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According to Greek mythology, Prometheus' liver grew back nightly after it was removed 

each day by an eagle as punishment for giving mankind the fire. Hence, the concept of tissue 

and organ regeneration is not new. Combinations of the 3 major components of regenerative 

medicine: cells, biomaterials and bioactive molecules have created a new paradigm of future 

therapeutic options for most species. Orthopedic injuries are a source of enhanced misery and 

economic burden, because tissues like cartilage, meniscus, and intra-articular ligaments do not 

heal. Even the bone repair, which normally occurs spontaneously, can fail. The regeneration 

of orthopedic tissues requires cells, morphogenetic signals, scaffolds, and an appropriate 

mechanical environment. The last Special Issue of International Orthopaedics covering 

regeneration of bone, cartilage and tendon has been edited by us in 2007 [1]. Since, the field 

of tissue engineering and skeletal regeneration has progressed by development of novel 

biomaterials, devices, growth factor carriers and their use in patients.  

Obstacles to the sustained delivery of individual growth factors can be addressed by gene 

transfer or smart scaffolds based on natural products, synthetic materials, or devitalized 

extracellular matrix. Traditional tissue engineering practices are costly, cumbersome, and not 

well suited to treating large numbers of individuals and, therefore, approaches using intrinsic 

biological processes in vivo avoid the need for ex vivo expansion of autologous cells and 
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multiple procedures. However, clinical translation remains a challenge. Gene therapy 

strategies being developed are reviewed by Evans et al. [2] and include direct injection of 

vectors into sites of injury, use of genetically modified allogeneic cell lines and the intra-

operative harvest of autologous tissues that are quickly transduced and returned to the body. 

Recently, in silico models for enhanced understanding and optimization of cells, carriers, 

culture and clinics have been developed for better integration of in silico tools into clinical 

practice [3].  

The use of bone marrow-derived mesenchymal stem cells (BM-MSCs) due to low yields and 

significant in vitro culture expansion has financial implications. Also, harvesting of bone 

marrow cells is paralleled with associated morbidity. The development of bone tissue 

engineering is directly related to progress in materials technology. While the inclusion of 

materials requirements is standard in the design of engineered bone substitutes, the potentials 

of BM-MSCs in trauma and orthopaedics presents the clinical need for bone tissue-engineered 

alternatives. 

The use of induced pluripotent stem cells (iPSCs) in bone regenerative strategies has been 

advanced to present for the first time in this issue a novel direct-plating method with a 

clinically relevant approach for generating large numbers of homogenous iPSC-derived 

osteoprogenitor cells for bone repair [4]. The cells have a high osteogenic differentiation 

capacity, indicating that this novel method provides clinically applicable and simple 

procedure for generating a large number of homogenous iPSC-derived osteoprogenitor cells 

for bone healing.  

The use of BM-MSCs for joint and bone diseases is presented by Marmotti et al. [5], with 

particular reference of characterization of stem cell site of residence, differentiation potential 

and therapeutic prospective. Their potential use in bone, cartilage and meniscus is discussed. 

Bone cell therapy following skeletal injuries requiring bone augmentation has emerged as a 

promising technique to augment and promote bone regeneration [6]. To initiate clinical trials 

using bone cells, appropriate preclinical studies with clearly defined end-points are required 

[7]. In this respect harmonization procedure between European Medicines Agency and 

national regulatory agencies are under consideration in regard to several projects funded by 

the European Commission, including REBORNE and OSTEOGROW.  

The efficiency of the biologic augmentation of the rotator cuff repair using iliac BM-MSCs 

has been evaluated in 45 patients by Hernigou et al. [8]. A significant improvement in healing 
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outcomes has been achieved, supporting the use of MSC augmentation and reduced number 

of re-tears observed in MSC treated patients.  

Among other cells with a potential to regenerate organs the application of pericytes for 

mesenchymal tissue engineering is an expanding field of interest elaborated by Mravic et al. 

[9].  

An increased risk for tumor local recurrence following removal of malignant primary bone 

tumors has been investigated in patients treated with BM-MSCs and the local cancer 

recurrence was not increased following autologous cell therapy in the follow-up period of 

more than ten years [10].  

Osteonecrosis of the femoral head is one of unsolved medical problems for which an 

appropriate preclinical model has not been available. However, in paper by Poignard et al. 

[11] a novel pig model is presented and seems to be relevant for clinical trials. 

Open tibia fractures are associated with a high proportion of bone non-unions and the use of 

bone marrow autologous concentrate has been tested in 43 patients suggesting that this 

technique is effective, harmless and cost affordable [12]. In a retrospective study of 523 

patients with bone marrow aspiration and 435 with classical iliac crest bone graft procedure, 

the number of complications at the harvesting site was ten times lower than complications 

observed with the classical approach [13]. 

The extra-cellular environment is complex with a wide range of physical features, 

topographies and protein compositions. Two-dimensional (2D) substrates have been widely 

used to study the effect of material properties on cell migration. However, such substrates do 

not capture the intricate structure of the extra-cellular environment. Recent advances in 

hydrogel assembly and patterning techniques have enabled the design of new three-

dimensional (3D) scaffolds and microenvironments. This growing field of research will have 

significant impact on tissue engineering, regenerative medicine and in the design of 

biomaterials. The most promising hydrogels for articular cartilage, osteochondral and bone 

defects in combination with inductive signals and cell sources are reviewed by Moreire at al. 

[14].  

Nano-materials have a significant impact in tissue engineering. The types of nano-structured 

scaffolds and nano-particle delivery systems for bone regeneration are discussed by Ivkovic et 

al [15].  
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The level of angiogenic cytokines in synovial fluid and plasma of patients with osteoarthritis 

(OA) and healthy volunteers has been explored by Mabey et al. [16] to suggest that folistatin, 

angiopoietin-2, and VEGF may have a potential as biochemical markers for assessing the OA 

severity. In addition, cytokines and chemokines involved in activation of osteoclast 

progenitors have been analyzed in patients with psoriatic arthritis by Sucur et al. [17] to 

identify crucial bone/joint chemotactic mediators as promising therapeutic targets in arthritis.  

Articular cartilage has an extraordinary biomechanical performance and simple structure. 

However, it is vulnerable to multifactorial damage and insufficient to self-repair, isolated in 

articular capsule without nerves or blood vessels. Restoration of hyaline cartilage in OA is a 

clinical challenge to recreate normal functionality over a long period. Pre-clinical trials have 

achieved promising outcomes in cartilage regeneration using MSCs. The rationale and 

technologies of MSC-based hyaline cartilage repair involving tissue engineering, 3D 

biomaterials and growth factors is elaborated in translation and application of MSC-based 

chondrogenesis for OA treatment. In the articular cartilage repair process, it is imperative to 

consider the type of biologic and the method of delivery to achieve the desired effect in 

cartilage repair. A number of spatiotemporal strategies will be discussed for the controlled 

delivery of bioactive factors in cartilage tissue engineering applications. Focal chondral and 

osteochondral knee lesions are common conditions hard to treat involving young active 

patients with high expectations of symptoms relief. Autologous osteochondral transplantation 

has been performed in 31 men and women affected by such lesions and followed for 24 

months. Filardo et al. [18] reported that the clinical improvement is slow and patients develop 

symptoms attributable to the donor area, reducing thus the overall benefit of the procedure.  

The use of bone allografts for reinforcing major osteolytic bone lesions of the acetabulum at 

revision total hip arthroplasty has been elaborated in 60 patients treated with or without an 

additional graft enrichment with BM-MSCs. Results indicate a significantly lower rate of 

acetabular defect failures in patients with BM-MSCs enriched allograft procedure [19]. 

To combine gene therapy and cell transplantation approaches to enhance meniscal repair 

nonviral gene transfer systems have been tested in human juvenile and adults meniscal fibro-

chondrocytes to suggest a safe and effective procedure for maintaining the expression of 

selected transgenes [20]. In addition, 3D alginate spheres have been tested for culturing 

human meniscal fibro-chondrocytes transfected with expression plasmid vectors carrying the 

Photinus pyralis luciferase gene, the Escherichia coli β-galactosidase gene or a human FGF-2 
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cDNA. Results support cell based approach for meniscal repair using meniscal fibro-

chondrocytes overexpressing FGF-2 [21].  

Recently, scaffolds consisting of natural polymers, such as collagen and gelatin, 

bioabsorbable synthetic polymers, such as polylactic and polyglycolic acid, and inorganic 

materials, such as hydroxyapatite, as well as composite materials have been developed.  

The efficacy of meniscal replacement therapy has been tested in biopsies of patients priorly 

treated with implanted allografts or synthetic scaffolds. Moran et al. [22] suggest that both 

viable allograft and a polyurethane meniscal scaffold show enhanced regenerative patterns 

over the deep frozen allograft following surgical implantation. Due to limitations of viable 

allograft availability development of synthetic meniscal scaffolds is a promising option.  

Collagen is the most promising material for tissue engineering due to its biocompatibility, 

biodegradability and specific cell adhesion domains, including the arginine-glycine-aspartic 

acid (RGD) motif. Following the integrin receptor on the cell surface binding to the RGD 

motif on the collagen molecule, cell adhesion is actively induced. Grassi et al. [23] review 

clinical outcomes in patients treated with collagen meniscus implant (CMI) and suggest an 

improvement in knee function and pain with a low rate of reoperations.  

BM-MSCs have been further tested in an experimental model of osteogenesis imperfecta in 

mice. Cells delivered locally to femurs of mice differentiate into osteoblasts and osteocytes 

and maintain their progenitor potential in vivo, suggesting that local delivery of autologous 

MSCs in which osteogenesis imperfecta mutations have been corrected is a promising 

therapeutic approach for patients with this deleterious bone phenotype [24].  

The demineralized bone matrix (DBM) has been used to originally isolate and characterize 

bone morphogenetic proteins (BMPs) [25-29]. However, due to osteoinductive potential of 

DBM several preparations from human bone are still in clinical use. Fassbender et al. [30] 

compare two different clinically used DBMs to conclude that they are not capable of 

reconstructing critical size defects in a rat model.  

The use of induced membranes for critical bone limb defects are reviewed by Auregan et al. 

[31] who suggest that this technique is important for facilitating bone inclusion of new bone 

substitutes in recent bioengineering procedures.  

To test whether the potential systemic bioavailability following a local bone administration of 

BMP2 and BMP7 might affect the skeletal metabolism, Dumic-Cule et al. [32] systemically 
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administered BMP2 and -7 in animals lacking calciotropic hormones and in this issue report 

that both BMPs increase the bone volume. These results suggest that BMP2 and -7 released 

from commercially used bone devices do not mediate a systemic bone loss in previously 

treated patients.  

Das et al. [33] explored the use of BMP7 in improving bone healing in 20 patients with 

congenital pseudoarthrosis of the tibia and found that at the 5 year follow up BMP7 and 

autograft were equally effective to autograft alone, although there was a trend to primary bone 

union in patients treated with BMP7. Manrique et al. [34] compared the biomechanical 

properties of tricalcium phosphate, tricalcium phosphate with BMP7 and autologous bone 

marrow aspirate with BMP7 of vertebral lesions in a porcine model and found that tricalcium 

phosphate with BMP7 generate major resistance of vertebrae to an external energy.  

Flouzat Lachaniette et al. [35] explored the bone fusion rates following use of anterior 

lumbar interbody fusion in 51 patients treated with autologous iliac crest bone graft and 

BMP2 using thin-cut CT scan images at 1 year follow up. Authors report that BMP2 is 

inferior to the autologous bone graft regarding the rate and quality of bone fusion. 

This special issue composed of non-clinical and clinical reports including systemic reviews on 

specific musculoskeletal topics should support further progress in developing new strategies 

and therapies for skeletal tissues, specifically for the aged population in need. 
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