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A B S T R A C T

Finite disarrangements of important (vital) physiological agents and nutrients can induce plethora of beneficial
effects, exceeding mere attenuation of the specific stress. Such response to disrupted homeostasis appears to be
universally conserved among species. The underlying mechanism of improved fitness and longevity, when
physiological agents act outside their normal range is similar to hormesis, a phenomenon whereby toxins elicit
beneficial effects at low doses. Due to similarity with such non-linear response to toxins described with J-shaped
curve, we have coined a new term “mirror J-shaped curves” for non-linear response to finite disarrangement of
physiological agents. Examples from the clinical trials and basic research are provided, along with the unifying
mechanisms that tie classical non-linear response to toxins with the non-linear response to physiological agents
(glucose, oxygen, osmolarity, thermal energy, calcium, body mass, calorie intake and exercise). Reactive oxygen
species and cytosolic calcium seem to be common triggers of signaling pathways that result in these beneficial
effects. Awareness of such phenomena and exploring underlying mechanisms can help physicians in their ev-
eryday practice. It can also benefit researchers when designing studies and interpreting growing number of
scientific data showing non-linear responses to physiological agents.

1. Introduction

Homeostasis/homeodynamics critically depends on the constant
supply/exchange of the important (vital) physiological agents and nu-
trients within the normal (physiological) range. These physiological
agents include molecules (e.g. glucose), energy (e.g. heat) or forces
exerted upon the cell or organism (e.g. osmolarity/osmotic pressure).
Deviation from the normal range of physiological agents disrupts
homeostasis, causing stress and potentially injury. Regulatory me-
chanisms may be activated in parallel in the attempt to mitigate the
specific stress and maintain homeostasis. However, finite disarrange-
ments of many physiological agents can also trigger beneficial re-
sponses that are unrelated to the specific stressor, such as increased cell
proliferation, which may translate into increased functional capacity,
fitness and ultimately longevity.

The underlying mechanism of improved fitness and longevity when
physiological agents act outside their normal range appears to be si-
milar to hormesis, a phenomenon whereby toxins elicit beneficial ef-
fects at low doses [1]. Such toxic agents exert moderate stress at low
doses that activates adaptive responses, which not only improve their
handling [1], but also induce non-related potentially beneficial effects

such as cell hypertrophy, proliferation and migration, increased func-
tional capacity, longevity, and others [2]. For an elaborate review
pertaining to the nature of hormesis please see following articles
[1,3,4]. Non-linear response to toxins is described as J- or U-shaped.
Based on the shape of dose-response curve, the term hormesis was ex-
tended to all agents exhibiting characteristic biphasic response (low
dose-stimulation, high dose-inhibition). Stress induced by toxins and
disarrangement of physiological agents is commonly associated with
the overproduction of reactive oxygen species (ROS) or intracellular
calcium overload. These molecules are potent triggers of various sig-
naling pathways that on one hand increase resistance to stress, and on
the other can regulate different functions like cell proliferation [5–7].

Induction of hormesis-like response by finite disarrangement of
physiological agents may explain seemingly counterintuitive results
from basic and clinical studies. Some of these include reduction in
overall mortality of certain groups of diabetic patients with episodes of
hypoglycemia [8] or hyperglycemia [9], or lower overall mortality of
moderately obese people [10]. The purpose of this review is to provide
evidence and mechanisms for the novel concept of hormesis-like re-
sponse occurring when physiological agents (like glucose or osmolarity)
act outside their normal range. Such response exceeds mere adaptation
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to mitigate the stress, and produces broader beneficial effects de-
pending on the specific agents and the cellular context. We propose the
term “mirror J-shaped curves” for this non-linear response to finite
disarrangement of physiological agents starting at both ends of the
normal range (Fig. 1). Results from the great number of clinical and
basic studies suggest that non-linear response to physiological agents
reflects a universal mechanism improving fitness and promoting long-
evity of living organisms.

2. Mechanisms and pathways of hormesis

The receptor(s) and signal transduction cascade(s) of many hor-
metic agents have been identified. Please see other articles for com-
prehensive review on signaling pathways and effectors of hormesis
[2,3,11]. Hormetic stimuli (also called hormetins) activate relatively
ubiquitous defense programs in different organs [12]. In general, the
defense programs act to reduce the stressor (e.g. upregulation of SOD
[13,14] or stimulation of microsomal P450 enzymes for detoxification
of alcohol [15]), repair damage (e.g. upregulation of heat shock pro-
teins [14] or DNA repair enzymes [16]), remove damaged elements and
cells that produce secondary mediators of injury (e.g. autophagy of
damaged mitochondria [2,17] or proteosomal degradation of irrepar-
ably damaged proteins [18]), block cell death pathways (e.g. inhibition
of mitochondrial permeability transition pore opening [19] or upre-
gulation of antiapoptotic proteins [20]), and others.

Cellular adaptation to stress encompasses activation of various sig-
naling pathways and effectors of cytoprotection, including PI3K/Akt
pathway, ERK1/2, KATP channels, HIF1, induction of vitagenes and
many others [14,21–23]. Since cytoprotective and anabolic signaling
pathways share common mediators in cells, hormetins can also induce
cell proliferation, for example via activation of MAPK/ERK1/2 pathway
[24], which is also active in cell migration [25] in addition to activation
of JNK, PI3K/Akt or p38 [26]. Overlap in signaling cascades among
preconditioning, cell proliferation, migration, etc., may explain why
hormetins induce not only cytoprotection, but also an increase in
functional capacity and growth, ultimately translating to increased
fitness and longevity. Cytoprotection induced by ischemic or pharma-
cological preconditioning depends on the activation of specific re-
ceptors and associated signaling cascades (e.g. adenosine and A1 re-
ceptors) [27]. However, preconditioning also depends on signaling
initiated by ROS or calcium overload with PKC being directly activated
by both [27,28]. Modification of energy metabolism and mitochondrial
function is important for hormesis, as it maintains ATP production via
anaerobic glycolysis and other processes regulated by AMPK [29]. It
also attenuates mitochondrial ROS production and calcium overload via
mild mitochondrial depolarization [19]. Hormesis is often regarded as
adaptive hormesis since is provides adaptation to disrupted homeostasis
produced by a certain toxin [30]. However, hormesis exceeds mere

adaptation to mitigate the effects of the specific stressor (e.g. ROS up-
regulate antioxidants [13]). It also produces unrelated beneficial events
(e.g. arsenite induces fibroblast proliferation [31]), likely by activating
common signaling cascades (please see below), ultimately translating
into increase in functional capacity and longevity.

The majority of endogenous and non-toxic hormetins described so
far include signaling molecules, cytokines and hormones, such as nor-
epinephrine, nitric oxide, or IL-8 [3]. Their dose-response curve is also
(single) J-shaped. The increase in functional capacity elicited by these
hormetins depends on activation of their receptor (e.g. norepinephrine
and β-adrenergic receptors) and the effects are relatively specific for
that agent, i.e. receptor. This includes activation of distinct signal
transduction cascade (here cAMP, PKA, etc.) and effectors (here muscle
hypertrophy) [32]. Overstimulation of the receptor can induce sec-
ondary pathological processes that are relatively common for different
types of injury. In this example, β-adrenergic receptor overstimulation
may cause cellular calcium overload, cell injury and death [33].

3. Non-linear response to physiological agents

3.1. Non-linear response to glucose

Cells utilize glucose for energy metabolism and for making struc-
tural molecules. Blood glucose concentration between 4.4 and 6.1 mM
is considered normal in humans. Severe hypoglycemia (being defined as
glucose< 2.8 mM or requiring specific intervention and being asso-
ciated with specific mortality) increases mortality according to the
ACCORD trial [8]. Conversely, retrospective analysis of data from
10251 participants with type II diabetes mellitus in the ACCORD study
suggested protective effects of mild hypoglycemia (2.8–3.9 mM) [8].
Namely, in a specific subgroup of patients with ≥1 severe hypogly-
cemic episodes, mild hypoglycemia was associated with lower risk of
death (HR 0.68, 95% CI 0.36–1.24). Authors argued that this ob-
servation is caused by “preconditioning“ effect of mild hypoglycemia
that increased adaptive responses and improved resistance to sub-
sequent episodes of severe hypoglycemia. Indeed, Puente et al. de-
monstrated in Sprague-Dawley rats that three episodes of moderate
hypoglycemia reduced brain injury and defects in spatial learning and
memory caused by subsequent severe hypoglycemia [34]. Possible
mechanisms of brain protection by hypoglycemic preconditioning in-
clude enhanced uptake of glucose [35] and other substrates [36] during
prolonged hypoglycemia, and GABA-induced decrease in neuronal ac-
tivity and excitotoxicity [37]. In addition to direct preconditioning/
non-linear response to low glucose, hypoglycemia may elicit cytopro-
tection also by upregulating regulatory hormones, like catecholamines,
which can induce preconditioning by activating adrenergic receptors
and PKC [38] or glucocorticoids and their receptors [39]. Protective
effects of calorie restriction could be mediated in part by accompanying

Fig. 1. Hormetic dose-response curves. (A)
Typical J-shaped curve of hormesis induced by toxic
agents. At low doses some toxins exhibit beneficial
effects (green), while detrimental effects (red) occur
at high doses. (B) Physiological agents induce
hormesis-like response when acting outside their
physiological range, as shown by the proposed
mirror J-shaped curves. At slightly lower or higher
doses than the normal range (green), physiological
agents trigger response that produces beneficial ef-
fect that exceeds sole adaptation to the stress and
produces broader positive effects, such as increased
functional capacity and/or fitness. A greater devia-
tion from the physiological range harms the cell/
organism. Altogether this represents a non-linear
response. (For interpretation of the references to
color in this figure legend, the reader is referred to
the web version of this article.)
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hypoglycemic episodes (please see below).
High glucose causes wide range of disorders associated with non-

enzymatic glycation of biomolecules, increased osmotic load and oxi-
dative stress due to increased production of ROS by mitochondria and
NADPH oxidase [40,41]. However, a study by Riddle et al. analyzing
data from the ACCORD study showed that patients receiving standard
treatment (not aimed at intensive glycemic control) displayed lower
risk of all-cause mortality when average HbA1c was slightly greater
(7–8%) than the normal level (< 6%) [9] The HbA1c is a clinical
measure of glycemia in the past 8–12 weeks and greater values indicate
greater glycemia. Unlike severe diabetes that aggravates myocardial
infarction [42] and increases long-term mortality rate in patients fol-
lowing myocardial infarction [43], these outcomes are beneficially af-
fected by mild diabetes [42,44,45]. Our studies have shown that acute
high glucose abrogates anesthetic preconditioning in animal and cell
culture models [41,46,47]. However, depending on the dose and ex-
perimental settings, high glucose can also induce preconditioning,
which likely underlies favorable outcomes of moderately higher HbA1c
in ACCORD trial. For example, preconditioning with high glucose
(25 mM for 3 days) improved resistance of isolated neonatal cardio-
myocytes to hypoxia (induced by 2.3% O2, glucose-free solution with
10% deoxyglucose and 3 mM amobarbital) [48]. In this study the im-
proved stress resistance was linked to the upregulation of PKC-δ and
attenuated calcium overload. Another study showed that high glucose
induced translocation (activation) of α, δ, ε and ϛ isoforms of PKC [49].
This is in agreement with our study showing that anesthetic pre-
conditioning translocates PKC-ε to mitochondria, thereby delaying
mPTP opening and protecting cardiomyocytes from oxidative stress
[50].

It has been demonstrated that high glucose induced proliferation of
mesangial cells [51], pancreatic cancer cell lines [52] and breast cancer
cell line (in combination with leptin) [53]. Proliferation of pancreatic
cancer cell lines BxPC-3 and Panc-1 depended on the induction of EGF
expression and transactivation of its receptor [52]. Proliferation of
breast cancer cell line MCF-7 induced by high glucose and leptin was
achieved through accelerated cell cycle and mediated by upregulation
of cyclin-dependant kinase 2 and cyclin D1. In non-diabetics, anabolic
effects of hyperglycemia can be mediated in part by stimulation of se-
cretion of regulatory hormone insulin [54].

3.2. Non-linear response to oxygen

Low oxygen levels diminish ATP production, which leads to cell
injury. Conversely, prolonged mild hypoxia and brief severe hypoxia
seem to have beneficial effects. As reviewed by Burtscher, epidemio-
logical data from different countries such as Switzerland, USA, Greece
or Andes, show that high altitudes decreased specific mortality rates
from coronary heart disease, stroke and certain types of cancer mostly
in an altitude-dependant manner [55]. At very high altitudes
(> 3000 m), the trend was reversed and mortality started to increase in
part due to chronic mountain sickness. Hypoxia appears to be the major
beneficiary factor of high altitude in addition to increased vitamin D
production and lesser air pollution. It activates transcription factor
HIF1 [56] and its target genes, which promote angiogenesis, inhibit
apoptosis and cause adaptation of energy metabolism to anaerobic
conditions [57]. Rats exposed to moderate altitude (2000 m) exhibited
an increase in the length of leukocyte telomeres and increase in the
expression of telomerase reverse transcriptase, suggesting increased life
span of these and other cells [58]. In addition, hypoxia delayed aging
and extended the life span of vascular smooth-muscle cells also by in-
creasing telomerase activity [59].

Chronic hypoxia can decrease myocardial infarct size [56] and
improve postischemic recovery in animals [60]. Heart contractility in
adult mice was increased by chronic intermittent hypoxia (4 weeks,
nadir O2 of 5–6% at 60 cycles/h for 12 h) [61]. Heart biopsies from
infants with cyanotic (hypoxemic) congenital heart defects displayed

upregulation of cytoprotection mediators, PKC-ε, p38, JUN [62], as
well as iNOS [63]. Intermittent, brief and pronounced hypoxia, which
can be observed in hypoxic or ischemic preconditioning elicits en-
dogenous cytoprotective mechanisms against prolonged ischemia-re-
perfusion injury [64]. Hypoxic preconditioning activates signaling
cascade and recruits effectors of cytoprotection similar to other types of
preconditioning, like KATP channels, ROS, NO, PKC, ERK and p38, as
reviewed in [22]. Many cell types may proliferate under the influence
of hypoxia, including neural stem cells [65], renal clear cell carcinoma
[66] and T-cell acute lymphoblastic leukemia [67], where HIF1α
played an important role.

Hyperoxia and oxygen toxicity due to oxidative stress occur when
breathing oxygen at high partial pressures. Finite normobaric and hy-
perbaric hyperoxia can induce preconditioning in various experimental
models [13,68], and it has been especially investigated in neuroscience
[69,70]. A study showed that hyperoxic preconditioning (100% O2)
protected mesenchymal stem cells from subsequent hypoxia and
downregulated caspases 1, 3, 6, 7 and 9 [71]. Elicited mediators of
cytoprotection were Akt, NF-κB and Bcl2. In general, hyperoxia retards
the growth of cells. However, hyperoxia can increase proliferation of
mesenchymal cell from lung explants cultures via IGF1 and its receptor
[72].

3.3. Non-linear response to osmolarity

Regulation of normal osmolarity of 300–310 mOsm/L is necessary
for the maintenance of cell volume, where hyposomolarity and hyper-
osmolarity cause cell swelling and shrinkage, respectively, and cell
death in extreme cases. Hypotonic shock can increase life span of yeast
cells [73]. Hypoosmolarity-induced (225 mOsm/L) hepatocyte swelling
was shown to stimulate cell proliferation that paralleled the effects of
insulin [74]. The underlying pathway triggered by cell swelling in-
cluded activation of EGF receptor, ERK1/2, p38, integrins and c-Src
kinase. HaCaT keratonocyte line also responded with proliferation to
brief hypotonic stress (174 mOsm/L), which was preceded by increase
in cytosolic calcium that likely served as a trigger for this non-linear
response [75]. Increased proliferation of prostate cancer cells caused by
hypoosmotic stimulation depended on the release of ATP and its
binding to purinergic receptor [76]. This initiated signaling cascade
involving ERK1/2, p38 and PI3K.

Studies showed that hypertonic stress by NaCl, glucose, xylitol,
sorbitol or and glycerol increased the life span of Saccharomyces cere-
visiae [77,78]. In fact, Kaeberlein demonstrated biphasic response of
yeast to varying glucose concentrations, where concentrations both
greater and lower than normal glucose concentration (as in mirror J-
shaped curves) increased the life span [78]. Authors verified that the
protective effect of high glucose was indeed due to the hypertonic
stress. They also showed that signaling pathway involved recruitment
of Sir2p which also mediates non-linear actions of calorie restriction,
further indicating that various hormetic stimuli share common path-
ways. Hypertonic solutions can induce preconditioning of the heart
[79], liver [80] and brain [81] and protect from ischemia-reperfusion.
Isolated and artificially perfused hearts of spontaneously hypertensive
rats exhibited lower creatine kinase release and better recovery of
diastolic function after exposure to 360 mOsm/L solution (extra NaCl)
just before ischemia [79]. Neuroprotective effects of hypertonic man-
nitol solutions in patients with acute ischemic stroke have been de-
scribed [82]. Hypertonic NaCl or KCl solutions exhibited pre-
conditioning effect by inducing inhibitors of inflammation [83]. Anti-
inflammatory effects of hypertonic preconditioning were also attributed
to protection of hepatocytes, which was manifested by reduced se-
questration of neutrophils and reduced generation of TNF-α [80]. Hy-
pertonic preconditioning improves osmotic tolerance of mouse brain
tissue through downregulation of aquaporine 4, which decreases water
transfer and lipopolysaccharide-induced brain edema [84]. Cell pro-
liferation and angiogenesis in supraoptic nucleus of the brain was
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observed in rats drinking 2% saline for 9 days [85]. Moreover, human
induced pluripotent stem cell are induced into proliferation and cy-
toskeleton remodeling as a response to hyperosmotic environment [86].

3.4. Non-linear response to calcium

Calcium plays many physiological roles, from activation of coagu-
lation cascade, down to intracellular signaling, etc. Beneficial effects of
hypocalcemia are reflected in experiments where brief calcium deple-
tion-repletion episodes (calcium preconditioning) induced protection
from massive depletion-repletion of calcium (calcium paradox) [87].
Disruption of the cell membrane, calcium overload, depletion of high-
energy phosphates and oxidative stress were hallmarks of calcium
paradox [87]. Calcium preconditioning involved a release of adenosine
as a mediator of cardioprotection [87], which is common for other
types of preconditioning. It has been shown that mesencephalic astro-
cyte-derived neurotrophic factor is another mediator of calcium pre-
conditioning. It was secreted from cultured ventricular myocytes and
HeLa cells upon depletion of calcium from the endo/sarcoplasmatic
reticulum [88]. Nifedipine, a calcium channel blocker, can elicit pre-
conditioning of isolated rat and human pancreatic islets [89]. In cal-
cium preconditioning, brief episodes of extracellular calcium depletion
may upregulate calcium transport into the cytosol [90]. During epi-
sodes of brief calcium repletion this may result in mild calcium over-
load that triggers preconditioning via activation of PKC [27,90].

It is well documented that cellular calcium overload initiates death
pathways with the prominent role of the mPTP opening [50] and ac-
tivation of various proteases [91]. Increase in intracellular calcium is
observed in different types of preconditioning and application of exo-
genous calcium also triggers preconditioning. For example, Kouchi
et al. showed a reduction of infarct size in rabbits in vivo by pre-
conditioning with high calcium that was quantitatively similar to is-
chemic preconditioning, and was mediated by mitochondrial KATP

channels [92]. Preconditioning by infusion of high calcium solution
protected isolated pig retinal ganglion cells from excitotoxicity [93]. A
transient rise in intracellular calcium as mediator of preconditioning
was demonstrated in several models, including preconditioning of he-
matopoietic stem/progenitor cells with granulocyte-derived cationic
peptide LL-37 [94] or preconditioning of canine and rat hearts [95].
The key mediator involved in preconditioning with high calcium is
PKC, similar to preconditioning with calcium depletion [96]. Another
mediator of calcium preconditioning is mPTP [97] and its inhibition
appears downstream of PKC activation [50]. Studies showed that high
calcium stimulated proliferation of osteoblasts [98] and MCF-7 breast
cancer cell lines via upregulation of TRPC1 and activation of ERK1/2
[99].

3.5. Non-linear response to thermal energy

Normal body temperature is required for optimal maintenance of
chemical reactions and structure of biomolecules. Extreme tempera-
tures impair structure and function of biomolecules and cause cell
death. It has been shown that brief episodes (1 h/day at 0 °C in two
cycles lasting 5 days) of exposure to cold at young age of Drosphila
melanogaster flies increased their life span and resistance to cold and
heat [100]. Conversely, exposure to cold episodes of adult rats showed
only a trend for increase in life span (968+/−141 vs 923+/−159
days in control) [101]. However, unlike the study with flies, rats were
exposed to cold at adult age and throughout the lifetime, and the epi-
sodes were much longer (4 h/day at 23 °C). Absence of statistically
significant increase in life span in that study could be explained by
overstimulation by stress of less reactive adult animals. A pronounced
stimulation of body response in the rat study is suggested by observa-
tion that food intake in rats increased by as much as 44%, while body
weight decreased. Beneficial effects of moderate hypothermia was also
observed in studies where brief cold exposure induced preconditioning

and protection from ischemia-reperfusion of neurons in cerebrum [102]
and retinal ganglion cells [103]. Analysis of 5453 cases in Singapore
showed that post-resuscitation hypothermia improved survival of pa-
tients having cardiac arrest [104].

Hyperthermic shock can increase the life span of Saccharomyces
cerevisiae [77]. Hyperthermic preconditioning in a form of brief ex-
posure to heat protects astrocytes [105], spinal cord [106], heart [107],
lungs [107], small intestine [107], skeletal muscle [107] kidney [108],
liver [109], etc. Wound healing capacity of skin fibroblasts is improved
following repeated mild heat stress [110]. HIF1α was shown to mediate
protective effects of hyperthermic preconditioning [106], together with
induction of heat shock proteins, PKC, MAPKs, NO, KATP channels and
neural peptides, as reviewed in [107]. A hot spring bathing and whole
body hyperthermia have been shown to improve cardiovascular func-
tions and to reduce inflammation in patients with chronic heart failure
[111].

3.6. Non-linear response to body mass/calorie intake

Calorie intake is necessary for daily energy production. Analysis of
the data from the United States nationally representative NHANES I
(1971–1975) and NHANES II (1976–1980), with follow-up through
1992, and from NHANES III (1988–1994), with follow-up through 2000
revealed that overweight (BMI 25–30) was associated with reduced
mortality [86094 deaths less than in normal BMI group (18.5–25); 95%
CI, −161223 to −10966] [10]. Extreme body weights BMI>30
and< 18.5 were associated with increased mortality. The latter group
encompassed all underweight people and may have obscured potential
beneficial effects of moderate underweight. The ARIC study analyzing
13941 African-American and Caucasian adults in USA who self-re-
ported their weight at the age of 25, found a tendency for all-cause
mortality hazard ratio to be<1 in individuals with BMI< 18.5 [112].
Conversely to NHANES data, this study found a progressive increase in
hazard ratio for mortality with increase in BMI almost in all analyzed
subgroups.

A collaborative analyses of 57 prospective studies in 900000 adults
recruited at the average age of 46 showed the U-shaped curve with the
lowest number of deaths in BMI group 22.5–25 [113]. This and other
studies in older populations showing increased mortality with low-
normal or moderate-low BMI values probably reflect the same effect as
observed in old rats and hypothermia, i.e. that in older population
moderate stress may turn into noxious stimulus due to limited re-
activity, instead of eliciting beneficial effects. Conversely, in younger
population, as in ARIC study [112], a possible non-linear action of low
BMI, (which potentially could have been even greater if only moderate-
low BMI was analyzed), induced beneficial adaptive responses due to
normal reactivity. This is in line with NHANES data that demonstrated
the greatest benefit of moderate overweight in younger population (age
25–59 years).

Calorie restriction is one of the most studied treatments that may
promote longevity in a variety of organisms, from yeasts to mammalias
with sirtuins being identified as key mediators of adaptive response
[114]. In mice, calorie restriction also decreased tumor incidence and
increased proliferation of T-lymphocytes obtained from the spleen
[114]. In human subjects calorie restriction increased muscle mi-
tochondrial biogenesis and efficiency [115], which could be associated
with a decrease in oxidative stress [116].

4. Beneficial effects of exercise mediated through finite
disarrangement of physiological agents

Exercise is perceived as one of crucial factors that can positively
modify various diseases, improve functional capacity of different or-
gans, like brain [21], and promote longevity [21,117]. Exercise can
stimulate cell proliferation, for example neurons in dentate gyrus [118],
cells in intervertebral disc [119], skeletal satellite cells [120] and
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others. It seems that beneficial effects of exercise encompass multiple
mechanism and pathways, including sirtuins, MAPK signaling, ERK1/2,
p38, AMPK, Akt, JNK, HIF1 and others, as reviewed in [21].

A plethora of positive effects of exercise could arise in part from
inducing hormesis-like response by finite disarrangement of many of
the abovementioned physiological agents, which occurs during ex-
ercise. A study by Ahlborg et Felig examined the effects of bicycle ex-
ercise at a 58% maximal oxygen uptake on various physiological
parameters in healthy volunteers [121]. They found a drop in the fe-
moral vein oxygen saturation from 71% at rest to 29% after 120-min
exercise, which corresponded to a decrease of pO2 from 35 mmHg to
18 mmHg, respectively. Such decreases in pO2 indicates tissue hypoxia.
Exercise caused hypoglycemia in these subjects (4.1 mM after 40 min
and 3.6 mM after 120 min of exercise). This was accompanied by an
increase in arterial concentration of lactate, epinephrine and nor-
epinephrine by 2, 3.5 and 7.5 fold, respectively. Exercise also increases
body temperature [122], plasma osmolarity [123] and cytosolic cal-
cium [124], which all may contribute to hormesis-like response.

5. Reactive oxygen species and cytosolic calcium as common
mediators of hormetic stimuli

Overproduction of ROS and cytosolic accumulation of calcium occur
following various stressors, including toxic hormetins and deviation of
physiological agents from the normal range. ROS and calcium can ac-
tivate cytoprotective pathways and effectors that may protect from
virtually any stressor that increases ROS and calcium. This is probably a
basis for hormesis-like actions of physiological agents and cross-re-
sistance to different types of stress (Fig. 2).

Cellular calcium overload occurs in different types of injury such as
ischemia-reperfusion [27] or cyanide poisoning [125]. In many of these

pathological conditions, especially ischemia, calcium overload occurs
as a secondary event due to a failure in energy metabolism and im-
paired function of ATP-dependant calcium pumps or opening of vol-
tage-dependant calcium channels caused by membrane depolarization
[126]. However, a rise in cytosolic calcium is crucial for activation of
cytoprotective machinery [127]. Increase in cytosolic calcium was ob-
served in various types of preconditioning, including ischemic (67) and
hypoxic preconditioning [128]. It was also found following disorders of
physiological agents: low- [129] and high glucose [130], hyperoxia
[131], hypo- [75,76] and hyperosmolarity [132], hypo- [133] and
hyperthermia [122] and during exercise [124]. Downstream mediators
of protective calcium signaling involve PKC [27], Akt [127] and MAP
kinase ERK (p42/44) [127].

Similar to calcium, overproduction of ROS is common for various
hormetins occurring secondary to altered cellular metabolism. This
includes cyanide [134], ischemia-reperfusion [135] and others. ROS are
signaling molecules in various types of preconditioning [135], which
can be also elicited by direct H2O2 treatment [136]. Elevated ROS
production was detected in most of the abovementioned disarrange-
ments of physiological agents, including low- [136] and high glucose
[40], hypo- [22] and hyperoxia [13], hypo- [137] and hyperosmolarity
[41,77,138], high calcium [139], hypo- [140] and hyperthermia
[77,107], overfeeding [141] and exercise [21].

Among other mechanisms, high glucoses enhances mitochondrial
ROS production by promoting mitochondrial fission [142], by enhan-
cing electron flux and leak along the respiratory chain [40]. High cal-
cium can also enhance mitochondrial respiration and ROS generation
by stimulating several key enzymes of oxidative phosphorylation [143]
and activating NADPH oxidase [139]. ROS can support calcium over-
load by activating ryanodine receptor [143]. This may create a positive
feedback loop between ROS production and calcium overload aug-
menting cell injury, but also a hormetic stimulus. Seemingly para-
doxically, hypoxic preconditioning also relies on generation of ROS as
suggested by observations that ROS scavengers like SOD abrogated this
form of preconditioning [22]. Reinehr et al. demonstrated that hyper-
osmotic stress in hepatocytes depended on ROS production by NADPH
oxidase that was activated via phosphorylation by PKC-ζ and acid
sphingomyelinase [138]. Enhanced cellular metabolism is likely re-
sponsible for elevated ROS production in hyperthermia [107]. Hy-
pothermia may also increase ROS generation as shown in the experi-
ment with isolated rat hearts perfused with cold solution at 27 °C [140].
Lastly, exercise can acutely increase ROS production in skeletal and
cardiac muscle [144] and increase expression of SOD2 [21].

ROS activate several downstream targets with HIF1α and PKC being
among the most important in the context of hormesis [28,145]. It is
estimated that approximately 500 proteins have cysteine residues that
are sensitive to redox signaling and potentially regulated by ROS [145].
HIF1 recruits different mediators of cytoprotection, including, heme
oxygenase-1, iNOS, erythropoietin, hexokinase 1,2, anti-apoptotic
BNIP3 and others [57]. PKC is activated by ROS via redox-sensitive
cystein residues in its regulatory domain [146]. It is crucial for acti-
vation of pro-survival pathways [28].

Disruption of cellular redox homestasis via oxidative stress or an-
tioxidants may activate vitagenes, which represent group of genes that
act in order to preserve cellular function. Vitagenes encode variety of
cytoprotective proteins, such as heat shock proteins and sirtuins [23].
Such cellular stress response exhibits antioxidant actions by thior-
edoxins, glutathione or bilirubin, latter produced by hem oxygenase
enzymes [23]. Vitagenes have been associated with life-extending
treatments that, among other things, reduce damaging effects of ex-
cessive oxidative stress. It is possible that the induction of vitagenes via
generation of ROS may underlie some of the abovementioned beneficial
effects of finite disarrangements of physiological agents and nutrients.
Several studies support such claim. For example, it has been demon-
strated that redox-sensitive transcription factor Nrf2, a major regulator
of vitagen expression, is activated during hyperglycemia [147],

Fig. 2. Common pathways and outcomes of hormesis-like response induced by
disarrangement of physiological agents. Finite deviation of physiological agents
(glucose, oxygen, etc.) outside the normal range causes stress, which in most cases en-
compasses increase in ROS production and/or cytosolic calcium. Both ROS and calcium
overload are potent stressors that trigger adaptive signaling cascades, starting with HIF1,
Nrf2, PKC and others. If the increase in ROS and calcium (i.e. stress) is moderate and the
adaptation capacity of cell/organism is sufficient, signaling pathways alter gene expres-
sion and phenotype, causing a broad range of beneficial effects, which may be manifested
by improved fitness, longevity, etc., depending on the specific stimulus and context
within the cell. Many toxic agents cause injury by increasing ROS production and cyto-
solic calcium, which may lead to activation of the same pathways and explain common
hormetic effects of toxic and physiological agents.
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hyperthermia [148], hyper- [149] and hypoxia [150], or it mediates
cytoprotection against calcium overload [151]. Carefully designed
studies, taking into account non-liner behavior of physiological agents
and ROS are required for better insight into molecular pathways med-
iating their beneficial effects.

6. Discussion and conclusions

The data provided in this article suggest that finite disarrangements
of important physiological agents elicit adaptive response that not only
mitigates the specific stress, but also activates non-related beneficial
effects, like cell proliferation and migration, wound healing, increase in
functional capacity and delay in ageing that promotes longevity. Such
response is similar to hormesis, described by a plethora of beneficial
effects elicited by low doses of toxins. We have provided examples for
hormesis-like actions of major nutrients, physiological substances and
thermal energy that are indispensable for normal functioning of the
living entity and operate within the normal range (Table 1). In contrast
to classical J-shaped curve for toxins, beneficial effects of the physio-
logical agents include two J-shaped curves, each occurring on upward
and downward deviation from the normal range, i.e. the mirror J-
shaped curves. Historically the term hormesis is associated with toxins,
however such beneficial response could be extended to physiological

agents that exhibit similar non-liner actions and induce plethora of
beneficial effects when acting outside the normal range in a limited
fashion. Elaborated mirror J-shaped type of response adds to com-
plexity of physiological non-linear reactivity in disease/health states.
Increased ROS production and elevated cytosolic calcium, and possibly
other mediators, are likely common elements in beneficial signaling
activated by toxic agents or finite disarrangement of the physiological
agents.

Data suggest that hormesis-like response can be induced by brief
and severe or longer but moderate disarrangement of physiological
agents. Younger organisms with greater reactivity tend to benefit more
from such stress [100,112]. Therefore, the dosage of stress on one hand
and the reactivity of the living entity on the other hand seem to be key
determinants whether the outcome would be beneficial or detrimental.
Such moderate perturbations in homeostasis, induced by fluctuations of
key physiological agents in a stressful environment, may upregulate
adaptive programs, increasing functional capacity and mitigating stress
exerted per one functional unit over long period of time. Activation of
beneficial response involves specific and general adaptation. The
former refers to adaptation to the specific stressor, such as adaptation to
high osmolarity by synthesis of endogenous osmolytes. General adap-
tation refers to switching on common stress response pathways, a pro-
survival program, such as activation of PKC or HIF1. Common elements

Table 1
Summary of described non-linear responses to physiological agents.

Physiological agent Beneficial effect Organism/organ/cell Reference number

↓glucose 1) ↑longevity
2) ↑resistance to hypoglycemia

1) human
2) brain

1) [8]
2) [34]

↑glucose 1) ↑longevity
2) ↑resistance to ischemia
3) ↑resistance to hypoxia
4) ↑cell proliferation

1) human
2) cardiomyocytes, heart
3) cardiomyocytes
4) mesangial cells, pancreatic cancer cells, breast cancer cells

1) [9]
2) [42,44,45]
3) [48]
4) [51–53]

↓oxygen 1) ↑longevity
2) ↓specific disease mortality
3) ↑resistance to ischemia
4) ↑functional capacity
5) ↑cell proliferation

1) leukocytes, vascular smooth muscle cells
2) human
3) heart
4) heart
5) neural stem cells, renal clear cell carcinoma, T-cell acute

lymphoblastic leukemia

1) [58,59]
2) [55]
3) [22,56,60,64]
4) [61]
5) [65–67]

↑oxygen 1) ↑resistance to ischemia
2) ↑resistance to hypoxia
3) ↑resistance to toxicity by chemotherapeutics
4) ↑cell proliferation

1) spinal cord,brain, heart, kidney
2) mesenchymal stem cells
3) kidney
4) mesenchymal cells

1) [13,68–70]
2) [71]
3) [68]
4) [72]

↓osmolarity 1) ↑longevity
2) ↑cell proliferation

1) yeast
2) hepatocytes, keratonocyte line, prostate cancer cells

1) [73]
2) [74–76]

↑osmolarity 1) ↑longevity
2) ↑resistance to ischemia
3) ↑resistance to LPS-induced edema
4) ↑angiogenesis
5) ↑cell proliferation

1) yeast
2) heart, liver, brain
3) brain
4) brain
5) induced pluripotent stem cells

1) [77,78]
2) [79,80,82]
3) [73]
4) [85]
5) [86]

↓calcium 1) ↑resistance to ischemia
2) ↑resistance to hypoxia
3) ↑resistance to calcium paradox

1) heart
2) pancreatic islets
3) heart

1) [88,90]
2) [89]
3) [87]

↑calcium 1) ↑resistance to ischemia
2) ↑resistance to excitotoxicity
3) ↑cell proliferation

1) heart
2) retinal ganglion cells
3) osteoblasts, breast cancer cell line

1) [92]
2) [93]
3) [98,99]

↓temperature 1) ↑longevity
2) ↑resistance to cold
3) ↑resistance to heat
4) ↑resistance to ischemia

1) fly
2) fly
3) fly
4) brain, retinal ganglion cells

1) [100]
2) [100]
3) [100]
4) [102,103]

↑temperature 1) ↑longevity
2) ↑cardiovascular function
3) ↑resistance to ischemia

1) yeast
2) heart
3) heart, lungs, small intestine, skeletal muscle

1) [77]
2) [111]
3) [105–109]

↓body mass/ calorie intake 1) ↑longevity
2) ↓tumor incidence
3) ↑cell proliferation
4) ↑mitochondrial biogenesis & efficiency

1) human, mouse
2) mouse
3) T-lymphocytes
4) skeletal muscle

1) [112,114]
2) [114]
3) [114]
4) [115]

↑body mass/ calorie intake 1) ↑longevity 1) human 1) [10]
exercise 1) ↑longevity

2) ↑functional capacity
3) ↓tumor incidence
4) ↑cell proliferation

1) human
2) brain
3) human
4) neurons

1) [21,117]
2) [21]
3) [21]
4) [118–120]
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in signaling of pro-survival pathways and for example cell proliferation
are likely responsible for improvement of overall functional capacity
following finite disarrangements of physiological gents. It remains to be
investigated whether different physiological agents induce identical
beneficial effects, as well as their potency, contribution of co-stimuli
(e.g. induction of hormonal response) and reactivity of the living or-
ganism, i.e. the cellular context.

Adaptation to disarrangement of the physiological agents (hormesis-
like response) appears crucial for functioning of various living entities,
from bacteria [152] to vertebrates [50]. It is also hierarchically con-
served from the level of the single cell [19] up to the entire organism
[8]. The elaborate approach to this complex non-linear response is
important for designing studies and interpretation of seemingly para-
doxical observations. For example, opposite reports on the effect of
diabetes on cardiovascular function could be explained by protective
effects of preconditioning and hormesis-like response triggered by mild
hyperglycemia and detrimental effects of severe hyperglycemia. Even
more intriguing and perhaps counterintuitive are results from large
clinical trials. They suggest that mild hypoglycemia [8] or mild hy-
perglycemia [9] in diabetics (ACCORD trial), and moderate overweight
[10] (NHANES I-III) actually reduce the overall risk of death. Here we
provide potential explanation that non-linear actions of glucose and
calorie intake may have caused unexpected beneficial effects in these
trials.

Exploiting the benefits of non-liner response by physiological agents
could be important for various aspects of research and medicine. This
includes regenerative medicine and conditioning of transplanted cells.
Conversely, in a tumor we could try to block hormesis-like response by
physiological agents, which is likely activated by fluctuations in a
supply of nutrients due to a specific nature of tumor vasculature. Hence,
a flawed cytoarchitecture of the tumor may also be its advantage.
Future studies with more elaborate dose-response analyses will provide
better characterization of potential non-linear behavior of these and
other physiological agents.

Exploring mechanisms and exploiting benefits of non-linear re-
sponse to physiological and other agents is a promising tool in fighting
disease, improving functional capacity and fitness, and promoting
longevity.
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