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Hazard ratio

We previously depicted the essentials about several mea-
sures of association between variables when the outcome 
variable (or dependent variable) is binary: (absolute) risk and 
prevalence difference (simple differences in proportions), 
and three ratio measures (which quantify relative differ-
ences) – odds ratio (OR), risk ratio (RR), and prevalence ratio 
(PR; computationally the same but conceptually different 
from RR) (1,2). To exemplify these measures, we outlined 
hypothetical observational studies aimed to assess an as-
sociation between a binary dependent variable (diagnosis 
of carcinoma/no diagnosis of carcinoma) and a binary in-
dependent variable (exposure or no exposure to a certain 
agent). We pointed out that the ratio measures (OR, RR/
PR) could be modeled [ie, log(odds), log(risk/prevalence)]. 
This allows one to quantify the association between a con-
tinuous independent variable and a binary dependent 
variable. In such a case, OR and RR/PR quantify a relative 
change in odds (OR) or risk/prevalence (RR/PR) of the out-
come associated with unit change in the independent 
variable (eg, the risk of carcinoma if age is 5 years above 
the mean age of the observed sample/risk of carcinoma 
at the mean age).

There are situations, however, when these measures are 
not adequate for the evaluation of potential associations 
between presumed independent variables and a bina-
ry outcome variable. Let us assume that in a clinical trial 
patients with advanced carcinoma are randomized to re-
ceive a standard treatment or a new treatment. The out-
come of interest is death (yes/no). Let us further assume 
that by the end of the third year since randomization all 
patients in both groups have died. However, the dynam-
ics of dying (over time), ie, propensity to dying were dif-
ferent: with the standard treatment all the patients have 
died by the end of the first year, while with the new treat-
ment only around 20%-25% have died by the end of the 

first year. Clearly, the estimate of an association between 
the new treatment and the risk of death (ie, estimate of 
the treatment effect) based on OR or RR would be biased 
since it would account only for the proportion of patients 
who died over 3 years and would disregard the important 
information about the time since the start of treatment at 
which death occurred. One could consider using the time 
to death as an outcome (and compare it between treat-
ments), but these values are typically highly skewed. More-
over, let us assume that in each group there were 5% of pa-
tients who received the full treatment but were then lost 
to follow-up at different times since the start of treatment. 
Lost to follow-up means: “the last time we looked” they were 
alive, but then for some reason they stopped reporting to 
the clinic for regular check-ups, so while for the other 95% 
we know they died, for these 5% we do not know whether 
they are alive or dead at the end of the third year since the 
start of treatment. The same would be with patients who 
survive to the end of the third year – we would know that 
they survived up to three years, but we would not know 
their time of death. Under such conditions, how could one 
compare times to death, when time to death is not known 
for all the patients? There are two “types” of times in such a 
scenario: time to death or survival time, and time to the end 
of follow-up (scheduled or early) at which the patient is still 
alive, the so-called censored time (Figure 1). Several meth-
ods can be used to analyze such data, ie, to consider the 
time as a dependent variable accounting for the fact that 
the endpoint is either the event or censoring (3,4). Initially, 
the methods were developed to analyze data where the 
event of interest was indeed death, hence the name surviv-
al analysis, however, the event could be virtually any binary 
outcome and subject to analysis could be, eg, time to dis-
ease occurrence (or recurrence), time to eradication of 
the disease, time to hospitalization, etc. Therefore, the 
alternative name for this kind of data are time-to-
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event data. Different methods for time-to-event analysis 
differently quantify the association between (one or more) 
independent variable(s) and the dependent variable: they 
will provide results of formal statistical tests, but also some 
form of quantification of the effects, eg, (estimated or ex-
pected) median times to event (which would, for exam-
ple, illustrate the difference between two treatments) (the 
so-called non-parametric methods) or estimated ratios of 
mean times to event (the so-called parametric methods). 
However, in biomedical research by far the most common 
effect measure in the analysis of time-to-event is the haz-
ard ratio (HR). It arises from a semiparametric regression 
method of analysis named after its author (Sir David R. Cox) 
(3,4). In their essence, all survival analysis methods use the 
observed times (to an event or to censoring) to estimate 
three functions (3,4): a) the survivor function [S(t)], which 
could be defined as the probability (for an individual) to 
survive (or not experience an event of interest) from the 
start of observation (t0) to and beyond a certain later time 
(t); b) the hazard function [h(t)], which could be defined as 
the probability that a patient experiences the event at time 
t, under the condition that he/she has not experienced it 
before time t (eg, if time is measured in days, that the pa-
tient who is alive on day X dies during that day). This func-
tion is also referred to as the hazard rate or the instanta-

neous death rate (3) (or, correspondingly, an instantaneous 
probability or risk of an event); c) cumulative hazard func-
tion [H(t)], which could be defined as the cumulative risk 
of an event by time t, ie, an expected number of events 
that occur in the interval between t0 and t. The Cox propor-
tional hazard regression method models log[h(t)]. It quanti-
fies the association between a categorical (binary, or with 
more levels) independent variable and the outcome by 
determining the difference in logarithms of hazard func-
tions between different levels of the independent, eg, for 
a new vs the standard treatment {log[hN(t)] - log[hS(t)]}; or 
between a continuous independent variable and the out-
come by determining the difference between the log (haz-
ard functions) at two different values of the independent 
(eg, at age 5 years above the mean age vs at the mean 
age). The exponent of the difference between these loga-
rithms is the hazard ratio (HR). Like some other methods 
(parametric survival methods), the Cox method assumes 
that the compared hazard functions are proportional (al-
though, it can be generalized to allow for nonproportional 
hazards, 4), ie, that their relation over time remains con-
stant (the same).

As a ratio measure, HR quantifies relative hazard, ie, relative 
risk (RR) and can vary between 0 and infinity: if HR = 1.0, 

Figure 1. Possible scenarios with patients in a study with time-to-event data (here, event = death).
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there is no difference between two hazard functions (two 
risks of the event, each associated with the respective lev-
el/value of the independent variable), the numerator one 
and the denominator one; if HR<1.0, the numerator risk is 
lower than the denominator; if HR>1.0, the numerator risk 

is higher. It should be noted: although HR is standardly in-
terpreted as a RR (of an event), the information conveyed 
by HR differs from that conveyed by the “common” RR de-
termined as a ratio of two proportions of incident patients. 
HR quantifies instantaneous relative risk, while RR quantifies 
cumulative risk –these two estimates may considerably dif-
fer for the same data. To illustrate this, Figure 2 summarizes 
data from the mentioned hypothetical (simulated) clini-
cal trial in which patients with advanced carcinoma were 
randomized to receive a standard treatment (S, n = 100) 
or the new treatment (N, n = 100), and are to be followed-
up over 3 years after randomization. All patients are >50 
years of age and the two groups are similar in this respect 
(S, mean ± standard deviation [SD] = 72.1 ± 6.2 years; N, 
mean±SD = 70.1 ± 5.4 years), with a similar proportion of 
patients with a “worse” pathohistological grade (as op-
posed to “better”) (S 53%, N 49%). To make the example 
more realistic, the outcome of interest is disease progres-
sion or death, whichever first, and the dependent variable 
is time-to-event (progression or death), the so-called pro-
gression-free survival (PFS), a standard dependent variable 
in oncology studies. In each group, 95% of the patients ex-
perienced the event by the end of the third year since ran-
domization and the start of treatment, while 5% in each 
group were lost to follow-up.

Cumulative risk of the event over a period of three years 
in each group = 95/100 = 95%. A simple cumulative relative 
risk (N/S) RR = 1.00 (95% CI 0.93-1.08), P > 0.999. With ad-
justment for age and pathohistological grade (to estimate 
the treatment effect unconfounded by possible effects of 
these characteristics), relative risk of event for N vs S: (ad-
justed) RR = 0.99 (95%CI 0.93-1.06), P = 0.828. Hence, either 
way, cumulative RR indicates no difference between treat-
ments regarding disease progression or death over three 
years, ie, no benefit of the new treatment.

However, the time-to-event (or commonly survival) curves 
clearly indicate that time-to-event (PFS) is considerably 
different between the two treatments (Figure 2): a simple 
non-parametric method (compares treatments without 
adjustments) estimates median time to progression/death 
(median PFS) for N to be 17.9 months vs 6.0 months for S 
(P < 0.001) (Figure 2A). A parametric method (with adjust-
ment for age and pathohistological grade) estimates mean 
PFS for S to be 6.7 months (6.1-7.2) and for N to be 20.5 
months (18.9-22.2) and gives their ratio (N/S) = 3.07 (95% 
CI 2.74-3.44), P < 0.001 – indicating around three times 
longer mean PFS (“average” time to disease progression 
or death) with N, a huge effect of N.

Figure 2. Time-to-event data from the hypothetical (simu-
lated) study depicted in the text: advanced cancer patients 
are randomized to a standard treatment (S, n = 100) or a 
new treatment (N, n = 100) and the scheduled follow-up is 
three years (36 months). The outcome of interest is disease 
progression or death and the subject of analysis (dependent 
variable) is time-to-event, ie, progression-free survival (PFS). (A) 
Time-to-event data by treatment are summarized by the non-
parametric Kaplan-Meier method (KM survivor curves). Dots 
represent censored observations (patients lost to follow-up 
before the end of the scheduled observation period, see text). 
Depicted are numbers of patients starting subsequent sub-
periods of time who are still without the event (at risk patients) 
and the cumulative number of those experiencing the event. 
The method estimates median times-to-event, ie, median 
PFS for S and for N. (B) Adjusted curves depicting estimated 
probability of no event over time (adjusted PFS curves) for S 
and N obtained by the Cox method (adjustments for age and 
pathohistological grade).
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Figure 2B shows adjusted (for age and pathohistologi-
cal grade) curves of PFS for S and N (ie, of the estimated 
probability of no progression/death) over time by the 
Cox method. The (adjusted) hazard ratio, HR = 0.072 (95% 
0.042-0.115), P < 0.001, indicates a great reduction (by 
around 92.8%) in the instantaneous risk of the event with 
N: whatever the risk of event with the S treatment for any 
subsequent section of time, the risk with N is 92.8% rela-
tively lower. This is illustrated by the estimated proportion 
of patients still without the event at any time point since t0: 
for example, at three months in the S group, the estimated 
proportion of patients without an event is 88.0%. With N 
the estimate is 99.1%, and could be obtained as

(Proportion without event with S)HR = 0.880.072 = 0.991.

In absolute terms, this is a difference in the probability of 
a three-month PFS of 11.1% (91.1-88.0). The probability 
of surviving without disease progression to any (and be-
yond) subsequent time point would always be higher with 
N for the same relative amount, but the absolute amount 
would change in line with the changes of the PFS with 
the S treatment. For example, the probability of PFS at 10 
months is 6.05% with the S treatment and 81.7% with N 
[100 × (0.06050.072)] – absolute difference of 75.65%.

Benefits of the new treatment might be illustrated also by 
the fact that the (adjusted) estimated time needed for 50% 
of patients to experience the event (median PFS) is close 
to 6 months with S and close to 18 months with N (virtu-
ally the same as by the non-parametric method). In oncol-
ogy, such differences would be considered a huge and a 
greatly important effect of any new potential treatment for 
advanced stages of any malignant disease.
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