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Abstract

The products of the polymorphic ADME genes are involved in Absorption, Distribution,

Metabolism, and Excretion of drugs. The pharmacogenetic data have been studied exten-

sively due to their clinical importance in the appropriate drug prescription, but such data

from the isolated populations are rather scarce. We analyzed the distribution of 95 polymor-

phisms in 31 core ADME genes in 20 populations worldwide and in newly genotyped sam-

ples from the Roma (Gypsy) population living in Croatia. Global distribution of ADME core

gene loci differentiated three major clusters; (1) African, (2) East Asian, and (3) joint Euro-

pean, South Asian and South American cluster. The SLCO1B3 (rs4149117) and CYP3A4

(rs2242480) genes differentiated at the highest level the African group of populations, while

NAT2 gene loci (rs1208, rs1801280, and rs1799929) and VKORC1 (rs9923231) differenti-

ated East Asian populations. The VKORC1 rs9923231 was among the investigated loci the

one with the largest global minor allele frequency (MAF) range; its MAF ranged from 0.027

in Nigeria to 0.924 in Han Chinese. The distribution of the investigated gene loci positions

Roma population within the joined European and South Asian clusters, suggesting that their

ADME gene pool is a combination of ancestral (Indian) and more recent (European) sur-

rounding, as it was already implied by other genetic markers. However, when compared to

the populations worldwide, the Croatian Roma have extreme MAF values in 10 out of the 95

investigated ADME core gene loci. Among loci which have extraordinary MAFs in Roma

population two have strong proof of clinical importance: rs1799853 (CYP2C9) for warfarin

dosage, and rs12248560 (CYP2C19) for clopidogrel dosage, efficacy and toxicity. This find-

ing confirms the importance of taking the Roma as well as the other isolated populations‘ge-

netic profiles into account in pharmaco-therapeutic practice.

Introduction

Medication efficacy and adverse drug reactions are associated with specific genes’ variants [1]

that are related to the Absorption, Distribution, Metabolism and Elimination of drugs

(ADME). Their polymorphic nature is the basis for the individual response to drug treatment,
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together with a number of factors such as sex, age, weight, concomitant medication, health sta-

tus, comorbidity level etc. [2]. The ADME genes’ variation is markedly related to ethnicity and

shows distinct geographic patterns [2, 3].

Numerous studies have been published on ADME-related genes’ polymorphisms and their

clinical importance. Some of them used large panels of genes and/or big samples from large

population groups [1, 4–10], while others provided data for specific variants of interest and/or

smaller samples from diverse geographic or clinical populations [11–14]. Currently, only

sparse data are available on the prevalence of these gene variants in Roma (Gypsy) population

[15–17]. Lacking large-scale pharmacogenomics information in this population presents a bot-

tleneck for their healthcare improvement.

Although today’s state-of-art methodology in personalized medicine is individual genotyp-

ing prior to medications, unfortunately this approach has not been routinely applied at points

of care and usually follows after an adverse drug effect. Therefore, population ADME genes

profiling is useful for clinical practice especially in cases when the population consists of differ-

ent ancestry groups.

It has been estimated that about 15 million of Roma people live worldwide today from

whom 10 million reside in Europe. About 40 thousand Roma live in Croatia [18]. However,

their numbers are probably significantly underestimated due to ethnomimicry characteristi-

cally present in this population in addition to the avoidance of contacts with state officials,

leaving many members of this population unregistered in census data.

Anthropologically, the Roma are the transnational minority population marked by com-

mon Indian ancestry. Various social and economic pressures caused gradual population frag-

mentation and formation of a complex network of numerous and often endogamous

subgroups with specific languages (dialects), religions, and socio-cultural characteristics [19,

20]. Lasting isolation preserved their founding gene pool with different characteristics com-

pared to the surrounding majority populations [21].

Their pronounced genetic differences from the majority Croatian population and traces of

their ancestral origins have been detected in mitochondrial DNA [22], Y chromosome markers

[23, 24] and various autosomal common [25] and rare disease loci [26]. The recent study of

ADME gene’s CYP2B6 polymorphisms proved the distinctive position of the Croatian Roma

in the world’s populational variability [27] and indicated the need for a systematic investiga-

tion of the most important pharmacogenes’ variants in the Roma.

Since isolated populations usually have a unique genetic profile it is important to determine

their ADME genes pattern in the context of broader global diversity [28, 29]. Therefore, in this

study, we (1) present the allele frequencies for 95 polymorphisms in 31 core ADME-related

genes for 20 worldwide populations as well as for the Roma population living in Croatia; (2)

identify and describe the set of markers that mostly contribute to the separation of major pop-

ulation groups and, thus, give rise to specific geographic patterns of core ADME gene loci; and

(3) elucidate the position of the Roma in the global ADME genetic landscape.

Results

The minor allele frequencies (MAFs) and sample sizes as well as the references in addition to

the 1000 Genomes for all 95 SNPs used in the this study are presented in the S1 Table. MAF

always refers to the global minor allele as indicated in 1000 Genomes’ database.

Genetic distance analyses were carried out to quantify genetic differentiation across 21 pop-

ulations in this study and the dendrogram is reported in Fig 1. As expected, there is a clear sep-

aration of clusters that correspond to the continental regions their member populations

belong. The European and the South Asian populations cluster closely together. They are

ADME genes variation in Roma and 20 populations worldwide
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joined successively by the American, East Asian and African clusters. Finally, closely joined

Sierra Leone and Puerto Rico populations cluster as a distinct subgroup further away from the

rest of the populations.

The relationship between genetic variation and geographic distance was analyzed using cor-

relation between matrices of genetic and geographic distances. The correlation is positive and

significant (Pearson‘s r = 0.300, p�0.006 after 1,000 permutations) indicating isolation by spa-

tial distance at the global scale. Focusing on the Croatian Roma population, their genetic dis-

tances from the other 20 populations in this study were plotted against the geographic

distances (Fig 2). Roma cluster well within the European populations, and are relatively close

to the South Asian populations genetically despite their spatial distance of 5,000–7,500 km.

Larger genetic distances exist between the Roma and spatially more distant East Asian as well

Fig 1. UPGMA dendrogram from Nei’s genetic distance matrix based on the data on minor allele frequencies for

95 ADME core genes’ loci in Croatian Roma and 20 populations worldwide.

https://doi.org/10.1371/journal.pone.0207671.g001
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as fairly dispersed American populations. Roma genetically differ the most from the African

populations that are on the average closer to them geographically, confirming the genetic dis-

tinctiveness of the African region.

The Principal Component Analysis (PCA) was performed using MAF data for 95 ADME

core genes’ loci for 21 populations from various part of the world, including Croatian Roma.

PCA revealed six PCs (76.4% of the total variance explained) reflecting the genetic relation-

ships among the populations showing a pattern that is very similar to that obtained by genetic

distance dendrogram. PC1 (28.4% of the total variance) separates four African countries from

the rest of the world while PC2 (20.9% of the total variance) separates four East Asian coun-

tries. PC3 (accounting for 10.8% of the total genetic variance) separates South Asians from the

remaining European-American cluster with the Croatian Roma being intermediate to Europe-

ans and South Asians. The PC4 axis (accounting for 8.5% of the total variance) separates

Americans from the European-Roma group and places the Roma population at the top of the

positive pole of the axis (while negative pole is represented by Peru). PC5 (explains 4.3% of the

total variance) differentiates European countries (placing at the opposite poles Finland and

UK) while PC6 (accounting for 3.5% of the total variance) differentiates East Asian popula-

tions (opposing Han from Dai Chinese populations).

In order to elucidate the most characteristic continental single nucleotide polymorphisms

(SNPs) among the core ADME genes’ loci, we performed the gene-oriented Principal Compo-

nent Analysis (gPCA). The gPCA revealed three significant components: gPC1 (explaining

77% of the total variance) was defined by the global range in MAF values (i.e. it contains not

population-specific but locus-specific information). However, gPC2 (9.3%) and gPC3 (6.1% of

the total variance) were population-specific.

Fig 2. Genetic distances between the Croatian Roma and 20 populations worldwide in relation to their geographic

distances. Legend: 1 = Finland; 2 = Italy; 3 = Spain; 4 = UK; 5 = Bangladesh; 6 = India; 7 = Pakistan; 8 = Sri Lanka;

9 = Colombia; 10 = Mexico; 11 = Peru; 12 = Puerto Rico; 13 = Gambia; 14 = Kenya; 15 = Nigeria; 16 = Sierra Leone;

17 = Japan; 18 = China–Dai; 19 = China–Han; 20 = Vietnam.

https://doi.org/10.1371/journal.pone.0207671.g002
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Combining population- and gene-oriented approaches, Fig 3 shows scatterplot of the first

two principal components from the PCA together with the presentation of the loci with the

highest factor scores in the gPCA. The first two principal components (PCs) of the PCA,

accounting for 49.3% of the total genetic variance, clearly separate three clusters that reflect the

major genetic relationships among the populations: the African (AFR), the East Asian (EAS)

and the joint South Asian, European and American (SAS, EUR and AMR, respectively). The

AFR and EAS groups are related with the ADME genes that have the highest factor scores at

gPC2 and gPC3, respectively.

As shown in Fig 3, the most distinctive African loci are rs4149117 (SLCO1B3) and

rs2242480 (CYP3A4) that have the highest factor scores at the positive pole and (with smaller

factor score values) rs4124874 (UGT1A1), rs9923231 (VKORC1), and rs1128503 (ABCB1) at

the negative pole. In the combination with the results (factor loadings) from the population-

oriented PCA (data not here presented), we consider rs4149117 (SLCO1B3) and rs2242480

(CYP3A4) as the most distinctive African loci.

The East Asian (EAS) gPC3 has 6 loci on the positive pole (factor scores higher than 2):

rs9923231 (VKORC1), rs1143671, rs2257212, rs1143672, rs2293616 (all four placed within

SLC15A2), and rs4149117 (SLCO1B3). At the negative pole of gPC3 there are three SNPs (rs1208,

rs1801280, and rs1799929) all of them placed within NAT2 gene. In the combination with the

results of the population-based PCA (data not here presented), those results indicate that distinc-

tive SNPs for the East Asians are the three NAT2 gene SNPs and a VKORC1 (rs9923231) SNP.

The largest global MAF differences (delta) between maximal and minimal MAF values for

95 SNPs are presented graphically in decreasing order (Fig 4) and the populations with

extreme MAF values as well as the exact delta values are given in the S2 Table. The three SNPs

characterized with the largest global diversity are: rs9923231 in VKORC1 gene (range: 0.924 in

China Han to the 0.027 in Nigeria, delta = 0.897), rs2242480 in CYP3A4 gene (range: 0.909 in

Kenya to the 0.071 in UK; delta = 0.838) and rs1048943 in CYP1A1�2C gene (range: 0.706 in

Peru to the 0.000 in Gambia, Kenya, Nigeria, and Sierra Leone; delta = 0.706).

Focusing on the Croatian Roma, they have the extreme MAF values for 10 SNPs (Fig 4).

Their highest MAFs among 21 world’s populations have been found for rs1128503 (ABCB1),

rs1902023 (UGT2B15), rs12248560 (CYP2C19�17), rs1799853 (CYP2C9), rs3758581

(CYP2C19), rs10509681 (CYP2C8�3), rs1138272 (GSTP1), rs8192709 (CYP2B6), and

rs34059508 (SLC22A1) (and next to the highest MAF for rs28371725 (CYP2D6)). On the other

side, Roma have the lowest MAF for rs4149117 (SLCO1B3) (and next to the lowest MAF value

for the rs28399433 (CYP2A6)).

Discussion

The findings of numerous studies suggest that population differences in ADME genes show

marked geographic and ethnic variation. However, most of the studies investigating these vari-

ations generally lack pharmacogenetic data on isolated populations. The same is true for the

Roma, one of the worlds’ largest transnational minority populations. Roma are an example of

isolated population with specific migrational history whose gene pool is highly influenced by

the genetic drift due to unique social and cultural features.

Therefore, in this paper we investigated the position that the Croatian Roma take within the

world-wide variation in 95 ADME core genes’ loci. The ADME genes’ MAF information from

twenty 1000 Genomes’ populations is here enriched by the data found through systematic liter-

ature search.

The results of this study confirm the previous findings that distinguish three world’s popu-

lational clusters: African, East Asian and joint European, South Asian and Native American

ADME genes variation in Roma and 20 populations worldwide
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[30]. Additionally, this study identifies six ADME genes’ SNP loci that most prominently dis-

tinguish continental groups which extends our knowledge about ADME global variation. They

are: VKORC1 (rs9923231), SLCO1B3 (rs4149117), CYP3A4 (rs2242480), and NAT2 (rs1208,

rs1801280, and rs1799929).

Fig 3. Principal component analyses (PCA) using the allele frequencies of the ADME core genes’ loci. Scatterplot illustrates the

grouping of 21 populations by the first two principal components of the population-based PCA and shows the loci with the largest

factor score values as revealed by the gene-based PCA (gPC2 and gPC3).

https://doi.org/10.1371/journal.pone.0207671.g003

Fig 4. The maximal global differences in minor allele frequencies (delta) for the selected 95 ADME core genes’ loci

in decreasing order.

https://doi.org/10.1371/journal.pone.0207671.g004
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Among all the studied loci, locus rs9923231 in VKORC1 gene takes a special position. It is

the one characterized by the largest MAF differences among the populations worldwide

(delta = 0.897) and is among few SNPs that define both African and East Asian continental

clusters. Those findings are even more important having in mind that among the ADME

genes VKORC1 is the one with the most vital implications for medical decisions considering

appropriate pharmacotherapy.

Striking differences in worldwide allele frequency distribution noticed in rs9923231 is

mostly explained as a result of selection [31]. The minor allele frequency of 0.4614 in Roma is

comparable to European populations and it is higher than in their ancestral south Asian popu-

lations. VKORC1 gene encodes vitamin K 2,3-epoxide reductase complex 1, which is responsi-

ble for the conversion of vitamin K-epoxide to vitamin K [32]. Numerous studies suggest that

VKORC1 genotype seems to be the most important predictor of adequate warfarin dose [33,

34]. The rs9923231 has proved clinical importance concerning dosage and toxicity of warfarin,

acenocoumarol and phenprocoumon.

Another locus, which shows large differences in allele frequencies among the investigated

populations, is rs2242480, the intron variant in CYP3A4 gene. This locus exhibits significant

difference between Africans and non-Africans [35] which is evident in our gPC plot as well.

Lakiotaki et al. [36] identified this variant to belong to the 10 most different ones in worldwide

populations. Unlike the previously mentioned locus in VKORC1, the frequency of globally

minor allele of rs2242480 in the investigated Roma population (0.3012) is higher than in Euro-

pean populations and corresponds to the frequency range of South Asian populations.

CYP3A4 is responsible for the metabolism of approximately 50–60% of clinical drugs used

today, including acetaminophen, codeine, cyclosporine A, diazepam, and erythromycin. It is

also important for the metabolism of steroid hormones [33, 34]. Although there is no clear evi-

dence of an association, the rs2242480 is suspected to be connected with methadone toxicity

[37], clopidogrel efficacy [38] and pharmacokinetics of tacrolimus [39] carbamazepine [40].

Locus rs4149117 in SLCO1B3 gene also separates African cluster from the other popula-

tions. The G allele of the rs4149771 locus was found even two times more frequently in non-

Africans (Europeans, Caucasian Americans, and Asians) than in Africans, in approximately

80% vs. 40% of subjects [41, 42]. Roma population from Croatia has the lowest minor allele fre-

quency in Europe. SLCO1B3 gene encodes for solute carrier organic anion transporter family

member 1B3 normally expressed in the liver and involved in transporter functions to uptake

large, non-polar drugs and hormones. The rs4149771, like the previous one, is suspected to be

connected with carboplatin and paclitaxel toxicity [43] and with sunitinib efficacy [44].

NAT2, one of the most polymorphic ADME genes, encodes for a NAT2 protein, which is

expressed mostly in the liver, small intestine and colon tissues as a typical xenobiotic metabo-

lizing enzyme [45]. NAT2 gene variants differ among diverse populations and its genetic dif-

ferentiation patterns are related to geography [46]. The minor alleles’ frequencies of three

NAT2 loci (rs1208, rs1801280, and rs1799929) in Roma sample are within the range of Euro-

pean populations. Isoniazid, a first line drug in tuberculosis (TB) treatment is metabolized by

the NAT2 enzyme. Genetic variations in NAT2 affect the therapeutic response to isoniazid

and other drugs detoxified by this enzyme.

Among loci with the most pronounced population differences as revealed by MAF delta

values is rs1048943 missense (Ile462Val) mutation within CYP1A1 gene. CYP1A1 is a member

of the CYP1 family and participates in the metabolism of numerous xenobiotics, as well as

endogenous substrates [47]. CYP1A1 is a key enzyme in phase I metabolism of polycyclic aro-

matic hydrocarbons and in estrogen metabolism. This mutation defines haplotype

CYP1A1�2C. The highest frequency of the mutated allele is noticed in the South American

population from Peru while the absence of mutated allele is noticed in most of the African

ADME genes variation in Roma and 20 populations worldwide
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populations. Such distribution implies its introduction after the Out of Africa migrational

event and therefore its current distribution probably results from genetic drift. Roma popula-

tion has the frequency of minor allele within the European range which is substantially lower

than in the ancestral South Asian populations.

Although there is evidence of selection for some of the above mentioned genes, the overall

large allele variations between populations more often result from genetic drift, migrations

and other demographic events [48].

As it can be seen from our results, ADME core loci separate African and East Asian clusters

from other Euro-Asian and American populations. This pattern is also confirmed by clustering

of genetic distances. The Roma population is positioned within the European cluster and is

close to the South Asian populations. Such results suggest that Roma ADME gene pool is a

combination of two main layers: ancestral (Indian) and more recent (European). This is also

evident from the analyses of the uniparental genetic markers [22, 23]. Similarly, Melegh et al.

[49] found that the Roma are located on a PCA cline between Europeans and South Asians,

but closer to Europeans by analyzing genome-wide SNP loci.

Although Roma population is found to be a member of the closely related European and

South Asian clusters, it has the extreme MAF values in 10 out of 95 analyzed SNPs. Significant

genetic differentiation from general Europeans in SNPs in the CYP2C and CYP2D subfamily

regions was also found in previous research of isolated populations in Europe (Roma, Basques,

and Orcadians) [50]. Among the former analyses of ADME polymorphisms in Roma popula-

tions, Tomas et al. [27] particularly studied 3 SNP loci in the CYP2B6 gene, Spikey et al. [51]

studied 4 SNP loci in the MDR1 gene while Nagy et al. [15] analyzed 2 SNP loci in the

SLCO1B3 gene and all of them confirmed that the Roma differ considerably from geographi-

cally close majority populations, as well as from Indian populations in those particular loci.

Such results are not surprising knowing Roma genetic history which is influenced by strict

rules of group endogamy, reproductive isolation and specific mating practice and isolation

over the past several centuries.

Our population genetics findings contribute to the knowledge of interpopulation differ-

ences in high-risk pharmacogenomics allele distribution. The Pharmacogenomics Knowl-

edgebase (PharmGKB) is a source of clinically relevant information, including dosing

guidelines, annotated drug labels, and potentially actionable gene–drug associations and

genotype–phenotype relationships [52]. Several loci which have extraordinary MAFs in

Roma population are listed in PharmGKB as loci with strong proof of clinical importance.

Two of them have been clinically annotated as level 1A (strong evidence—included in the

Clinical Pharmacogenetics Implementation Consortium–CPIC guidelines): rs1799853

(CYP2C9) for warfarin dosage, and rs12248560 (CYP2C19) for clopidogrel dosage, efficacy

and toxicity, while the second locus has been also clinically annotated as level 2A (very

important pharmacogene) for citalpram or escitalopram pharmacokinetics. Additionally,

rs10509681 (CYP2C8) has been annotated as level 2A for rosiglitazone pharmacokinetics

and rs1902023 (UGT2B15) as level 2B (moderate clinical evidence) for lorazepam or oxaze-

pam (www.pharmagkb.org). The identification of high risk allele at loci whose genotypes

have a direct influence on quality of drug intake in this population, shows the necessity of

the assessment of unique genetic profile of Roma in order to achieve the most in the modu-

lation of pharmacotherapy in this population.

Our data confirm that isolated populations take specific positions within the global ADME

genetic landscape. This pinpoints that the pharmacogenetics guidelines of the well-defined

majority populations cannot be used in pharmaco-therapeutic practice in population isolates,

and confirms the necessity for defining their specific genetic profile.

ADME genes variation in Roma and 20 populations worldwide
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Material and methods

Biological material used in this study was collected in multiple field studies, which were part of

the on-going multidisciplinary anthropological, molecular-genetic and epidemiological

research of Roma populations in Croatia. The fieldwork was carried out in several regions of

Croatia with the highest number of Roma minority inhabitants according to the census data

[18]. The participants were volunteers and were informed about the goals, methods and expec-

tations of the study with the help of linguistically and culturally competent and trained Roma

volunteers. The study protocol was approved by the Scientific Board and the Ethical Commit-

tee of the Institute for Anthropological Research in Zagreb, Croatia.

Genotyping of 439 DNA samples was done using KASP method. The KASP genotyping

assay is a form of competitive allele-specific PCR combined with homogeneous fluorescent

SNP genotyping system, which determines the alleles at a specific locus within genomic DNA

[53]. This technology has been widely used on plant species, while recently it has been success-

fully applied to human samples too [54, 55]. From the list of evidence-proved genetic biomark-

ers associated with metabolism of drugs, which is available at www.pharmaadme.org, 137

single nucleotide polymorphisms (SNPs) were selected for genotyping using the KASP and

127 of them were genotyped successfully. Allele and genotype frequencies were calculated by

direct counting method.

The present investigation of genetic diversity was based on SNPs from the ADME core list

which were genotyped in both the Croatian Roma and in 20 populations with different genetic

ancestry from the 1000 Genomes Project Phase 3 list. This limitation and the finding that four

ADME SNPs genotyped were monomorphic, led to further reduction of the total number of

SNPs so in the end a total of 95 SNPs located in 31 ADME genes were used for the analyses.

The 20 populations from the 1000 Genomes project belong to the five large continental

regions, and each region is represented by four populations: (1) European (EUR): Finland,

Italy, Spain, UK, (2) South Asian (SAS): Bangladesh, India, Pakistan, Sri Lanka, (3) African

(AFR): Gambia, Kenya, Nigeria, Sierra Leone, (4) Central and South American (AMR):

Colombia, Mexico, Peru, Puerto Rico, and (5) Eastern Asian (EAS): Dai Chinese, Han Chi-

nese, Japan, Vietnam (only China is represented by two distinct populations—Han and Dai—

since Han is a majority population while Dai represent here non-Han China populations).

In our analyses, we enriched the 1000 Genomes’ data with those found in the publications

citing any of the 95 investigated SNPs in the above mentioned populations. Selection criteria

for using data from these publications, listed at the e!Ensembl browser for the each SNP, were:

(1) clearly stated study geographical population and, where relevant, participants’ ethnicity, (2)

alleles frequencies and sample sizes, (3) samples come from the general population or control

groups in case-control studies. These additional genotyping data enlarged the size of the 11 fol-

lowing 1000 Genomes populations: Italy, Spain, UK, India, Sri Lanka, Gambia, Kenya, Colom-

bia, Mexico, Han Chinese and Japan. Allele frequencies for these populations were calculated

by weighting samples for each population.

The genetic distance matrix, computed according to the method of Nei (1972), was sub-

jected to hierarchic clustering routine using UPGMA (unweighted pair-group method using

arithmetic averages) available in free software Phylip v3.697 (http://evolution.gs.washington.

edu/phylip.html).

The Mantel test of correlation between genetic and geographic distances was performed

using non-commercial software IBD: Isolation by distance v1.52 (available at http://www.bio.

sdsu.edu/pub/andy/IBD.html). Geographic distances between the analyzed populations were

calculated using two free online softwares: iTouchMap and Movable Type Scripts. iTouchMap
calculates latitude and longitude of a point, and Movable Type Scripts calculated distance
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between latitude/longitude points (available at http://itouchmap.com/latlong.html and http://

www.movable-type.co.uk/scripts/latlong.html).

Principal component analysis (PCA) is a multivariate method that systematically identifies

underlying variables, or principal components (PCs), that best differentiate a set of data [56].

Two analyses were run using the MAF data of the 95 ADME core SNPs in 21 populations. First,

PCA was performed to investigate the grouping of 21 populations using the known genetic

data. The second analysis, the gene-oriented PCA (gPCA), was run to investigate the clustering

of SNPs using the a priori defined 21 populations in order to detect loci defining the population

clusters obtained in PCA. The number of PCs considered in each analysis was determined from

the scree plot. This statistics was performed using the SPSS software package 17.0.
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Božina, Nina Smolej Narančić, Branka Janićijević, Marijana Peričić Salihović.

References

1. Maisano Delser P, Fuselli S. Human loci involved in drug biotransformation: worldwide genetic variation,

population structure, and pharmacogenetic implications. Human genetics. 2013; 132(5):563–77. Epub

2013/01/29. https://doi.org/10.1007/s00439-013-1268-5 PMID: 23354977.

2. Ravindra Kumar M, Adithan C. Pharmacogenomics in the Indian population. In: Suarez-Kurtz G, editor.

Pharmacogenomics in Admixed Populations: Landes Bioscience; 2007.

3. Li J, Lou H, Yang X, Lu D, Li S, Jin L, et al. Genetic architectures of ADME genes in five Eurasian

admixed populations and implications for drug safety and efficacy. Journal of medical genetics. 2014;

51(9):614–22. Epub 2014/07/31. https://doi.org/10.1136/jmedgenet-2014-102530 PMID: 25074363.

4. Pasanen MK, Neuvonen PJ, Niemi M. Global analysis of genetic variation in SLCO1B1. Pharmacoge-

nomics. 2008; 9(1):19–33. Epub 2007/12/25. https://doi.org/10.2217/14622416.9.1.19 PMID:

18154446.

5. Suarez-Kurtz G, Pena SDJ, Struchiner CJ, Hutz MH. Pharmacogenomic Diversity among Brazilians:

Influence of Ancestry, Self-Reported Color, and Geographical Origin. Frontiers in Pharmacology. 2012;

3:191. https://doi.org/10.3389/fphar.2012.00191 PubMed PMID: PMC3490152. PMID: 23133420

6. Kim JY, Cheong HS, Park T-J, Shin HJ, Seo DW, Na HS, et al. Screening for 392 polymorphisms in 141

pharmacogenes. Biomedical Reports. 2014; 2(4):463–76. https://doi.org/10.3892/br.2014.272 PubMed

PMID: PMC4051470. PMID: 24944790

7. Jittikoon J, Mahasirimongkol S, Charoenyingwattana A, Chaikledkaew U, Tragulpiankit P, Mangmool S,

et al. Comparison of genetic variation in drug ADME-related genes in Thais with Caucasian, African and

Asian HapMap populations. Journal of human genetics. 2016; 61(2):119–27. Epub 2015/10/02. https://

doi.org/10.1038/jhg.2015.115 PMID: 26423926.

8. Mizzi C, Dalabira E, Kumuthini J, Dzimiri N, Balogh I, Basak N, et al. A European Spectrum of Pharma-

cogenomic Biomarkers: Implications for Clinical Pharmacogenomics. PloS one. 2016; 11(9):e0162866.

Epub 2016/09/17. https://doi.org/10.1371/journal.pone.0162866 PMID: 27636550; PubMed Central

PMCID: PMCPMC5026342.

9. Mwinyi J, Kopke K, Schaefer M, Roots I, Gerloff T. Comparison of SLCO1B1 sequence variability

among German, Turkish, and African populations. European journal of clinical pharmacology. 2008; 64

(3):257–66. Epub 2008/01/11. https://doi.org/10.1007/s00228-007-0409-y PMID: 18185926.

10. Rajman I, Knapp L, Morgan T, Masimirembwa C. African Genetic Diversity: Implications for Cytochrome

P450-mediated Drug Metabolism and Drug Development. EBioMedicine. 2017; 17:67–74. Epub 2017/

02/27. https://doi.org/10.1016/j.ebiom.2017.02.017 PMID: 28237373; PubMed Central PMCID:

PMCPMC5360579.

11. Phipps-Green AJ, Hollis-Moffatt JE, Dalbeth N, Merriman ME, Topless R, Gow PJ, et al. A strong role

for the ABCG2 gene in susceptibility to gout in New Zealand Pacific Island and Caucasian, but not

Maori, case and control sample sets. Human molecular genetics. 2010; 19(24):4813–9. Epub 2010/09/

23. https://doi.org/10.1093/hmg/ddq412 PMID: 20858603.

12. Brinar M, Cukovic-Cavka S, Bozina N, Ravic KG, Markos P, Ladic A, et al. MDR1 polymorphisms are

associated with inflammatory bowel disease in a cohort of Croatian IBD patients. BMC gastroenterol-

ogy. 2013; 13:57. Epub 2013/03/30. https://doi.org/10.1186/1471-230X-13-57 PMID: 23537364;

PubMed Central PMCID: PMCPMC3616873.

13. Campa D, Sainz J, Pardini B, Vodickova L, Naccarati A, Rudolph A, et al. A comprehensive investiga-

tion on common polymorphisms in the MDR1/ABCB1 transporter gene and susceptibility to colorectal

cancer. PloS one. 2012; 7(3):e32784. Epub 2012/03/08. https://doi.org/10.1371/journal.pone.0032784

PMID: 22396794; PubMed Central PMCID: PMCPMC3292569.

14. Zou JG, Ma YT, Xie X, Yang YN, Pan S, Adi D, et al. The association between CYP1A1 genetic poly-

morphisms and coronary artery disease in the Uygur and Han of China. Lipids Health Dis. 2014;

13:145. Epub 2014/09/06. https://doi.org/10.1186/1476-511X-13-145 PMID: 25189712; PubMed Cen-

tral PMCID: PMCPMC4175619.

15. Nagy A, Sipeky C, Szalai R, Melegh BI, Matyas P, Ganczer A, et al. Marked differences in frequencies

of statin therapy relevant SLCO1B1 variants and haplotypes between Roma and Hungarian popula-

tions. BMC genetics. 2015; 16:108. Epub 2015/09/04. https://doi.org/10.1186/s12863-015-0262-4

PMID: 26334733; PubMed Central PMCID: PMCPMC4559300.

ADME genes variation in Roma and 20 populations worldwide

PLOS ONE | https://doi.org/10.1371/journal.pone.0207671 November 19, 2018 12 / 15

https://doi.org/10.1007/s00439-013-1268-5
http://www.ncbi.nlm.nih.gov/pubmed/23354977
https://doi.org/10.1136/jmedgenet-2014-102530
http://www.ncbi.nlm.nih.gov/pubmed/25074363
https://doi.org/10.2217/14622416.9.1.19
http://www.ncbi.nlm.nih.gov/pubmed/18154446
https://doi.org/10.3389/fphar.2012.00191
http://www.ncbi.nlm.nih.gov/pubmed/23133420
https://doi.org/10.3892/br.2014.272
http://www.ncbi.nlm.nih.gov/pubmed/24944790
https://doi.org/10.1038/jhg.2015.115
https://doi.org/10.1038/jhg.2015.115
http://www.ncbi.nlm.nih.gov/pubmed/26423926
https://doi.org/10.1371/journal.pone.0162866
http://www.ncbi.nlm.nih.gov/pubmed/27636550
https://doi.org/10.1007/s00228-007-0409-y
http://www.ncbi.nlm.nih.gov/pubmed/18185926
https://doi.org/10.1016/j.ebiom.2017.02.017
http://www.ncbi.nlm.nih.gov/pubmed/28237373
https://doi.org/10.1093/hmg/ddq412
http://www.ncbi.nlm.nih.gov/pubmed/20858603
https://doi.org/10.1186/1471-230X-13-57
http://www.ncbi.nlm.nih.gov/pubmed/23537364
https://doi.org/10.1371/journal.pone.0032784
http://www.ncbi.nlm.nih.gov/pubmed/22396794
https://doi.org/10.1186/1476-511X-13-145
http://www.ncbi.nlm.nih.gov/pubmed/25189712
https://doi.org/10.1186/s12863-015-0262-4
http://www.ncbi.nlm.nih.gov/pubmed/26334733
https://doi.org/10.1371/journal.pone.0207671


16. Sipeky C, Csongei V, Jaromi L, Safrany E, Polgar N, Lakner L, et al. Vitamin K epoxide reductase com-

plex 1 (VKORC1) haplotypes in healthy Hungarian and Roma population samples. Pharmacogenomics.

2009; 10(6):1025–32. Epub 2009/06/18. https://doi.org/10.2217/pgs.09.46 PMID: 19530970.

17. Sipeky C, Weber A, Szabo M, Melegh BI, Janicsek I, Tarlos G, et al. High prevalence of CYP2C19*2

allele in Roma samples: study on Roma and Hungarian population samples with review of the literature.

Molecular biology reports. 2013; 40(8):4727–35. Epub 2013/05/07. https://doi.org/10.1007/s11033-

013-2569-4 PMID: 23645039.

18. Statistics CBo. 2011.

19. Fraser A. The Gypsies. Oxford: Blackwell Publishers; 1992.

20. Hancock IF. We Are the Romani People. Hatfield: University of Herdforshire Press; 2002.

21. Morar B, Gresham D, Angelicheva D, Tournev I, Gooding R, Guergueltcheva V, et al. Mutation History

of the Roma/Gypsies. American Journal of Human Genetics. 2004; 75(4):596–609. PubMed PMID:

PMC1182047. https://doi.org/10.1086/424759 PMID: 15322984

22. Salihovic MP, Baresic A, Klaric IM, Cukrov S, Lauc LB, Janicijevic B. The role of the Vlax Roma in shap-

ing the European Romani maternal genetic history. American journal of physical anthropology. 2011;

146(2):262–70. Epub 2011/09/15. https://doi.org/10.1002/ajpa.21566 PMID: 21915846.

23. Klaric IM, Salihovic MP, Lauc LB, Zhivotovsky LA, Rootsi S, Janicijevic B. Dissecting the molecular

architecture and origin of Bayash Romani patrilineages: genetic influences from South-Asia and the

Balkans. American journal of physical anthropology. 2009; 138(3):333–42. Epub 2008/09/13. https://

doi.org/10.1002/ajpa.20933 PMID: 18785634.

24. Pokupcic K, Cukrov S, Klaric IM, Salihovic MP, Lauc LB, Blazanovic A, et al. Y-STR genetic diversity of

Croatian (Bayash) Roma. Forensic science international Genetics. 2008; 2(2):e11–3. Epub 2008/12/

17. https://doi.org/10.1016/j.fsigen.2007.11.002 PMID: 19083796.
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