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Abstract: Dementia is a syndrome of global and progressive deterioration of cognitive skills, espe-
cially memory, learning, abstract thinking, and orientation, usually affecting the elderly. The most
common forms are Alzheimer’s disease, vascular dementia, and other (frontotemporal, Lewy body
disease) dementias. The etiology of these multifactorial disorders involves complex interactions of
various environmental and (epi)genetic factors and requires multiple forms of pharmacological inter-
vention, including anti-dementia drugs for cognitive impairment, antidepressants, antipsychotics,
anxiolytics and sedatives for behavioral and psychological symptoms of dementia, and other drugs
for comorbid disorders. The pharmacotherapy of dementia patients has been characterized by a
significant interindividual variability in drug response and the development of adverse drug effects.
The therapeutic response to currently available drugs is partially effective in only some individuals,
with side effects, drug interactions, intolerance, and non-compliance occurring in the majority of
dementia patients. Therefore, understanding the genetic basis of a patient’s response to pharma-
cotherapy might help clinicians select the most effective treatment for dementia while minimizing the
likelihood of adverse reactions and drug interactions. Recent advances in pharmacogenomics may
contribute to the individualization and optimization of dementia pharmacotherapy by increasing its
efficacy and safety via a prediction of clinical outcomes. Thus, it can significantly improve the quality
of life in dementia patients.

Keywords: dementia; genetics; pharmacogenomics; cognitive impairment; neuropsychiatric symptoms;
drug response; adverse drug effects; drug interactions

1. Introduction

Pharmacotherapy of dementia is partially effective in only some individuals, with
side effects, drug interactions, intolerance, and non-compliance occurring in the majority of
dementia patients. Interindividual variability in drug response among dementia patients
is largely due to genetic variations, which could influence the activity or availability of
drug-metabolizing enzymes, receptors, channels, transporters, and other proteins involved
in drug pharmacokinetics and pharmacodynamics [1]. Pharmacokinetics refers to the
variability in the drug’s absorption, distribution, metabolism, and elimination (ADME)
that modulates the delivery or removal of drugs and their metabolites at their action sites.
On the other hand, pharmacodynamics refers to variability in the drug action dependent
on the interaction of the active drug with its target molecules, such as receptors, ion
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channels, and enzymes, and can also affect therapeutic response and drug side effects.
Different studies aimed to identify genetic variants that could predict patients who may
optimally benefit from specific, individually tailored treatment. Both pharmacogenetics
and pharmacogenomics, as rapidly growing fields with huge potential in drug discovery
and personalized medicine, address interindividual variations in DNA sequence affecting
drug efficacy and toxicity in order to optimize the pharmacotherapy based on the patient
individual genetic signature. Whereas pharmacogenetics generally refers to the variations
in a single or several genes influencing the response to drugs, pharmacogenomics addresses
genome-wide alterations and the mutual interaction of many genes affecting drug efficacy
and safety.

The development of pharmacogenomics as an interdisciplinary large-scale systematic
approach has been reinforced by the introduction of genomic techniques, such as genotyp-
ing, gene sequencing, gene expression, genetic epidemiology, transcriptomics, proteomics,
metabolomics and bioinformatics, and other multiplex assay technologies, which allow
deeper assessment of disease mechanisms, potential drug targets and metabolism, or as-
sociated pathway components [2]. However, the application of pharmacogenomics in
dementia patients is very challenging since dementia is a complex disorder represented
not only by cognitive decline but also by behavioral and neuropsychiatric symptoms, as
well as progressive functional deterioration, in which more than 200 different genes asso-
ciated with the dementia pathogenesis, drug mechanism of action, phase I and phase II
metabolism reactions, transporters, and concomitant pathologies might be involved [3,4].
A complex clinical picture of dementia usually requires simultaneous therapy with several
different drugs, targeting both cognitive and neuropsychiatric symptoms. Specifically,
patients with dementia typically receive 6–10 different drugs per day, including conven-
tional anti-dementia drugs, antidepressants, antipsychotics, anxiolytics, anticonvulsants,
and also other types of drugs (antihypertensive drugs, diuretics, statins, anti-histaminics,
anti-inflammatory, and antidiabetic drugs), for treating various comorbid and somatic
disorders in the elderly [5].

Therefore, optimization of therapy in dementia patients is a major goal to which
pharmacogenomics could contribute by improving patient stratification, resulting in more
effective therapy and reduced drug adverse effects. In this review, we summarize current
knowledge on molecular mechanisms of dementia, the most relevant associated genes,
as well as genes involved in the activity or availability of drugs commonly used for the
management of both cognitive and neuropsychiatric symptoms of dementia. We also
discuss the importance of pharmacogenomics studies in the search for predictive strategies
and new and effective medications for dementia.

2. Dementia

Dementia is a complex condition that involves the interaction of various factors such
as genetics, epigenetics, metabolic and vascular health abnormalities, as well as various
environmental influences, ultimately resulting in the death of brain cells. This multifaceted
syndrome represents a significant healthcare problem around the world and ranks as the
foremost cause of disability among the elderly. The weight of dementia extends its impact
not only on individuals but also on their caregivers and healthcare systems, given the
profound cognitive and functional impairments it entails. A concise medical history, as
well as neurological and cognitive examinations, are necessary in order to evaluate possible
dementia, with the patient’s history gathered from both the individual and a family member
or friend playing a crucial role in this process.

The cognitive assessment aims to determine the presence and characteristics of cogni-
tive deficits and often utilizes screening tools such as the Montreal Cognitive Assessment
(MoCA) or the Mini-Mental State Examination (MMSE), while the neurologic examination
assesses neurocognitive problems (agnosia, aphasia, and apraxia) and unusual behaviors
associated with specific types of dementia [6]. The standard assessment includes blood
tests and neuroimaging to identify potential causes of dementia, with specialized neuropsy-
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chological testing being required in specific instances. Advanced diagnostic tools, such as
positron emission tomography (PET) scans and cerebrospinal fluid testing, can provide
valuable information in atypical or diagnostically challenging cases, while genetic testing
might be suitable for younger patients with a family history of dementia [6].

There are over 100 diseases that can cause dementia, although the four main types
include Alzheimer’s disease (AD) (50–75%), vascular dementia (VaD) (15–20%), Lewy body
dementia (LBD) (10–15%), and frontotemporal dementia (FTD) (2%). Cognitive impair-
ments, including dementia, are often present in other proteinopathies such as Parkinson’s
disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), and prion
diseases [7,8]. Currently, dementia affects more than 55 million people worldwide, and it
is estimated that over the next 20–25 years, the number of individuals at risk may exceed
153 million [9]. The prevalence of dementia exhibits an exponential increase, starting at
around 1–2% in individuals aged 60–65 years and rising to over 30–35% in people aged over
80 years [10]. It is highly probable that among patients aged 75–80 years, most dementia
cases result from a combination of degenerative and vascular factors (mixed dementia). In
contrast, cases of pure AD have become less common for people aged 80 and older [10].

AD, the most common type of dementia, is primarily characterized by the accumula-
tion of extracellular amyloid β (Aβ) plaques and intracellular tangles of hyperphosphory-
lated tau protein in the brain, leading to neural degeneration and synaptic dysfunction. Rare
forms of dominantly inherited early-onset AD can result from mutations in the amyloid
precursor protein (APP) and presenilin (PSEN1 and PSEN2) genes, collectively accounting
for less than 1% of all AD cases [11]. Late-onset AD, which is more prevalent, is typically
categorized as sporadic, although there are identified genetic risk factors, with the most
important gene coding for apolipoprotein E (APOE) [12]. Beyond the primary risk factors
like age, family history, and the APOE4 genotype [13], late-onset AD is also influenced by
additional risk factors, such as triggering receptor expressed on myeloid cells-2 (TREM2),
a disintegrin and metalloproteinase 10 (ADAM10), and phospholipase D3 (PLD3), that
not only impact APP and tau but also play a role in cholesterol metabolism and immune
response [14,15]. In addition, other risk factors associated with AD include environmental
and metabolic factors, such as cerebrovascular disease, diabetes, inadequate dietary habits,
stress, and head injuries [16]. Progressive decline in memory, particularly episodic mem-
ory, as well as problems with executive functions, usually appear in the earlier stage of
the disease, whereas challenges related to perceptual motor skills, social cognition, and
language abilities tend to become noticeable at a later dementia stage [17]. Additionally,
non-memory-related symptoms can also be manifested, including mood disturbances,
such as anxiety, depression, and apathy, which may persist throughout the course of the
disease [17]. Moreover, during the middle to later stages of dementia, individuals may
exhibit behavioral symptoms like aggression, irritability, restlessness, and wandering [18].

VaD, also known as multi-infarct dementia, arteriosclerotic dementia, or vascular
cognitive impairment, is the second most common type of dementia resulting from cere-
brovascular disease and leading to impaired blood flow to the brain. It can be caused by
both large and small vessel diseases, and the critical factor in its development is the location
of the lesions rather than the extent of tissue damage [19]. Cerebral autosomal dominant
arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most
prevalent hereditary stroke condition attributed to mutations in the neurogenic locus notch
homolog protein 3 (Notch-3) gene and serves as a significant contributor to VaD [20]. It
is important to note that risk factors for stroke align with risk factors for VaD, given that
stroke represents a significant pathway that connects cardiac and cerebrovascular diseases
to vascular brain injury and, ultimately, cognitive impairment. Furthermore, age, dia-
betes, hypertension, and smoking are some of the other important risk factors for VaD [21].
Although cognitive impairment varies depending on the location and extent of vascular
damage, it typically involves deficits in attention, executive function, and processing speed,
alongside common symptoms such as alterations in mood and personality [18]. Depression
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linked to VaD, a condition known as vascular depression, may become apparent in later
life, often accompanied by difficulties in executive functions [22].

LBD, the third most common type of dementia, predominantly involves the misfolding
and aggregation of α-synuclein, leading to the formation of Lewy bodies, which is a charac-
teristic feature also observed in Parkinson’s disease (PD). This leads to cognitive deficits,
which result in impaired attention, executive functions, and visuospatial abilities [17],
accompanied by fluctuations in cognitive performance, persistent visual hallucinations,
and the presence of parkinsonism [18]. The primary difference between LBD and dementia
in PD lies in the chronological order of the occurrence of cognitive and movement symp-
toms [23]. While in LBD, cognitive impairment occurs before the onset of parkinsonism, in
PD, cognitive problems develop after the appearance of motor symptoms [23]. LBD can
also manifest with additional features, such as increased sensitivity to specific medications
and rapid eye movement (REM) sleep behavior disorder. Clinical indicators that support
LBD diagnosis include loss of consciousness, frequent falls, hallucinations, delusions, and
depression [24]. The cause of LBD remains elusive, with genetics, age-related changes, and
environmental factors playing a role in the etiology; however, further research is needed
for its comprehensive understanding [25].

FTD is marked by significant frontal and temporal lobe atrophy, typically containing
abnormal tau or ubiquitin protein inclusions. It primarily represents a sporadic condition,
although genetics play a significant role in approximately 40% of cases having a familial
origin [26] and a quarter of cases showing autosomal dominant inheritance. Key genes
implicated in FTD pathogenesis include genes coding for microtubule-associated protein
(MAPT), granulin (GRN), and chromosome 9 open reading frame 72 (C9ORF72) [27–29].
Additionally, it is assumed that mutations in the C9ORF72 gene may serve as a link
between FTD and amyotrophic lateral sclerosis (ALS), contributing to the incidence of
both conditions [30]. Furthermore, thyroid disease and head trauma have been associated
with an increased risk of developing FTD [30]. FTD includes clinical subtypes, such as
behavioral and language variants, which align with specific regions of brain atrophy. In the
behavioral variant, there are notable changes in behavior and personality, encompassing
a lack of interest in personal responsibilities, neglect of personal hygiene, isolation from
social interactions, and displays of socially inappropriate behavior [31]. Some patients
may exhibit repetitive or compulsive motor actions or develop unconventional eating
habits [18], leading to potential misdiagnoses, such as major depressive or bipolar disorder.
Apart from the behavioral variant, there are three language variants in FTD: the semantic
variant, characterized by difficulties in naming and comprehending words; nonfluent
aphasia, characterized by the challenges related to speech and/or grammar apraxia; and
the logopenic subtype, characterized by issues with word retrieval [32].

The primary obstacles to the effective diagnosis and treatment of dementia revolve
around the absence of specific early detection markers and the limited availability of
effective therapies. However, recent advancements in genomic medicine have significantly
improved our understanding of the underlying causes of dementia. These breakthroughs
have led to significant improvements in diagnostic accuracy via the introduction of new
biomarkers. Additionally, these advancements made it possible to customize treatment
approaches by incorporating pharmacogenetic and pharmacogenomic methods into both
drug development and clinical practice [18,29].

3. Genetics of Dementia

Genetic factors can play a role in the development of dementia through Mendelian
inheritance patterns, leading to high heritability in families, or act as contributing factors
in complex heterogeneous multifactorial types of dementia, usually with small effect
sizes [33]. As demonstrated in Table 1, Mendelian forms of dementia are usually rare and
are characterized by mutations in disease-causing genes, and they are usually inherited
through an autosomal dominant pattern [33]. Sporadic forms of different dementias are
partly explained by single nucleotide polymorphisms (SNPs), which represent the common
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type of genetic variation that occurs in a population, and they represent single-letter
differences in the DNA sequence at a particular position in the genome and with structural
variants (SV), defined as DNA segments of minimum 50 bp, that include duplications,
deletions, and insertions of specific genes, as well as their inversions or translocations
(Table 1) [34]. Besides genomic variations, epigenetic alternations, such as DNA methylation
and hidroxymethylation, histone modifications, non-coding RNA (ncRNA) regulation, and
mitochondrial epigenetics, have been included in the pathogenesis of many diseases,
including AD [35].

Table 1. Genetics of most common types of dementia.

Dementia Prevalence Prevalence of
Sporadic Cases

Highly Associated
Genes Other Involved Genes

AD 60–80% 95–90%
Early-onset: APP,

PSEN1, PSEN2
Late-onset: APOE

CR1, BIN1, ADAM10, SORL1,
SIRT1, BACE1, TREM2, AMY1A,

ABCA7, TOMM40, SULTA3/4

VaD 15% Mostly
sporadic

VaD due to monogenic
disorders: NOTCH3,
HTRA1, GLA, APP,

PSEN1, PSEN2, COL4A1

APOE, MTHFR, PON1,
RPGRIP1L, PHLDB2, SYK

FTD
2.7% (total population)

10.2% (younger
population)

70% C9ORF72, MAPT, GRN

TBK1, VCP, OPTN, TARDP,
CHMP2B, TREM2, UBQLN2,
SQSTM1, FUS, LOC730100,
CEP131, ENTHD2, C17orf89,

CHCHD10, SIGMAR1,
CCNF, TIA1

LBD 4.2% (total population)
7.5% (older population) >80% APOE, SNCA, GBA BIN1, TMEM175, CLU, FBXL19,

MAPT, TPCN1, OPTN

Structural and functional genomics can help identify risk factors associated with de-
mentia and aid in early detection, diagnosis, and drug development. With the development
of high-throughput methods for the detection of genetic variants and epigenetic marks
on a genome-wide scale, many genes and genomic regions have been implicated in the
pathogenesis of AD and other dementias [34,36]. In contrast to candidate-gene association
studies, genome-wide association studies (GWAS), whole genome/exome sequencing
(WGS/WES), and next-generation sequencing (NGS) provide hypothesis-free approaches
to identify novel genes or genomic regions associated with the development or pathology
of dementia. These methods lead to the identification of many potential risk variants, which
could pinpoint novel biological pathways included in the pathogenesis of dementia [34,36].
However, most variants do not exhibit a direct effect on the protein function; moreover,
their individual effect on the total polygenic risk score is usually low, so targeting most of
these variants might have little or no therapeutic effects.

Hence, the important step is to implement the functional genomics approaches by
integrating the signals obtained by GWAS with other multiomic datasets in order to identify
the possible role of these variants and affected biological pathways in the pathogenesis
of dementia [37]. The application of CRISPR-Cas gene editing technology significantly
enhances the feasibility of large-scale genetic screenings, allowing the usage of precise
modifications of the human genome to investigate functional outcomes in human cells,
including neurons, microglia, and astrocytes [38]. Integration of functional genomics
with genetic studies and single-cell profiling of patient tissues will, therefore, significantly
contribute to the uncovering of the complex mechanisms underlying dementia, as well as
potential therapeutic targets.
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3.1. Alzheimer’s Disease

The heritability of neurodegenerative dementias can vary widely between individuals
and families, with some genetic overlaps indicating shared biological pathways involved
in their development. For example, the overall heritability of AD is estimated to be
between 60 and 80%, with significant differences between early-onset AD (EOAD), which
develops under the age of 60, represents 5–10% of all AD cases, and has a heritability
of 92% to 100% [39], and late-onset AD (LOAD), which develops after 60 years of age,
represents the majority of AD cases, is more heterogeneous, and has heritability between
58 and 70% [39,40]. EOAD is mainly caused by mutations in three genes: gene coding for
amyloid β precursor protein (APP), as well as genes coding for presenilin 1 (PSEN1) and
presenilin 2 (PSEN2), components of γ-secretase, an enzyme involved in the proteolytic
cleavage of APP [41]. These mutations, which mostly follow an autosomal dominant
pattern, directly result in the overproduction, aggregation, and impaired degradation of Aβ
peptides, leading to neurodegeneration; however, they do not show a clear association with
LOAD [42]. Tri-allelic polymorphism in the apolipoprotein E gene (APOE) was the first
identified susceptibility gene for LOAD and has been characterized by missense mutations
resulting in the structural and functional differences of the ApoE protein [43]. APOE*4 allele
is considered the highest-risk allele with adverse effects on lipid metabolism, cardiovascular
diseases, and different proteinopathies, including AD, FTD, LBD, and ALS, while APOE*2
is considered a protective allele [44–46]. Besides the prevalent APOE polymorphism, which
accounts for approximately 25% of genetic variation in AD, rare coding and noncoding
alterations within the APOE gene have also been associated with the susceptibility to
AD [47].

With the development of GWAS, more than 100 additional risk loci for LOAD have
been identified, of which 16 lead SNPs are located in the coding exons or in the 3′UTR
and 5′UTR, and many others harboring them, as reviewed in [36]. Most of the associated
genes are involved in the metabolism of Aβ, in the immune response (especially microglial
activation), or in the lipid and endocytosis pathways [48–50]. However, most of the
identified variants are non-coding and do not have a direct effect on the protein function.
It has been suggested that they could act as regulators of gene expression by altering
DNA methylation and affecting the binding of transcriptional factors [36]. Although links
between SVs and AD were not distinctively found in GWAS [34], many variants showed
association with glucuronosyltransferase activity, neuron projection, histone modifications,
gene expression, RNA splicing, or protein abundance in post-mortem AD brains, thus
providing valuable material for studying their function [51–53]. For instance, several
GWAS and functional studies identified variants in the SORL1 gene, coding for sortilin-
related receptor 1, which has been involved in the modulation of Aβ peptide production
in the brain, to be associated with the risk of LOAD, and possibly familial EOAD [54].
Moreover, SNPs and gene duplication within complement receptor gene 1 (CR1), highly
expressed in astrocytes and microglia, are considered one of the most important risk
variants in AD in several GWAS and are shown to significantly affect the Aβ accumulation
in the brain [36,55,56]. In addition, mutations in the ADAM10 gene, which codes for the
component ofα-secretase, were shown to attenuate its activity, resulting in the accumulation
of Aβ plaques and reactive gliosis in transgenic mice [57]. Significantly altered micro
RNA associated with sirtuin 1 (SIRT1), β-secretase 1 (BACE1), and α-secretase (ADAM10)
transcripts have also been reported, suggesting potential epigenetic regulation of expression
of genes associated with APP metabolism [35].

BIN1 is the second most important AD susceptibility gene after APOE, which encodes
for bridging integrator 1 protein, involved in endocytosis, intracellular trafficking, and
synaptic plasticity [58,59]. AD-associated BIN1 variants are non-coding, but they could act
as gene expression modulators by facilitating the binding of transcriptional factor MEF2C in
primary microglia and induced pluripotent stem cell-derived macrophages [58,59]. More-
over, variants in the triggering receptor expressed on the myeloid cells 2 (TREM2) gene have
been associated with an increased risk of AD and other neurodegenerative disorders [36].
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Functional studies have shown that TREM2 plays a crucial role in regulating microglial
activity and that innate immune response may be involved in the Aβ clearance and reg-
ulation of tau pathology [60]. Salivary α-amylase AMY1A is an enzyme that degrades
polysaccharides such as glycogen and could be responsible for glycogen degradation in
astrocytes and neurons that is necessary for neurotransmitter production and memory
formation [61]. The high copy number of the AMY1A gene possibly leads to higher pro-
duction of brain α-amylase, which showed an association with lower AD risk and more
preserved episodic memory [62]. In addition, a strong association of SNPs, variable number
of tandem repeats (VNTRs), and variants generating premature termination codon in the
ABCA7 gene with AD were observed in several GWAS and genetic studies [36]. The ABCA7
gene codes for the ATP-binding cassette (ABC) transporter involved in lipid homeostasis,
cholesterol metabolism, and phagocytosis [63,64]. Several SNPs and retrotransposon Alu
insertion into the intron of the TOMM40 gene [65,66], which is adjacent to and usually in
haplotype with APOE locus, have also been associated with AD [36]. TOM40 protein is
crucial for mitochondrial function, including cell metabolism, apoptosis, and lipid syn-
thesis [67], whereas poly T extension in introne 6 of the TOMM40 gene is shown to be
protective against Aβ toxicity [68]. The targeted analysis demonstrated that duplication
of SULT1A3/4 genes coding for sulfotransferases, which are involved in the metabolism
of catecholamines, are associated with the risk of AD and earlier onset of the disease [69];
however, this result was not replicated in the GWAS.

3.2. Vascular Dementia

The genetic background of VaD is poorly understood, as it is considered a mostly
sporadic disease [70,71]. However, there is supporting evidence that VaD can develop due
to single gene mutations, resulting in the development of monogenic disorders, such as
CADASIL, which is considered the most common heritable form of VaD [71,72]. CADASIL
is caused by mutations in the NOTCH3 gene, coding for the Notch 3 receptor, which results
in impaired function of vascular smooth muscle cells [73]. Much less frequent is cere-
bral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy
(CARASIL), which is developed due to various mutations in the HTRA1 gene, coding for
HTRA1 serine peptidase/protease 1 [74]. Other disorders include Fabry disease (FD), an
X-linked lysosomal disease caused by a mutation of the GLA gene, resulting in impaired
α-galactosidase activity and accumulation of glycosphingolipids [75]; retinal vasculopathy
with cerebral leukodystrophy (RVCL) due to frame-shift TREX1 mutations that result in a
DNase III exonuclease impairment [76]; cerebral amyloid angiopathy (CAA), characterized
by defective protein deposits, including Aβ and highly affected by mutations in APP,
PSEN1, and PSEN2 genes but also in transthyretin (TTR), cystatin C (CST3), gelsolin (GSN),
and integral membrane protein 2B (ITM2B) genes [77]; and disorders related to mutations
in collagen type IV α1 chain (COL4A1) gene, such as small vessel arteriopathy and cerebral
small vessel disease (CSVD) [78].

The genetic basis of VaD sporadic forms is mostly based on candidate-gene studies,
and it overlaps with the genetic background of the vascular risk factors such as hyperten-
sion, dyslipidemia, and smoking, as well as of other diseases, such as AD and stroke [71,72].
APOE*E4 allele was associated with a higher risk of VaD in several meta-analyses, irre-
spective of patient ethnicity [71,79]. Genetic variants in the methylenetetrahydrofolate
reductase (MTHFR) gene, which affects the level of homocysteine [79]; polymorphisms
in the paraoxonase 1 (PON1) gene [80]; insertion–deletion variant in the intron 16 of ACE
gene, coding for the angiotensin-converting enzyme, associated with vascular reactivity,
have also been implicated in the moderating the risk of development of sporadic VaD [81].
SNPs in the genes related to the inflammation, such as interleukin (IL-1α, IL-1β, IL-6),
and tumour necrosis factor (TNF-α, TGF-β1) genes, could also possibly influence VaD
development; however, these findings were not replicated in all ethnic groups [72]. GWAS
also detected associations of VaD with polymorphisms in the androgen receptor (AR) gene
on the X-chromosome and RPGRIP1L gene, whose product regulates thromboxane A2 and
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consequently vasoconstriction and platelet aggregation [72,82], while functional studies
confirmed the association of spleen associated tyrosine kinase (SYK) and pleckstrin homol-
ogy like domain family B member 2 (PHLDB2) genes with VaD [83,84]. The challenge in
determining the genetic basis of sporadic VaD is due to the small effects of many genetic
variants, as well as the heterogeneity of VaD phenotypes. Therefore, it is necessary to
confirm these findings in large replication cohorts and to further explore the biological
mechanisms involved in both AD and stroke [72].

3.3. Frontotemporal Dementia

The prevalence of familial FTD represents 30% of the total FTD cases [85]. It develops
mostly due to autosomal dominant mutations in chromosome 9 open reading frame 72
(C9ORF72), microtubule-associated protein tau (MAPT), and progranulin (GRN) genes,
which are responsible for 60% of familial FTD cases [33,86]. The sporadic form, which
represents 70% of FTD cases, is more complex, and its heritability ranges from 26 to 31%
and mostly includes SNPs [85]. Pathogenic expansion of GGGGCC hexanucleotide repeats
in the intron region of the C9ORF72 gene is the most common genetic cause of FTD and ALS
and a rare cause of PD. It accounts for the 20–30% genetic susceptibility of familial and about
6% of sporadic FTD [87,88]. The exact function of the protein encoded by the C9ORF72
gene is not well known, but it appears to be involved in the regulation of autophagy and
inflammation [89]. Mutations in the C9ORF72 gene can lead to both loss-of-function and
gain-of-function effects by forming RNA foci in the nucleus, which can be translated into
dipeptide repeat proteins and TAR DNA binding protein (TDP-43) inclusions in neurons
and oligodendrocytes [89]. Complex inversion of the 673 bp region in the MAPT gene (H2
haplotype) has been associated with FTD/ALS but also with AD and LBD risk. Mutations
in exonic and intronic regions of the MAPT gene primarily affect the mRNA splicing,
which can lead to disruption of the tau protein structure, resulting in impaired microtubule
assembly and aggregation of tau filaments [90]. In addition, complex inversion 673 bp
region of MAPT H2 haplotype can reduce the risk of FTD/ALS but also AD, LBD, and
PD [34,91,92], while several identified deleterious SVs encompassing the MAPT gene
region and H1/H2 haplotype could be implicated in the gene expression [34,51]. GRN gene
mutations are mostly non-sense and deleterious mutations, which generate a premature
termination codon that leads to reduced expression of progranulin [93] and, consequently,
in lysosomal impairment and accumulation of pathological forms of ubiquitinated TDP-43,
characteristic for some types of FTD and ALS [94,95].

In addition, more rare mutations were associated with FTD with cumulative risk
<5%, of which the strongest effect was loss-of-function mutations in tank-binding kinase
(TBK1) gene, coding for serine/threonine kinase, which are estimated as the fourth and
second most common genetic cause of FTD and ALS, respectively [96]. TBK1 mutations
result in a dysfunctional vesicular transport system, which could lead to deregulated
autophagy and neurodegeneration [97]. Other associated genes are mostly involved in
the regulation of transcription and RNA splicing, protein degradation, membrane fusion,
autophagy, and apoptosis [98] and include genes coding for valosin-containing protein
(VCP), optineurin (OPTN), TAR DNA binding protein (TARDP), charged multivesicular
body protein 2B (CHMP2B), triggering receptor expressed on myeloid cells 2 (TREM2),
ubiquilin 2 (UBQLN2), sequestosome 1 (SQSTM1), fused in sarcoma (FUS), coiled-coil-
helix-coiled-coil-helix domain containing 10 (CHCHD10), sigma non-opioid intracellular
receptor 1 (SIGMAR1), cyclin F (CCNF), and TIA1 cytotoxic granule associated RNA binding
protein (TIA1) [85]. Additional high-risk loci containing common genetic variants (SNPs)
were identified and replicated in the recent study [99], such as several variants located
in the introns of LOC730100 gene, coding for long ncRNA, which upregulation has been
shown to enhance proliferation and invasion of glioma cells [100]; CEP131 gene, coding
for centrosomal complex involved in the stabilization of genome [101]; ENTHD gene 2,
involved in the trans-Golgi network vesicular processes [102]; and C17orf89 gene [99].
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3.4. Lewy Body Dementia

The majority of LBD are sporadic cases (>80%), and genetic influence on its develop-
ment was previously considered small; however, it is now clear that the genetic component
of LBD is estimated to be 36–59.9%, based on SNPs only [103,104]. Moreover, there is in-
creasing evidence of hereditary components in the development of LBD, which is also found
in related dementia, such as AD- and PD-associated dementia [103,104]. Not only does LBD
share similar clinical and neuropathological features with PD and in a subset of AD cases,
but also similar genetic factors have been implicated in the development of these diseases,
suggesting similar molecular pathways underlying their pathogenesis [103,105]. However,
recent findings have shown genetic variants specific to LBD [106]. Well-established risk
genes for LBD include the APOE gene, also associated with AD, as well as α-synuclein
(SNCA) and β-glucosylceramidase (GBA), which also represent risk genes for PD [103,104].
APOE risk alleles have been implicated in the pathology of AD [107] and LBD but not
PD [108], which could explain the presence of AD-related neuropathological hallmarks
in numerous LBD cases [109]. Point mutations in the SNCA gene are possibly affecting
the membrane binding activity and synuclein aggregation, while locus multiplications of
SNCA, leading to the overproduction of synuclein, can result in the formation of Lewy
bodies [110]. Besides potential disease-causing mutations, there are several SNPs in the
SNCA locus that could modulate the risk of developing LBD and PD, with differential
prevalence between these diseases [106]. Moreover, SNCA gene methylation was suggested
to be significantly decreased in LBD, leading to higher gene expression [111]. Mutations in
the GBA gene, which codes for lysosomal enzyme β-glucocerebrosidase, lead to reduced en-
zyme activity, resulting in impaired degradation of α-synuclein and its accumulation [112],
and are linked with the higher risk of PD, with variations associated with earlier onset and
shorter life-span in PD and LBD [113].

The latest GWAS identified 13 genomic risk loci significantly associated with LBD,
contributing to 6.24% of total LBD heritability [105,106]. They include variations in BIN1
gene (also associated with AD); transmembrane protein 175 and lysosomal K+ channel
TMEM175 gene (implicated in PD), which deficiency leads to decreased lysosomal catalytic
activity due to pH imbalance [114]; CLU gene, coding for clusterin, a protein that possibly
binds α-synuclei aggregated species [115]; FBXL19 gene, which encodes for the type of
ubiquitin ligases involved in the regulation of ubiquitination and degradation of inflamma-
tory cytokines with potential neuroprotective effect [116]; and the MAPT gene, which is
also involved in the pathogenesis of FTD and AD [117,118]. Functional enrichment analysis
showed that many variants associated with LBD were found in regions associated with
the regulation of gene transcription and translation, such as exone regions, enhancers, and
regions linked to histone modifications, especially H3K36me3 [105]. A common structural
variant (309 bp deletion) in the intron region of the two-pore calcium channel (TPCN1)
gene that encodes a two-pore calcium channel has been associated with the risk of LBD
and AD [119]. The functional implications of this gene were confirmed in Tpcn1 knockout
mice, who have shown impaired memory and spatial learning [120]. Moreover, deletion
in the OPTN gene was associated with an increased risk for LBD [119]. Accumulation
of optineurin in Lewy bodies [121] and previous involvement of OPTN mutation in the
development of FTD [122] confirm the importance of this gene in the pathogenesis of neu-
rodegenerative dementias. These results showing genetic overlap and potentially shared
biological mechanisms involved in AD, FTD, PD, and LBD could provide insight into both
the prevention and treatment of these diseases.

4. Therapeutic Strategies in Dementia

One of the primary goals in treating various forms of dementia is to decrease cognitive,
behavioral, and psychological symptoms while also attempting to slow the progression
of the disease. Pharmacotherapy is frequently one of the initial strategies employed to
address symptoms or hinder the progression of disease, with a primary focus on targeting
the impairment of cholinergic and glutamatergic systems [123]. At present, the Food and
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Drug Administration (FDA) has approved two classes of pharmacological medications
for managing the cognitive symptoms of AD: acetylcholinesterase (AChE) inhibitors and
N-Methyl-D-Aspartate (NMDA) receptor antagonists. However, these medications are not
effective in slowing down the progression of the disease itself but only provide relief from
cognitive symptoms without altering the course of the underlying disease [123,124].

Both AChE-selective inhibitors, donepezil and galantamine, and dual AChE and bu-
tyrylcholinesterase (BuChE) inhibitor, rivastigmine, promote the increase in AChE levels
in the synaptic cleft [6]. AChEIs prevent the breakdown of acetylcholine by inhibiting the
action of acetylcholinesterase, leading to an increase in cholinergic neurotransmission [125].
Donepezil, rivastigmine, and galantamine are currently approved for treating mild to mod-
erate symptoms of AD and have shown modest positive effects on cognitive symptoms [2].
Since their introduction into clinical practice, these drugs have remained the standard
approach to the symptomatic treatment of AD. Various systemic reviews concluded that
AChEI treatment of dementia patients shows small but significant improvement in cog-
nitive function [126,127]. A slow dose titration of these drugs is recommended to reach
the optimal dose with minimal adverse effects [6]. Even with a gradual titration process,
these medications can still lead to gastrointestinal and neurological issues, including symp-
toms like nausea, vomiting, diarrhea, abdominal pain, dizziness, weight loss, tremor, and
fatigue [6]. In such cases, the medication dosage may need to be reduced, or an alternative
drug can be considered [128]. In addition to AD, cholinergic deficiencies are also observed
in other forms of dementia, like dementia associated with PD and LBD [129,130]. While
AChEIs are not officially approved for these dementia types, there is growing evidence
supporting their use in alleviating neuropsychiatric symptoms of patients diagnosed with
LBD and PD [128]. However, these drugs failed to show benefits among individuals with
MCI [131].

Memantine is an NMDA receptor antagonist that reduces the impact of glutamate-
induced excitotoxicity [132]. It prevents the over-activation of glutamate receptors by
slowing down the flow through the NMDA-receptor subtype of glutamate receptors [133].
This way, memantine prevents the overactivation of the glutamatergic system, still main-
taining its normal function. It is used as monotherapy to manage symptoms of moderate
and severe AD. Additionally, research has demonstrated its beneficial effects in slowing
down the progression of cognitive decline in individuals with AD [134,135]. Memantine
treatment of patients with VaD showed minimal improvement in cognitive status [136,137];
however, in patients with LBD, there were no significant effects on cognitive or behavioral
symptoms [138,139]. In addition, when AChEI is no longer effective, memantine is an
alternative drug for patients with moderate and severe AD [128]. Memantine is usually
better tolerated than AChEI, but in some cases, it can cause headache, fatigue, and gastric
pain [128]. Moreover, the combination of donepezil and memantine has been well tolerated,
with positive effects on cognition and performing daily activities [140].

Anti-amyloid drug therapy based on monoclonal antibodies is one of the novel ap-
proaches for slowing down the progression of AD [141]. Aducanumab is a monoclonal
antibody reported to be effective in identifying Aβ aggregates and selectively binding to
both oligomeric and fibrillary states rather than amyloid monomers [142]. It was reported
that aducanumab has beneficial effects in reducing Aβ plaques in patients with mild AD
or MCI and was approved in 2021 by the FDA [143]. However, its approval was met with
controversy due to mixed results in clinical trials, with some experts questioning the drug’s
efficacy and long-term benefits [144–146]. Specifically, although some patients experienced
a reduction in Aβ levels, it remains uncertain whether these results have a clinical impact
on cognitive functions [144]. Another monoclonal antibody, lecanemab, received approval
from the FDA in 2023 for the treatment of people with MCI or mild dementia due to AD
who have elevated Aβ levels in the brain. Various clinical trials suggested that lecanemab
reduces Aβ in the brain [147–149]. Other drugs targeting Aβ plaques, such as donanemab,
are currently in clinical trials [150]. However, the full extent of clinical efficacy, long-term
benefits, and safety of these drugs is yet to be investigated.
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Due to the high complexity of neurodegenerative diseases, single-target therapy
approaches have been mainly ineffective in preventing or slowing the progression of these
diseases. Additionally, a significant challenge lies in the occurrence of adverse effects
and the development of drug tolerance [124,151]. As a result, multi-target strategies are
increasingly being considered, particularly in the case of AD, and a great number of
structures based on this polypharmacology concept have been proposed [152]. The main
focus of this approach involves the design of a single ligand with pleiotropic effects capable
of simultaneously interacting with at least two therapeutic targets. There are three types
of polypharmacological ligands, which are classified as conjugate, fused, and merged
ligands [153]. Conjugate ligands are composed of pharmacophoric structures linked by a
stable or cleavable molecule, allowing them to be released and interact with multiple targets.
Fused ligands have pharmacophoric structures that are joined but do not overlap, whereas
merged ligands have extensive overlap in their pharmacophoric structures, resulting in
smaller and more straightforward molecules [153].

Over the past decades, multi-target therapeutic compounds targeting cholinesterase
inhibition, anti-inflammatory and antiapoptotic activity, monoamine oxidase (MAO) inhibi-
tion, and neuroprotection have been investigated [154], particularly focusing on AChE [155],
BuChE [156], β-secretase 1 (BACE-1) [157], cannabinoid receptor subtype 2 (CB2R) [158],
serotonin (5-HT) receptors [159], serotonin transporter (SERT) [160], cyclooxygenase-2
(COX-2) [161], 5-lipoxygenase (5-LOX) [162], and nuclear factor erythroid 2-related factor 2
(Nrf2) [163]. The majority of multi-target compounds currently undergoing investigation
for AD treatment are specifically designed to moderate cholinesterase and monoamine
activity; inhibit Aβ aggregation; and exert metal-chelating, anti-neuroinflammatory and
antioxidant activity [164]. The development of novel drugs is inspired by established
and approved medications, like donepezil [165,166] and rivastigmine [167], as well as by
various natural bioactive derivatives, such as resveratrol, flavonoids, or curcumin [168,169].
An example of a multi-targeted drug candidate is ladostigil, which functions as both AChEI
and a brain-selective inhibitor of MAO-A and MAO-B [34]. It is primarily intended for
the treatment of dementia, especially AD, PD, and depression [35,36]. This compound is
developed by combining the carbamate rivastigmine with the N-propargyl scaffold from
an anti-parkinsonian drug and the irreversible selective MAO-B inhibitor, rasagiline [35].
It was demonstrated that ladostigil is safe and well-tolerated, but it did not show signif-
icant effectiveness in delaying the progression of dementia. However, it did display the
potential to reduce the brain and hippocampus volume loss, indicating a possible impact
on atrophy [37]. Despite encouraging preclinical results, so far, no multi-targeted drug
has received approval for dementia treatment. However, as research into the underlying
mechanisms of the disease continues, and advances in multi-target drug discovery for AD
unfold, multi-targeted ligands hold substantial promise as a potential pharmacotherapeutic
strategy for dementia.

Numerous research studies have reported a wide range of non-cognitive symptoms in
dementia patients, including behaviors such as aggression, agitation, and psychosis, as well
as issues related to eating and mood disorders [170]. Collectively, these non-cognitive symp-
toms are referred to as behavioral and psychological symptoms of dementia (BPSD) [171].
In addition to anti-dementia drugs, pharmacological treatment of BPSD comprises an-
tidepressants, antipsychotics, benzodiazepines, and mood stabilizers [172–175]. While
tricyclic antidepressants and paroxetine are not recommended due to certain anticholin-
ergic side effects, selective serotonin reuptake inhibitors (SSRIs), such as sertraline and
citalopram, as well as tradozone, have shown good tolerability and effects in reducing
agitation, tension, aggression, psychosis and sleep disturbances [174,175]. Due to adverse
effects, the administration of antipsychotics and mood stabilizers is also not recommended
for BPSD therapy, with the exception of atypical antipsychotics risperidone, olanzapine,
and aripiprazole, as well as valproic acid [172,173]. More recently, FDA-approved two
drugs for treatment of BPSD: suvorexant, an orexin receptor antagonist, approved in 2020
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for the treatment of insomnia in individuals with mild to moderate AD, and brexpiprazole,
atypical antipsychotic, approved in 2023 for the treatment of agitation associated with AD.

Aside from pharmacological treatments, there is a recommendation to consider non-
pharmacological approaches for BPSD treatment, as well as to increase the quality of life
for both patients and their caregivers [176]. The aim of non-pharmacological interventions
is to enhance or, at the very least, maintain cognitive function, enabling individuals to
carry out their regular daily activities while effectively managing the behavioral symptoms
associated with cognitive impairment. Non-pharmacological interventions include various
disciplines, each of them attempting to have a positive effect on cognition, mood, and other
behavioral and psychological symptoms of dementia [177]. Several non-pharmacological
treatments have been proposed for targeting cognitive functional aspects of people with
dementia. Sensory and multi-sensory stimulation includes visual, olfactory, tactile, taste,
and kinaesthetic stimulation in order to reduce agitation and increase awareness [178].
These types of stimulation include art therapy, aromatherapy, light therapy, music, and
dance therapy, as well as snoezelen multi-sensory therapy. Cognitive and emotion-oriented
care intervention is useful for improving cognitive, emotional, and social functioning [179].
Commonly used treatments include reminiscence therapy, reality orientation therapy, and
validation therapy [180]. There is also behavioral management therapy that has been
reported effective in suppressing or eliminating stereotypical behavior, such as wandering
and incontinence [181,182]. Other therapies have been applied, such as animal-assisted
therapy, home adaptation therapy, and assistive technologies [180]. These types of inter-
ventions have been found to be useful in improving outcomes and quality of life in patients
with dementia [183].

Non-pharmacological techniques have been reported to be more effective with fewer
side effects when compared to pharmacotherapy with antipsychotics [176,184,185]. There
are several proposed recommendations for reducing responsive behavior, including apathy,
hyperactivity, and psychosis [186], maintaining or improving functional capacity, and
reducing comorbid emotional disorders, such as anxiety and/or depression [187]. These
symptoms are frequently observed in individuals with dementia, and while medication
therapy may be necessary, it is generally recommended that non-pharmacological interven-
tions are used as the primary approach. [188]. Sensory stimulation, such as music and light
therapy and validation therapy, has been effective in reducing these types of behavior [187].
Interventions for improving functional capacity, which refers to cognitive function and
improving well-being and daily life activity, should include cognitive stimulation, reminis-
cence for cognitive function, as well as exercise and light therapy for improving daily life
activities [189,190]. Furthermore, exercise, music therapy, reminiscence, validation therapy,
and psychological treatments should also be applied to reduce symptoms of depression
and anxiety [191,192].

Therefore, it is important that non-pharmacological treatments become an integral
part of the management of dementia symptoms and rehabilitation programs [181]. The
field of dementia care continually evolves, with new therapies regularly joining the avail-
able options for managing this condition. However, it is essential to recognize that no
single method alone provides a comprehensive long-term solution for dementia man-
agement [181] and that complementary approaches are needed in order to enhance the
long-term care and quality of life for individuals with dementia.

5. Pharmacogenomics of Cognitive Symptoms: Conventional Anti-Dementia Drugs

When we talk about pharmacogenomics studies related to the treatment of cognitive
symptoms in dementia, most of them are focused on AChEIs, memantine, and com-
bined treatments with these four medications (Table 2). The AChEIs and memantine
have different metabolic pathways. Both donepezil and galantamine are metabolized
mostly by CYP3A4, CYP2D6, and CYP1A2 enzymes in the liver, while rivastigmine un-
dergoes cholinesterase-mediated hydrolysis and its metabolism minimally relies on major
cytochrome P450 isozymes [193]. Memantine is metabolized to a minor extent by the
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liver and is mainly excreted unchanged by the kidneys [194]. Around 15–20% of patients
diagnosed with AD exhibit aberrant AChEI metabolism, with approximately half of them
being ultra-rapid metabolizers and the other half slow metabolizers [195].

Donepezil is the most prescribed drug for the treatment of cognitive symptoms in de-
mentia [195]. Different CYP2D6 variants have been studied in order to assess their influence
on donepezil efficacy and safety in AD patients [195–204]. These variants include rs1065852,
rs1080985, CYP2D6*3 (rs35742686, 2549delA), CYP2D6*4 (rs3892097, 1846G>A), CYP2D6*6
(rs5030655, 1707delT), CYP3A4*1B (rs2740574, −392A>G), and CYP2D6*10 (rs1065852,
100C>T); however, the results are inconsistent [203]. CYP2D6 rs1080985 (−1584C/G) is
one of the most studied polymorphisms in the context of its association with the clinical
efficiency of donepezil. The rs1080985 G allele defines the CYP2D6*2A variant, which was
found to be potentially associated with a higher drug metabolism rate [197,205]. CYP2D6
poor metabolizers were found to have a 32% slower clearance rate and a 67% slower
metabolism rate of donepezil compared to ultra-rapid metabolizers [202].

Polymorphism rs1065852 (100C>T) appears in CYP2D6*4 and CYP2D6*10 variant. The
study in Han Chinese patients with AD found that the CYP2D6*10/*10 allele was associated
with better efficacy and higher steady-state plasma concentration of donepezil compared
to other CYP2D6 genotypes [206,207]. The efficiency of donepezil has also been associated
with its interaction with CYP3A4/5 [208]. A study by Noetzli and colleagues analyzed
the effect of different CYP3A gene variants on donepezil clearance in AD patients. They
studied CYP3A4*1B (rs2740574), CYP3A4 (rs4646437), CYP3A4*22 (rs35599367), CYP3A5*3
(rs776746), and CYP3A7*1C (−262T > A and −270T > G) variants and found no connec-
tion with donepezil pharmacokinetic parameters [202]. A similar result was reported
by Magliulo and colleagues in Italian subjects diagnosed with AD. The study investi-
gated CYP3A4*1B, CYP3A4*3 (rs4986910), CYP3A4*4, CYP3A5*2 (rs28365083), CYP3A5*3
(rs776746), and CYP3A5*6 (rs10264272) and found no association between these variants
and donepezil concentration in plasma samples [209]. The lack of influence of CYP3A4
variants on donepezil efficiency was also reported in Chinese AD patients [210].

The efficiency of donepezil could also be influenced by other genetic factors that
are not directly involved in its metabolism (Table 2). Some of the potential candidates
are genes coding for apolipoprotein E (APOE), ATP-binding cassette (ABC) transporter
(ABCA1 and ABCB1), butyrylcholinesterase (BCHE), acetylcholine receptor subunit α7
(CHRNA7), choline acetyltransferase (ChAT), estrogen receptor gene (ESR1), or paraox-
onase (PON-1). Apolipoprotein E is known to be involved in lipoprotein metabolism and
associated with a higher risk of developing AD [211]. Several studies have suggested
its association with the efficacy of donepezil treatment. Patients with AD, carriers of the
high-risk APOE ε4 allele, were found to have a better response to donepezil treatment and
more significant improvement of cognitive symptoms [212,213]. However, there are also
studies reporting opposite results [214] or no association between APOE and treatment
efficiency of donepezil [206,207,215,216]. The study by Lu and colleagues suggested that
the APO ε3 allele could moderate the efficiency of donepezil treatment by demonstrating
better treatment response in subjects who were not APOE ε3 allele carriers [217]. Moreover,
it seems that combined APOE and CYP2D6 influence on donepezil treatment efficacy might
be explained by their involvement in lipid metabolism and liver function [217,218].

Two ABC transporters have also been suggested as possible modulators of donepezil
efficacy, ABCB1 and ABCA1. The results of different studies reported no association
between the efficacy of donepezil and different ABCB1 polymorphisms [202,207,209]. An-
other interesting genetic factor in donepezil pharmacogenetics is the cholesterol transporter
ABCA1. Its function is to moderate Aβ aggregation and stimulate the clearance of Aβ
peptides [203]. The study by Lu and colleagues suggested that patients who were ABCA1
rs2230806 GG genotype carriers had better responses to treatment with donepezil than
AA and GA genotype carriers. The combined effect between APOE and ABCA1 genetic
variants was also suggested, indicating that patients who were APOE ε3 non-carriers and
ABCA1 rs2230806 GG homozygotes responded better to donepezil [219].
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Evidence supporting the role of estrogen in cognitive function has raised the ques-
tion of potential association between ESR1 gene variants and the therapeutic effects of
AChEIs [220]. Two ESR1 polymorphisms, rs2234693 and rs9340799, were examined in AD
patients receiving donepezil, rivastigmine, or no treatment [221]. The authors observed a
significant effect of ESR1 variants in patients treated with donepezil and reported better
treatment response in women than in men [221]. The BCHE is a member of the cholinergic
enzyme family. It is mainly synthesized in the liver; however, it is also present in the central
and peripheral nervous system [222]. The most researched polymorphism of BCHE is
rs1803274, also known as the K-variant, which has been associated with up to 7% reduction
in enzyme hydrolytic activity in heterozygotes (AG) and 14% reduction in homozygotes
(AA) [223]. This polymorphism has been associated with poor treatment response in
patients receiving donepezil [224]. However, two other studies did not confirm this associa-
tion, showing no significant relationship between the presence of K-variant [225,226] or
rs1355534 [226] polymorphism and donepezil efficacy. A study by De Beaumont and col-
leagues demonstrated that AD patients, who are carriers of APOE ε4 and BCHE K-variant,
have an earlier age of onset, accelerated cognitive decline and better response to donepezil
therapy [227].

The chAT gene encodes an enzyme, choline acetyltransferase, responsible for the
biosynthesis of acetylcholine. Two genetic variants of the ChAT gene have been associated
with response to AChEI treatment, rs2177370 and rs3793790 [228]. These polymorphisms
have been associated with impaired synthesis of acetylcholine. Results suggest that the
CC haplotype is responsible for the decreased synthesis of acetylcholine, while carriers
of the CT haplotype demonstrated a higher acetylcholine synthesis rate [228]. The associ-
ation of rs2177370 polymorphism with AChEI efficacy was also reported by Harold and
colleagues [229], while other studies did not observe such a connection [226]. Lee and
colleagues analyzed the difference in donepezil treatment response between carriers and
non-carriers of the rs3810950 (2384G>A) A allele and found that the treatment outcome,
after 26 weeks of therapy, is positively influenced by the presence of A allele [230].

Another potential candidate in the pharmacogenetics of donepezil is the CHRNA7
gene, which encodes the α7 subunit of the nicotinic acetylcholine receptor (nAChR). Poly-
morphisms in CHRNA7 could affect the binding of acetylcholine, which is increased due to
donepezil treatment, to nAChRs. A longitudinal study in the Brazilian population demon-
strated a significant association between CHRNA7 rs6494223 polymorphism (T allele) and
the efficacy of donepezil [231]. The association was present after 6 months of treatment;
however, after 2 years of follow-up, the association could no longer be detected [231].
Another study found an association between CHRNA7 rs8024987 (C→G) polymorphism
and the outcome of AChEI therapy, but only in female patients [232]. The same SNP was
investigated by Clarelli and colleagues, but the results did not confirm the finding reported
by Weng et al. [233]. Two SNPs, rs885071 (T→G) and rs8024987 (C→G), were found to be
in linkage disequilibrium and associated with treatment response [232].

Arylesterase PON-1 has an important role in protecting cells from injuries caused
by oxidative stress. Reduced PON-1 serum levels and activity have been associated with
AD [234]. The most studied PON-1 polymorphism is rs662 (Q192R, A>G), glutamine to
arginine substitution at amino acid residue 192 [235]. Pola and colleagues were able to
associate this polymorphism with AChI treatment (donepezil and rivastigmine) response,
showing a higher frequency of the R allele, which exhibits higher enzyme activity, in
patients who had good response to therapy [236]. Since PON-1 acts as an endogenous
cholinesterase inhibitor, it is possible that it synergistically interacts with other AChEIs and
improves their efficacy [236].

As in the case of treatment response to donepezil, variability in rivastigmine efficiency
could be explained by the effect of different gene variants (Table 2). Some of the potential
candidates are APOE, BCHE, presenilin (PSEN), and UDP glucuronosyltransferase 2B7
(UGT2B7) genes. Better efficacy of combined rivastigmine and memantine therapy has been
reported in APOE ε4 carriers [237]. A multicenter study by Blesa and colleagues reported no
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association between APOE ε4 allele and the response to treatment with rivastigmine [238].
The retrospective analysis by Farlow et al. investigated the efficacy of rivastigmine on
cognitive performance in AD patients, taking into consideration the APOE genotype. The
study reported more pronounced symptom improvement in subjects who were not APOE
ε4 carriers in both rivastigmine and placebo groups [239]. Similar to donepezil treatment
efficacy, the BCHE K-variant affects the response to rivastigmine treatment, especially in
the presence of the APOE ε4 allele [240].

Presenilin is a subunit of γ-secretase, an enzyme that is crucial in processing APP,
thus producing small peptides, including Aβ. Different mutations in the PSEN2 gene can
lead to increased production of Aβ, including a common single adenine (A) nucleotide
deletion polymorphism, which is located in the upstream promoter region of this gene [241].
Zamani and colleagues reported the best treatment response to rivastigmine in AD patients
with PSEN2 +A/−A genotype, alone or in combination with APOE ε3/ε3 or APOE ε4/ε4
genotype, while individuals with combined PSEN2 +A/+A and APOE ε3/ε4 genotypes
had the worst response to treatment [242]. UDP glucuronosyltransferase 2B7 is a metabolic
enzyme important in the elimination of endogenous compounds and potentially toxic
xenobiotics [243]. Different polymorphisms in the UGT2B7 gene could alter the enzyme
activity and, thus, affect the biotransformation of its substrates [244]. The study by Sonali
and colleagues investigated the effect of UGT2B7 (802C>T, UGT2B7*2, rs7439366) polymor-
phism on rivastigmine efficiency, alone and in combination with memantine [245]. Results
suggested that carriers of the UGT2B7 variant, who were poor metabolizers, had poor
clinical response to rivastigmine therapy [245]. However, the study had a limited sample
size, and further research is necessary to confirm or dispute these results.

As already mentioned, galantamine is metabolized mainly by CYP3A4 and CYP2D6
enzymes, which is why CYP2D6 genetic variants have been associated with the outcome
and side effects of galantamine treatment (Table 2). A study by Ma and colleagues detected
better treatment response in AD patients who were CYP2D6*10 rs1065852 carriers and
reported fewer adverse side effects [210]. Genetic variants of CHRNA7 are also interesting
targets in pharmacogenetic studies focused on galantamine efficacy. Better treatment
response to galantamine was reported in patients carrying minor allele variants of rs8024987
(C/G) or rs6494223 (C/T) polymorphism [246].

Unlike in the case of AChEIs, there are not many studies that focus on the pharmacoge-
netics of memantine efficacy (Table 2). From in vitro studies, we know that cytochrome P450
isozymes are not involved in the metabolism of memantine. Memantine is a substrate of the
human organic cation transporter 2 (OCT2) [247], but its clearance is probably also related
to other transporters, including organic cation/carnitine transporters (OCTN 1-3), the mul-
tidrug and toxin extrusion proteins (MATE1-2), and P-glycoprotein (P-gp) [247,248]. Some
studies also suggest the involvement of nuclear receptors in the regulation of cation trans-
porters, including pregnane X receptor (PXR), constitutive androstane receptor (CAR), and
peroxisome proliferator-activated receptor (PPAR) [249–251]. Genetic variations in different
membrane transporters could be associated with variability in memantine pharmacoki-
netics [248]. Pregnane X regulates the expression of metabolic enzymes and transporters,
which are involved in drug metabolism [252]. The polymorphism rs1523130, located in
the NR1I2 gene, which encodes pregnane X, was shown to modulate memantine elimi-
nation [248]. Memantine clearance was found to be 16% slower in patients carrying at
least one T allele (CT and TT genotype) [248]. Ovejero-Benito and colleagues investigated
the association of 67 polymorphisms in 21 genes, including CYP2D6, CYP2C9, CYP2A6,
ABCB1, and genes coding for different neurotransmitter receptors, with donepezil or me-
mantine pharmacokinetics and safety. The authors reported no significant association of
analyzed SNPs with both memantine and donepezil pharmacokinetics or adverse drug
reactions [196].
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Table 2. Pharmacogenomics of conventional anti-dementia drugs.

Drug Name Drug Class Associated Gene Pharmacogenetics
Finding References

Donepezil
Acetylcholin-

esterase
inhibitor

CYP2D6 Functional alleles (rs1080985, rs1065852) affect
variability in donepezil efficacy [197,202,205–207]

CYP3A4/5 Lack of association with donepezil
pharmacokinetic parameters [202,209,210]

APOE

Carriers of high-risk APOE ε4 allele have better
response to donepezil treatment [212,213]

No association between APOE and
treatment efficacy [206,207,215,216]

Better treatment response in APOE ε3 allele carriers [217]

Combined APOE and CYP2D6 influence on
donepezil treatment efficacy [217,218]

ABCB1 No association between efficacy of donepezil and
ABCB1 polymorphisms [202,207,209]

ABCA1
ABCA1 rs2230806 influences donepezil treatment
response. Combined effect of APOE and ABCA1

genetic variants
[219]

ESR1 Effect of ESR1 variants (rs2234693, rs9340799) in
donepezil-treated patients [221]

BCHE

BCHE rs1803274 (K-variant) is associated with
donepezil poor treatment response [224]

No relationship between K-variant or rs1355534
polymorphism and donepezil efficacy [225,226]

Carriers of APOE ε4 and BCHE K-variant have
better response to donepezil therapy [227]

ChAT
Polymorphisms rs2177370, rs3793790 and rs3810950

associated with AChEI efficacy [228–230]

No association with treatment response [226]

CHRNA7

Association between CHRNA7 variants (rs6494223,
rs8024987, rs885071) and donepezil efficacy [231,232]

No association between rs8024987 and
treatment response [233]

PON-1 PON-1 rs662 associated with AChI treatment
(donepezil and rivastigmine) [236]

Rivastigmine
Acetylcholin-

esterase
inhibitor

APOE

Better efficacy of combined rivastigmine and
memantine therapy in APOE ε4 carriers [237]

No association between APOE ε4 allele and
treatment response [238]

Better improvement in non-carriers of APOE ε4 in
rivastigmine and placebo group [239]

BCHE BCHE K-variant affects treatment response,
especially in presence of APOE ε4 allele [240]

PSEN2
Best treatment response in patients with PSEN2
+A/−A genotype, alone or in combination with

APOE ε3/ε3 or APOE ε4/ε4 genotype
[242]

UGT2B7 Poor metabolizers with UGT2B7 variant
(UGT2B7*2, rs7439366) had poor clinical response [245]

Galantamine
Acetylcholin-

esterase
inhibitor

CYP2D6 Better treatment response and fewer adverse effects
in CYP2D6*10 rs1065852 carriers [210]

CHRNA7 Better treatment response in carriers of minor allele
variants of rs8024987 or rs6494223 polymorphism [246]
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Table 2. Cont.

Drug Name Drug Class Associated Gene Pharmacogenetics
Finding References

Memantine
NMDA receptor

antagonist

NR1I2 Memantine clearance was 16% slower in carriers of
at least one rs1523130 T allele (CT and TT genotype) [248]

CYP2D6

No significant association with memantine
pharmacokinetics or adverse drug reactions [196]

CYP2C9

CYP2A6

ABCB1

6. Pharmacogenomics of Cognitive Symptoms: Multifactorial Treatments

In the early 2000s, more extensive research began on the effect of a combination of
drugs on patients with different variations of genes essential for the onset of dementia.
The effects of multifactorial therapy based on pharmacogenomics are most thoroughly
described through the therapeutic response related to APOE and CYP2D6 variants in AD.
Among all the genetic factors that affect the success of AD therapy, APOE is certainly
the most important and affects over 50% of AD cases [253]. In order to investigate the
effects of APOE variants on multifactorial treatment, a two-year study with three drugs
was conducted. APOE 3/4 carriers emerged as the best responders, and APOE 4/4 carriers
as the worst. The response of APOE 2/3, APOE 4/4, and 4/5 was similar, where patients,
after initial improvement, showed rapid deterioration [254].

Genetic polymorphisms in CYP2D6 significantly affect drug metabolism and the
interindividual response to therapy [255]. The study that investigated the influence of
CYP2D6 variants on the therapeutic response in AD patients used a four-drug therapy
protocol for 1 year (Table 3). The results showed that CYP2D6- extensive metabolizers and
CYP2D6- intermediate metabolizers were the best responders to multifactorial therapy
with cognition improvement after 1 year period, while in CYP2D6- poor metabolizers and
CYP2D6- ultra-rapid metabolizers, there was no therapeutic effect and cognitive functions
continuously decreased during the mentioned period [256]. Other polymorphic variants,
like those of PS1 and PS2 genes, can influence the outcome of AD therapy in general and,
therefore, multifactorial therapy, as well (Table 3). Patients with different PS1 variants
did not show significant differences in response to therapy, while regarding the PS2 gene,
depending on the exon five variants, responses to therapy differed significantly, and PS2−
patients responded much better to therapy than those with PS2+ [257].

Table 3. Multifactorial therapy related to APOE, CYP2D6, PS1, and PS2 genes.

Gene Multifactorial Therapy Protocol Study Length Responders
(Best to Worse) References

APOE
CDP-choline (1000 mg/day)

piracetam (2400 mg/day)
anapsos/calagualine (360 mg/day)

2 years
APOE-3/4 > APOE-2/3 >
APOE-3/3 > APOE-2/4 >

APOE-4/4
[257]

CYP2D6

CDP-choline (500 mg/day)
piracetam (1600 mg/day)

nicergoline (5 mg/day)
donepezil (5 mg/day)

1 year EM > IM > PM > UM [256]

PS1
CDP-choline (1000 mg/day)

piracetam (2400 mg/day)
anapsos/calagualine (360 mg/day)

2 years PS1-2/2 = PS1-1/2 > PS1
1/1 [257]

PS2
CDP-choline (1000 mg/day)

piracetam (2400 mg/day)
anapsos/calagualine (360 mg/day)

2 years PS2− > PS2+ [257]

PM—poor metabolizer; IM—intermediate metabolizer; EM—extensive metabolizer; UM—ultra-rapid metabolizer.
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One of the challenges of multifactorial therapy is the existing comorbidities of patients.
Due to the relatively late onset of dementia, comorbidities are common and are mostly
related to older age. In a study that included 2618 patients with AD, the average age
was 76.1 years, and the most common comorbidities were hypertension, osteoarthritis,
depression, diabetes mellitus, and cerebrovascular disease [258]. The first problem that
comes out of the above is the drug–drug interaction. Medications that a patient is receiving
for existing conditions can reverse or modify the effects of dementia therapy and, thus,
represent a major obstacle to its effectiveness.

Another problem is the side effects of dementia therapy itself. The AChEIs side effects
are associated with enhanced cholinergic tone [259], memantine causes off-target effects
in other neurotransmitter systems, and its side effects are related to its anti-glutamatergic
activity [260] and even the first disease-modifying treatments for AD, anti-amyloid anti-
bodies such as aducanumab and lecanemab are associated with amyloid-related imaging
abnormalities (ARIA), which come in two forms: ARIA-E characterized by edema and
ARIA-H characterized by hemorrhage [261,262]. Carriers of the APOE ε4 allele showed an
increased risk for ARIA, with APOE ε4 homozygotes being more prone to severe ARIA [263].
Although there are no FDA-approved tests to determine individual genetic status prior to
anti-amyloid treatment, the recommendation is that AD patients should be pre-screened
for APOE genotypes due to the risk for ARIA [148,262].

7. Pharmacogenomics of Non-Cognitive Symptoms: Antipsychotic, Antidepressant,
and Antiepileptic Drugs

Non-cognitive symptoms, i.e., BPSD, are a major contributor to the heterogeneity of
dementia. BPSD varies in different stages of the disease and includes symptoms such
as depression, anxiety, apathy, agitation, delusions, and hallucinations. Due to their
variability and prevalence, corresponding therapeutic approaches for these symptoms
are an important part of the treatment of patients with dementia [264]. As demonstrated
in Table 4, pharmacological approaches to dementia treatment include, among others,
psychotropics (e.g., antipsychotics, antidepressants, anticonvulsants) [265]. The majority of
psychotropic drugs used for treating neuropsychiatric diseases are metabolized by CYP1A2,
CYP2B6, CYP2C8/9, CYP219, CYP2D6, and CYP3A4 enzymes [265].

Studies have shown that antidepressant drugs, including tricyclic antidepressants,
SSRIs, and norepinephrine/serotonin-reuptake inhibitors, are major substrates of CYP1A2,
CYP2C9, CYP2C19, CYP2D6, CYP3A4, UGT1A4, and UGT1A3 enzymes, while typical and
atypical antipsychotics are the main substrate of CYP1A2, CYP2C19, CYP2D6, CYP3A4,
and UGT1A4 enzymes [8,265]. Enzymes that are mostly involved in the metabolism of
antidepressants and antipsychotics are CYP2D6 (86% and 72%, respectively) and CYP3A4
(72% and 75%, respectively) [8,265]. Different classes of anticonvulsants, i.e., antiepilep-
tics (benzodiazepines, barbiturates, miscellaneous antiepileptics, fatty acid derivatives,
succinimides, oxazolidines, and hydantoin derivatives), are also mostly metabolized by
CYP enzymes.

For example, over 65% of antiepileptic drugs are major substrates for CYP (CYP3A4,
CYP3A5, CYP2E1, CYP2C8, CYP2B6, CYP2D6, CYP2C19, CYP1A2, CYP2C9, CYP1A1,
CYP1A6, CYP3A7, CYP2C18, CYP4B1) or UGT enzymes (UGT1A1, UGT1A3, UFT1A9,
UGT2B7, UGT1A4, UGT1A6, UGT1A10, UGT2B15) [254,265,266]. CYP3A4 is involved
in the drug metabolism of most psychotropic drugs, compared to other isoforms [265].
CYP2D6 enzyme plays an important role in oxidase reactions for a large number of com-
monly prescribed antidepressants, antipsychotics, and antiepileptics, which may act as
substrates, inducers, or inhibitors [10,218,265]. However, it has been reported that certain
enzymatic activities of CYP2D6 and CYP2C19 are associated with treatment discontinua-
tion [267].

More than 100 different CYP2D6 alleles might show deficient (poor metabolizer,
PM), normal (extensive metabolizer, EM), intermediate (intermediate metabolizer, IM), or
increased (ultra-rapid metabolizer, UM) enzymatic activity, meaning that different patients
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will require different dosages [218,268]. While the majority of the general population shows
normal enzymatic activity [265,268], the proportion of extensive metabolizers and ultra-
rapid metabolizers is slightly higher in the general population compared to AD cases [265].
On the other hand, the proportion of intermediate metabolizers and poor metabolizers is
vaguely lower in the general population compared to AD cases.

It has been shown that between 10 and 20% of Caucasians carry defective CYP2D6
variants that influence drug metabolism, especially the metabolism of psychotropics. For
example, it is shown for several antidepressants (amitriptyline, clomipramine, citalopram,
doxepin, escitalopram, fluvoxamine, imipramine, paroxetine, sertraline, and trimipramine)
and antipsychotics (aripiprazole, brexiprazole, haloperidol, pimozide, risperidone, and
zuclopenthixol) that discontinuation of their treatment is associated with deficient and/or
increased enzymatic activity of CYP2C19 and/or CYP2D6 [267].

Likewise, a large number of individuals with altered responsiveness to benzodi-
azepines and neuroleptics show deficient or increased enzymatic activity, i.e., carry mutant
variants of the CYP3A4, CYP2D6, and CYP2C9 genes [265]. Association studies of CYP2D6
variants and genes (ACE, AGT, APP, MAPT, APOE, PSEN1, PSEN2, FOS, and PRNP) re-
lated to dementia demonstrated that in individuals with deficient or increased enzymatic
activity, there is an accumulation of the risk variants, which might influence therapeutic
response [265]. Though there were no reported differences between females and males in
the general population, the proportion of extensive metabolizers was somewhat higher in
females than in males with AD, whereas poor metabolizers were more frequent in males
than females with AD, suggesting a higher risk for males of developing an adverse drug
reaction [265].

In addition, variations in certain genes are associated with geographic and ethnic
differences, which affect drug metabolism and, correspondingly, individual responses
to a certain therapeutic approach [265]. Associations between certain genetic variants
encoding for various enzymes involved in drug metabolism and the effects (positive or
adverse) of drug treatment have been extensively studied. The metabolism of antidepres-
sants, antipsychotics, and anticonvulsants also includes, among others, various groups of
enzymes (esterases, transferases, reductases, oxidases, histamine methytransferases), recep-
tors (adrenergic, dopamine, and serotonin receptors), transporters (solute carrier family
6, ATP-binding cassettes), and channels (potassium voltage-gated and sodium channels),
which are genetically variable [265,269]. Polymorphic variations in the genes encoding for
these proteins may influence drug metabolism [269].

For example, variants in the genes encoding for the transporters of antipsychotics
(ABCB1, SLC6A2, SLC6A4, SCN5A, KCNH2, KCNE1, KCNE2, KCNQ1) and antidepressants
(SLC6A4, SLC6A2, ABCB1, and 5-HTTLPR) influence the metabolism of these drugs [8]. It
has also been reported that responsiveness to antipsychotics is higher in Ins/Ins carriers
(−141C Ins/ins), as well as in A1 carriers of the Taq 1 A SNP of the DRD2 gene. The
Ser allele of the Ser9Gly SNP in the DRD3 gene was associated with a better response to
clozapine, while the Gly allele was associated with a higher risk for tardive dyskinesia [268].
Several SNPs in the SLC6A4 and SLC6A3 genes showed an association between clozapine re-
sponsiveness and genotype or allele frequencies [8,266]. In addition, antipsychotic-induced
extrapyramidal symptoms (DRD2, HTR2A, GRIK3, SLC6A4 VNTR, COMT Val158Met,
ADORA1, ADORA3, ADORA2A), tardive dyskinesia (HTR2A, HTR2C, DRD2, DRD3, DPP6,
SOD2, CYP2D6, CNR1, HSPG2), metabolic syndrome (HTR2C, LEP, LEPR), and other
antipsychotic-induced symptoms have been associated with polymorphisms in several
genes (DRD2, LEP, BDNF, LPL, TPH, etc.) [266]. Moreover, Met/Met homozygotes of the
Val108Met SNP in the COMT gene showed a better response to clozapine [266].

Several polymorphisms in the serotonin receptor gene (5HTR2A) showed that certain
variants are associated with a better response to clozapine (A/A, A-1438G; His allele,
His452Tyr), olanzapine (A/A genotype of A-1438G), or risperidone (C/C, T102C). More-
over, repeat-length polymorphisms in the serotonin transporter gene have been associated
with responses to certain antidepressants and antipsychotics. For example, a long allele is



Genes 2023, 14, 2048 20 of 37

associated with a better response to citalopram, paroxetine, fluoxetine, risperidone, and
clozapine [268], while CYP2D6 and CYP2C19 variants are associated with antidepressant-
induced symptoms, such as nightmares, anxiety, and panic attacks [8].

Table 4. Pharmacogenomics of antipsychotic, antidepressant, and antiepileptic drugs.

Drug Name Drug Class Associated
Gene

Pharmacogenetics
Finding References

Aripiprazole, Brexiprazole,
Risperidone

Atypical
antipsychotic

CYP2C19, CYP2D6
Treatment discontinuation associated

with PM/UM enzymatic activity [267]
Haloperidol, Pimo-zide,

Zuclopenthixol
Typical

antipsychotic

Various
antipsychotics

SLC6A4, SLC6A2, ABCB1,
5-HTTLPR

Variants influence
antipsychotic metabolism [8]

Various
antipsychotics DRD2

Higher response to antipsychotics
in Ins/Ins

(−141C Ins/Ins), and A1 carriers
(Taq 1 A)

[268]

Clozapine Atypical
antipsychotic DRD3 Ser allele of Ser9Gly associated with

better clozapine response [268]

Clozapine Atypical
antipsychotic DRD3 Gly allele associated with higher risk for

tardive dyskinesia [268]

Clozapine Atypical
antipsychotic SLC6A4, SLC6A3 Associated with clozapine response [8,266]

Various
antipsychotics

DRD2, HTR2A, GRIK3,
Val158Met, SLC6A4, VNTR,

ADORA1, ADORA3,
ADORA2A, COMT

Associated with antipsychotic-induced
extrapyramidal symptoms [8,266]

Various
antipsychotics

HTR2A, HTR2C, DRD2,
DRD3, DPP6, SOD2,

CYP2D6, CNR1, HSPG2

Associated with antipsychotic-induced
tardive dyskinesia [8]

Various
antipsychotics HTR2C, LEP, LEPR Associated with antipsychotic-induced

metabolic syndrome [8]

Various
antipsychotics

DRD2, LEP, BDNF,
LPL, TPH

Associated with antipsychotic-induced
other symptoms [8]

Clozapine Atypical
antipsychotic COMT Better clozapine response in Val108Met

Met/Met homozygotes [268]

Clozapine, Olanzapine,
Risperidone

Atypical
antipsychotic 5HTR2A

Variants associated with better response
to clozapine (A/A, A-1438G; His allele,

His452Tyr), olanzapine (A/A, A-1438G),
or risperidone (C/C, T102C)

[268]

Clozapine
Risperidone

Atypical
antipsychotic SLC6A4 Long allele associated with better

risperidone and clozapine response [268]

Various
antipsychotics

CYP2D6, ACE, AGT, APP,
MAPT, APOE, PSEN1,

PSEN2, FOS, PRNP

PM or UM enzymatic activity influence
therapeutic response [265]

Amitriptyline, Clomipramine,
Doxepin, Imipramine,

Trimipramine

Tricyclic
antidepressant

CYP2C19, CYP2D6
Treatment discontinuation associated

with PM/UM enzymatic activity [267]
Citalopram, Escitalopram,
Fluvoxamine, Paroxetine,

Sertraline

Selective
serotonin
reuptake
inhibitor

Various
antidepressants

ABCB1, SLC6A2, SLC6A4,
SCN5A, KCNH2, KCNE1,

KCNE2, KCNQ1

Variants influence
antidepressant metabolism [8]

Paroxetine, Citalopram,
Fluoxetine

Selective
serotonin
reuptake
inhibitor

SLC6A4
Long allele associated with better

response to citalopram,
paroxetine, fluoxetine

[268]
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Table 4. Cont.

Drug Name Drug Class Associated
Gene

Pharmacogenetics
Finding References

Various
antidepressants CYP2D6, CYP2C19

Variants associated with
antidepressant-induced nightmares,

anxiety, panic attacks
[8]

Valproic acid Fatty acids GRIN2B 200T>G allele carriers require lower dose
of valproic acid [266]

Valproic acid Fatty acids UGT1A6 Carriers of 541A>G, 552A>C, and 19T>G
alleles need higher dose of valproic acid [266]

Carbamezapine Carboxamides
SCN1A, ABCB1, UGT2B7,

ABCC2, CYP1A2,
HNF4A, CYP3A5

Associated with altered
carbamazepine metabolism [266]

Phenytoin Hydantoins SCN1A, CYP2C9,
CYP2C19, ABCB1 Variants influence phenytoin metabolism [266]

Clobazam Benzodiazepine CYP2C19, CYP3A4,
CYP3A5

Some genotype carriers prone to adverse
clobazam reactions [8]

PM—poor metabolizer; UM—ultra-rapid metabolizer.

Furthermore, polymorphisms in the genes SCN1A, ABCB1, UGT2B7, ABCC2, CYP1A2,
HNF4A, and CYP3A5 are associated with altered drug metabolism of carbamazepine. Cer-
tain variants in the genes SCN1A, CYP2C9, CYP2C19, and ABCB1 influence the metabolism
of phenytoin [266]. Moreover, pathogenic variants in the SLC2A1 gene might predict the
responsiveness and selection of adequate antiepileptics [8]. Clobazam is a substrate for
several CYP enzymes (CYP2C19, CYP3A4, CYP2B6, CYP2C18), while individuals with
certain genotypes in the CYP2C19, CYP3A4, and CYP3A5 genes require adjustments in
clobazam dosage due to adverse drug reactions [8].

According to the different genes involved in the pharmacogenomics of AD as well
as the response to antipsychotics, antidepressants, and antiepileptics, further studies are
necessary for better characterization of the pharmacogenomics profile and determination
of drug efficacy and safety in the treatment of non-cognitive symptoms of AD [5].

8. Pharmacogenomics of Non-Cognitive Symptoms: Anxiolytic, Hypnotic, and
Sedative Drugs

Excessive anxiety and worry, as well as restlessness, fatigue, concentration problems,
irritability, muscle tension, and sleep disturbance, are common symptoms in patients
with dementia. According to a recent meta-analysis [270], prevalence rates of anxiety in
dementia are around 40%, with no obvious association with the stages of illness or dementia
severity [271]. Moreover, people with dementia often experience sleep problems such as
insomnia, impaired nocturnal sleep with increased awakenings, and decreased rapid eye
movement (REM) sleep, as well as increased daytime sleep [272,273]. The prevalence of
sleep disorders especially rises in patients with VaD, LBD, or dementia related to PD [273].
Additionally, sleep disruption normally interferes with the maintenance of cognitive health
and is associated with the rate of cognitive decline in older adults [274].

Anxiolytics, hypnotics, and sedatives are pharmaceuticals used for a reduction in
anxiety, to relieve sleep difficulties, or to induce a calming effect. The primary group of
medications within this category includes benzodiazepines. They are one of the most
prescribed pharmaceuticals in developed countries, commonly used for the treatment of
anxiety, sleep disorders, agitation, and alcohol withdrawal [275]. However, the treatment
methods for these non-cognitive disorders are more challenging in the context of dementia
because, in dementia, they can manifest differently than in typical early-onset individ-
ual disorders. Moreover, benzodiazepines, as first-line anxiolytics and commonly used
sedatives, might contribute to cognitive and psychomotor impairment [276]. Due to the
extensive list of potential side effects, the use of psychotropic drugs in older patients with
dementia must be individually tailored. This means that, in addition to comorbidities
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and other concomitant medicines, distinctive individual characteristics, including phar-
macogenomics factors, should be addressed when estimating the risks and benefits of
prospective therapy.

Metabolism of most benzodiazepines starts with oxidation, followed by conjugation
to glucuronide, which is then eliminated by the urine [277]. Although there are benzo-
diazepines that are directly conjugated, most of them go through the oxidation stage
catalyzed by liver CYP enzymes [278], whose activity greatly influences drug metabolism
and plasma concentration. As already mentioned, genes coding for CYP enzymes are
highly polymorphic, influencing the enzyme’s activity and leading to absent, reduced, or
increased drug metabolism. Consequently, higher drug concentrations, due to the poor
metabolizing ability, can increase side effects or toxicity, while on the other hand, due to
extensive drug metabolism, efficient therapeutic doses can be higher than usual.

The majority of benzodiazepines are metabolized by CYP2C19 and CYP3A4/5; other
enzymes such as CYP1A2, CYP2C9, and CYP2B6 may also play a role in the metabolism of
some benzodiazepines [279,280]. For example, it is known that diazepam is metabolized to
nordiazepam by CYP2C19 and CYP3A4 and to temazepam by CYP3A4. Both metabolites
undergo hydroxylation to oxazepam, which is catalyzed by CYP3A4 and/or CYP2C19 [279].
However, a recent paper showed that the CYP2B6 phenotype also affects diazepam phar-
macokinetic variability [281]. Additionally, it was shown among the elderly population
that carriers of CYP2C9*2 and CYP2C9*3, as poor metabolism alleles, have an increased
risk of falls associated with diazepam treatment [282]. There are more than 40 polymorphic
variants of the CYP2C19 gene, resulting in around 35 enzyme isoforms [283] with at least
7 alleles (CYP2C19*2 to CYP2C19*8) associated with partial or complete inactivation of
the enzyme resulting in poor drug metabolism [279]. On the other hand, the CYP2C19*17
variant is associated with increased activity, and carriers of this allele, especially homozy-
gotes, are considered extensive metabolizers [284]. The presence of poor metabolism alleles
raises the chance of diazepam side effects, whereas the presence of CYP2C19*17 minimizes
the risk of side effects but possibly decreases its efficacy when administered in a standard
dose [285–287]. Since the clearance of benzodiazepines decreases as the number of low
metabolizing CYP2C19 alleles increases [288,289], it would be advisable to adjust their
dose according to the CYP2C19 genotype. For example, Zubiaur et al. [281] recommend
lowering the dose of diazepam for 25–50% in patients whose genotype indicates poor
drug metabolism.

Enzyme CYP2C19 is also included in the metabolism of clobazam. It was shown that
the response to clobazam was higher among carriers of poor metabolism variants, with
an evident gene–dose effect [290]. The same trend was noticed in the occurrence of side
effects, such as drowsiness and dizziness, which were more prominent in poor metab-
olizers [290]. Poor CYP2C19-associated metabolism of clobazam in a patient receiving
a standard therapeutic dose for seizure disorder caused comatose condition due to the
elevated concentration of clobazam active metabolite, norclobazam [291]. Additionally,
Riva et al. [292] reported an increased enzymatic activity associated with the CYP2C19*17
allele. They found, however, that the magnitude of observed effects was smaller than the
one reported for poor metabolizing alleles, implying that the effects of CYP2C19*17 proba-
bly do not have clinical significance, except for medicines with very narrow therapeutic
windows [293].

Another benzodiazepine, midazolam, is highly metabolized by CYP3A4 and CYP3A5,
and it is also used as a probe substrate in studying the activity of those enzymes [294].
Amino acid sequences for the two enzymes have 83% similarity, and the main differences
between them are in their active sites and substrate access channels [295]. There are
studies reporting the association between CYP3A5 genotype and rates of midazolam
hydroxylation [296] and clearance [297]. However, it seems that CYP3A genetics has only
a limited impact on midazolam metabolism in vivo. Specifically, several studies reported
a lack of the functional significance of polymorphisms resulting in common variants,
including CYP3A4*1B, CYP3A5*3, CYP3A5*6, and CYP3A5*7 [298–300]. This could be due



Genes 2023, 14, 2048 23 of 37

to the fact that midazolam is also a highly permeable substrate of P-glycoprotein [301].
Additionally, plasma midazolam concentration and sedation grade were found to be
associated with 1236C>T polymorphism of the MDR1 (multidrug resistance 1) gene [302].

Metabolism of lorazepam, as well as structurally related benzodiazepines oxazepam
and temazepam, skips phase I catalyzed by the CYP enzymes and is predominantly based
on glucuronidation [303]. Enzymes included in pharmaceuticals’ glucuronidation are
uridine 5′-diphosphate-glucuronosyltransferases (UGTs) [304], with UGT1 and UGT2 en-
zymes mostly involved in drug metabolism processes. Variations in their genes, resulting in
changes in their expression and function, are significant contributing factors to interindivid-
ual variability in drug disposition [305]. For instance, the UGT2B15 genotype highly affects
the pharmacokinetics of lorazepam. A single nucleotide polymorphism (G/T) in UGT2B15
gene coding region can result in UGT2B15*2 variant, which is associated with lower sys-
temic clearance and metabolic activity of lorazepam and significantly higher lorazepam
concentrations in homozygotes [306]. Higher lorazepam plasma levels are associated with
more pronounced clinical effects. For example, it was shown that UGT2B15*2 homozy-
gotes, especially women, have greater postoperative anxiety reduction after lorazepam
premedication when compared with carriers of other genotypes [307].

Structurally different from benzodiazepines but with a similar mechanism of action
via GABA signaling are Z-drugs, which have significant hypnotic effects by reducing sleep
latency and enhancing sleep quality [308]. The major metabolism pathways of Z-drug zolpi-
dem include hydroxylation followed by oxidation, mediated mostly by CYP3A4; however,
CYP2C9, CYP1A2, CYP2D6, and CYP2C19 have also been reported to be included [309]. In
a previous study, the CYP3A4*18 variant was associated with increased and CYP2C19*2
with reduced zolpidem metabolism [310]. However, other authors reported no evidence for
the impact of the CYP2C19 genotype on the pharmacokinetic parameters of zolpidem [311].
In another study, participants received zolpidem and clarithromycin, a CYP3A4 inhibitor,
in order to eliminate the contribution of CYP3A4 to zolpidem metabolism. However, no
differences in zolpidem plasma concentrations were found when subjects were divided
according to CYP2D6 genotype [312]. Similarly, a lack of association between CYP2C9
genotype and zolpidem metabolism was also reported [313]

Pharmacogenomic research resulted in various findings contributing to the improve-
ment in establishing the anxiety treatment and predicting its outcome (Table 5). It is obvious
that both clinicians and patients could benefit from defining the relations between genetic
variation and variable drug responses to anxiolytics and sedatives, especially considering
the high prescription rates of this group of psychiatric medications.

Table 5. Pharmacogenomics of anxiolytic, hypnotic, and sedative drugs.

Drug Name Drug Class Associated Gene Pharmacogenetics Finding References

Diazepam
Benzodiaze-pine,

GABA-A
receptor agonist

CYP2C19

Variants CYP2C19*2 to CYP2C19*8 associated
with partial or complete inactivation of enzymes,

resulting in poor drug metabolism
[279]

CYP2C19*17 variant associated with increased
enzyme activity (extensive metabolizers) [284]

CYP2C19*2 allele raises risk of side effects,
whereas CYP2C19*17 minimizes risk of side

effects but decreases its efficacy
[285,286]

Clearance decreases as number of low
metabolizing CYP2C19 alleles increases [281,289]

CYP2B6 CYP2B6 genotype affects diazepam
pharmacokinetic variability [281]

CYP2C9
CYP2C9*2 and CYP2C9*3 alleles associated with
poor diazepam metabolism and increased risk of

falls among the elderly population
[282]
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Table 5. Cont.

Drug Name Drug Class Associated Gene Pharmacogenetics Finding References

Clobazam
Benzodiazepine,

GABA-A
receptor agonist

CYP2C19

Response rate to clobazam and occurrence of side
effects are higher among carriers of CYP2C19*2

and CYP2C19*3 variants, with evident
gene–dose effect

[290,291]

CYP2C19*17 allele associated with increased
enzymatic activity, but magnitude of observed

effects is smaller than one for poor
metabolizing alleles

[292]

Midazolam
Benzodiazepine,

GABA-A
receptor agonist

CYP3A5

Mean clearance is lower in CYP3A5*3
allele carriers [297]

Limited or no functional significance of
polymorphisms resulting in common variants,
including CYP3A4*1B, CYP3A5*3, CYP3A5*6,

and CYP3A5*7

[298–300]

MDR1 Plasma concentration and sedation grade
associated with MDR1 1236C>T SNP [302]

Lorazepam
Benzodiazepine,

GABA-A
receptor agonist

UGT2B15

UGT2B15*2 variant associated with lower
systemic clearance and metabolic activity of

lorazepam and higher lorazepam concentrations
in homozygotes

[306]

UGT2B15*2 homozygotes, especially women,
have greater postoperative anxiety reduction

after lorazepam premedication
[307]

Zolpidem
Imidazopyridine,

GABA-A
receptor agonist

CYP3A CYP3A4*18 variant associated with increased
zolpidem metabolism [310]

CYP2C19

CYP2C19*2 variant associated with reduced
zolpidem metabolism [310]

No effect of CYP2C19 genotype on
pharmacokinetic parameters of zolpidem [311]

CYP2D6 No effect of CYP2D6 genotype on
pharmacokinetic parameters of zolpidem [312]

CYP2C9 No effect of CYP2C9 genotype on
pharmacokinetic parameters of zolpidem [313]

9. Conclusions

So far, dementia treatment has been directed against only several pharmacological
targets, emphasizing the need for the development of novel therapeutic strategies. Since
the therapeutic response is a complex trait, it is not likely that a single drug could be
effective in the treatment of a variety of cognitive impairments, behavioral disturbances,
and functional decline [4]. Therefore, multifactorial treatments with a combination of
several drugs represent the most feasible option in dementia. However, current as well as
potential novel anti-dementia treatments of both cognitive and neuropsychiatric symptoms
require evaluation from a pharmacogenomic perspective on a case-by-case basis in order
to obtain optimal therapeutic efficacy, as well as to avoid drug side effects and unnec-
essary costs. Pharmacogenomics could offer help in detecting safer and more effective
medications for each dementia patient, as well as new pharmacotherapeutic targets, whose
identification has been complicated by the interplay of numerous genetic factors with
only minor, moderate effect on pharmacokinetic or pharmacodynamic variability [314].
Although prediction of drug response with respect to genetic variations affecting ADME
has already been established, further studies are needed to better understand the functional
consequences of genetic polymorphisms in neurotransmitter receptors, transporters, and
signal transduction molecules.

In addition to genetic background, drug efficacy, and safety are influenced by many other
factors, including mechanisms of drug action, drug-specific adverse reactions, drug–drug
interactions, nutritional factors, etc. [265]. Patient characteristics, such as age, gender, and
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ethnicity, also represent important parameters that might determine individual drug re-
sponse. Despite the accumulation of genetic information on dementia, the role of epigenetic
and environmental factors is still not well known. Hence, in order to better understand
such complex multifactorial disorders, both gene–gene and gene–environment models
need to be established. Moreover, recent progress in functional genomics, proteomic
profiling, high-throughput screening methods, large databases, and bioinformatic tools
stimulates the development of pharmacogenomic studies, speeding up clinical trials, im-
proving patient stratification, reducing costs and potential adverse effects and optimizing
therapeutic outcomes [2]. Despite the challenge of translation from the research laboratory
into clinics, pharmacogenomics holds promise of future cost-effective, safe, and efficacious
personalized medicine for patients with dementia. However, future research and strategy
advances are needed to overcome scientific, economic, and clinical obstacles and involve
pharmacogenomics as a routine intervention in personalized treatment approaches in
neuropsychiatry worldwide.
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