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Abstract

Cardiovascular disease is the leading cause of death worldwide and for this

reason computer-based diagnosis of cardiac diseases is a very important task.

In this article, a method for segmentation of aortic outflow velocity profiles

from cardiac Doppler ultrasound images is presented. The proposed method is

based on the statistical image atlas derived from ultrasound images of healthy

volunteers. The ultrasound image segmentation is done by registration of the

input image to the atlas, followed by a propagation of the segmentation result

from the atlas onto the input image. In the registration process, the normalized

mutual information is used as an image similarity measure, while optimization

is preformed using a multiresolution gradient ascent method. The registration

method is evaluated using an in-silico phantom, real data from 30 volunteers,

and an inverse consistency test. The segmentation method is evaluated using 59

images from healthy volunteers and 89 images from patients, and using cardiac

parameters extracted from the segmented image. Experimental validation is

conducted using a set of healthy volunteers and patients and has shown excellent

results. Cardiac parameter segmentation evaluation showed that the variability

of the automated segmentation relative to the manual is comparable to the

intra-observer variability. The proposed method is useful for computed aided
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diagnosis and extraction of cardiac parameters.

Key words: Doppler ultrasound imaging, cardiac outflow velocity profile,

image registration, atlas-based segmentation, segmentation propagation

1. Introduction

At the beginning of the 20th century, cardiovascular disease was responsible

for fewer than 10% of all deaths worldwide. Today, that figure is about 30%,

with 80% of the burden now occurring in developing countries [1]. In 2001,

cardiovascular disease was the leading cause of death worldwide [1]. In United

States, coronary heart disease caused 1 of every 5 deaths in 2004 [2]. Therefore,

one can conclude that diagnosis of coronary heart disease is a very important

medical task.

In everyday clinical practice, a detailed analysis of Doppler echocardiography

traces is often limited by a high frequency workflow in the echocardiographic

laboratory. Currently, basic measurements of aortic outflow Doppler traces are

routinely obtained by manual tracking of Doppler traces, predominantly provid-

ing data on valvular flows. Manual tracking of the traces is often cumbersome,

time-consuming and dependent on the expertise of the cardiologist/sonographer.

However, automatic trace delineation should reduce the required time needed

for data analysis, while not increasing the measurement error. Previous clinical

studies have demonstrated that additional data obtained by automatic trace

analysis would provide relevant clinical data on left ventricular function, aiding

in diagnostics and further patient management strategies [3, 4]. Continuous

wave Doppler outflow traces are mainly used to assess a potential pressure gra-

dient across the aortic valve resulting from a narrowing of the valve. It was also

shown that severe aortic stenosis shows not only higher but often also prolonged

outflow velocities [5]. The detection of changes in myocardial contractility in

the setting of coronary artery disease is an important diagnostic task. Besides a

decrease in global systolic function, as detected by ejection fraction, and changes

in regional deformation [6], it was suggested, from isolated myocytes research,



that chronic ischemia decreases but prolongs contraction [7]. These observations

show that the profile of the aortic outflow velocities might provide information

on global myocardial function [8].

Ultrasonic imaging is a non-invasive medical imaging modality, which is

routinely used in hospitals for the examination of cardiac patients [9]. Doppler

ultrasound imaging provides useful information about blood velocities through

the cardiac valves [10]. By measuring these velocities, clinical information on left

ventricular (LV) inflow (mitral valve) and outflow (aortic valve) can be quanti-

fied, which is clinically useful to assess hemodynamic parameters and ventricular

function. The interpretation of Doppler echocardiography data requires an in-

tegration of various hemodynamic measurements that can be obtained from the

shape of the cardiac outflow velocity profile. To extract the information from

the cardiac outflow velocity profiles acquired by the Doppler ultrasound, image

segmentation and quantification of the segmented profiles is required. Both seg-

mentation and quantification are usually done manually by expert cardiologist.

However, manual segmentation of the images is usually a time consuming and

tedious task. Cardiac Doppler ultrasound images are not exception from that.

Since automating the segmentation and parameter quantification procedure has

great potential for reducing the time cardiologist needs to spend to analyze each

of the images, a new method for registration of aortic outflow velocity profiles

is developed and presented in this paper. Within the registration procedure,

a geometric transformation function is described which is specially developed

for this type of the images. Also, a new atlas-based segmentation method is

proposed, for automatic segmentation of cardiac outflow velocity profiles.

The atlas-based segmentation of aortic blood velocity profiles proposed in

this paper, is a prerequisite useful for the quantitative analysis of coronary

artery disease and aortic stenosis, such as the one described in [8, 3]. However,

the motivation of this work is not only to solve the problem of the aortic out-

flow velocity profile registration, but also to present a more general approach

for registration of other cardiac images such as mitral valve velocity profiles.

Furthermore, the proposed method for registration of the cardiac velocity pro-



files sets a framework for atlas construction, which can be used for statistical

measurements of the population and for atlas-based image analysis. The seg-

mentation of velocity profiles may also be used for signal feature extraction for

statistical measurements of variability within population and for classification

of velocity profiles into various classes.

2. Background

To the best of our knowledge there are no studies on the analysis of blood

flow velocity profiles obtained by Doppler ultrasound published in literature,

apart from the works of Tschirren et al. [11] and Bermejo et al. [12]. Tschirren

et al. presented an automated cardiac cycle and envelope extraction of brachial

artery flow profile based on image processing operations such as thresholding

and correlation. However, this approach is not suitable for the cardiac outflow

profiles mainly because it also segments the valve clicks (see Figure 2), not

just the blood outflow. The work of Bermejo et al. analysed outflow profiles

that are averaged and manually segmented, with a goal to analyse the valvular

dynamics, so this work uses both a different methodological approach and a

different hypothesis.

On the other hand, the published research on image registration [13] and seg-

mentation [9] techniques is rather extensive. Since various information from im-

age data is exploited to drive the image registration algorithms, we can classify

registration algorithms according to the information content used in registration

into algorithms using designated landmarks [14, 15], contours [16] and surfaces

[17] or various pixel properties functions [18]. The method proposed in this

paper is based on the normalized mutual information (NMI) image similarity

criteria [19, 20, 21] and a specially formulated geometrical transformation.

In [9] segmentation techniques are divided in low-level segmentation tech-

niques (described in [22]) and high-level techniques, where as a major difference

between them is the level of the a priori information used in the process of

segmentation. Although the low-level methods have shown some results on this



topic [23], experts usually rely on their experience to produce even better results.

To develop a knowledge-based technique and incorporate a domain knowledge

various models are used, such as statistical or artificial models based on an

expert knowledge. Using a model, experimental data obtained from different

subjects are easier to interpret. Preliminary results of using an image from a

normal patient as a model are described by Kalinić et al. [24]. The models

with a common anatomical substrate are in medical applications often known

as atlases. Atlas incorporates useful prior information for segmentation and

registration tasks, so variation within population can be described with fewer

(transformation) parameters. Atlases have broad application in medical image

segmentation and registration and are often used in computer aided diagnosis

to measure the shape of an object or detect the morphological differences be-

tween patient groups. Various techniques for atlas construction are developed

for different human organs, like the heart [25, 26, 27] and especially the brain

[28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. In this paper we use a statistical model as

an atlas and an in-silico phantom model for evaluation. The atlas is the mean

image, which is an estimate of the statistical expectation of the random field

respresenting healthy volunteers.

3. Design considerations

In the rest of this paper, the registration algorithm and atlas construction

are described in order to illustrate the atlas-based segmentation of aortic blood

velocity profiles and followed by the experimental results. Since the inherent

problem of the segmentation validation is the difficulty of obtaining the reliable

reference, several validation techniques are used. The experiments can broadly

be divided in two major groups of registration and segmentation validation.

The registration is evaluated using an in-silico phantom image, deformed

real images, and inverse consistency criteria. The in-silico phantom was used

so to have the known and reliable ground-truth. The arbitrary deformed real

image can be used for the registration evaluation if the manually segmented



original (non-deformed) image is used as a ground-truth. Finally last criteria in

the registration evaluation process was the inverse consistency as proposed by

Christensen et al. [38] and Lorenzen et al. [32].

The segmentation is evaluated on 59 images from healthy volunteers and 89

images from patients, using manual segmentation by an expert cardiologist. In

this way the segmentation is tested on the set of images which are anatomi-

cally far from the atlas, since only the healthy volunteers were used for atlas

construction. To check the usability of the proposed segmentation in clinical

practice, several cardiac parameters with diagnostic potential are extracted from

atlas-based segmentation and ground-truth segmentation. When compared to

intra-observer variability these parameters also show the segmentation accuracy.

4. Method

This section presents the proposed method for atlas-based segmentation. In

atlas-based segmentation, the input image is registered to the pre-segmented

atlas image. The registration result returns the parameters of geometrical map-

ping from the input image onto the atlas image. With the inverse geometrical

mapping the segmentation from the atlas is propagated on to the image. In the

following text, the input image will be referred to as the source image and the

atlas image will be referred to as the reference image.

The images used in this study are the aortic outflow profiles obtained using

continuous wave Doppler mode. All the images were acquired by echocardio-

graphic scanner (Vivid 7, GE Healthcare) using an apical 5-chamber view. Im-

ages were digitally stored in ’raw’ Dicom format, containing the spectral Doppler

information in proprietary tags. These ’raw’ Dicom images were converted into

Hierarchical Data Format (HDF) using an Echopac workstation (GE Health-

care). From the input HDF file, the image containing information about aortic

flow, was extracted. An example of this image is given in Figure 1.

In the following sections a new registration algorithm, composed of a geomet-

ric transformation, similarity measure and optimization algorithm is described.



Figure 1: An example of the image extracted directly from the HDF file.

Next, the method for creation of a statistical atlas image, that is used as the

reference image, is proposed. The reference image is manually segmented by

an expert cardiologist and the result is mapped to the input image to provide

the segmentation result. At the end of Section the atlas-based segmentation

procedure is described.

4.1. Registration

The goal of image registration is to determine parameters of the geometric

transformation, that maps a source image into a reference image. The images

that need to be registered are denoted as S(x) and R(x), where the sets of

pixels of these images are {S(i)} and {R(i)}, respectively. The image S(x)

is the source image and S′(x) denotes the transformation of the image S(x)

(i.e. S′(x) = S(T (x))) obtained by the successive estimate of the registration

transformation T . The image R(x) will be treated as the reference image. The x

will be used to denote vector defined by the ordered pair in Cartesian coordinate

system (t, v), since Doppler ultrasound images represent the instantaneous blood

velocity (v) within the sample volume (pulsed Doppler) or scan line (continuous

wave Doppler) as a function of time (t).

The registration method consists of transformation and optimization with

respect to the defined similarity measure. Detection of the ejection time interval

is performed manually based on two points in time. Detection of low velocity

region is done automatically. This information is used for an initial alignment



of the images. Manual selection of the ejection time interval requires about 2

seconds of time, which is negligible compared to the time required for manual

profile segmentation which may last up to 60 seconds.

The rest of the registration procedure stretches the image along the velocity

axis, in several bands, and is described in more details below. NMI is used as

a similarity measure. The similarity measure is maximized using a modifica-

tion of the gradient ascent optimization algorithm. This section is divided into

three subsections dedicated to the major parts of the registration procedure:

transformation, similarity measure and optimization algorithm.

Figure 2: The outflow velocity profile from a healthy volunteer. The low velocity region is

marked with the black ellipse, and the valve clicks which define the relevant part of the phase

cycle are marked with arrows at the bottom of the figure.

4.1.1. Transformation

After the relevant phase of the cardiac cycle is extracted as described in [23]

and all images are aligned, the transformation function T , in general case, can

be written as:

T (t, v) =

[
e(t, v) 0

0 f(t, v)

]
·

[
t

v

]
(1)

where e(t, v) and f(t, v) are arbitrarily function of time and the velocity.

After resizing all the images to the same resolution, phases of all outflow

velocity profiles are matched. Now, no transformation in t dimension is required,

therefore we set e(t, v) = 1. All the possible inter-individual changes in the

profiles can now be governed only by the variable f(t, v) from the Equation 1,



which we call the scaling function. It is important to notice that the scaling

function is a function of time, i.e. f(t, v) = f(t). Now, we have the scaling

function that can be used to quantify the instantaneous blood velocity change

for different outflow profiles.

For practical reasons, a parametrized scaling function is used. The function

is parametrized by selecting N equidistant points, which are sorted in a row

vector. The vector is denoted as f and will be addressed as the transformation

vector. This can be written as follows:

ti =
(i− 1) · P
N − 1

,∀i = 1, .., N

fi = f(ti)

f = [f1...fN ] (2)

where P stands for phase cycle of outflow velocity profile. Now, the transfor-

mation of an image is described and quantified with the transformation vector

components. The reconstruction of a scaling function from the transformation

vector is done using linear interpolation. If one selects N = 11, as we did in

this study, the image transformation and the transformation vector components

can be visualized as depicted in the Figure 3, where white circles represents the

transformation vector components, and the curve interpolated between them

represents the interpolated scaling function (f(t, v)).

Figure 3: The original image (left) and the transformed image with transformation vector

components (right).

It is also important to notice that since the transformation function is

parametrized and has N degrees of freedom, the optimization space is N-

dimensional. The details of the optimization algorithm are described further



in the section 4.1.3. In the next section, we will first discuss the similarity

measure.

4.1.2. Similarity measure

If the similarity measure between images S(x) and R(x) is denoted as

E(S(T (x)), R(x)) the images are optimally registered (with respect to given-

similarity measure and degrees of freedom) when the maximum of the function

E is achieved:

Toptimal = argmax
T

E(S(T (x)), R(x)) (3)

Clinically obtained aortic outflow velocity images sometimes differ signifi-

cantly, resulting in low (local) correlation and different resolutions with differ-

ing texture. Additionally, Doppler ultrasound images inherently contain a lot

of (speckle) noise. To register this kind of images it is necessary to find a simi-

larity measure that does not make any assumptions regarding the nature of the

relation between the image intensities (see also [21] and [19]).

As a solution, the mutual information is used in its normalized form [21]:

NMI(S,R) =
H(S) +H(R)

H(S,R)
(4)

since it overcomes many of the shortcomings of joint entropy and is more robust

than mutual information (MI) [39, 20]. HereH(S) andH(R) denote the entropy

of images S and R, and H(S,R) the joint entropy.

It is important to notice that the similarity measure is not calculated for the

set of pixels in the overlapping region of R and S′, i.e. within C = R ∩ S′, as

assumed in [39]. Instead, it is calculated for all pixels in the reference image

except for the low velocity region (see Figure 2). The region over which the

NMI is calculated may be written as

D = R \ ({S′(i)} ∪ {R(i)}),∀i ∈ L (5)

where L is the set of pixels from the low velocity region (both in image S and

R). Low velocity region is decided after projection of the image onto the y-axis



Figure 4: Region L is decided after projection of the image onto the y-axis. Black arrow

indicates end of low velocity region.

as shown in Figure 4, as set of pixels having the projection lower than 10% of

the projection maximum.

The reason not to calculate NMI over the region C is because C is a function

of T , i.e. C = C(T ), so to avoid influence of the transformation function on the

similarity measure. The problem of non-existent values for the source image is

solved as suggested by Roche et al. in [40]. In short, these values are artificially

generated during the transformation, using the pixels from the image border.

4.1.3. Optimization Algorithm

The gradient ascent numerical optimization method is used to find the global

maximum of the energy function. The pseudocode for this algorithm is given

below, where E stands for the energy function. The energy function E is calcu-

lated as the Normalized mutual information between two images S(T (x)) and

R(x) (see Equation 4), over the regionD, as defined in Equation 5 and described

in section 4.1.2. Same as above, f and N denote the deformation vector and its

dimension.



Function gradient ascent(starting point, E)

define: µ, γ, δ, tolerance

f = starting point

do

for i = 1 to N

sample E around fi with µ

approximate dE/dfi from sampled points

if dE/dfi > γi · δ
γi = 0.95 · γi

end if

end for

f = f + 3 · µ · γ · (dE/df)/norm(dE/df)

while norm(dE/df) > tolerance

return f

In this algorithm, δ is an estimation of the optimization function gradient at

the starting point (according to Fletcher [41]). The gradient has to be smaller

for every next step to assure that the algorithm converges. This is done using

γ, which modifies the convergence rate, forcing the change of f to be smaller

for every next step.

Since Doppler ultrasound images contain a lot of noise, registration of these

images is very sensitive to the initial conditions and the convergence step, and

may easily end up in a local (instead of global) optimum. To assure the accuracy

and robustness of the proposed method, a two-step multiresolution optimization

approach is used. This approach is described in the pseudocode below.

Define S(−→x ), R(−→x ), starting point

Resize S(−→x ) and R(−→x ) to 100x100px

Define filt = gaussian filter with σ = 9px

Sb = convolution(S(−→x ), filt)

Rb = convolution(R(−→x ), filt)

Define E(
−→
f ) = NMI(Sb(T (−→x )), Rb(−→x ))

−→
f1 = gradient ascent(E(

−→
f ), starting point)

Define E(
−→
f ) = NMI(S(T (−→x )), R(−→x ))

−→
f2 = gradient ascent(E(

−→
f ),

−→
f1)



With this implementation of the multiresolution approach a trade-off be-

tween speed and accuracy is made, since the images are not downsampled. The

downsampling is avoided since it causes histogram changes, which in turn may

cause some of the artefacts similar to the ones mentioned in [42].

4.2. Atlas Construction

The purpose of a statistical atlas is to combine many images into a single

image, which represents a statistical average of all images. In this method, we

have used the arithmetic image averaging operation to construct the atlas. After

all aortic outflow velocity images are aligned and resized, the atlas is constructed

as an average intensity atlas using the formula:

A(t, v) =
1

K

K∑
i=1

Si(t, v) (6)

where Si are the images used to construct the atlas. Using this approach the

atlas image from K = 59 images from 30 healthy volunteers is constructed for

the purpose of this study. The resulting image is shown in Figure 6 (left).

4.3. Atlas-based Segmentation

The idea of atlas-based segmentation is based on the use of a representative

reference (or atlas) image, where the desired structure is manually segmented

by an expert cardiologist. In our case, the desired structure is the aortic outflow

velocity profile. Expert segmentation is done only once, and is later automati-

cally propagated to the other images of this type. When a new patient image

is acquired, the segmentation is conducted in four steps:

(a) The new image that needs to be segmented is declared as a source image.

(b) The source image is registered to the reference image, resulting in a set of

parameters describing the geometric transformation.

(c) The segmentation of an aortic outflow profile from the reference image

(the atlas) is propagated to the source image.

(d) The source image along with the propagated segmentation is backward

transformed (using the inverse set of parameters) to its original form.



This procedure is depicted in Figure 5 where each step is represented with

one image. As the reference image, the manually segmented atlas is used.

(a) Source image S(x) (b) S(x) → R(x) (c) Propagated segment. (d) Backward transform

Figure 5: The segmentation procedure: Each image represents one step described in Section

4.3. All axis are in pixels.

5. Experiments and Results

This chapter is focused on evaluating the registration algorithm accuracy

and the comparison of atlas-based segmentation with the segmentation done by

an expert cardiologist. First, the registration validation using an in-silico phan-

tom, along with the phantom construction, is presented. Second, the validation

on real data is presented, where the exact geometrical transformation between

data sets is known. Third, the validation of the registration accuracy on a set

of test data based on inverse consistency is presented. Fourth, the atlas-based

segmentation is validated on 59 images from healthy volunteers manually seg-

mented by an expert cardiologist. Fifth, the same segmentation validation is

done on 89 images from patients with a diagnosis of either coronary artery dis-

ease or aortic stenosis. Sixth, the segmentation is validated by comparison of

the cardiac parameters extracted from the manual and automated segmenta-

tion. Finally, intra-observer variation is studied and compared with the error

between manual and automated segmentation.

5.1. Phantom study-based registration validation

The outflow velocity is modeled using a linear combination of sinusoidal

functions. The attenuation is modeled by an inverse tangent function:

P (t, v) = c1 − c2 · arctg(v − F (t) + c3)) (7)



where c1, c2 and c3 are constants used for centering the image on the coordinate

system, and F (x) is constructed as:

F (t) = sin(πt) +
sin(2πt)

4
+

sin(3πt)

6
(8)

The attenuation of low blood velocities is modeled similar to eq. 7 using the

function:

A(v) =
1

π
· arctg((v − a1) · c4) + c5 (9)

The parameter a1 can be used to set the percentage of the outflow velocities

that will be attenuated, in our case it is set to 10%. The resulting image is

shown in Figure 6.

Figure 6: The average intensity atlas (left) and the phantom image (right)

To validate the registration accuracy on the phantom image, the source and

reference image have to be defined. Part of the registration error is due to the

suboptimal performance of the optimization algorithm and the properties of the

similarity measure. This error can be quantified if the desired transformation

is known. For this reason the following experiments are constructed. An image

with different velocity outflow profile shape is constructed from the phantom

image using a random transformation. Random transformation is here defined

by a transformation vector, whose eleven elements are picked from the uni-

form distribution on the interval [0.7,1.4]. Using the random transformation, 50

variations of the phantom image are constructed.

In the first experiment the original phantom is selected as a source image and

the deformed phantoms as reference images. Here, the goal of the registration



algorithm is to reconstruct the deformation function. The registration error can

now be calculated as difference between deformation and the transformation as

found by optimization algorithm. Since the transformation is parametrized by

the transformation vector this reduces to:

e1 = ‖f1 − f2‖2 (10)

where f1 and f2 are row vectors which represent respectively random deformation

of the phantom image and the deformation approximation as found by the

registration algorithm. The average error vector components from 50 different

phantom transformations equals to µ(e1) = 1.68% with standard deviation of

σ(e1) = 0.92%.

In the second experiment, the original phantom is labeled as reference image

and the deformed phantoms as source images. Now the registration algorithm

has to find the inverse transformation function. For each pair of images the

registration error is calculated using the Equation:

e2 = ‖1− f1 · f3T‖2 (11)

where f1 and f3 are row vectors, which represent the random deformation of

the phantom image and the inverse, as found by the registration algorithm.

Same as before, the mean error vector components and their standard deviation

are calculated. Mean error is µ(e2) = 2.15% and standard deviation σ(e2) =

1.92%. One may notice that the error and deviation is smaller in the first

experiment, which is due to the direction of the registration algorithm. In

the first experiment the registration algorithm searches for the transformation

parameters in the same direction that is used for the deformation, while in the

second experiment the opposite direction is used (i.e. in this experiment the

deformation model is not the same as the transformation function).

5.2. Real image-based registration validation

The similar experiment, as the one explained above on the in-silico phantom

image, is conducted on real images of cardiac aortic outflow velocities. This



was done since the phantom image used in previous section does not have any

(speckle) noise, does not model valve clicks and small deviations of the time

frame which are possible to show up in the real images. In this experiment, from

a set of 59 images, each was deformed with thirty random transformation vectors

and the registration algorithm searched for vectors that will re-transform these

images back to their original form. The vector elements used for the deformation

are randomly picked from the uniform distribution on the interval [0.7, 1.4], and

the starting vector for the optimization algorithm is the unity vector. The error

vector is calculated using the equivalent formula as in Equation 11 and denoted

as e3. In this experiment the average error is µ(e3) = 2.93% with standard

deviation of σ(e3) = 2.03%.

5.3. Inverse consistency-based registration validation

The final registration experiment is based on the inverse consistency test.

Although inverse consistency does not guarantee the accuracy of the registra-

tion, it is often preferable or even used as measure of quality of the registration

[38, 32]. This, along with the desire to quantify the bi-directional transforma-

tion error, are the main reasons for the additional validation using the inverse

consistency test [43, 44]. Each of the images from the set is registered to all the

others images from the set. In this way, the registration is done bi-directionally

(i.e. the image I1 s registered to image I2 and vice-versa). Using the notation .∗

for Hadamard product (where only the corresponding vector elements are mul-

tiplied) and f(I2, I1) for the transformation vector received after registration of

image I1 to image I2, the mean error vector is calculated as:

e4 =
1

N

N∑
i=1

|1− (f(i)(I2, I1) . ∗ f(i)(I1, I2))| (12)

where N represents the total number of registration experiments. If the number

of images is n then the total number of registration experiments equals to N =

n2+n
2

, since registration of an image onto itself is also taken into account. The

average vector component error is equal to 2.89%.



5.4. Atlas-based segmentation validation: Healthy volunteers

The atlas-based segmentation validation is done on 59 outflow profiles from

30 healthy volunteers. The expert manually segmented the atlas image (con-

structed as described in section 4.2), and this atlas is used as a template for the

segmentation.

Figure 7: The comparison of manual (black) and propagated (white) segmentation. Both axes

are in pixels.

Figure 8: Propagated segmentation with small deviation of automated segmentation (white)

from the manual segmentation (black). Both axes are in pixels.

With the procedure as described in section 4.3 the manual segmentation is

propagated from the atlas image to the rest of the 59 images. These images

are compared with the ones that are segmented manually by the same cardi-

ologist. For the brevity of the presentation, only some of the results, that are



Figure 9: Propagated segmentation with larger deviation of automated segmentation (white)

from the manual segmentation (black). Both axes are in pixels.

Figure 10: The comparison of manual (black) and propagated (white) segmentation on the

outflow profiles with the starting valve click. Both axes are in pixels.

representative of all results, are presented. These images are shown in Figures

7, 8, 9 and 10. In Figure 7, we may see the manual and the automated segmen-

tation results that correspond very well. In Figure 8 we want to point out the

small bumps that exist in the automated segmentation, while there is no trace

of them in the manual segmentation. Although, the automated segmentation

corresponds well to the manual segmentation, the bumps may be explained as

an inherent intensity change. If we take a look at the Figure 9 we may no-

tice that, around the peak, the automated segmentation peaks over the manual

segmentation. Nevertheless, this segmentation result explains well the shape of



the signal despite the selection of a different threshold. In the Figure 10 the

outflow profiles with the starting valve click is shown. In clinical practice, the

cardiologists try to distinguish between the blood flow and the valve click based

on their experience, since only the blood flow bears significant information for

diagnosis. It can be seen how the manual segmentation performs across dif-

ferent intensities, as if there is no valve click. When this is compared to the

automated segmentation there is a difference, but automated segmentation also

managed to ignore the valve click. This last results (Figure 10) demonstrate also

the important improvement compared to the work of Tschirren et al. [11] since

these results cannot be reproduced using just envelope detection. When the

numerical results of the manual and automated segmentations are compared,

this knowledge from the visual inspection should also be taken into account,

since it is disputable whether some of these errors are errors indeed. If manual

and propagated segmentations are observed as sampled function and denoted

as mi[t] and pi[t], respectively, where i stands for the instance of the Doppler

outflow image, the error may be measured as average difference between mi[t]

and pi[t] and written as:

de =
1

K ·M

K∑
i=1

M∑
t=1

|mi[t]− pi[t]| (13)

where K stands for the number of images, i.e. K = 59, and M for the number

of samples in the time (phase) frame, i.e. M = 100. Using this measure we may

say that the propagated segmentation deviates in average by 4.6 pixels from

the manual. Since all the images have been resized to 100-by-100 pixels, images

have 100 samples in the velocity direction and so do the functions mi[t] and

pi[t]. Since the transformation is done along th y-axis this error corresponds to

4.6%.

The sample correlation coefficient between manual and propagated segmen-

tation of all outflow profiles is also calculated. This is done using the Equation:

r =
1

M − 1

M∑
t=1

m[t]− µm

σm

· p[t]− µp

σp

(14)



Here r denotes the sample correlation coefficient for one instance of the outflow

profile, and M , m and p are used as defined above. The average sample cor-

relation coefficient of the population is r = 0.98 with the population standard

deviation σr = 0.024. The minimal and maximal sample correlation coefficient

between manual and propagated segmentation are rmin = 0.86 and rmax = 0.99,

respectively, which shows excellent statistical correlation between manual results

and the proposed method for atlas-based segmentation.

5.5. Atlas-based segmentation validation: Patients

In the previous subsections, the validation is done on the aortic outflow

profile that is either artificially created or belongs to the data set that is used to

create the atlas. To validate the segmentation procedure on the outflow profiles

from different data sets 89 outflow profiles are selected. 36 of these outflow

profiles belong to patients with coronary artery disease (CAD) and 53 of them

belong to patients with aortic stenosis (AS). Again, the manual segmentation

is propagated from the atlas to all the instances of the patients outflow profiles

as described in section 4.3. These images are compared with the ones that

are segmented manually by the same cardiologist. In Figure 11, representative

images of the patients with diagnosed CAD and AS are presented, with both

manual and automated segmentation of the outflow profile.

Figure 11: The comparison of manual (white) and propagated (black) segmentation for pa-

tients with diagnosed CAD (left) and AS (right)



If the same measurements as for normal patients are used (see Subsection

5.4), we can see that the average automated segmentation error with respect to

the manual segmentation is de = 5.08% for the patients with diagnosed aortic

stenosis, and de = 8.70% for the patients with diagnosed coronary artery disease.

At the same time, the correlation coefficient between manual and automated

segmentation is r = 0.98 both for the patients with AS and CAD. The maximum

sample correlation coefficient is rmax = 0.99 for both set of patients, while the

minimum sample correlation coefficient is rmin = 0.96, for patients with CAD,

and rmin = 0.92, for patients with AS.

5.6. Cardiac parameter-based segmentation validation

In this subsection, we describe a segmentation validation procedure based

on the comparison of the cardiac parameters extracted from two aortic out-

flow profiles. The first aortic outflow profile is obtained by the proposed auto-

matic segmentation method, while the second aortic outflow profile is obtained

by manual segmentation. Cardiac parameters that are measured are: time to

peak, peak value and rise-fall time ratio. These parameters have shown to have

potential for use in diagnosis of some of the cardiac disease (see [23] or [8]),

however, they are not routinely used in clinical practice since their extraction

is often subjective, being both dependent on computer display (brightness and

resolution) as well user interpretation, as will be shown in the next section.

Let ttpm and ttpa denote time-to-peak values extracted by manual and au-

tomated procedures, respectively. Similarly, let the same notation be used for

the maximum value and rise-to-fall-time-ratio parameters (maxm, maxa, trfm,

and trfa). Since outflow velocity profiles belong to different patients, different

pacing and different velocities are expected. Therefore, to exclude the variation

due to different patient characteristics and to observe the segmentation variation

only, relative parameter errors are calculated and given as percentages rather

than absolute values.

In this experiment, we calculate the relative error between the automated

and manual segmentation, which in the case of time-to-peak parameter is ex-



pressed as:

ettp =
ttpa − ttpm

ttpm
(15)

For comprehensive analysis of method accuracy we calculated three statisti-

cal error measures: mean error, standard deviation of error, and mean absolute

error. If a systematic error (bias) is present, it will be evident from the mean

error and from the mean absolute error. Standard deviation of error does not

detect systematic error. If no systematic error is present, then the mean er-

ror will be equal to zero and hence is not useful for error evaluation. In this

case, both standard deviation of error and mean absolute error can be used for

accuracy evaluation.

In Table 1 mean error, standard deviation of error, and mean absolute error

of the observed cardiac parameters (automated vs. manual) are presented. The

results from patients with diagnosed coronary artery disease (CAD), patients

with diagnosed aortic stenosis (AS), and volunteers with normal outflow profiles

(N) are given in separate columns.

It is evident from Table 1 that certain amount of systematic error exists.

Standard deviation of error and mean absolute error are measures that show the

amount of error, other than systematic error. The table shows that standard

deviation of error and mean absolute error are highly correlated. Therefore, we

can conclude that both measures can be used for evaluation of error.

For the interpretation of the results, one should note that the time to peak

falls somewhere around the first quarter of the ejection time frame. For the

images presented in this paper, that would be around 25 pixels. If e.g. time-to-

peak parameter estimate is inaccurate by one pixel only this will result in 4%

error. This can be observed on the Figure 11 (left) where the relative errors

in terms of the cardiac parameters are: ettp = 16.28%, etrf = 21.71% and

emax = 10.74%; which are the values that are comparable with the standard

deviation of the relative error in Table 1.

In addition to error measures, we have calculated the correlation between

cardiac parameters extracted from manual and automated segmentation. For



CAD AS N

µ(ettp) 2.71% -4.15% 8.91%

σ(ettp) 17.62% 14.77% 18.16%

µ(|ettp|) 12.65% 11.75% 13.38%

µ(etrf ) 4.94% -5.74% 11.88%

σ(etrf ) 27.09% 20.74% 24.21%

µ(|etrf |) 18.34% 16.67% 18.47%

µ(emax) -9.33% 2.66% 2.92%

σ(emax) 8.14% 4.82% 5.91%

µ(|emax|) 10.22% 4.58% 5.17%

Table 1: Mean error, standard deviation of error, and mean absolute error between cardiac

parameters obtained from manual and automated segmentation. Rows 1-3 show errors for

time-to-peak parameter, rows 4-6 show errors for rise-to-fall-time-ration parameter, rows 7-9

show errors for peak-value parameter.

example, for the time-to-peak parameter the correlation is defined as:

c(ttpa, ttpm) =

∑K

i=1
ttpa · ttpm√∑K

i=1
(ttpa)2

√∑K

i=1
(ttpm)2

(16)

The results have shown a very high statistical correlation between the cardiac

parameters extracted using our method and the cardiac parameters extracted by

the expert cardiologist. For example when time-to-peak parameter is measured

a correlation of c(ttpa, ttpm) = 0.988 is achieved, for the rise-fall time ratio the

correlation is c(trfa, trfm) = 0.974, and for time to peak c(maxa,maxm) =

0.997.

5.7. Intra-observer variability

In the previous subsections, the proposed method is compared to an ex-

pert manual segmentation. However, it is well known that there can be a con-

siderable intra-observer and inter-observer variability of the results of manual



segmentation. The intra-observer error is the error between subsequent results

of the segmentation of the same image performed by the same person. The

inter-observer error is obtained when several different people segment the same

image. Typically, the inter-observer error is larger than the intra-observer error.

One must be aware of these errors when a manual segmentation by one or more

expert cardiologists is used as a validation reference, as these errors limit the

validation accuracy.

To quantify the intra-observer error the following experiment is conducted.

An expert cardiologist segmented 21 images that she already segmented one

week ago. If the segmentation results are observed as two sets of measurements,

this gives a total of 2100 measurements (since images are resized to 100-by-100

pixels) for each set. If the measurements m1(i) from the first set are interpreted

as realizations of the random variable m1 and the measurements m2(i) from the

second set are interpreted as realizations of the random variable m2 then the

random variable dm defined as:

dm = m1 −m2 (17)

describes the difference between the two measurements. Since we do not know

which measurement is the reference one (which represents the correct segmenta-

tion) we calculate the standard deviation as an estimate of the variance σ2(dm)

of the random variable and the mean absolute error (µ(|dm|)). Similarly, let

da = a − m be the random variable representing the difference between the

automated (a) and manual delineation (m). Since we had 59 images from vol-

unteers, and 89 images from patients, this results in a total of 14800 random

variables. The realizations of these two random variables are shown in Figure

12, with σ2(dm) = 28.94 and σ2(da) = 47.51.

The mean absolute error between the automatic and the manual segmenta-

tion is equal to µ(|da|) = 5.57px, while the standard deviation of the difference is

σ(da) = 6.89px. The mean absolute error between two different segmentations

of the same image made by the same cardiologist is equal to µ(|dm|) = 3.62px,

while the standard deviation of error is σ(dm) = 5.38px. We conclude that the
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Figure 12: The upper graph shows the difference between two manual segmentations (intra-

observer variability), while the lower graph shows the difference between manual and auto-

mated segmentation.

variability of the difference between the automatic and manual segmentation is

comparable to the intra-observer variability (6.89px vs. 5.38px).

The intra-observer variability of the cardiac parameter extraction is also

calculated. To compare it with the results from Section 5.6, the standard de-

viation of the relative time-to-peak error is calculated as in Table 1 and gives

σ(ettp) = 11.91%, while the standard deviation of relative error of rise-fall time

ratio gives σ(etrf ) = 16.28%. When we look at the standard deviation of rela-

tive peak value error, we can see that manual segmentation has a variability of

σ(emax)) = 5.15%. If these results are compared with the rest of the results in

Table 1, we can see that the parameters from automated segmentation varies

from the manual segmentation just slightly more than the manual segmenta-



tion from itself. The same is true if we observe the mean absolute error since

µ(|ettp|) = 9.07%, µ(|etrf |) = 12.54%, and µ(|emax|) = 3.43%. While having in

mind these results and the high correlation between manually and automatically

extracted parameters we conclude that one may use the proposed atlas-based

segmentation for cardiac parameters extraction.

5.8. Statistical analysis of manual and automatic parameter measurement

For statistical validation the automated and manual methods for parameter

measurement, the t-test is used. Let eaparam and emparam denote the automatic-

to-manual error (error between automatic and manual parameter extraction)

and manual error (human intra-observer error). The param in the subscript

identifies which parameter is tested (ttp, trf or peak).

The proposed null hypothesis is: The mean values of the errors eaparam and

emparam are equal i.e. the intra-observer parameter error is equal to the error be-

tween the automated and manual parameter extraction. The t-test allows a com-

parison of two datasets with different numbers of samples. In this experiment

the first dataset has 21 and the second dataset has 148 elements (Section 5.7).

The t-test is performed using Satterthwaite’s approximation to calculate the

number of degrees of freedom and without assumption of the same variability

of both datasets (Behrens-Fisher problem). The p-values calculated from the

t-test are given in Table 2.

ttp trf peak

p− value 0.6843 0.7398 0.3908

Table 2: The p-values for tome-to-peak, rise-fall-time-ratio and peak cardiac parameter.

The p-values for all three cardiac parameter errors (time-to-peak, rise-fall-

time-ratio and peak value) are much above the traditionally used significance

level (α) of 0.05. One rejects the null hypothesis if the p-value is smaller than

or equal to alpha. Since α = 5% is much lower than the lowest p-value we may

conclude that there is no statistically significant difference (at the 5% level)



between the datasets or that there is no enough evidence to reject the null

hypothesis that the intra-observer parameter error is equal to the error between

the automated and manual parameter extraction. As we can see, this is true for

all the cardiac parameters evaluated in this paper.

6. Discussion and Conclusion

The main contribution to the current state of the art presented in this paper

is the proposed atlas-based segmentation method, as the first fully automatic

aortic outflow segmentation method presented in literature.

A comprehensive validation of the registration method is conducted using

an in-silico phantom (Section 5.1), 59 outflow profile ultrasound images from

30 healthy volunteers (Section 5.2), and the inverse consistency test (Section

5.3). The exhaustive validation of the atlas-based segmentation is done with

respect to an expert manual segmentation. First, the 59 outflow profiles form

the healthy volunteers are segmented using the atlas described in Section 4.2 and

segmentation described in Section 4.3. The validation is described in Section

5.4. Second, 89 outflow profiles from the patients are segmented using the same

atlas and the same segmentation procedure and validated in Section 5.5. In

both experiments the difference and correlation between manual and propagated

segmentation is calculated. Third, the segmentation is evaluated based on the

cardiac parameters extracted from the automated segmentation (Section 5.6).

Finally, the results are compared to the intra-observer variability of the manual

segmentation (Section 5.7 and Section 5.8).

The phantom validation demonstrated that the registration is quite accurate,

with an error of the transformation vector around 2% (see Section 5.1), at the

same time the validation on real images gives an error of the transformation

vector of around 3% (see Section 5.2). A portion of the errors is due to the

asymmetry of the forward and backward transformation as explained in Section

5.3.

When the results of the automatic segmentation of healthy volunteers are



compared to the manual segmentation by an expert cardiologist, the differ-

ence, as an error measure of the automated segmentation, is 4.6%, on average.

The correlation between the manual and automatic segmentation is on average

r = 0.98. Thus, we may conclude that the proposed method for the image

registration may be used for the automatic segmentation of Doppler ultrasound

images. Additionally, due to the intrinsic properties of the method, the method

handles the valve click correctly and therefore is especially valuable in the au-

tomatic segmentation of the aortic outflow profiles.

The segmentation validation on the patients showed that the automatic seg-

mentation with respect to the manual segmentation differs by 5.08% for the

patients with the diagnosed aortic stenosis, and 8.70% for the patients with

the diagnosed coronary artery disease. For both set of patients the correlation

of automated and the manual segmentation is around r = 0.98. All of this

shows us that the proposed atlas can be used for the patients as well as for the

volunteers.

The registration and segmentation results are condensed in Table 3.

Validation type Error

Phantom 2.2%

Real images 2.9%

Atlas/volunteers 4.6%

Atlas/AS 5.1%

Atlas/CAD 8.7%

Table 3: Condensed experimental results. First two rows show the registration error (measured

on synthesized examples), while the last three rows show the segmentation error (measured

on empirical data).

If the standard deviation of the difference between manual and automated

segmentation is calculated over the whole set (volunteers and patients) and com-

pared to the intra-observer variability we can see that both errors have the same

order of magnitude (Section 5.7). The same conclusion holds for the average of



absolute values, which is summarized in Table 4. In addition, Section 5.8 shows

that there is no statistically significant difference between automatic-to-manual

and manual (intra-observer) error. In this sense, we can conclude that the accu-

racy of the method is fundamentally limited by the (in)accuracy of the manual

segmentation.

Comp-Human INTRA

σ(ettp) 17% 12%

µ(|ettp|) 12% 9%

σ(etrf ) 23% 16%

µ(|etrf |) 18% 13%

σ(emax) 6% 5%

µ(|emax|) 7% 3%

Table 4: Standard deviation and average of absolute values of percentage difference between

cardiac parameters from manual and automated segmentation.

As reported, the mean value of the absolute difference between the auto-

mated and the manual segmentation is equal to µ(|da|) = 5.57px, while the

standard deviation of the difference is σ(da) = 6.89px. When this is compared

to the mean value of the absolute difference between two different segmentations

of the same image made by the same cardiologist (µ(|dm|) = 3.62px) and the

standard deviation of the difference (σ(dm) = 5.38px) it is obvious that these

two segmentations are relatively close to one another. This is even stronger em-

phasized when the correlation between cardiac parameter extracted from auto-

mated and manual segmentation is observed since correlations for time-to-peak,

rise-fall time ratio, and peak parameter are c(ttp) = 0.9875, c(tr/f ) = 0.9741,

and c(max) = 0.9966, respectively. Therefore, we conclude that the proposed

atlas-based segmentation has comparable accuracy and precision to a human

expert.
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