 (Figure 5.8) clearly displays six cortical layers, including a thin layer IV (Figure 5.5B). 

Layer I contains scattered small round and oval shaped neurons in its upper half (Figure 

5.3B). In its lower half, these neurons are more densely packed and grouped in small 

islands. The layer II is of irregular thickness, having also “island like” organization. In layer II 

cells are forming larger aggregates than in layer I, and at higher magnification, small 

pyramidal neurons of layer II seems to be intermixed with layer I neurons. Layer II contains 

also medium sized non-radially oriented moderately labeled pyriform-bipolar neurons. 

Due to irregularity in thickness of layer II and a discrete layer IV, area 32 in monkey can be 

described as dysgranular cortex. 

Pyramidal neurons of layer III do not have apparent superficial to deep increased gradient in 

cell body size. Indeed, neurons in the lower part of layer III (IIIc) have only slightly larger cell 

body size (Figure 5.5B) than the neurons in the upper part and in the layer II (Figure 5.3B). 

Consequently, the layer II and III are in continuity and their border is hard to delineate.  

Layer IV contains a distinct population of small sized neurons distributed in a thin band 

above layer V (Figure 5.5B). Layer V contains pyramidal-shaped neurons. This layer is 

subdivided into two sublayers based on the density and the labeling intensity of the neurons. 

The upper part has a denser, more compact appearance with strongly labeled neurons. Both 

sublayers, Va and Vb, are composed of small and medium size pyramids. These medium 

size neurons have roughly the same cell body size than the largest pyramids of layer IIIC. 

Therefore, layer V although clearly divided into sublayers, has common composition 

regarding size and shape of cells.  

Layer VI, is composed of medium sized pyramidal-shaped neurons, perpendicularly oriented 

bipolar cells and a few multipolar neurons. The sublayers of layer VI can be distinguished 

based on cell density. The sublayer VIa has scattered strongly labeled medium size 

pyramidal neurons similar to that found in layer V. The density of these neurons decreases in 

layer VIb, and this sublayer is actually a transitional zone towards the white mater. 
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Figure 5.8 Area 32 in monkey, immunohistochemical anti-NeuN staining.
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Area 24 

Area 24 is considered to be agranular cortex (Figure 5.9). Indeed layer IV is not apparent on 

Nissl stained sections. However, NeuN labeling reveals a thin band of small, faintly labeled 

cells between layers III and V (Figure 5.5C). 

As in the others two analyzed areas, layer I can be divided into a neuron sparse upper half, 

and a lower half with a relatively higher neuron density (Figure 5.3C). The distinction 

between layer I and II is clear due to striking increase in labeling intensity of neurons. The 

thin upper part of layer II contains small oval to round shaped neurons, whereas the rest of 

layer II is composed of intermixed small to medium size pyramidal neurons. Occasionally, 

medium to large sized pyriform shaped neurons can be also seen in layer II.  

Layer IIIa contains neurons of the same size as those of layer II. The neuronal density 

abruptly decreases from layer II to layer IIIa delineating clearly these the two layers. Layer III 

pyramidal neurons show superficial to deep increase in cell body size. In the thin deep part, 

large neurons are intermixed with small faintly labeled, oval or triangularly shaped cells.  

Layer IV is not present in this area but there is a sparse strip of cells dividing medium sized 

pyramidal neurons of layer IIIc from small pyramids of layer Va (Figure 5.5C).  

Layer Va is dense, packed mostly with small pyramidal neurons that increase in size with 

depth. The layer Vb is thin and less densely populated with neurons than layer Va. Neurons 

in these layers are strongly labeled and have an irregular triangular shape.  

Layer VIa is almost as dense as layer Va and contains medium sized fusiform, bipolar, 

multipolar or triangularly shaped neurons. Layer VIb neurons are not uniform in size and 

there are clumps of medium to large neurons. There is an abrupt decrease in neuronal 

density of layer VIb when compared to the upper part, the layer VIa. 
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5.2.1 Quantitative analysis of NeuN labeled sections 

The total number of NeuN labeled neurons and total volume were estimated for each 

sublayer in each analyzed area (Figure 5.10) for each animal (n= 3). The proportion of 

neurons positioned to particular layer and neuron density were calculated. The mean values 

with standard deviation (SD) are provided in tables 5.1, 5.2 and 5.3. 

 

Table 5.1 Proportion (%) of NeuN labeled cells from total neuronal pool located in particular layer of 

monkey areas 9, 24 and 32 (NeuN cell number per layer / total number of NeuN cells in particular 

area).  

 

 

The laminar proportions of neurons did not reveal robust inter-areal differences (Figure 

5.11A, B). Around 4% of neurons are positioned in layer I, 7-8% in layer IV for areas 9 and 

32, and the rest is distributed almost equally between layers II/III and V/VI. 

However, some differences can be observed. In area 9 proportion of neurons located in layer 

I (3.3%) showed tendency (p=0.06) to be 30-40% lower than in areas 32 (4.3%) and 24 

(4.6%). Statistical analysis performed on ranked values (ANOVA, SNK-post hoc) showed 

(Figure 5.12A) that area 32 contains lower amount of neurons (45%) in layers I–III than areas 

24 (51%, p=0,014) and 9 (53%, p=0.012).  It  also reveals that in area 9 layers V–VI contain 

lower amount of neurons (38%) than in areas 32 (45%, p=0.014) and 24 (48%, p=0.03). 

Therefore, ratio of neurons (Figure 5.12B) located in supragranular versus infragranular 

layers (I-III : V-VI) was significantly higher in area 9 (1.4) when compared to areas 24 (1.1, 

p=0.014) and 32 (1, p=0.012).  

 Area 9 SD Area 32 SD Area 24 SD 

Ia 0.7% 0.1% 1.0% 0.4% 0.9% 0.4% 

Ib 2.6% 0.3% 3.3% 1.0% 3.7% 0.4% 

II 18.0% 5.4% 14.7% 1.9% 15.6% 2.4% 

III 31.6% 2.4% 25.7% 3.9% 30.4% 0.3% 

IV 7.1% 1.9% 8.3% 0.7% Ø Ø 

Va 14.6% 1.1% 16.1% 2.0% 15.7% 4.9% 

Vb 9.1% 0.4% 10.2% 2.3% 11.8% 2.5% 

VIa 9.6% 2.4% 11.5% 0.7% 13.0% 2.8% 

VIb 4.9% 1.6% 7.6% 1.4% 7.1% 1.6% 

WM 1.9% 0.8% 1.6% 0.1% 1.7% 0.3% 
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Figure 5.11 Graphs are showing laminar proportion of neurons (A, B) and layer volumes (C, D)

assessed on NeuN stained sections in monkey. Proportion is calculated as follows: volume and

number of NeuN positive cells in particular layer was divided by total volume and total number of

NeuN positive cells in whole area. Proportion is shown as percentage and on graphs B and D values

obtained in this study are presented in the way to be comparable with data from area 14 obtained in

previous study (Džaja 2015, PhD Thesis).
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Note that these differences are statistically significant only when analysis is done on ranked 

values, because the ratio between supragranular and infragranular layers varies between 

animals from 1.15-1.64 in area 9, 0.97-1.24 in area 24 and 0.76-1.14 in area 32 (Figure 

5.12). However, in all analyzed animals (n=3), area 9, when compared to areas 24 and 32, 

contains the highest proportion of neurons in layers II-III and lowest in layers V-VI. 

Quantitative analysis revealed that 3/4 of the neurons within layer I are located in its lower 

part (Table 5.1). This confirms the qualitative data (Figure 5.3) showing a clear sublamination 

of layer I in monkey with an upper neuron sparse sublayer Ia, and a more densely populated 

lower part, layer Ib. 

 

 

The proportion of volume (Table 5.2, Figure 5.11C, D) taken by each layer is relatively 

consistent in all three areas (variation between animals is up to 3%) (Figure 5.13). There are 

two half’s in general, layers I-III take up half of total volume, and layers IV-VI the other half. 

The volume of layer I accounts for 10-12%, layer IV for 5-7% and layers II-III for 39-43% of 

total volume in all areas. The layers V-VI account for 40-43% of the total volume in areas 9 

and 32 and 50% in area 24. The volume ratio between layers II-III versus layers V-VI is 

above 1 (ratio = 1.05) in area 9, whereas the ratio in areas 32 (0.9) and 24 (0.8) shows that 

in this two areas the volume of layers V-VI is higher than that in layers II-III. 
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Table 5.2 Proportion (%) of layer volume in relation to total volume of monkey areas 9, 24 and 32 

(layer volume / total area volume). SD - standard deviation. 

 

 

 

 

  

 Area 9 SD Area 32 SD Area 24 SD 

Ia 5.5% 0.7% 5.8% 1.2% 4.7% 0.8% 

Ib 5.3% 1.0% 5.7% 0.7% 6.1% 0.5% 

II 12.0% 2.9% 11.3% 1.9% 9.9% 1.0% 

III 30.9% 2.4% 28.1% 2.6% 29.9% 4.3% 

IV 5.5% 0.8% 6.8% 0.7% Ø Ø 

Va 11.2% 1.7% 12.2% 0.3% 12.6% 2.5% 

Vb 10.1% 0.7% 9.9% 1.5% 11.8% 3.4% 

VIa 11.3% 1.9% 11.6% 1.2% 13.9% 1.4% 

VIb 8.2% 1.7% 8.7% 0.9% 11.1% 1.2% 
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Neuronal densities are comparable between areas (Table 5.3; Figure 5.14). The highest 

density is in area 9 with 62 000 neurons per mm3 (range 52 000-77 000), while in area 24 

density is around 10% lower (55 000 neurons per mm3; range: 44 000–66 000), and 20% 

lower in area 32 (51 000 neurons per mm3, 42 000–54 000) (Table 5.3). Due to variations 

between animals, overall differences in neuron density between areas are statistically 

significant only when analysis is done on ranked values. This way the neuron density in 

layers II and III was in area 9 significantly higher than in area 32 (ANOVA, SNK post-hoc, 

performed on ranked values, p = 0.012) and 24 (ANOVA, SNK post-hoc, performed on 

ranked values, p = 0.014). 

 

Table 5.3. - NeuN density per layer in monkey areas 9, 24, 32 presents the mean value (1000 cells / 

mm3) of each layer with standard deviation (SD) in each area. Overall neuronal densities from layers I-

VI and II-VI are presented in the last two rows. 

 

 

  

 Area 9 SD Area 32 SD Area 24 SD 

Ia 7.6 0.9 8.8 0.7 10.7 2.6 

Ib 31.6 5.3 29.3 4.1 33.7 3.7 

II 92.3 5.9 69.3 14.0 87.1 4.7 

III 64.5 8.2 47.0 6.0 57.1 5.8 

IV 79.8 6.2 63.1 7.8 Ø  Ø  

Va 85.9 19.9 66.8 2.1 68.9 11.1 

Vb 57.5 9.5 52.3 2.3 58.1 9.6 

VIa 53.7 9.7 50.6 3.2 52.7 9.9 

VIb 38.3 8.5 44.8 3.4 37.0 7.7 

WM 7.8 1.6 3.8 1.3 2.5 0.7 

I-VI 61.9 13.4 51.0 6.7 54.7 6.7 

II-VI 67.0 14.2 55.2 7.4 58.4 7.4 

43



    

 

   
 

Layer II has the highest density across all areas (Figure 5.14). Layer Ib (in all areas) has 

similar neuronal density than that of layer VIb (32 000 versus 44 000 neurons per mm3). 

Upper part of the layer Ia has densities that are either comparable to density in underlying 

white matter (8000 neurons per mm3 in area 9) or twice the value of white matter neuronal 

density in other areas. 
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5.3. Laminar distribution and morphological features of calretinin labeled neurons of monkey 

areas 9, 32 and 24 

All investigated areas display numerous calretinin containing neurons distributed across all 

layers and in the underlying white matter (Figure 5.15). In all examined areas (Figures 5.16, 

5.17, 5.18) the vast majority of calretinin neurons are located in layer II and adjacent part of 

layers I and III, whereas calretinin neurons are sparse in layer IV, V and VI.  

In layer I, calretinin containing neurons were located in its lower part. These neurons display 

multipolar or pyriform cell body shape, the type of calretinin neurons occasionally found in 

other cortical layers. Few calretinin neurons located below the pial surface have large cell 

body and well-labeled horizontally oriented dendrites resembling to Cajal Retzius cells. 

These neurons were also observed along the border with layer II.  

Most of the calretinin containing neurons display small to medium size cell body (10-15 µm in 

diameter) with an oval or pyriform shape (Figure 5.19, see chapter 5.4). Most of them have 

intensely labeled soma and many display well-labeled processes. The dendritic tree of most 

of these calretinin neurons shows a radial orientation (perpendicular to pia). Axon like 

process was observed for almost all calretinin-labeled neurons. These axons of calretinin 

neurons located in the middle layers display mainly a vertical orientation for and their 

morphology corresponds to double bouquet cells with bitufted dendritic morphology. Bitufted 

cells usually have ovoid somata and an axon arbor that often cross the cortical column.  

In the layer VI neurons are often horizontally oriented particularly along the border with white 

matter (see chapter 5.4).  
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Figure 5.16 Area 9 in monkey. Immunohistochemical anti-NeuN (A) and anti-calretinin (B) staining of

neighboring sections.
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Figure 5.17 Area 32 in monkey. Immunohistochemical anti-NeuN (A) and anti-calretinin (B) staining

of neighboring sections.
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Figure 5.18 Area 24 in monkey. Immunohistochemical anti-NeuN and anti-calretinin staining of

neighboring sections.
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5.3.1 Quantitative analysis of calretinin neurons throughout cortical layers  

Quantitative analysis did not reveal differences in laminar distribution, density and proportion 

between the analyzed areas. In all areas (9, 34, 24) around 3/4 of calretinin neurons were 

located in upper (I-III) cortical layers with 40-45% located in layers I and II (Table 5.4; Figure 

5.20 A, B). 

 

Table 5.4 Laminar distribution of calretinin labeled neurons in monkey (relative distribution (%) 

per layer). 

 Area 9 SD Area 32 SD Area 24 SD 

Ia 1.9% 1.2% 2.1% 1.6% 1.9% 0.4% 

Ib 8.8% 3.3% 8.9% 4.3% 10.8% 2.5% 

II 35.0% 13.0% 31.5% 6.1% 27.4% 4.2% 

III 31.1% 7.2% 30.6% 3.8% 33.9% 2.8% 

IV 4.4% 1.6% 4.4% 0.8% Ø  Ø  

Va 7.2% 2.7% 6.3% 1.0% 7.4% 0.6% 

Vb 4.5% 1.5% 5.5% 1.6% 6.7% 2.0% 

VIa 3.5% 1.8% 6.3% 1.4% 5.4% 0.8% 

VIb 1.6% 0.8% 2.5% 0.9% 3.0% 0.9% 

WM 2.0% 1.0% 2.0% 1.1% 3.7% 0.9% 

 

Table 5.5 Density of calretinin labeled neurons per layer in monkey areas 9, 32 and 24 (1000 

cells/mm3) 

 Area 9 SD Area 32 SD Area 24 SD 

Ia 2.4 0.9 2.7 1.9 3.2 0.7 

Ib 16.7 5.4 10.0 3.6 13.9 3.1 

II 25.5 13.7 17.8 5.7 26.4 13.5 

III 9.3 6.6 6.4 1.6 9.9 4.3 

IV 7.1 4.8 3.8 1.4 Ø  Ø  

Va 5.2 4.7 3.1 1.0 5.2 2.4 

Vb 4.2 3.4 3.3 1.2 4.7 1.7 

VIa 2.9 2.5 3.1 0.6 3.3 1.3 

VIb 1.8 1.6 1.8 0.8 2.1 0.7 

WM 1.2 1.0 0.9 0.9 0.8 0.4 

I-VI 8.6 4.5 7.7 1.7 7.8 3.1 

II-VI 8.0 4.8 7.8 2.4 7.7 3.4 
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Figure 5.20 Graphs show laminar distribution (A, B) and density of calretinin immunolabeled

neurons in particular layer (C, D). Density is shown as 1000 of calretinin positive cells per 1mm
3
.

Values shown on graph B and D are values obtained in this study and presented in the way to be

comparable with data from area 14 obtained in previous study (Džaja 2015, PhD Thesis).
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In all areas examined, layer II and Ib have higher density of calretinin neurons than other 

cortical layers (Table 5.5; Figure 5.20 C,D). The layer Ib has significantly higher proportion 

(43%) of calretinin containing neurons than other layers (ANOVA, SNK-post hoc, p=0.0002). 

Taken together, in all cortical layers around 10 000 neurons per mm3 contain calretinin. Thus, 

calretinin neurons represent at least 15% of cortical neurons. These calretinin neurons are 

most densely packed in layer II of area 9 and 24, with an average of 26 000 neurons per 

mm3. The lower layers (IV-VI) have lower densities, with an average of 5000 neurons per 

mm3 confirming qualitative observations. 

 

Table 5.6 Proportion of calretinin labeled neurons in areas 9, 32 and 24 in monkey (number of 

calretinin neurons / total number (NeuN) of neurons – shown as %). 

 Area 9 SD Area 32 SD Area 24 SD 

Ia 33.5% 16.6% 29.1% 17.4% 32.9% 15.4% 

Ib 43.4% 12.9% 44.3% 25.5% 40.3% 4.1% 

II 26.1% 10.9% 34.1% 12.7% 26.3% 12.3% 

III 13.5% 6.4% 18.7% 6.0% 15.9% 4.1% 

IV 8.7% 4.9% 8.2% 3.1% Ø Ø 

Va 6.5% 2.8% 5.9% 1.0% 7.3% 3.0% 

Vb 6.9% 3.8% 8.2% 1.7% 7.9% 0.8% 

VIa 4.9% 2.9% 8.1% 0.7% 6.1% 1.8% 

VIb 4.3% 2.2% 4.9% 1.5% 5.8% 0.5% 

WM 14.2% 6.6% 29.6% 3.3% 20.7% 9.4% 

I-VI 13.2% 4.1% 15.3% 3.2% 14.0% 3.0% 

II-VI 12.2% 4.2% 14.2% 3.6% 12.8% 3.2% 
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The proportion of calretinin neurons in Iayer Ia (32%) and layer II (29%) is also significantly 

higher (ANOVA, SNK-post hoc, p=0.0002) when compared to all other layers (Table 5.6). In 

layer III the proportion of calretinin neurons (16%) is 2-3 times higher but not statistically 

significant than in layers IV-VI (5%-8.5%) due to high inter-individual differences. Calretinin 

proportion in layer III varies between subjects up to 3 fold (8% to 24%) (Table 5.7; Figure 

5.21 A, B).  
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In layer I, the lower part contains more than 80% of layer I neurons expressing calretinin and 

they are relatively densely packed, with an average of 13 000 per mm3, that is more than in 

any other layer. Despite the gradual decrease in neuronal (NeuN) density through layer VI 

and underlying white matter, the calretinin proportion is around 4–5 times higher in 

underlying white mater (14%-30%) than in layer VIb. This proportion is comparable to that of 

calretinin neuron in layer III and is significantly higher than proportion found in lower layers 

(IV-VI) (Table 5.5, 5.6; Figure 5.20, 5.21). This shows that the layer VIb is clearly different in 

density and proportion of calretinin neurons from cortical lamina, but also from deep part of 

white mater. 

Table 5.7. Proportion of calretinin labeled neurons in areas 9, 32 and 24 shown for each monkey 

(number of calretinin neurons / total number (NeuN) of neurons – shown as %).  

layers area 9 area 32 area 24 

 MV MVII MVIII MV MVII MVIII MV MVII MVIII 

Ia 14.4% 44.3% 41.6% 10.1% 44.3% 32.7% 23.9% 50.6% 24.0% 

Ib 46.3% 29.3% 54.6% 17.5% 68.4% 46.9% 36.1% 40.7% 44.2% 

II 38.5% 21.7% 18.2% 40.4% 42.4% 19.4% 40.3% 17.0% 21.6% 

III 20.4% 7.7% 12.2% 23.6% 20.5% 12.0% 20.4% 12.5% 14.8% 

IV 13.8% 4.1% 8.2% 11.8% 6.6% 6.2% Ø Ø Ø 

Va 8.5% 3.4% 7.8% 7.0% 5.0% 5.7% 7.4% 4.2% 10.2% 

Vb 10.7% 3.2% 6.7% 9.1% 6.3% 9.2% 8.7% 7.1% 7.7% 

VIa 8.1% 2.5% 4.0% 7.4% 8.7% 8.3% 5.1% 5.1% 8.2% 

VIb 6.8% 3.6% 2.5% 3.6% 4.6% 6.6% 5.3% 6.2% 5.8% 

WM 21.6% 9.0% 12.0% 18.8% 12.4% 30.9% 25.8% 31.2% 31.9% 

I-VI 17.8% 9.7% 12.1% 16.7% 10.8% 14.4% 17.6% 16.5% 11.6% 

II-VI 16.9% 9.1% 10.7% 15.9% 9.5% 12.9% 17.7% 14.4% 10.6% 
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5.4. Double labeling of GABAergic subpopulations in areas 9, 32, 24 and 14 

The distribution pattern and morphology of calretinin neurons observed using 

immunohistofluorescent detection (both polyclonal and monoclonal antibodies) were similar 

to that observed when using DAB immunohistochemistry (see Figure 5.22). 

Simultaneous immunohistofluorescent detection of calretinin with parvalbumin or calbindin, 

showed that the population of calretinin neurons does not overlap with the other two major 

subpopulations of GABAergic neurons expressing calcium binding proteins, neither with 

neurons expressing somatostatin (Table 5.8). 

 

Table 5.8. Densities of calretinin, calbindin and parvalbumin labeled neurons (number of neurons / 

mm2) and density of double labeled cells in monkey areas 9, 32, 24 and 14. 

 

  

calretinin (polyclonal) / calbindin double labeled sections 

 calretinin SD calbindin SD co-localized SD 

area 9 5.21 2.70 1.95 1.21 0.04 0.09 

area 32 5.46 3.09 2.54 1.17 0.02 0.03 

area 24 5.84 2.57 2.59 1.29 0.00 0.01 

area 14 5.31 2.45 3.30 1.47 0.03 0.03 

 

calretinin (polyclonal) / parvalbumin double labeled sections 

 calretinin SD parvalbumin SD co-localized SD 

area 9 5.35 2.01 2.70 0.84 0 0 

area 32 5.54 2.43 1.72 0.75 0 0 

area 24 6.37 3.13 2.80 1.67 0 0 

area 14 4.13 0.95 1.91 1.18 0 0 

 

calretinin (monoclonal) / somatostatin double labeled sections 

 calretinin SD somatostatin SD co-localized SD 

area 9 3.48 0.67 0.27 0.16 0.05 0.06 

area 32 4.18 0.90 0.43 0.29 0.03 0.03 

area 24 4.92 1.26 0.39 0.15 0.03 0.04 

area 14 3.84 0.91 0.38 0.18 0.02 0.02 
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5.4.1. Quantitative analysis of double labeled sections in monkey 

Quantitative analysis was performed by counting number of neurons on double-labeled 

sections stained with calretinin and parvalbumin, calbindin or somatostatin, in areas 9, 32, 24 

and 14 (Figure 5.23). No regional differences were observed, regarding density (per surface) 

of the different populations of labeled neurons (Figure 5.24A, Table 5.8) or regarding the 

proportions of calretinin neurons among the entire population of calcium binding protein 

containing neurons (Figure 5.24B, Table 5.9).  

We observed a high variability in this proportion of calretinin-labeled neurons from one 

section to another one (10 fold between lowest and highest value; Figure 5.24B). This was 

not related to particular region neither to a particular animal. 

Not a single cell co-localizing calretinin and parvalbumin was found in analyzed sections. Co-

localization with somatostatin and calbindin was found in less than 1% of the calretinin 

immunoreactive neurons (Table 5.8). 

 

Table 5.9. The ratio between distinct GABAergic subpopulations on double labeled sections in areas 

9, 32, 24 and 14. 

  

 
calretinin /  
calbindin 

calretinin / 
parvalbumin

calretinin / 
somatostatin 

 ratio SD ratio SD ratio SD 

area 9 3.19 1.58 2.07 0.72 20.46 15.41 

area 32 2.17 0.92 3.55 1.57 15.98 12.75 

area 24 2.56 0.91 2.81 2.14 13.87 4.91 

area 14 1.79 0.85 2.99 1.97 12.79 7.15 
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Figure 5.23 Laminar distribution of immunofluorescent calretinin, calbindin and parvalbumin

labeled neurons in monkey areas 9, 32 and 24. Neurons from neighboring immunohistofluorescent

double labeled sections are plotted to show their spatial relations and laminar distribution.
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Figure 5.24 Graphs are showing the density (A) and ratio (B) of calretinin, calbindin, parvalbumin

and somatostatin immunohistochemically labeled neurons in monkey areas 9, 32, 24 and 14.

Neurons are counted on Neurolucida software for double labeled analysis on calretinin/calbindin,

calretinin/parvalbumin and calretinin/somatostatin sections.
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5.4.2. Qualitative analysis of double labeled sections 

Calbindin neurons, showed similar distribution as calretinin neurons (Figures 5.23 and 5.25), 

but calbindin neurons were not found in layer I, neither parvalbumin nor somatostatin stained 

neurons. Thus, from analyzed subpopulations, only calretinin neurons were found in layer I 

(Figure 5.26A).  

Calbindin neurons were mainly found in layer II forming continuous belt of densely packed 

cells through layer II and relatively uniform distribution through all other cortical layers with 

slightly higher density in upper part of layer III (Figure 5.26B). No differences in the 

distribution and size of calbindin neurons were observed between area 9, area 32 and area 

24 (Figures 5.23 and 5.25). Calbindin neurons are slightly bigger (diameter between 15-

25µm) than calretinin ones and have a stellate shaped cell body and multidirectional 

dendrites. Calbindin was expressed in less than 1% of calretinin immunoreactive neurons.  

Parvalbumin neurons were uniformly distributed through layers III – VI, having different 

laminar distribution then calretinin neurons. Also, in the middle layers there is a clear belt of 

parvalbumin reactive fibers (Figure 5.27). Most of parvalbumin labeled neurons have large 

oval-pyriform or triangular-multipolar somato-dendritic morphology (Figure 5.28). In layer V/VI 

the cell bodies of parvalbumin neurons are surrounded by calretinin labeled axon like 

processes with buttons, forming a calretinin reactive basket like structures around 

parvalbumin stained cell bodies (Figure 5.29). Small to medium sized, mainly oval-pyriform 

shaped parvalbumin reactive cells were the only parvalbumin cell class found in layer II, and 

were in area 9 more densely packed on this laminar position than in other two areas 

analyzed (Figure 5.23, 5.27, 5.28A).  

Somatostatin neurons were sparsely located in the deep cortical layers (Figures 5.30 and 

5.31) and in underlying white matter between the axon bundles without noticeable areal 

difference (Figure 5.31B). Most of them were medium to large multipolar and pyriform 

shaped cells with intensively stained cell bodies and long extending dendrites (Figure 5.31A). 

Few small round somatostatin labeled neurons are observed in layers II and III (Figure 

5.32A) along with axon like somatostatin labeled processes displaying en passant boutons. 

These processes display horizontal orientation in superficial layers, being particularly dense 

in layer I (Figure 5.32B).  
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Figure 5.26 Immunohistofluorescent labeling of Cajal-Retzius like calretinin labeled neuron of layer I

in adult human area 9 (A) with long processes. A confocal acquisition of layer II and upper part of layer

III double labeled (B) with polyclonal antibody against calretinin (green) and monoclonal antibody

against calbindin (red) in monkey area 9. In those layers calretinin and calbindin neurons are densely

packed, but no co-localization is observed.
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Figure 5.28 Confocal acquisition of double labeled section using polyclonal antibody against

calretinin (green) and monoclonal antibody against parvalbumin (red) of layers I and II in area 9 (A)

and 32 (B) of monkey. In area 9 there is a higher density of small parvalbumin labeled neurons in layer

II when compared to area 32. Arrows on panel B show a typical parvalbumin labeled neurons

distributed uniformly through layers III-VI, that are larger than typical calretinin and calbindin labeled

neurons. On panel A arrow indicates a pyriform shaped well bifurcated calretinin labeled neuron

located around layer I/II border, and arrowhead indicates horizontal calretinin labeled neuron located

in the upper part of layer I.
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Figure 5.29 Confocal acquisition of double labeled section using polyclonal antibody against

calretinin (green) and monoclonal antibody against parvalbumin (red) in layers V/VI of area 32 (A,

B) and 24 (C) of monkey. Calretinin neuron processes are forming a plexus around the soma and

dendrites of parvalbumin neurons (yellow).
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Figure 5.31 Confocal acquisition of double labeled section using monoclonal antibody against

calretinin (red) and polyclonal antibody against somatostatin (green) in layers III-VI of monkey

areas 9 (A) and 32 (B). In layers II-VI, a typical large and well bifurcated somatostatin neurons are

found. Arrows in the panel B point to horizontally oriented somatostatin neuron located at the border

between cortex and white matter.
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Figure 5.32 Confocal acquisition of double labeled section with monoclonal antibody against

calretinin (red) and polyclonal antibody against somatostatin (green) in layers I/II of monkey areas 9

(A) and 32 (B). In the upper cortical layers somatostatin labeled axonal plexuses are seen. Arrow

points to a rare somatostatin neuron located here.
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5.5. Simultaneous detection of VGAT/GAD65/GAD67 mRNA and calretinin in monkey and 

human prefrontal cortex 

Simultaneous detection of calretinin and vesicular GABA transporter (VGAT) or two of the 

synthesizing enzymes for GABA, the glutamic acid decarboxylase 65 and 67 (GAD65 and 

GAD67) mRNAs were performed in order to determine whether calretinin neurons within the 

prefrontal cortex of monkey and human brain correspond to a subpopulation of GABAergic 

neurons. All calretinin neurons, observed across all cortical layers were found to express 

VGAT mRNA, both in monkey (Figures 5.33, 5.34, 5.35, 5.36) and the human prefrontal 

cortex (Figures 5.34, 5.37). Among these calretinin neurons none of them was found to 

express GAD65 mRNA in monkey despite the high number of GAD65 mRNA containing 

neurons observed (Figure 5.38). We further examined whether those neurons express the 

other synthesizing enzyme for GABA, GAD67 in the human prefrontal cortex. GAD67 mRNA 

containing neurons were distributed throughout all cortical layers (Figure 5.39). We 

demonstrate that almost all calretinin neurons express GAD67 mRNA in the human 

prefrontal cortex (Figure 5.40). 
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Figure 5.33 Confocal acquisition of RNAscope in situ hybridization combining VGAT (red) expression

with calretinin (green) immunohistochemistry in the monkey area 9 showing that all calretinin

neurons express VGAT.
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Figure 5.34 Confocal acquisition of RNAscope in situ hybridization combining VGAT (red) expression

with calretinin (green) immunohistochemistry in the layer II (upper row) and layer V of monkey and

layer II of human area 9. All calretinin neurons express VGAT.
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Figure 5.35 Confocal acquisition of RNAscope in situ hybridization combining VGAT (red) expression

with calretinin (green) immunohistochemistry in the layer II of monkey area 32 showing that all

calretinin neurons express VGAT (arrows).
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Figure 5.36 Confocal acquisition of RNAscope in situ hybridization combining VGAT (red) expression

with calretinin (green) immunohistochemistry in the layer III of monkey area 9 showing that all

calretinin neurons express VGAT (arrows).
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Figure 5.37 Confocal acquisition of RNAscope in situ hybridization combining VGAT (red) expression

with calretinin (green) immunohistochemistry in the layer II of human area 9 showing that all

calretinin neurons express VGAT (arrows).
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Figure 5.38 Confocal acquisition of RNAscope in situ hybridization combining GAD65 (red)

expression with calretinin (green) immunohistochemistry in the layer II of monkey area 24. It was not

possible to co-localize GAD65 in calretinin neurons.

76



A B

III

I

II

---

CGAD67 DAPI GAD67 DAPI/

100 m�

Figure 5.39 Confocal acquisition of RNAscope in situ hybridization combining GAD67 (red)

expression with DAPI (blue) staining in the layers I-III of human area 32. Data are showing that

GAD67 expressing cells are uniformly distributed through layers IB-III.
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Figure 5.40 Confocal acquisition of RNAscope in situ hybridization combining GAD67 (red)

expression with calretinin (green) immunohistochemistry in the layer III of human area 9 showing

that calretinin neurons express GAD67 (arrows).
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5.6. Cytoarchitectonic organization of human areas 9, 32 and 24 assessed through Nissl and 

NeuN labeled sections  

Cytoarchitectonic organization was studied on Nissl (Figure 5.41) and NeuN (Figure 5.42) 

labeled sections. As in the monkey brain defining the cytoarchitecture is more reliable with 

NeuN than with the Nissl labeling. NeuN labeling is particularly useful in the characterization 

of layer I sublamination and identification of layer IV.  

Sublamination of layer I in an upper neuron sparse zone, and a lower more populated zone 

is clear on NeuN labeled sections in all three analyzed areas as in the monkey (Figure 5.43, 

5.44). The small cells composing layer I seem to be intermixed with the layer II small to 

medium sized pyramidal cells. Those small non-pyramidal shaped cells are grouped into 

island-like formations extending through lower part of layer I and layer II in all three areas 

(Figure 5.43). On NeuN and Nissl stained sections, no layer IV was present in area 24 

(Figure 5.45). Layer IV on Nissl sections was clearly identifiable only in area 9 (Figure 5.46). 

At low magnification, layer IV was on NeuN sections clearly present in both areas 9 and 32, 

in area 32 layer IV was thick, but cells were less densely packed when compared to area 9 

(Figure 5.45). At higher magnification, layer IV of area 9, was compact and composed of 

small triangularly shaped cells (Figure 5.45). In area 32, along the border with layer III and V, 

small triangular cells of layer IV intermix with large pyramidal cells of the neighboring layers. 

Large pyramidal neurons of deep part of layer III (IIIc) in area 9, typically exceed the size of 

largest neurons in layer V. Layer IIIc large pyramidal neurons were also found in area 32, but 

do not exceed the size of largest neurons in layer V. Such large pyramidal neurons are not 

present in the layer IIIc of area 24.  

Unlike in the monkey (Figures 5.4, 5.6), layer V and VI of the human area 24 contained large 

spindle shaped neurons (Figure 5.45). These cells are not as obvious on NeuN staining as 

they are on Nissl stained sections (Figure 5.42, 5.46).  

More detailed descriptions of laminar organization of each area stained with NeuN, including 

the cell morphology, is given hereafter. 
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5.7. Laminar organization and cell morphology of human areas 9, 32 and 24 on NeuN 

labeled sections  

Area 9 

Area 9 is the typical neocortical area with six cortical layers and a distinct layer IIIc containing 

large pyramids (Figure 5.47). 

Layer I can be clearly divided in two parts. An upper part with sparse cells and a lower part 

corresponding to a a denser neuronal zone where neurons are scattered at the border with 

layer II (Figure 5.43).  

Layer II is composed of heavily labeled small round, oval or triangular neurons intermixed 

with small pyramidal cells.  

Layer III has three subdivisions; the sublayer IIIa is characterized by small pyramidal cells 

densely packed; sublayer IIIb is composed of less densely packed but larger cells. Layer IIIc 

is not as dense as the upper parts but is characterized by its content in  large pyramids 

intermixed with medium- and small-sized pyramidal cells.  

Both the upper and the lower border of layer IV appear irregular because large pyramidal 

cells intermix with small granular cells (Figure 5.45). 

Layer V is of somewhat lighter appearance than neigboring layers, especially in its lower 

zone. Upper part contains densely packed large pyramidal cells while layer Vb has lower 

neuronal density reflected in its pale appearance.  

Layer VI discloses a somewhat denser arrangement of spindle (fusiform) cells oriented 

horizontally to the cortical surface in its upper sublayer VIa. The deeper sublayer VIb 

contains less cells that are also smaller in size. The border of layer VI with the underlying 

white matter is indistinct, characterized by a gradual transition of neurons from gray matter to 

white matter. The cytoarchitectonic features of area 9 in the human are very similar to those 

in monkey. 
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Figure 5.47 Area 9 in human, immunohistochemical anti-NeuN staining.
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Area 32 

Area 32 is a cingulo-frontal transition cortex between typical mesocortical area 24 and typical 

granular neocortical area 9. Six cortical layers are present in area 32 (Figure 5.48). 

Layer I is thicker than in area 9, and is, as in other areas, divided in two parts, upper zone 

with sparse cells and lower zone with more densely packed neurons.  

Layer II is composed of heavily labeled small round, oval or triangular neurons intermixed 

with medium sized pyramidal cells (Figure 5.43).  

Sublayers IIIa-b are very thin and neurons do not show superficial to deep increased gradient 

of cell body size as in area 9. Also, in area 32 layer IIIc pyramidal neurons do not vary in size 

as in area 9. 

Layer V contains pyramidal-shaped neurons and is subdivided into two sublayers based on 

the cell density and the labeling intensity of neurons. In contrast to sublayer Vb, the sublayer 

Va contains strongly labeled neurons densely packed so this layer appears more compact. 

Both sublayers, Va and Vb are composed of small and medium sized pyramids that show 

similar size and shape through the whole layer.  

Layer VI, is composed of medium sized pyramidal-shaped neurons, and perpendicularly 

oriented bipolar and multipolar neurons. The pyramidal-shaped neurons usually have two 

prominent processes. The sublayers of layer VI can be distinguished based on cell density, 

with a dense upper part. The decrease in neuron density is apparent in deeper layer VIb, 

which is a transitional zone towards the white mater. 

The laminar organization and neuronal composition of area 32 in monkey and human are 

very similar. The most striking difference concerns layer II of area 32. Whereas in human it is 

clearly well developed and recognizable, in the monkey it is thin and irregular. 
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Figure 5.48 Area 32 in human, immunohistochemical anti-NeuN staining.
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Area 24 

Area 24 in human has no recognizable layer IV and a narrow layer II, and is therefore 

defined as an agranular cortex (Figure 5.49).  

Layer I has the typical structure as in other areas, a few neurons located in the upper 

sublayer and many neurons scattered in the lower part near the border with layer II (Figure 

5.43). Pyramidal cells are abundant in layers II and III and comparatively sparse in layer VI. 

Layer III is thin and composed of small to medium sized pyramidal neurons which gradualy 

increase in size from superficial to deep part. Layers II and III appear almost as in 

continuation.  

Layer V has two sublayers, its upper part is densely packed with neurons (layer Va) and 

contains large pyramidal neurons in the middle. The layer Vb is not as dense, and is 

composed of prominent lightly labeled elongated pyramidal neurons and long, perpendicular 

to pia, spindle-rode cells.  

Layer VI, is composed predominantly of perpendicularly oriented medium sized bipolar cells 

and pyramidal-shaped neurons with two prominent vertically oriented processes. Multipolar 

neurons are frequently found in the less densely populated deep part of layer VI (VIb). 

Interestingly, the laminar organization and neuronal composition of area 24 differs clearly 

between monkey and human. When compared to human, monkey area 24 has some 

distinctive features as a band of small cells dividing layers III and V, clearly visible layer II 

and thicker layer III. The spindle-rod shaped cells were found in the human, but not in the 

monkey area 24 (Figures 5.45, 5.46). 
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Figure 5.49 Area 24 in human, immunohistochemical anti-NeuN staining.
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5.7.1. Quantitative analysis of NeuN labeled sections 

Total number of NeuN labeled neurons and total volume were estimated for each sublayer in 

each analyzed areas (Figure 5.50) for each animal (n= 3). The proportion and density were 

calculated. The mean values with SD are provided in tables (Tables 5.10, 5.11 and 5.12). 

 

Table 5.10 - Proportion (%) of NeuN labeled cells from total neuronal pool located in particular layer 

of human areas 9, 24 and 32 (NeuN cell number per layer / total number of NeuN cells in particular 

area). 

 Area 9 SD Area 32 SD Area 24 SD 

Ia 1.1% 0.4% 1.4% 1.0% 1.9% 0.8% 

Ib 3.5% 1.1% 3.4% 2.5% 4.7% 1.8% 

II 22.0% 5.4% 20.9% 2.9% 20.1% 2.5% 

III 30.2% 2.6% 28.8% 4.0% 32.0% 6.7% 

IV 10.5% 1.3% 8.4% 3.4% Ø Ø 

Va 12.0% 2.8% 10.7% 2.5% 14.5% 3.2% 

Vb 6.6% 1.5% 6.6% 1.6% 10.7% 1.8% 

VIa 8.1% 3.0% 8.4% 3.2% 8.7% 1.1% 

VIb 4.4% 2.5% 8.0% 4.4% 4.8% 1.8% 

WM 1.6% 0.7% 3.5% 1.8% 2.7% 0.9% 

 

Table 5.11 – Proportion (%) of layer volume in relation to total volume of human areas 9, 24 and 32 

(layer volume / total areal volume). 

 Area 9 SD Area 32 SD Area 24 SD 

Ia 9.4% 0.8% 8.6% 2.1% 11.2% 3.0% 

Ib 7.6% 1.1% 7.5% 1.7% 10.2% 2.2% 

II 13.3% 2.1% 12.9% 2.5% 12.4% 2.2% 

III 33.8% 3.6% 28.3% 4.3% 29.4% 8.5% 

IV 5.7% 1.0% 7.1% 1.6% Ø Ø 

Va 8.4% 0.7% 9.6% 2.3% 11.3% 3.0% 

Vb 7.7% 1.8% 7.6% 1.4% 9.7% 3.6% 

VIa 7.9% 2.6% 10.1% 3.6% 9.2% 1.8% 

VIb 6.3% 3.9% 8.4% 3.4% 6.7% 1.5% 

 

92



Area 9 Area 24Area 32

1a

1b

2

5a

5b

6b

6a

wm

C. Proportion of volume per layer (%) D. Proportion of volume per layer (%)

A. Proportion of NeuN cells per layer (%)

1a

1b

2

3

4

5a

5b

6b

6a

Area 9 Area 24Area 32

1

2
3
2
3

4

5

6

Area 9 Area 24Area 32 Area 14

80%

60%

40%

20%

0

100

80%

60%

40%

20%

0

100

3

4

MMM M

1

2
3
2
3

4

5

6

Area 9 Area 24Area 32 Area 14

B. Proportion of NeuN cells per layer (%)

MMM M

Figure 5.50 Graphs are showing laminar proportion of neurons (A, B) and layer volumes (C, D)

assessed on NeuN stained sections in human and monkey (M). Proportion is calculated as follows:

volume and number of NeuN labeled cells in particular layer was divided by total volume and total

number of NeuN labeled cells in whole area. Proportion is shown in percentage and on graphs B and

D values obtained in this study are presented in the way to be comparable with data from area 14

(Džaja 2015, PhD Thesis).
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The proportion of neurons for each layer is similar in all examined areas (Table 5.10; Figure 

5.50A). Layer I accounts for around 5% of the total neuronal pool with 80% of neurons 

located in its lower half, sublayer Ib. Layers II and III contain 50% of the total neuronal pool 

with 20% in layer II and 30% in layer III. The proportion of neurons in the lower layers of the 

agranular area 24 reach 35%, and in the granular areas 30% of neurons were located there. 

 

 

In all three human areas analyzed, the proportion of neurons (Figure 5.51A, B) located in 

upper cortical layers (I-III) was 1.5-2 times higher than in lower cortical layers (V-VI). In 
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monkey, only area 9 had the proportion (Figure 5.51C,D) of neurons in layers I-III higher than 

in layers V-VI (1.4), whereas in areas 24 and 32 the neurons were almost equally 

(re)distributed between the upper and lower cortical layers. There is more neurons in layer I 

(5% in humans and up to 4% in monkey), and in both species they are mostly located in the 

sublayer Ib (Figure 5.50B, 5.52). The proportion of neurons located in layer I of areas 9 and 

32 in human was 4.6% and 4.8%, that is slightly higher than in the corresponding monkey 

areas, whereas in human area 24 contains 6.6% neurons from the total pool (Tables 5.1; 

5.10; Figures 5.11, 5.50). 

 

 

Laminar distribution of neurons in human areas compared to monkey is even more obvious 

redistribution of neurons towards upper cortical layers. In monkey only area 9 showed the 
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ratio between supra- and infra-granular layers above 1 (Figure 5.51D). In comparison to 

monkey, the ratio increased in human for 0.5 for areas 9 and 32, and 0.7 for area 24, but 

individual differences should be counted (Figure 5.52). In human the individual differences in 

proportion of neurons located in layer I-III versus V-VI were extremely high (Figure 5.51D). 

Indeed, in areas 9 and 32 the layer I-III/V-VI ratio in one subject was 2.5 times higher than in 

another. The average ratio for area 9 in monkey is 1.4 while in humans 1.9 (1.3 -2.9); for 

area 32 in monkey the average value is 1 while in humans this is 1.7 (0.7-2.2); and in area 

24, the average value in monkey is also 1 and in human 1.5 (1.2-1.9) (Figure 5.51). 

Statistical analysis comparing average value (using average value per area as raw data) 

between species, showed significantly higher (t-test, p˂0.03) I-III/ V-VI ratio in human (1.8) 

than in monkey (1.2). This data indicate that between monkey and human there is a 

redistribution of neurons to supragranular (II-III) layers (Figure 5.51C).  

Volume taken up by a particular layer is uniformly distributed between all three areas of 

prefrontal cortex (Figure 5.50C). Layer I takes up to 20% of total volume and volume of its 

sublayers is comparable to the volumes of infragranular sublayers (and layer IV in granular 

areas). Each of above mentioned layers comprises around 10% of total volume, ranging from 

6% in layers IV and VIb to 11% in sublayer Va. 

 

 

When compared to monkey data (Figure 5.50D) layer I is almost doubled in volume (10% in 

monkey and 20% in human). The highest value in monkey was seen in area 32 (12%) and in 

human lowest volume was found in area 9 (15%). In human the layers I-III account for 2/3dh 
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of cortical volume, in contrast to monkey brain where layers I-III take around half of total 

volume (Tables 5.2 and 5.11; Figure 5.50).  

Differences between monkey and the human cortical layers volumes are mainly caused by 

significant increase (t-test, p˂0,0002) in the relative volume of layer I, which is in human 

around 18% (16-21%), whereas in monkey 11% (10-12%) of total cortical volume. The 

relative volumes of layers V-VI are in human 34% (30-36%), and in monkey 44% (41-46%), 

what is significantly lower (t-test, p˂0,006). No interspecies differences in the volumes of the 

layer IV (6-7%) and layers II-III (41-47% in human and 39-50% in monkey) was observed. 

Note that in the human the volume ratio between layers II-III versus layers V-VI is also 

changing, being above 1 for all areas. In human area 9, the ratio is 1.55 (1.05 in monkey), 

and for areas 32 and 24 the ratio is 1.15 (0.8-0.9 in monkey) (Figure 5.50D). 

The individual differences are much higher in the human (Figure 5.53) than in monkey brain 

(Figure 5.13). So, the relative volume of layer I can vary between 10-30%, and between 40-

60% of layers II-III among different subjects. 

 

Table 5.12 - NeuN density per layer in human areas 9, 24, 32 presents the mean value (1000 cells / 

mm3) of each layer with standard deviation (SD) in each area. Overall neuronal densities from layers I-

VI and II-VI are presented in the last two rows. 

 Area 9 SD Area 32 SD Area 24 SD 

Ia 3.6 0.3 6.2 4.5 5.2 2.7 

Ib 15.6 3.9 24.8 3.1 14.7 7.9 

II 56.4 19.6 61.6 23.9 47.4 17.0 

III 31.5 14.1 40.0 19.5 31.7 7.0 

IV 62.3 20.5 45.5 25.4 Ø Ø 

Va 50.0 23.4 40.9 9.8 37.2 21.3 

Vb 29.0 7.1 31.7 6.4 17.1 10.4 

VIa 34.4 11.3 31.3 11.5 28.4 13.9 

VIb 24.5 6.9 34.8 19.6 20.0 8.3 

WM 10.9 5.1 16.3 5.5 12.0 8.8 

I-VI 33.7 11.9 36.3 10.6 24.4 6.2 

II-VI 38.7 13.7 40.8 13.1 28.5 5.5 
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Neuronal densities (Table 5.12; Figure 5.54) vary between areas. Layers I-VI in area 9 have 

a neuronal density of 37 000 cells per mm3 and in area 24 the density is 24 000 cells per 

mm3. Supragranular layers are most densely populated in area 32 where in layer Ib there is 

24 000 cells, layer II 61 000 and in layer III 40 000 cells per mm3. These values are 30-40% 

higher than in area 9 and 24 (Table 5.12; Figure 5.54). In almost all areas the difference 

between lowest and highest values vary about 2 fold between subjects. Therefore, no 

statistically significant interareal nor interspecies differences could be found. 

We performed statistical analysis (ANOVA, SNK-test) to establish laminar differences in 

NeuN density. Data confirmed that layer Ia is very sparse in neurons and has significantly 

(p=0.001) lower density (5 000 NeuN stained cells per mm3) than any other layer (18 300 – 

55 000 NeuN stained cells per mm3). Its density is below those found in underlying white 

matter (13 000 NeuN labeled cells per mm3), therefore layer Ia can be defined as non-

neuronal layer. Average density in the lower part of layer I (Ib) was 18 300 NeuN labeled 

cells per mm3, below average values for other layers, but not statistically significant when 

compared to layer Vb (26 000), VIa (31 400) and VIb (26 400). The highest density (55 000 

NeuN labeled cells per mm3) was found in layer II and IV. 
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Despite absence of areal differences when layers are separately analyzed, the average 

density (Figure 55A) for layers I-VI was 25-30% lower in area 24 (24 000 cells per mm3) than 

in areas 9 and 32 (34 000 and 36 000 cells per mm3). In area 24 all three subjects have 

values around average level, but in areas 9 and 32 two subjects have much higher density, 

whereas the third one was at the level found in area 24.  

When layer densities are compared between monkey (Table 5.3; Figure 5.14) and human 

(Table 5.12; Figure 5.54), there is a 40% decrease in density in human areas (Figure 5.55A); 

with the biggest drop (50%) in density for layers Ib and II. Only the white matter density in 

human is higher than in monkey, showing 5 fold increase (Figure 5.55B). Despite large drop 

in neuronal density between these two species, this is only statistically significant in area 24 

(t-test, p=0.01).  
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5.8. Laminar distribution and morphological features of calretinin labeled neurons of human 

areas 9, 32 and 24 

Morphology of calretinin neurons is similar in all analyzed areas. Calretinin neurons are 

mostly vertically oriented and are present throughout all cortical layers (Figure 5.56, 5.57, 

5.58, 5.59). The laminar distribution of these neurons is similar to that observed in monkey. 

In layer I calretinin neurons, are mainly located in the lower half of this layer. Most of these 

calretinin neurons are medium sized with vertically oriented cell bodies but horizontally 

oriented neurons are occasionally found, particularly in the layer I, VI and in the white matter.  

Layer II contains smaller bipolar neurons that display ovoid cell bodies. These neurons are 

also found in the upper part of layer III. They display two vertical dendritic processes, one 

ascending and one descending. The lower part of layer III contains a mix of bipolar, bi-tufted 

and multipolar calretinin labeled neurons. A few of these neurons display a large cell body 

and horizontally oriented dendrites. Some, calretinin labeled cells display a pyramidal like cell 

body. 

In layers V and VI calretinin neurons are small bipolar cells with long dendritic processes that 

are vertically or horizontally oriented. These dendrites occasionally reach upper layers.  

Calretinin neurons in white matter are also small to medium bipolar neurons and their 

processes seem to branch out only below the cortical layers. 
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Figure 5.57 Area 9 in human. Immunohistochemical anti-calretinin staining.
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Figure 5.58 Area 32 in human Immunohistochemical anti-calretinin staining.
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Figure 5.59 Area 24 in human. Immunohistochemical anti-calretinin staining.
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5.8.1. Quantitative analysis of calretinin neurons throughout cortical layers 

Quantitative analysis did not reveal differences in laminar distribution (Table 5.13; Figure 

5.60), density (Table 5.14; Figure 5.61) and proportion (Table 5.15; Figure 5.62) between the 

different analyzed areas. In all these areas (9, 34, 24), 75-90 % of calretinin neurons were 

located in upper (I-III) cortical layers, layers I and II containing the large majority of them (40-

50%). Layer I contains 15% of all calretinin neurons with most of them located in the lower 

half. Comparison with area 14 (Džaja, 2015) revealed that there are more neurons in layer I 

in area 14, but the overall distribution between supragranular layers (I-II) versus infragranular 

(V-VI) remains consistent.  

The laminar distribution of calretinin neurons observed in human is similar to that  found in 

monkey in all cortical areas examined (Table 5.4; Figure 5.20A,B).  However, the proportions 

of calretinin neurons in the upper cortical layers in human areas 9 and 32, are slightly higher 

than those in monkey. 
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Table 5.13 Laminar distribution of calretinin labeled neurons in human (relative distribution (%) 

per layer in areas 9, 32 and 24) 

 Area 9 SD Area 32 SD Area 24 SD 

Ia 2.8% 0.2% 3.7% 1.3% 3.8% 2.0% 

Ib 9.8% 2.9% 10.1% 1.3% 14.9% 1.1% 

II 33.1% 6.1% 36.2% 4.4% 30.7% 5.9% 

III 40.6% 2.3% 33.0% 3.8% 33.9% 4.0% 

IV 3.4% 0.7% 4.2% 0.5% Ø Ø 

Va 3.5% 1.2% 3.3% 0.8% 5.8% 3.6% 

Vb 2.0% 1.0% 2.4% 0.5% 3.6% 1.9% 

VIa 1.9% 0.8% 2.7% 0.6% 3.4% 1.6% 

VIb 1.6% 1.0% 2.6% 0.8% 2.2% 0.8% 

WM 1.2% 0.5% 1.9% 0.5% 1.7% 0.6% 

 

Table 5.14 Density of calretinin labeled neurons cells per layer in human areas 9, 32 and 24 (1000 

cells / mm3). Overall calretinin densities from layers I-VI and II-VI are presented in the last two rows  

 Area 9 SD Area 32 SD Area 24 SD 

Ia 0.6 0.1 0.9 0.4 0.6 0.2 

Ib 2.5 1.2 2.7 0.7 3.0 0.7 

II 4.7 1.5 5.6 2.0 5.0 1.5 

III 2.2 0.5 2.3 0.6 2.3 0.3 

IV 1.0 0.1 1.1 0.0 Ø Ø 

Va 0.7 0.1 0.6 0.1 0.9 0.5 

Vb 0.4 0.1 0.7 0.3 0.8 0.4 

VIa 0.4 0.1 0.6 0.2 0.7 0.2 

VIb 0.5 0.2 0.7 0.4 0.6 0.3 

WM 0.4 0.3 0.6 0.3 0.6 0.2 

I-VI 1.8 0.7 1.9 0.6 1.9 0.2 

II-VI 1.9 0.7 2.0 0.7 2.0 0.1 
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The densities of calretinin neurons are comparable in all the three human prefrontal areas 

analyzed (Figure 5.62). The highest density of calretinin neurons is in layer II (4700-5600 

cells per mm3), followed by layer Ib and III (2200-3000 cells per mm3), whereas in other 

layers the densities are around or below 1000 calretinin cells per mm3 (Table 5.14). It should 

be noted that interindividual differences are high. In most layers we found differences 

between subjects around 2 fold (Figure 5.62A). That higher proportion of calretinin neurons is 

distributed to layer I especially in human area 14 (Džaja, 2015) , and calretinin density in 

layer I of the area 14 is higher than areas analyzed in this study (Figure 5.62B).  

In monkey calretinin neurons in each layer show 3 to 4 times higher densities (Figure 5.61C, 

D) what is a result of decrease in NeuN density in humans. 
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The proportion of neurons expressing calretinin among total neuronal pool (NeuN stained 

cells) varies from 5% in area 32 to 8% in area 24 (Table 5.15). These values are lower than 

that observed in area 14 (Figure 5.62C), where proportion of cells expressing calretinin was 

17.2% (Džaja, 2015). In all cortical areas analyzed, the proportion of calretinin labeled 

neurons varies between layers (Figure 5.62). In all three cortical areas examined, layer I 

displays the highest proportion of calretinin neurons (15-25%). In layers II and III, 6-11% of 

the neurons express calretinin, and less than 5% of neurons express calretinin in the other 

layers. However these differences between layers were not statistically significant  due to 

large interindividual variability that reached up to 4 fold between subjects (Figure 5.62A, B). 
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The proportion of neurons expressing calretinin in monkey areas (13-15%) is 2 times higher 

than in human (5-7%). These proportions in human subjects (Tables 5.15, 5.16; Figure 5.21) 

rarely reach those observed in monkeys (Tables 5.6, 5.7; Figure 5.21). For example, only in 

one human specimen, the proportion of calretinin neurons exceeded 30% in layer I of area 

24, whereas in monkeys the average proportion of neurons expressing calretinin is 30-44%. 

The maximal proportion found in one human area 9 was 13.6% in layer II and exceeded 10% 

(11.3%) in layer III. For comparison, in monkeys the average proportion of calretinin neurons 

is 26-34% for layer II and 14-19% for layer III.  

The difference in proportion of calretinin neurons between species is statistically significant in 

area 32 (p=0,04) and area 24 (p=0.03), and area 9 shows the same tendency (p=0.06). 

 

Table 5.15 Proportion of calretinin labeled neurons in areas 9, 24, 32 in human (number of 

calretinin neurons / total number (NeuN) of neurons – shown as %). Overall calretinin proportion from 

layers I-VI and II-VI is presented in the last two rows. 

 Area 9 SD Area 32 SD Area 24 SD 

Ia 15.1% 4.6% 22.0% 15.6% 17.0% 12.5% 

Ib 15.8% 6.6% 10.9% 3.5% 25.4% 9.2% 

II 8.9% 4.9% 9.0% 0.7% 11.1% 1.5% 

III 7.8% 4.0% 6.1% 1.5% 7.9% 1.6% 

IV 1.7% 0.5% 2.9% 1.1% Ø Ø 

Va 1.6% 0.8% 1.6% 0.6% 3.8% 3.9% 

Vb 1.6% 0.5% 1.9% 0.6% 2.8% 2.2% 

VIa 1.3% 0.5% 1.7% 0.3% 3.1% 1.9% 

VIb 2.1% 1.0% 2.4% 2.1% 4.2% 3.3% 

WM 3.8% 0.7% 3.7% 2.8% 5.3% 3.8% 

I-VI 5.9% 3.0% 5.2% 0.5% 8.1% 1.6% 

II-VI 5.4% 2.8% 4.8% 0.4% 7.0% 1.2% 

109



    

 

   
 

 Table 5.16. Proportion of calretinin labeled neurons in areas 9, 32 and 24 shown for each human 

specimen (number of calretinin neurons / total number (NeuN) of neurons – shown as %).  

layers  area 9   area 32   area 24  

 H384 H386 H387 H384 H386 H387 H384 H386 H387 

Ia 10,9% 14,5% 19,9% 35,1% 4,7% 26,1% 30,8% 6,3% 13,7% 

Ib 8,3% 18,7% 20,4% 8,1% 9,7% 14,9% 34,8% 16,4% 24,9% 

II 3,9% 13,6% 9,3% 8,9% 8,4% 9,8% 11,3% 12,5% 9,6% 

III 3,5% 11,3% 8,7% 7,8% 4,9% 5,6% 8,4% 9,2% 6,2% 

IV 1,1% 2,1% 1,9% 3,8% 3,0% 1,7% Ø Ø Ø 

Va 0,8% 2,5% 1,7% 1,3% 2,3% 1,3% 8,3% 2,4% 0,8% 

Vb 1,0% 2,0% 1,8% 1,7% 1,4% 2,6% 5,2% 2,6% 0,7% 

VIa 0,7% 1,5% 1,7% 1,5% 2,0% 1,8% 5,0% 2,8% 1,3% 

VIb 1,0% 2,4% 2,9% 1,4% 1,0% 4,8% 8,0% 2,2% 2,3% 

WM 3,0% 4,0% 4,3% 2,0% 2,1% 6,9% 9,7% 2,9% 3,3% 

I-VI 2,5% 8,0% 7,2% 5,0% 4,8% 5,8% 9,9% 7,1% 7,2% 

II-VI 2,2% 7,5% 6,4% 4,6% 4,5% 5,2% 8,4% 6,4% 6,3% 
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6. Discussion 

Executive cognitive functions mediated by the prefrontal cortex have tremendously evolved 

in human compared to non-human primate (Aboitiz et al., 2006; Coolidge and Wynn, 2005), 

the human specific neuroanatomical substrate supporting such function is still an open 

question. One of the hypothesis relates on the selective and huge enlargement of the 

prefrontal cortex (or subdivisions of it) in human (Rilling, 2006; Schenker et al., 2010; 

Schoenemann, 2006; Semendeferi et al., 2002). However, this enlargement is actually within 

the expected range when reported to the allometric scaling of the entire human brain size 

(Donahue et al., 2018; Herculano-Houzel, 2009; Holloway et al., 2004; Sherwood, 2005; 

Sherwood et al., 2012).  

Aside from the possible differential enlargement of areas within the prefrontal cortex, there is 

currently little evidence for specific histological features or organization of neuronal 

connections that would serve as a neurobiological basis for the unique cognitive abilities of 

humans. Indeed, several recent studies highlight the common features of neocortical 

architecture in human and non-human primates. For example, humans and chimpanzees 

have similar high density of axons containing serotonin, dopamine and acetylcholine 

innervating the prefrontal cortex (Raghanti et al., 2010; Sousa et al., 2017). Furthermore, the 

total number of neurons in the human neocortex accords with allometric scaling predictions 

from other primate brains (Azevedo et al., 2009; Sherwood et al., 2010). 

Most of the studies that have analyzed the number of neurons in various cortical areas on 

Nissl stained sections (Gabbott & Bacon, 1996a, 1996b; Gabbott et al., 1997 a,1997b) or 

analyzed the prefrontal cortex as a whole (Azevedo et al., 2009; Semendeferi et al., 2002; 

Teffer and Semendeferi, 2012). NeuN staining does not label glial or vascular cells in 

contrast to Nissl staining and the advantage of using NeuN to examine cytoarchitectonic has 

been well documented (Atapour et al., 2018; Vogt et al., 2013). It enhances laminar 

differences helping us to identify layers less apparent with Nissl staining such as layer IV in 

area 32. Although the number of cells described in the literature is not directly comparable 

with our results due to previously mentioned methodological differences (NeuN versus Nissl) 

the overall pattern seems unchanged.  

The advantage of NeuN staining is seen in the ongoing debate on the classification of, for 

example, area 32 in the primate frontal cortex. The literature still debates whether it has a 

layer IV – several Nissl studies suggest that it is agranular cortex (Carmichael et al., 2003; 

Öngür et al., 2003) while several other indicate the presence of layer IV, (Petrides et al., 

2011; Petrides and Pandya, 1999; Triarhou, 2007; Vogt et al., 1987) as we confirmed in this 

study.  

111



    

 

 
 

Laminar distribution and neuron density 

Our study confirmed that there are no substantial differences in neuron densities between 

prefrontal cortical areas. On the other hand, we found some novelties regarding the laminar 

distribution in the primate brain. First, we showed that the number of neurons in layer I was 

underestimated in previous studies performed in monkey and human (Gabbott & Bacon, 

1996a, 1996b; Gabbott & Bacon, 1997 a,1997b). We identified with NeuN labeling two clear, 

neuronal density based, subdivisions of this layer not seen on Nissl staining. We further 

demonstrate that at least 4% of total neuronal pool in each area examined are located in the 

lower part of layer I in both species. To our knowledge it is the first demonstration of such 

layer I organization in the primate brain. Also, the relative volume of the layer I has almost 

doubled through primate evolution, representing 20% of all cortical layers in human and 10% 

in the macaque monkey. The volumes of the other cortical layers we found are similar to that 

described in the literature in both species (Gabbott & Bacon, 1996a, 1996b; Gabbott et al., 

1997 a,1997b). Also proportion of neurons in the layer I seems to increase from dorsal to 

orbitomedial (Džaja, 2015) human prefrontal cortex. We did not confirm this in the monkey 

prefrontal cortical areas 9, 32, and 24.  

One of the main differences we observed between monkeys and human is higher number of 

neurons in the supragranular layers in human as compared to monkey. Despite a similar 

laminar distribution between monkey and human the ratio between supra- versus infra-

granular layers is higher in all human subjects what is not the case in monkeys. Another 

consistent finding observed in both species is that the ratio of neuron numbers between 

supra- and infra-granular layers is the highest in area 9 followed by area 32, and the lowest 

in the area 24. When monkey data are compared to human the radio is always higher in 

human areas than in monkey. Interestingly, in monkey the highest ratio value is 1.4 in area 9, 

corresponding more or less to the lowest ratio value of 1.5 observed in area 24 in human.  

These results suggest that evolution increased the unbalance in number of neurons between 

the cortico-cortical projecting supragranular layers and the cortico-subcortical projecting 

infragranular layers. 

Another major result revealed by this study is that in primate layer I contains a substantial 

number of neurons in contrast to rodents in which the density of neurons is comparable to 

that of the white matter (WM). Indeed, the neuronal density in monkey layer Ib is comparable 

to densities found in layer VIb in all areas (32 000 versus 44 000 neurons per mm3). The 

layer Ia has densities that are either in area 9 comparable to density in underlying white 

matter (8000 neurons per mm3) or twice the value of WM neuronal density. These results 

suggest that between rodents and primates, mammalian evolution has provided additional 

neurons to the layer I.  
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In both human and monkey species, the layer Ia showed features which are comparable to 

layer I in rat including a very low density of neurons which is around 10000 neurons/mm3 

(Džaja, 2015) and monkey layer Ia. This density is 2-3 times lower in human layer Ia. This is 

mainly due to the significant increase in relative volume of layer I between monkey and 

human, despite an increased number of layer I neurons in human as compared to monkey. 

This increased volume of layer I in human versus monkey suggest further increase in 

connectivity of layer I in the human cortex.  

During development the molecular layer can be subdivided into two portions: the upper 

portion (layer la) that contains large neurons called Cajal-Retzius cells, and the lower portion 

(layer Ib) with horizontally oriented fibers (Tkachenko et al., 2016). In the monkey, 1mm3 of 

layer Ib contains about 31500 neurons, that is the number of neurons found in same volume 

of layer III and Va in the all analyzed areas of the human brain. In monkey the density in 

layer Ib was closer to density of layer VIb (40000 neurons/1mm3), showing that layer Ib 

should not be defined as non-neuronal layer. In the human, the neuron density in layer Ib of 

area 9 and 24 decreases for about 50%, and in area 32 for about 15% compared to monkey 

values, but their density was not significantly lower than neuron density in layers Vb, VIa and 

VIb, confirming that in the human the layer Ib should not be defined as non-neuronal layer.  

In human, the neuron densities in layer Ib were around those found in the underlying white 

mater (13000 cells/mm3). In monkey this was not the case, and density in underlying white 

mater was in area 9 close to layer Ia density, in area 32 it was 2.5 times lower, and in area 

24 it was 4 times lower than in layer Ia. So, in monkey the neuron density between layer VIb 

and underlying white mater decreases in area 9 for about 5 times, and in areas 32 and 24 for 

about 12-14 times, making the lower cortical border rather sharp. In human, the neuron 

density in underlying white mater was around two times lower than in layer VIb, and in all 

areas exceeded 10000 neurons/mm3. These features make this zone bellow layer VIb closer 

in number of neurons to sublayer Ib. Therefore, in human it would be more appropriate to 

define zone bellow layer VI as additional cortical sublayer. Its neuron density was 2.5-3 times 

higher than in layer Ia, where the neuron density is supposed to be higher than in the white 

mater. These layers differ in their neuron numbers and densities but also in proportion of 

neurons expressing calretinin. The zone bellow layer VIb – the underlying white matter - had 

in human slightly higher proportion of calretinin neurons than layers V-VI, but below 

proportion found in layer III. In monkey, the proportion of calretinin neurons in this zone (14-

30%) was significantly higher than in layers V-VI (4-8%), and even slightly higher than in 

layer III (13.5-19%). These results suggest that in human there is a novel sublayer between 

layer VI and white matter.  
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Similar conclusion could be made for monkey area 9, although not as obvious as in the 

human areas, the densities and calretinin proportion in layer VIb is comparable to that 

observed in all human areas. On the other hand, monkey areas 24 and 32 have very low 

neuron density and high proportion of neurons expressing calretinin suggesting that in these 

two cortical areas this zone is a part of white matter, and neurons found there could 

correspond to interstitial neurons (Judaš et al., 2010). The additional sublamination of layer 

VI, faintly observed on area 9 in monkey, and clearly present in all examined human areas, 

might be related with highly expanded subplate and its protracted developmental persistence 

(Judaš et al., 2013; Reep, 2000). It is also possible that in human, more subplate neurons 

being incorporated into adult cortical network, therefore do not undergo elimination through 

brain maturation. 

Another main difference we observed in all cortical areas examined between monkey and 

human is 40% decrease in neuron density. This has also been described in a previous study 

performed in the orbital prefrontal cortex (Džaja, 2015). This low density of neurons 

compared to non-human primates and rodents is a general feature of the human cortex. It 

has been associated to an increased complexity of dendritic arbor of pyramidal neurons and 

increased connectivity (Mohan et al., 2015). 

Distribution, density and proportion of calretinin neurons 

Our data do not show major differences in the proportion of calretinin neurons between the 

various cortical areas examined or between humans and monkeys in keeping with previous 

studies (Gabbott et al., 1997 a,1997b; Gabbott and Bacon, 1996a, 1996b; Hof et al., 1999; 

Sherwood et al., 2010; Zaitsev et al., 2005). We further show that the percentage of calretinin 

and parvalbumin interneurons across areas of the frontal cortex does not differ among these 

two species, revealing certain fundamental characteristics of neurobiological organization 

shared within this branch of primate evolution (Sherwood et al., 2010). 

The distribution of calretinin neurons mainly located in the upper cortical layers has already 

being reported by several studies in rodents, monkey and human. Although using a different 

approach all these studies showed that most of calretinin neurons are located in layer II in all 

species studied (Gabbott et al., 1997 a,1997b; Gabbott and Bacon, 1996a, 1996b; Hof et al., 

1999; Sherwood et al., 2010; Zaitsev et al., 2005). 

The variations in the distributions and morphologies of calretinin neurons in the medial 

prefrontal cortex of different species suggest functional specialization of this class of 

inhibitory interneurons. Many studies have reported that calretinin neurons represented 8% 

of the total neuron population in human medial prefrontal cortex, versus 11% in monkey and 
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4% in rat (Gabbott et al., 1997 a,1997b; Gabbott and Bacon, 1996a, 1996b). We obtained 

similar results showing that calretinin neurons represent 5% of neurons in human versus 

13% in monkey in the dorsal prefrontal cortex. In monkey, depending on the region, between 

13%-15% of neurons express calretinin. However, individual differences were rather high. 

For example, in the area 9, the proportion of neurons expressing calretinin could varies by 

70% from one monkey (17.8%) to another (9.7%). Regional variation within animal were 

sometimes high, so in an animal where only 9.7% of neurons express calretinin in area 9, 

16.5% neurons express calretinin in area 24. No consistent regional differences were 

observed, meaning in another animal the lowest proportion was in area 24 (11.6%) and the 

highest in area 32 (14.4%). In the third animal, the variations were rather low, between 

16.7% and 17.8%. The reason for such variability in proportion of neurons expressing 

calretinin among animals is unclear. We do not believe that it could be related with difference 

in fixation condition since no such variability was observed with NeuN labeling. Is the 

relationship between the calretinin level of expression within neurons associated with 

physiological state of the animals at the time of fixation would be interesting to determine. 

Anyway taking into account this interindividual variation we estimate that in monkey, 

calretinin neurons indeed represent around 15% of total population in dorsal associative 

prefrontal areas.  

Our next analyses investigated whether humans and macaque monkeys vary from each 

other in the proportions of interneuron subtypes across the different frontal cortical areas 9, 

32 and 24. We did not find evidence for such differences. The proportion of these different 

interneuron population did not vary significantly between the investigated areas nor between 

human and monkey species. These results are in keeping with previous studies using 

different methodologies (Gabbott & Bacon, 1996a, 1996b; Gabbott et al., 1997  a,1997b; 

Gonchar et al., 2010; Sherwood et al., 2010). 

Human interneuron densities were contained within the 95% prediction intervals for 

dorsolateral prefrontal cortex based on scaling to total neuron density in non-human 

anthropoids. Humans also did not differ significantly from macaques in the regional 

distribution of interneurons within the frontal cortex (Sherwood et al., 2010).  

Regarding the proportion there is a 3-4-fold decrease in proportion in human areas. This is 

almost uniform across all layers, in all analyzed areas. In this study we have a 

methodological factor that may produce such great differences, i.e. we used a monoclonal 

antibody in human and polyclonal in monkey sections. The double labeling in monkey 

revealed that qualitatively no differences were observed on the sections labeled with 

monoclonal calretinin antibody compared to the one labeled with the polyclonal one. This 

suggests that the human monkey difference in proportion is indeed real and not the 
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consequence of using a different calretinin antibody. Nevertheless, this is a point that needs 

to be further confirmed. The fact that methodological factors affect identification of calretinin 

neurons is particularly important for the interpretation of the human data where monoclonal 

antibody is used. Monoclonal antibodies are generally not as effective in visualizing the 

whole population of neurons expressing particular molecule, and calretinin monoclonal 

antibody was additionally shown to be dependent on the level of calcium binding in neurons. 

This might explain why in this study in human specimens the proportion of neurons labeled 

with calretinin was significantly lower when compared to monkey (around 2 times lower, i.e. 

in average between 5.2%-8.1%). The highest proportion was observed in area 32 of one 

specimen (10%), but the same specimen showed also the lowest values observed, and in 

area 9 where only 2.5% of neurons were found to express calretinin. It should be mentioned 

that on double labeled sections of the monkey brain, we have not been able to identify 

qualitatively differences in density of calretinin neurons, but the tissue preparation protocol 

differs between monkey and human. In monkey brain tissue is obtained from fixation by 

transcardiac perfusion without delay between death and fixation, whereas human tissue was 

fixed by immersion with delay of 6 hours between death and fixation (Gabbott et al., 1997 

a,1997b; Sherwood et al., 2010). 

However, if so, the changes in calretinin proportion during primate evolution differ between 

orbital and dorsal part of the prefrontal cortex. In human area 14c, by using polyclonal 

antibody, the average proportion of neurons expressing calretinin was 17.6%, varying 

between 14-21% between subjects. In area 14c of monkey, 12% of neurons were found to 

express calretinin, varying between 9-15% in particular animal (Džaja, 2015). These results 

compared to ours suggest that an increase in calretinin neurons could occur in specific 

cortical region such as the area 14c orbito-prefrontal cortex but not all cortical regions (dorsal 

prefrontal areas) through primate evolution. 

A possible explanation for smaller proportion of calretinin neurons in the human brain is that 

the number of inhibitory calretinin neurons attained in the primate evolution is enough to 

maintain the optimal function of the cortical networks (Trevelyan and Watkinson, 2005). 

Thus, although the number of neurons in the upper layers is increased the number of 

inhibitory controls remains the same. This suggests that evolutionary expansion in proportion 

of calretinin neuron in the primate brain that occurs between rodents and monkeys (Džaja et 

al., 2014) is enough for optimal human information processing (Sherwood et al., 2010). 
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Molecular profile of calretinin neurons in primate brain 

The GABAergic phenotype of calretinin neurons was confirmed in rodent neocortex (Gonchar 

et al., 2007; Gonchar and Burkhalter, 1997; Uematsu et al., 2008). On the other hand, in 

monkey and human neocortex, it was shown that about 25% of calretinin neurons do express 

GABA (Melchitzky et al., 2005; Rio and Defelipe, 1996). This question of GABAergic profile 

of calretinin neurons was addressed in this study. We confirmed the GABAergic profile 

showing that all these neurons in the primate brain express mRNAs for the vesicular GABA 

transporter (VGAT) and one of the synthesizing enzyme for GABA, the glutamic acid 

decarboxylase 67 (GAD67) as did a study by Rocco et al. where it was shown that calretinin 

neuron boutons always express GAD67 (Rocco et al., 2016), but occasionally GAD65, that is 

also in line with results from this study.  
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7. Conclusion 

Our results highlight some differences in the organization of the prefrontal cortex between 

monkey and human as well as major specific features of primate brain as compared to 

rodents. Results of this study give ground for the future research on the pathogenesis of 

different brain dysfunctions. Firstly, we showed that in the primate brain cortical calretinin 

neurons are GABAergic inhibitory neurons what raises the possibility of finding novel 

therapeutic targets in diseases such as epilepsy. Secondly, the data we obtained on the 

positioning of neurons inside the prefrontal cortex areas that are involved in higher cognitive 

functioning are crucial for the research that could reveal the pathophysiology of complex 

neuropsychiatric disorders in humans, as autism or schizophrenia.  

A. Major findings regarding calretinin neuron subpopulation: 

1. Calretinin neurons express VGAT in the primate brain. 

2. Calretinin neurons do not overlap with parvalbumin, calbindin and somatostatin. 

a. Calbindin, parvalbumin and somatostatin neurons altogether are as numerous 

as calretinin subpopulation. 

3. In the dorsal prefrontal areas up to 15% of all neurons express calretinin. 

4. Upper cortical layers consist of 75% calretinin neurons. 

a. In the layers II and III they represent at least 1/3 of total neuron population.  

5. Increase in the number of calretinin neurons is changing the laminar organization of 

layers I and VI, leading to the formation of layer Ib as specific feature of the primate 

brain.  

B. Major findings regarding laminar organization: 

1. Human areas show a 40% decrease in neuron density compared to monkey. 

2. Primate prefrontal cortical areas show a neuronal redistribution in favor of 

supragranular layers (I-III) (ratio I-II/V-VI above 1). 

a. Only area 9 in the monkey has more neurons in the supragranular layers 

whereas areas 32 and 24 do not show this feature. 

b. All human prefrontal cortical areas show neuronal organization in favor of 

supragranular layers, with the highest ratio in area 9 followed by areas 32 and 

24 

3. The primate sublamination in the prefrontal cortex suggests two new sublayers, in the 

layer I and bellow layer VIb. 

a. Layer I is clearly divided in upper neuron sparse part and a lower part with 

neuron density corresponding to those found in other sublayers. 

b. Zone bellow sublayer VIb has higher neuron density than in surrounding white 

matter and sublayer Ia in monkey area 9 and in all human prefrontal cortical 

areas analyzed. 
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8. Abstract in Croatian 

KALRETININSKI NEURONI U PREFRONTALNOM KORTEKSU PRIMATA, Dora Sedmak, 
2019. 

Sažetak 

Pojava složenih moždanih funkcija u čovjeka mora biti odraz reorganizacije u strukturi 

neuralnih mreža kore velikog mozga. Promjene u sinaptičkoj arhitekturi primata su temelj 

razvoja viših kognitivnih funkcija, a narušena arhitektonika dovodi do neuroloških i 

psihijatrijskih poremećaja. Pretpostavlja se kako u evoluciji primata do najvećih promjena u 

strukturi neuralne mreže dolazi upravo u prefrontalnoj kori velikog mozga. Cilj ovog 

istraživanja je provesti sustavnu kvantitativnu analizu proporcije, distribucije i molekularnog 

fenotipa kalretininskih neurona kroz funkcionalno različita polja prefrontalnoga korteksa 

(Brodmanova polja 9, 32 i 24) u majmuna i čovjeka te utvrditi postoje li obilježja specifična za 

polje ili vrstu. 

U mozgu primata kalretininski neuroni čine 15% ukupnog broja neurona i većinom su 

smješteni u površnijim kortikalnim slojevima (40% u sloju II, 70% u sloju I). Pokazano je da 

svi kalretininski neuroni eksprimiraju VGAT mRNA što izravno potvrđuje njihov GABAergički 

fenotip. Dvostruko bojanje je pokazalo da su kalretininski neuroni brojniji od ostalih glavnih 

subpopulacija interneurona. Ovi podatci ukazuju da su GABAergički neuroni u slojevima I i II 

u asocijativnim područjima u primata jednako brojni kao i glutamatergički neuroni. Ne postoji 

razlika u njihovoj proporciji između majmuna i čovjeka niti između različitih moždanih polja 

unutar iste vrste.  

Može se zaključiti kako je tijekom evolucije primata došlo do reorganizacije laminarne 

strukture, tako da je veći broj neurona smješten u gornjim slojevima moždane kore koji su 

izvor kortiko-kortikalnih projekcija. Tendencija ovim promjenama vidljiva je između vrsta i 

između različitih polja unutar vrste, pa tako hijerarhijski viša područja imaju veći broj neurona 

u površnijim slojevima. 
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9. Abstract in English 

Calretinin neurons in the primate prefrontal cortex, Dora Sedmak, MD; 2019 

Neuronal circuitries of the cerebral cortex are the main biological substrates for mental 

abilities found in mammals. Diversity of primate synaptic architecture enable appearance of 

complex cognition and their disorganization leads to many neurological and behavioral 

disturbances. Substantial reorganization of cortical network occurring during primate 

evolution is necessary to achieve complex information processing. We performed systematic 

quantitative analysis in prefrontal cortical areas 9, 32 and 24 of monkey and human to 

determine the proportion, distribution and neurotransmitter phenotype of calretinin neurons, 

whose proportion dramatically increases when primates are compared to rodents. 

In primate brain up to 15% of neurons express calretinin and they are mostly positioned in 

upper cortical layers (up to 40% in layer II, and up to 70% in layer I). VGAT mRNA was found 

in all calretinin neurons, which directly confirmed their GABAergic phenotype. Double 

labeling showed that calretinin neurons are more numerous than other subpopulation of 

interneurons. This data suggest that GABAergic neurons in layer I and II of the primate 

associative areas outnumber the principal glutamatergic neurons. There were no areal 

differences in laminar distribution of calretinin neurons in the primate brain, but we found 

spatial reorganization inside the cortical lamina favoring the upper cortico-cortical layers and 

affecting higher order neocortical areas in monkey and all of human prefrontal cortical areas.  
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