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Aim/Introduction: The study aimed to determine the effectiveness of early

antidiabetic therapy in reversing metabolic changes caused by high-fat and

high-sucrose diet (HFHSD) in both sexes.

Methods: Elderly Sprague–Dawley rats, 45 weeks old, were randomized into four

groups: a control group fed on the standard diet (STD), one group fed the

HFHSD, and two groups fed the HFHSD along with long-term treatment of either

metformin (HFHSD+M) or liraglutide (HFHSD+L). Antidiabetic treatment started 5

weeks after the introduction of the diet and lasted 13 weeks until the animals

were 64 weeks old.
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Results: Unexpectedly, HFHSD-fed animals did not gain weight but underwent

significant metabolic changes. Both antidiabetic treatments produced sex-

specific effects, but neither prevented the onset of prediabetes nor diabetes.

Conclusion: Liraglutide vested benefits to liver and skeletal muscle tissue in

males but induced signs of insulin resistance in females.
KEYWORDS

high-fat high-sucrose diet, diabetes mellitus, metabolomics, insulin resistance,
sex differences
Introduction

Obesity, characterized by the accumulation of excessive fat

tissue, is a major contributor to early disability and mortality, and

its prevalence is reaching pandemic levels. Besides serving as energy

storage, fat tissue is an active endocrine organ. Moreover, it can

trigger systemic low-grade inflammation by secreting inflammatory

cytokines (1). A causative relationship between obesity-related

inflammation and insulin resistance has been established (2).

Affected individuals cope with progressive insulin resistance by

ever-increasing insulin secretion, up to the point where this

adaptive strategy becomes insufficient and type 2 diabetes mellitus

(DM2) develops (3). DM2 and obesity are associated with higher

risks for many life-threatening conditions, including cardiovascular

disease and unfavorable outcomes in patients diagnosed with the

novel coronavirus disease (COVID-19) (4, 5). Therefore, an effort to

decelerate or stop the progression of obesity-triggered metabolic

syndrome in its early stages is warranted.

Metformin, the gold standard in the treatment of DM2, is

implicated in the slowed progression of insulin resistance to DM2

(6) but is also discussed as a potential senescence therapy in

apparently healthy people (7). In addition, liraglutide (a glucagon-

like peptide 1 analog with euglycemic and weight-reducing effects)

has been approved for clinical use in obese diabetic individuals (8).

Some studies suggest that weight reduction alone might be sufficient

to prevent the progression of initial insulin resistance to full-blown

DM2 (9). However, since liraglutide has been mostly studied in

previously diagnosed diabetic and obese patients, little is known

about its preventive potential.

As obesity and DM2 are mainly caused by chronic caloric

surplus (2), rodent dietary models of high-fat diet, high-fat and

high-fructose diet, or high-fat and high-sucrose diet (HFHSD)

exhibit characteristics observed in human metabolic syndrome

(10), and the latter (HFHSD) is the closest to the modern

Western diet. Although these diets can induce (pre)diabetes in

rodents, most of the studies are not prolonged enough to adequately

reflect the chronic setting in which dietary effects normally take

place in humans (11–15).
02
In humans, DM2 predominantly develops in elderly

populations. Chronic low-grade systemic inflammation,

underlying both aging and obesity, may be the culprit behind

many age-related conditions, including insulin resistance (16).

Despite this, most HFHSD rodent studies were conducted on

young adult animals (14, 15, 17–20). Furthermore, females and

males differ in body composition, adipose tissue metabolism, weight

gain susceptibility, as well as cardiometabolic and dysglycemic risks

(21–23). Yet, the available HFHSD rodent studies have included

either male or female animals (13, 14, 17, 18). Finally, the evaluation

of dietary animal models warrants whole-body analyses, since

obesity and DM2 influence the brain as well as peripheral tissues

(1). Still, most available studies focused solely on either the central

or the peripheral phenomena (10, 13, 15, 18).

This study was conducted on male and female aged rats to

address the possibility of sex-specific effects using whole-body

analyses. It assessed the consequences of a long-term, obesity-

inducing diet as well as the potential of early and long-term

pharmacologic interventions to prevent the development and

progression of DM2.
Results

The experimental design included rats of both sexes (32 males

and 32 females). When they were 45 weeks old (middle-aged), they

underwent either a standard or HFHS diet (16 vs. 48 rats,

experimental weeks 1–18). After 5 weeks of the HFHS diet,

metformin or liraglutide medication was initiated, and it lasted a

further 13 weeks (32 treated rats, experimental weeks 6–18). There

were in total four experimental groups, each consisting of 16 rats

(eight males and eight females): standard diet (STD), HFHS diet

only (HFHSD), HFHSD and subsequent metformin medication

(HFHSD+M), and HFHSD and subsequent liraglutide medication

(HFHSD+L). At the end of the study, the animals were 64 weeks old

(i.e., the onset of senescence) (24, 25). They ate a specific diet for 18

weeks (throughout the entire middle-age period), and those treated

received medication for 13 weeks (Extended Data Figure 1).
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Ivić et al. 10.3389/fendo.2023.1181064
Senescence of females at the end of the study was proven by

measuring estrogen values (6–12 pg/mL in all female rat groups).
Lack of weight gain in liraglutide-treated
animals on HFHSD was accompanied by
increased caloric intake and a loss of
visceral fat in females

To explore the effects of the diet and medication (subsequently

referred to as “intervention”) on the obesity-induced features, body

mass was measured (Extended Data Figure 2A), and the visceral

adipose tissue was characterized in detail (Figures 1A, B; Extended

Data Figure 2B). Diet and treatment had no influence on body

weight. Significantly larger visceral adipocyte surface area were

detected in the HFHSD and HFHSD+M animals compared to
Frontiers in Endocrinology 03
those in the STD groups, while animals treated with liraglutide

did not significantly differ from the STD animals.

To get insight into the overall metabolic change reflected in the

polyphagia as a symptom of diabetes, a normalized approximation

of the weekly caloric intake for each group was calculated as the

ratio of the whole-group caloric intake and the whole-group body

mass. By using kcal instead of g of food and animal mass instead of

the number of animals, we nullified the difference between the two

diets and the loss of animals during the study. Unexpectedly, the

females treated with liraglutide experienced an abrupt increase in

caloric intake after the experimental week 13, reaching almost

twofold higher values relative to other experimental groups

(Figure 1C). To quantify the observed changes, marginal means

of caloric intakes were estimated for the period prior to the

intervention (weeks 1–5), of the early intervention (weeks 6–10),

and the long-term intervention (weeks 10–18). As expected,
A B

C

FIGURE 1

Liraglutide treatment in elderly rats on a high-fat high-sucrose diet reduced the surface areas of the visceral adipocytes, but triggered polyphagy in
the female animals. A) Micrographs of the hematoxylin-eosin-stained visceral adipose tissue samples (magnification 200×) (bottom rows) and
matching images obtained in CellProfiler (upper rows). B) Between-group comparison of average visceral adipocyte surface areas (mm2), two-way
ANOVA and Games-Howell post hoc test for between-group comparisons: *compared to STD, †compared to HFHSD; *p < 0.05, **/††p < 0.01, NS –
not significant. C) Whole-group caloric intake normalized for the whole-group body mass (kcal/g) per experimental week. ↓ – introduction of the
antidiabetic drugs. Abbreviations: STD – standard diet group, HFHSD – high-fat high-sucrose diet group, HFHSD+M – HFHSD treated with
metformin, HFHSD+L – HFHSD treated with liraglutide.
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metformin significantly decreased the caloric intake in both sexes,

while liraglutide did it only in males. In females, liraglutide

paradoxically increased the caloric intake after long-term

intervention, indicating development of metabolic inefficiency

(Extended Data Figure 2C).
Females tolerated acute hyperglycemic
challenges less efficiently and exhibited
decreased insulin sensitivity

Improved glucose tolerance and low glucose variability were

expected to be the primary outcomes of antidiabetic treatment.

Average values of areas under the curves (AUC) of glucose blood

levels for each group during the glucose tolerance test (GTT) were

calculated (Extended Data Figure 3A). In the experimental week 5,

all HFHSD animal groups had significantly higher AUC values in

comparison to the STD groups, revealing the decreased glucose

tolerance. The same was observed in the experimental weeks 12 and

18 in the nonmedicated animals under HFHSD. In week 12, the

AUC values of groups receiving medication approached STD group

values, showing the acute benefits of antidiabetics. The males

showed analogous results at experimental week 18; however,

females of all groups (including the STD group) decreased

glucose tolerance at this time point. With the onset of

reproductive senescence, glucose tolerance worsened, particularly

in the HFHSD female group, while the antidiabetic-receiving

groups still benefited from the treatment. This result did not

agree with the finding of polyphagia only in HFHSD+L females,

especially because HFHSD females had by far the worst glucose

tolerance of all the other groups.

To get more detailed insight into sex-based differences in

glucose tolerance, we used mathematical modeling of GTT data

(Figures 2A, B). Derived parameters describing curves explained

group progression in glucose variability (0-, 5-, 12-, and 18-week

time points). The females belonging to all groups reached

significantly higher glucose concentrations during the GTT

(maximal glucose concentration (mg/dL) (Gmax)) compared to the

males and were slower in reestablishing normoglycemia than their

male counterparts. Blood glucose set points described by G0

followed by plasma glucose 2 h after load (G(2)), and fasting

glucose (G(0)) were the best biomarkers of progressive metabolic

failure. The G0 parameter describes the base value to which the

function returns; that is why we assumed that this parameter can be

physiologically best translated into the centrally given glucose set

point. In our case, we calculated it based on the value of the entire

group. Figure 2A shows that STD males at the beginning of the

study reach the G0 value in just 1 h, while the females of the HFHSD

+L group at the end of the study do not reach G0 even in 3 h, so the

value of the function period (T) is also the highest in them.

According to plasma glucose 2 h after load (G(2)), all examined

groups, except STD males, developed prediabetes (HFHSD and

HFHSD+M males) or diabetes (all the rest) according to official

DM2 diagnostic criteria (140–199 mg/dL for prediabetes and ≥ 200

mg/dL for diabetes) (26, 27). HFHSD+L females also met the

diagnostic criteria for the fasting glucose dysglycemia biomarker
Frontiers in Endocrinology 04
(100–125 mg/dL). Mathematical modeling revealed five additional

parameters that were the lowest (coefficient of oscillation amplitude

decline (a), and initial speed of blood glucose increase (G′(0)) or the
highest (the basic period of function (T), maximal speed of glucose

concentration decrease (G′I), and the moment at which G′I is

attained (tI)) in HFHSD+L females reflecting changes in the

glycemia regulation (Extended Data Figure 3B). An additional

proof of the credibility of the mathematical model is that the

AUC values obtained by mathematical modeling correlated well

with the AUC values obtained from real measurements.

To identify hormones underlying the observed GTT changes,

leptin, insulin, corticosterone, and adiponectin were measured at

the endpoint of the study (Figure 2C; Extended Data Figure 3C). As

expected, the HFHSD and HFHSD+M groups had significantly

higher leptin plasma levels relative to the STD group, whereas the

plasma leptin levels in the HFHSD+L animals did not differ when

compared to those in the STD and HFHSD groups. Observing the

insulin serum levels, the HFHSD+L females had significantly higher

fasting insulinemia compared to the STD females, but the same

trend was not statistically significant in the male groups. The

Homeostatic Model Assessment for Insulin Resistance (HOMA-

IR) score was also calculated. The highest and statistically

significant score was achieved by HFHSD+L females.

Furthermore, phosphorylated tyrosine moieties of the insulin

receptor substrate 1 (IRS-1) increased significantly in the skeletal

muscle of all treated groups, but especially in HFHSD+L groups.

Plasma corticosterone levels were not informative, while females in

general exhibited higher adiponectin levels than males.

Improved insulin sensitivity was the expected secondary

outcome of antidiabetic treatment; hence, the insulin tolerance

test (ITT) was performed, and mathematically modeled ITT

function was calculated in the experimental week 18 (Figure 2D;

Extended Data Figures 3D, E) when we assumed insulin resistance

could be developed. All the groups fed the HFHSD had significantly

higher AUCs of glucose blood levels than the STD group.

Mathematically modeled ITT functions (Figure 2D) revealed that

the response to hyperinsulinemic challenge was highest in STD and

lowest in HFHSD+L (minimal glucose concentration (Hmin)),

indicating low insulin sensitivity under liraglutide treatment. STD

group exhibited prolonged hypoglycemic levels lasting longer than

2 h. Animals fed the HFHSD had exaggerated glycemic

compensatory responses in the ITT postacute recovery period,

but both metformin-treated groups and males on liraglutide

regained normoglycemia (H0). However, females in HFHSD+L

that resisted acute hypoglycemia the best also remained in

reactive hyperglycemia for the longest time, which can be

explained by their highest tendency to develop insulin resistance

relative to other animal groups.

Corticosterone, a potent insulin-antagonizing hormone, is

commonly negatively associated with insulin sensitivity.

Measuring its levels could provide a possible explanation for the

dysglycemia observed in HFHSD+L females. Because a one-point

measurement of corticosterone level is a low presentation for overall

daily corticosterone fluctuations, we used Hans Selye’s historical

finding of an association between adrenal gland size and cumulative

corticosterone levels (28). The surface areas of mid-sections of
frontiersin.org
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B

C

D

A

E

FIGURE 2

Aging in women impaired glucose metabolism more than in men, while long-term treatment with liraglutide exacerbated hyperinsulinemia and
insulin resistance. (A) Model function [G(t)] of blood glucose concentration (mg/dL) based on measurements from glucose tolerance test (GTT) in
experimental weeks 0, 5, 12, and 18. (B) Characteristics of model function: fasting blood glucose concentration [mg/dL) (G(0)], maximal glucose
concentration (mg/dL) (Gmax), the moment at which Gmax is reached (h) (tmax), 2-h blood glucose at GTT [mg/dL) (G(2)], blood glucose setpoint
(asymptote) (mg/dL) (G0), and area under the curve (AUC). Values in orange, prediabetes (100 mg/dL < G(0) < 125 mg/dL, 140 mg/dL < G(2) < 199
mg/dL); values in red, diabetes (G(0) ≥ 126 mg/dL, G(2) ≥ 200 mg/dL). (C) Interaction plots of intervention and sex effects on plasma leptin (ng/mL),
serum fasting insulin (ng/mL), Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) (mg/dL × mU/L), insulin receptor substrate 1 (IRS-1)
phosphorylation in the skeletal muscle [arbitrary units (AU)]. (D) Model function [H(t)] of blood glucose (mg/dL) based on measurements from insulin
tolerance test (ITT) in experimental week 18. (E) The adrenal gland surface. Two-way ANOVA; black symbol, experimental groups including both
sexes; green symbol, male groups; and red symbol, female groups; */†p < 0.05, **/††p < 0.01, ***/†††p < 0.001 (*compared to STD, †compared to
HFHSD). NS, not significant; f, female; m, male; STD, standard diet group; HFHSD, high-fat and high-sucrose diet group; HFHSD + M, HFHSD treated
with metformin; HFHSD + L, HFHSD treated with liraglutide.
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adrenal glands were analyzed (Figure 2E). The male HFHSD

animals and male groups receiving medication had significantly

smaller adrenal glands than the STD animals, whereas exactly the

opposite finding was present in females. The biggest adrenal gland

surface in HFHSD+L females indicates the highest cumulative

corticosterone levels in these animals, which may be related to

metabolic disbalance and a shift in normoglycemia set point.
Both antidiabetic treatments increased
leptin sensitivity in hypothalamic satiety
nuclei, but only liraglutide had a peripheral
anti-inflammatory effect

Improved insulin and leptin sensitivity in hypothalamic satiety

nuclei, related to reduced food intake, was the expected tertiary

outcome of antidiabetic treatment. Insulin serves as an acute satiety

signal, leptin as a chronic one, and insulin-like growth factor (IGF)

as a sub-acute signal that adjusts body temperature to energy

resources. Their receptors initiate the signal responses in the

brain and subsequently reduce feeding. The expression of insulin

receptor a (IR-a), leptin receptor (ObR), and insulin-like growth

factor 1 receptor b (IGF-1Rb) was measured as markers of energy-

sensing signaling pathways in the following brain nuclei: the arcuate

(ARC), lateral hypothalamic (LH), paraventricular (PVN), and

ventromedial hypothalamic (VMH) nuclei (Figure 3A; Extended

Data Figures 4.1A, 4.2, 4.3, 4.4). Selected hypothalamic nuclei are

part of the neural network that controls feeding, and previous

studies have shown that they are not equally prone to developing

insulin/leptin resistance (29).

The high IR expression in the brain nuclei was associated with

low serum fasting insulin levels in STD animals (in females in

particular) and their potentially better central insulin response.

Long-lasting HFHSD decreased the expression of IR in the LH

nucleus, potentially due to increased serum insulin levels. The

antidiabetic treatment reversed the receptor decrease in LH nuclei

of males but not in females. The animal group with the lowest

expression of IR relative to all other groups in all satiety nuclei

(HFHSD+L females) also had the highest serum fasting insulin

levels. This potential central insulin resistance indicated a small

potential of insulin on the feeding switching function. This was also

in agreement with the low whole-body sensitivity of insulin

receptors (as measured by the ITT response) in HFHSD+L females.

HFHSD did not significantly affect ObR expression in

individual nuclei, regardless of the increased plasma leptin levels.

On the other hand, antidiabetic treatment was associated with a

profound central effect: increased ObR expression was observed in

all satiety nuclei in both males and females—more in the case of

metformin, than liraglutide. It explained the major metformin

beneficial effect: quick reaching satiety and no gain of weight

despite an increase in adipocyte surface area. Contrary to HFHSD

+M animals, the medication effect was lower in HFHSD+L groups,

in particular females, probably due to cross-downregulation of ObR

with increased insulin levels. HFHSD+L males, but not females, had

increased expression of IGF-1R, which could provide them with
Frontiers in Endocrinology 06
additional relief from high-caloric HFHSD (Extended Data Figures

4.1A, 4.4) by its ability to increase body temperature.

The fourth expected outcome of antidiabetic treatment was a

reduction in low-grade inflammation. Neuro-inflammation was

investigated in the same brain nuclei with the help of two

markers: ionized calcium-binding adaptor molecule 1 (Iba1), a

microglia marker (Figure 3A; Extended Data Figure 4.5), and the

glial fibrillary acidic protein (GFAP), an astrocyte marker

(Extended Data Figures 4.1A, 4.6). Although some significant

changes, mostly provoked by medication rather than HFHSD

itself were shown, there was no clear correlation between

hormonal changes and neuro-inflammatory status.

To investigate peripheral aspects of low-grade inflammation,

proinflammatory (M1) and anti-inflammatory (M2) macrophages

were analyzed in visceral adipose tissue using CD68 and CD163

markers, respectively (Figure 3B; Extended Data Figure 4.7). In

addition to macrophages, the expression of the tumor necrosis

factor a (TNF-a), interleukin 1 (IL-1), and interleukin 6 (IL-6) was

analyzed in the visceral and subcutaneous adipose tissue samples

(Figure 3C; Extended Data Figure 4.1B). Visceral adipose tissue was

chosen for additional research because it appeared to be more

related to inflammatory response.

Sex and intervention did not affect the M1 phenotype but did

affect M2 in the adipose tissue. STD females had a significantly

higher number of M2 macrophages compared to males (beneficial

inflammatory response). However, when fed the HFHSD or treated

with antidiabetics, both aspects of inflammatory responses were

comparable between sexes. A large adipocyte size is a challenge for

classical phagocytosis, whose inefficiency is reflected in the secretion

of proinflammatory cytokines. In support of this, the TNF-a and

IL-6 increase was interconnected with the downregulation of M2

lineages observed in groups with the highest adipocyte sizes,

HFHSD and HFHSD+M. Liraglutide treatment reduced adipocyte

size more in females than in males, and this resulted in consistently

reduced secretion of inflammatory cytokines. A marked decrease in

adipocyte size in liraglutide-treated females ultimately resulted in

the proinflammatory response and highest M1/M2 ratio.

These results indicated that metformin was less able to alter the

peripheral inflammatory response of animals exposed to HFHSD,

whereas liraglutide had anti-inflammatory consequences only in

males, but in females, liraglutide treatment led to an excessive

reduction in adipocyte size and a reversal of the favorable

treatment effect.
Sex-specific metabolic difference in liver
and skeletal muscle was enhanced by a
high-fat and high-sucrose diet and
antidiabetic drugs

The fifth expected outcome of antidiabetic treatment was a

slower progression of metabolic-dysfunction-associated fatty liver

disease (MAFLD) caused by HFHSD. In normal-weight subjects,

the presence of hepatic steatosis accompanied by at least two

metabolic risk abnormalities is required for MAFLD diagnosis.
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B C

A

FIGURE 3

Metformin and liraglutide influenced high-fat high-sucrose diet-associated microinflammation in the hypothalamus and visceral adipose tissue in a
sex-specific manner. (A) Interaction plots of intervention and sex effects on the expression level of the insulin receptor a-subunit (IR-a), leptin
receptor (ObR), and ionized calcium-binding adapter molecule 1 (Iba1) in the following hypothalamic nuclei: arcuate nucleus (ARC), lateral nucleus
of hypothalamus (LH), paraventricular nucleus (PVN), and ventromedial nucleus (VMH). The location of nuclei within the hypothalamus is indicated
on the scheme below the interaction plots (f, fornix; 3V, third ventricle). Two-way ANOVA and Games–Howell post-hoc test for between-group
comparisons. (B) Interaction plots of intervention and sex effects on the number of M1 macrophages (CD68) and M2 macrophages (CD163) in
visceral adipose tissue per field of view at 100× magnification, and decimal logarithmic representation of M1 to M2 macrophage ratio in visceral
adipose tissue. Two-way ANOVA and Games–Howell post-hoc test for between-group comparisons. (C) Interaction plots of intervention and sex
effects on the TNF-a, IL-1, and IL-6 in the visceral adipose tissue. Two-way ANOVA and Games–Howell post-hoc test for between-group
comparisons. Black symbol, experimental groups including both sexes; green symbol, male groups; red symbol, female groups. */†p < 0.05, **/††p <
0.01, ***/†††p < 0.001 (*compared to STD, †compared to HFHSD). NS, not significant; f, female; m, male; STD, standard diet group; HFHSD, high-fat
and high-sucrose diet group; HFHSD+M, HFHSD treated with metformin; HFHSD+L, HFHSD treated with liraglutide.
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With the exception of STD males, all animal groups fulfilled

metabolic criteria for MAFLD and the presence of prediabetes or

diabetes (Figures 2B, C). Nevertheless, pronounced liver steatosis

was recorded just in the HFHSD and HFHSD+M groups

(Figure 4A), as visualized by Sudan black staining. Due to their

hydrophobicity, fat droplets were compact, and we used Oil Red

staining to calculate their surface (Figure 4B; Extended Data Figure

5.2). The extent of lipid accumulation varied in subcapsular (SPL)

and deeper parenchymal portions [central part (CPL)] of the liver

(Figures 4A, B). Therefore, these regions were analyzed separately.

In all groups, the subcapsular part accumulated more fat droplets,

and steatosis was more pronounced in males than in females due to

central part involvement. Male groups with the highest steatosis

also had the highest levels of serum cholesterol and triglycerides

(Extended Data Figure 5.1A), but without an increase of liver

damage markers (Extended Data Figure 5.1B)—aspartate

transaminase (AST) and alanine transaminase (ALT). Fat droplet
Frontiers in Endocrinology 08
accumulation in HFHSD+L groups was comparable to that in STD

groups; that is, liraglutide successfully resolved hepatic steatosis.

Also, HFHSD+L females significantly increased the liver mass to

body mass ratio, probably due to both the loss of body mass and the

loss of hepatic lipids (Extended data Figure 5.1C).

To determine whether lipid accumulation led to decreased

glycogen storage, liver sections were stained with metachromatic

toluidine (Figure 4B; Extended Data Figure 5.3). Surprisingly, the

male groups with the highest steatosis, HFHSD and HFHSD+M,

also had the highest glycogen content, both subcapsular and within

the parenchyma. Contrary to that, liraglutide treatment depleted

glycogen stores, especially in subcapsular hepatocytes. In

conclusion, liraglutide treatment led to the depletion of

glycogen stores.

The sixth expected outcome of antidiabetic treatment was a

positive effect on HFHSD-induced skeletal muscle mitochondrial

dynamics and antioxidant capacity. The content of mitochondria by
B

C

D

A

FIGURE 4

Male rats fed the high-fat and high-sucrose diet are more prone to excessive hepatic and skeletal muscle lipid accumulation. (A) Cross-section of
liver stained using Sudan black, with annotated central (CPL) and subcapsular (SPL) parts. Scale, 500 mm. (B) Fat droplet measurement based on Oil
red O staining and glycogen measurement based on metachromatic toluidin stain. Two-way ANOVA and Bonferroni or Games–Howell post-hoc
test for between-group comparisons. (C) Percentage of fiber types I, IIa, and IIb in skeletal muscle based on staining with succinate dehydrogenase.
Two-way ANOVA and Games–Howell post-hoc test for between-group comparisons. (D) Interaction plots of intervention and sex effects on the
following parameters for determination of the oxidative-antioxidative status of skeletal muscle: catalase (CAT) (U/mg protein); superoxide dismutase
(SOD) (U/mg protein); total glutathione (tGSH) (nmol/g of fresh tissue weight (FW)); glutathione S-transferase (GST) (U/g protein). Two-way ANOVA
and Games–Howell post-hoc test for between-group comparisons; black symbol, experimental groups including both sexes; green symbol, male
groups; red symbol, female groups; */†p < 0.05, **/††p < 0.01, ***/†††p < 0.001 (*compared to STD, †compared to HFHSD). NS, not significant; f,
female; m, male; STD, standard diet group; HFHSD, high-fat and high-sucrose diet group; HFHSD+M, HFHSD treated with metformin; HFHSD+L,
HFHSD treated with liraglutide.
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skeletal muscle fiber types varies from high (type I), through

intermediate (type IIa), to low (type IIb), while oxidative capacity

correlates with the number of mitochondria in physiological

conditions. Mitochondrial mass per fiber was determined by

succinate dehydrogenase (Complex II) histological staining of

skeletal muscles from the nuchal region (Figure 4C; Extended

Data Figure 5.4). A large sex difference was already visible in

animals on STD; females showed a higher percentage of red fibers

(I and IIb) than males. Consumption of HFHSD led to a significant

increase in mitochondrial mass in both sexes, but the ratio between

red and white fibers (IIb) increased to a greater extent in females.

Contrary to the diet, both antidiabetic treatments were

unremarkable in the skeletal muscles of males. Nevertheless,

metformin, known to affect mitochondrial efficiency by inhibiting

Complex I, decreased the proportion of red fibers in females.

Interestingly, metformin treatment in females had also the

greatest effect on the antioxidant capacity of skeletal muscle

(Figure 4D), leading to a significant increase in enzyme catalase

(CAT) and glutathione S-transferase (GST). Medication with

liraglutide did not affect mitochondrial mass and was associated

with lower total glutathione (tGSH), but higher SOD in females.

The lipid droplet content of skeletal muscle was an indirect

indicator of blunted inhibition of adipose tissue lipolysis in the

development of insulin resistance, so we measured the average size

of fat droplets using Oil Red staining (Extended Data Figures 5.1D,

5.5). As expected, female groups had a higher average size of fat

droplets than males, with the exception of metformin-treated males.

Nevertheless, the accumulation of lipids was not accompanied by an

increased risk for lipid peroxidation (Extended Data Figure 5.1E).

When these results are considered together, increased

mitochondrial volume in HFHSD is a sign of serious changes in

mitochondrial dynamic that are not matched with antioxidant

capacity and pose a challenge to the quality control of

mitochondria. The observed changes in skeletal muscle tissue

deserved a more careful analysis.
Diet and antidiabetic drugs have a
significant effect on the metabolic profile
of skeletal muscles in males but in less
regard in females

Skeletal muscle tissue is an insulin-dependent organ, and its

insulin resistance triggers diabetes (30). The expected outcome of

antidiabetic treatment was a beneficial metabolic response opposing

skeletal muscle insulin resistance. Therefore, the fresh-frozen

samples of muscles from the nuchal region were subjected to the

MALDI-TOF imaging mass spectrometry (IMS) that generated big

data with the least loss of relevant molecules. Mass spectra were

recorded in the range 300–700 Da (Extended Data Figure 6.1) in

order to analyze metabolites and in the range 700–1,000 Da

(Extended Data Figure 6.2) in order to analyze lipids.

To identify patterns and trends or extract the most important

features, principal component analysis (PCA) was used for big data

visualization. Overlapping metabolic profiles were observed using
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the assumption that the sets of metabolic profiles may be

represented by the chemical fingerprint containing strong signals

(signal intensity > 5% of the strongest signal, N = 74) coming from

the average TIC-normalized mass spectra in the range 300–1,000

Da (Figure 5A). However, out of 74 strongest m/z signals, 21 were

significantly altered in at least one treatment pair selected by the

omnibus false discovery rate (FDR) Kruskal–Wallis (KW) ANOVA

followed by pairwise Dunn–Bonferroni test (Figure 5B). STD males

were the most different (12–15 compounds) in relation to all other

animal groups of both sexes. Nevertheless, liraglutide-treated males

(HFHSD+L) were closest to STD males in muscle metabolic profile.

In all-female groups, the muscle metabolic profile was similar

(especially between the STD and HFHSD groups), and metformin

treatment had a slightly larger effect than the liraglutide treatment.

This result speaks in favor of pre-existing gender-specific

differences in muscle metabolic profiles, and their different

response to antidiabetic drugs.

To putatively identify significant m/z signals, METASPACE

and HMDB databases were used (Table 1; Extended Data Figure

6.3). They included xanthurenic acid 8-O-sulfate, inosine

monophosphate (IMP), phosphatidic acids (PA), and different

types of phospholipids. Xanthurenic acide 8-O-sulfate (m/z 307.

97), considered to serve as a natriuretic hormone that enhances

glycosuria, was lowest in STD groups (Figure 5C). IMP (m/z 387.

01), recently introduced as a beneficial nutriceutical affecting the

energetic and antioxidant status of the liver and muscles (31) and

previously connected with high physical activity in untrained

animals, was highest in STD males. Levels of PA (m/z 737.45/

761.45/763.46), precursors of phospholipids with positive effects on

mitochondrial dynamics, were highest in STD males, liraglutide-

treated males, and metformin-treated females.

In order to graphically represent major clusters, a heatmap was

constructed using Euclidean distance, and Ward’s method was

applied to the scaled significant m/z signals (Extended Data

Figure 6.4). In concordance with PCA, all treatment groups were

clustered together, which implied a large inter-individual variability.

According to the samples’ dendrogram, liraglutide treatment

achieved the expected effects in the muscles of most males

(populations of STD and HFHSD+L males were grouped

together). Metformin effects were shared between sexes (males

and females on metformin were grouped together). The most

dispersed classes were HFHSD and HFHSD+L females. m/z’s

dendrogram showed clustering of phospholipids and their partial

overlap with the PA. Conspicuously, IMP was between

phospholipids and PA clusters. It was interesting to notice that

m/z = 329.95 and 439.03 Da, which we were not able to uniquely

identify, formed a cluster with the xanthurenic acid 8-O-sulfate.

Taken together, the skeletal muscle metabolic profile of STD males

was different from all other groups, and the closest to it was HFHSD+L

males. Also, HFHSD had a significant effect on males but not on

females, which spoke in favor of developing muscle insulin resistance

caused by menopause itself. Aging was a probable basis for large inter-

individual differences (since biological and chronological age may

mismatch) (32, 33), so it was not unexpected that the overall effect

of antidiabetic drugs in female groups was negligible.
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Discussion

Glucotoxicity and lipotoxicity are the major two drivers of

hyperinsulinemia and the concomitant development of

multiorgan insulin resistance, culminating with the loss of b-cells
as an ultimate deficit in DM2, independent of sex difference and

aging (34). In this study, we developed the preclinical rat model to

address the long-term effects of diet, aging, and sex in development

of the DM2, which proved to be successful in recapitulating the

whole sequence of its pathogenesis, from metabolic disorder to

prediabetes and finally diabetes. As our motive was to increase the

translational relevance, animals of both sexes were used, and the

HFHSD was introduced in reproductive senescence (at 45 weeks).

HFSHD indeed quickly leads to a metabolic disorder; 5 weeks after

its introduction, the animals had early signs of prediabetes (i.e.,

elevated G0 parameter derived from the mathematical model), 7

weeks later, they reached clinical prediabetes, and in the next 6

weeks, clinical diabetes. The following mathematical parameters

derived from the glucose tolerance test (GTT) were informative in

monitoring the progression of metabolic disorder of the studied

rats: Gmax, G0, G(2), and G(0). The length of the study (18 weeks)

provided insight into the transition from prediabetes to diabetes.

Subsequently, this allowed evaluation of the effects of the

therapeutic interventions by metformin and liraglutide introduced

at week 5. The long-term monitoring of the medications (for 13

weeks) distinguished early and late effects of therapy and revealed

sex differences due to aging, diet, and antidiabetic treatment.
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Aging was the primary metabolic culprit in
the DM2 pathology of females

Thanks to the fact that the study was initiated in middle-aged

animals, it demonstrated the importance of aging as the primary

metabolic culprit in DM2 pathology, which was more prominent in

females. The females developed already on STD the indicators of

metabolic disorder; an increase in parameters describing GTT-

provoked glucose disposal [Gmax, G0, and G(2)], and higher

skeletal muscle mitochondrial mass. Similarly, in our previous

study (35) on young (3.5 months) and mature (12 months) rats,

STD-fed perimenopausal females had a higher Gmax than males.

Therefore, an increase in Gmax can be considered a prodromal sign

of metabolic risk associated with aging, at least in females.
The response to HFHSD was sex-specific
implying that females may develop skeletal
muscle insulin resistance, while males may
develop hepatic insulin resistance

HFHSD exacerbates the female tendency toward glucose

intolerance, dramatically increases skeletal muscle mitochondrial

mass, and increases the associated potential development of insulin

resistance. Glucose tolerance reflects the b-cell ability to offset

insulin resistance by increased insulin secretion, and as long as

this balance holds, glucose tolerance remains the same (36). At the
B

CA

FIGURE 5

MALDI-TOF IMS analysis of Sprague–Dawley rats’ nuchal skeletal muscle shows sex-specific metabolic responses to HFHSD, liraglutide, and
metformin treatments. (A) Principal component analysis (PCA) using strong m/z signals (signal intensity > 5% of the strongest signal) coming from
the average total-ion-current (TIC)-normalized mass spectra recorded in the range 300–1,000 Da explains 84.47% variance. (B) Distribution of the
significantly altered m/z signals by treatment pairs. (C) Box and whisker plots of significantly altered m/z signals. Each group sample size was eight (4
biological replicates × 2 technical replicates). F, female; M, male; STD, standard diet group; HFHSD, high-fat and high-sugar diet group; HFHSD+M,
rats on HFHSD treated with metformin; HFHSD+L, rats on HFHSD treated with liraglutide; m/z, mass-to-charge ratio.
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Ivić et al. 10.3389/fendo.2023.1181064
TABLE 1 Statistically significant alterations in the strong m/z signal intensities of male and female rat nuchal skeletal muscle with tentative
annotations.

m/z (Da)a Adduct Treatment
pairs

Tentative
endogenous
metabolite
annotationb

Metabolic
and physio-
logical role

Comments

307.97 M+Na F STD/F
HFHSD+L

Xanthurenic acid
8-O-sulfate

Trp/Kynurenine
metabolism
Natriuresis

N-Acetyl-L-glutamyl 5-phosphate is a result of database searches
that is less likely to be present in muscles (1–3).

317.04 – M STD/F
HFHSD
M STD/F
HFHSD+M
M STD/M
HFHSD+M

– – Quinolinic acid is a result of the HMDB search but not of the
METASPACE search. Database searches provide two more hits that

are less likely to be present in muscles: methoxybrassenin B/
wasalexin A, B, and homocarnosine.

329.95 – F HFHSD+L/F
HFHSD

F HFHSD+M/F
HFHSD
F STD/F
HFHSD+L

M HFHSD+L/F
HFHSD+L

M HFHSD+M/
F HFHSD+L
M STD/F
HFHSD+L
F STD/F

HFHSD+M
M HFHSD+L/F
HFHSD+M
M STD/F
HFHSD+M

– – 3-Iodotyrosine is a result of HMDB and METASPACE search, but
this compound is not likely to be present in muscles: instead,

xanthurenic acid 8-O-sulfate adduct of type M+2Na-H is a more
likely annotation.

387.01 M+K M STD/F
HFHSD
M STD/F
HFHSD+L
M HFHSD/F
HFHSD+M
M STD/F
HFHSD+M

M STD/F STD
M STD/M
HFHSD+L
M STD/M
HFHSD+M

IMP Impaired ATP
biosynthesis during
physical activity

– (4, 5)

439.03 – F HFHSD+M/F
HFHSD

M HFHSD+L/F
HFHSD+L
F STD/F

HFHSD+M
M HFHSD+L/F
HFHSD+M

M HFHSD+L/
M HFHSD

– Glucocheirolin is a result of HDMB and METASPACE search, but
this nutrient cannot be present due to controlled diets.

Maleylacetoacetic/4-fumarylacetoacetic acids are results of HMDB
but not of the METASPACE search. This m/z signal also

corresponds to the matrix adduct 2CHCA+Na+K-H and may reflect
the variable cellular K content.

526.33 – M STD/F SD
M STD/M
HFHSD+M

– – LysoPC C20:4 adduct of type M-H2O+H is a result of HMDB
search, but it is not likely to be produced in MALDI source.

737.45/761.45/
763.46c

M+K M HFHSD+L/F
HFHSD
M STD/F
HFHSD

M HFHSD+L/F
HFHSD+L

PA C36:3/PA
C38:5/PA C38:4

Triglyceride/
phospholipid
biosynthesis
PIP2/DAG
signaling

Insulin sensitivity

DG C38:4;O, DG C40:5;O, PG C31;O2, and PG C36:6;O2 are results
of HMDB search, which are not present in the METASPACE

database due to adduct types not likely to be produced in MALDI
source (6).

(Continued)
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end of the experiment, HFHSD females had glucose tolerance

almost twice lower than males (elevated AUC results in GTT

obtained with and without mathematical modeling). Relatively

low AUC values in weeks 5 and 12 in SD and HFHSD indicate a

prediabetes period. Our result speaks in favor of the hypothesis that

prediabetes is a reversible condition, so we see a small difference

between STD and HFHSD. Decompensation in glucose tolerance

occurs somewhere between 12 and 18 weeks after prolonged feeding

with HFHSD (20). Diminished glucose tolerance as a sign of b-cell
loss was considerably higher in females than in males, and it

supported earlier onset of diabetes in females compared to males.

The increased number of mitochondria by itself posed a female-

specific risk for the development of skeletal muscle insulin

resistance due to increased reactive oxygen species (ROS)
Frontiers in Endocrinology 12
production (37, 38). Nevertheless, the increased mitochondria

mitogenesis and their decreased efficacy represent potentially a

female-specific protective response to HFHSD oriented toward the

dissipation of excess energy.

On the other hand, HFHSD males developed liver steatosis

accompanied by elevated levels of cholesterol and triglycerides in

the blood, while the pathological changes of skeletal muscles

included fat droplets and a significant decrease in IMP. The

hepatic findings were consistent with research results for

nonalcoholic fatty liver disease, recently renamed metabolic-

associated fatty liver disease in order to reflect its association with

metabolic syndrome morbidity, where men were more often

affected with the disease than women (39–43). The skeletal

muscle findings could be interpreted as a sign of reduced physical
TABLE 1 Continued

m/z (Da)a Adduct Treatment
pairs

Tentative
endogenous
metabolite
annotationb

Metabolic
and physio-
logical role

Comments

M STD/F
HFHSD+L
F STD/F

HFHSD+M
M HFHSD+M/
F HFHSD+M
M HFHSD+L/F

SD
M STD/F STD

M SD/M
HFHSD

M HFHSD+M/
M HFHSD+L
M STD/M
HFHSD+M

762.46 – M HFHSD+L/F
HFHSD

M HFHSD+L/F
STD

– – PS C29:0 adduct of type M+H+HCOONa is a result of HMDB
search only, but it is not likely to be produced in MALDI source.
PG(PGJ2/i-12:0) adduct of type M+NH4 is also a result of HMDB
search only, but it is not likely to be present in muscles. This m/z

may correspond to PA C38:5 containing a (13)C atom.

758.57; 796.53,
797.56, 798.54,
806.54, 820.52,
821.52, 822.54,
824.55, 846.53,

848.56c

Different
types

M STD/F
HFHSD

M HFHSD+L/F
HFHSD+L
M STD/F
HFHSD+L

M HFHSD+L/F
HFHSD+M
M STD/F
HFHSD+M

M HFHSD+L/F
STD

M STD/F STD
M HFHSD+L/
M HFHSD
M STD/M
HFHSD

M HFHSD+M/
M HFHSD+L
M STD/M
HFHSD+M

Different
phospholipids

Insulin sensitivity – (6, 7)
aFDR corrected pairwise Dunn–Bonferroni test applied on strong m/z signals (p < 0.05). bMETASPACE (8) (https://metaspace2020.eu) and HMDB (9) search using ±10 ppm acceptance limit.
cSome of the listed m/z signals are not significantly altered in all treatment pairs. F, female; HFHSD, high-fat and high-sucrose diet group; HFHSD+M, HFHSD treated with metformin; HFHSD
+L, HFHSD treated with liraglutide; STD, standard diet group; M, male; m/z, mass-to-charge ratio. Each group sample size was eight (4 biological replicates × 2 technical replicates), and the m/z
range was set to 300–1,000 Da.
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activity accompanied by a change in diet (44) and diminished

supplies for ATP biosynthesis (31).
Potential HFHSD-induced leptin and insulin
resistance of satiety centers contributed to
multiorgan disorder in prediabetes

The disturbance of the satiety nuclei in the brain (reflected in

the G0 parameter) was obligatory in the HFHSD-induced

pathophysiology of DM2 in both sexes. Moreover, this aspect of

diabetes development was documented through increased caloric

intake. Satiety centers are influenced by a variety of nutritional

factors (glucose, fatty acids, amino acids) and different hormones—

insulin and leptin being the most important. In fact, the opposing

action of insulin and leptin can explain why animals with HFHSD

did not develop polyphagia despite the potential development of

central insulin resistance (45). However, the satiety nuclei are not

only involved in feeding control but also in various autonomous

reactions, such as sympathetic activity, cardiovascular output, stress

response, etc. What is important for this study is that the lateral

hypothalamic satiety nucleus (LH) inhibits the activity of the

paraventricular (PVN) (46) stress response-mediating nucleus

and thus exerts insulin-mediated negative feedback regulation of

the stress response. Judging by the size of the adrenal gland, which

was significantly larger in females than in males on the HFHSD, the

central stress homeostasis regulation was more efficient in males

than in females. Nevertheless, the development of insulin and leptin

resistance in the satiety centers explained how malfunction of the

hypothalamic neuronal network contributed to a multiorgan

disorder (Figure 6). Clinically relevant, glucose set point (as a

functional output of satiety nuclei) which was reflected in

mathematical parameter G0, proved to be reversible in STD

groups, while caloric intake returned to the starting level over

time in HFHSD groups.
HFHSD increased the production of
proinflammatory metabolites of the
kynurenine pathway

Another sign of the onset of diabetes in both sexes due to

HFHSD was increased production of xanthurenic acid 8-O-sulfate

and quinolinic acid (putatively identified) in skeletal muscle tissue.

These metabolites were generated in the kynurenine pathway, a

major pathway for tryptophan metabolism, which is activated in

diabetes and shown to contribute to inflammation, oxidative stress,

and beta-cell dysfunction (47).
Can prediabetic therapy slow the
development of diabetes despite a
diabetogenic diet?

The sex-specific effects induced by HFHSD included

diminished glucose tolerance and a higher stress response in
Frontiers in Endocrinology 13
females, and they may have several important translational

connotations. If aging is the main cause of metabolic

deterioration, accelerated by HFHSD, then a dietary lifestyle

intervention would be necessary but may not be sufficient for

metabolic correction. From the example of STD females, an early

intervention is desirable and should aim to correct glucose

variability. Metformin and liraglutide are obvious choices for

medication due to their anti-senescence or anti-obesogenic

effects, respectively.
Metformin had more benefits for females
than for males due to the systemic
disturbance of lipid metabolism

The two antidiabetic drugs had different sex-specific effects when

tested in this long-term study. Metformin proved to be effective in the

treatment of diabetes in both sexes. The beneficial effect was observed

after the first week of treatment, in which animals reduced their food

intake. The reduced food intake remained visible until the end of the

study, and subsequent analysis of the hypothalamic satiety nuclei

showed in three out of the four observed nuclei an increased level of

leptin receptors (what could be interpreted as increased sensitivity to

leptin). Changes in ObR expression are associated with changes in

feeding behavior (48, 49). Therefore, a more precise assessment of

sensitivity to leptin could be obtained by a functional study, i.e.,

administration of recombinant leptin and subsequent assessment of

the amount of food consumed, as well as immunochemical

determination of downstream molecules in the ObR signaling

pathway (pSTAT3 and cFos) of the satiety nuclei (50).

Although metformin reduced food intake, this was not reflected

in the morphology of visceral adipose tissue or plasma leptin levels.

Just the opposite, HFHSD+M males had increased the surface area

of adipocytes and fat droplets in adipocytes, liver, and skeletal

muscle when compared to HFHSD males. Subsequently, the

inflammation in adipose tissue increased, and it promoted

systemic insulin resistance, which reduced the overall beneficial

effects of metformin. As already described, enlarged adipocytes

become dysfunctional in diabetes and secrete less protective and

more inflammatory adipocytokines. When their fat storage capacity

is exceeded, fats are stored in other tissues such as the liver, skeletal

muscle, and pancreas, and they contribute to their insulin resistance

or insulin secretion, as shown in this study as well (51). Metformin

is known as an insulin-sensitizing medication, whose effect is

achieved by activation of AMP-activated protein kinase (AMPK)

and further inactivation of acetyl–CoA carboxylase (Acc1 and

Acc2) by phosphorylation (52). The positive effects of metformin

treatment come from the very blocking of lipolysis and lowering of

the amount of free fatty acids whose lipotoxicity promotes insulin

resistance of the liver and skeletal muscle (53).

Females responded better to metformin treatment than males.

The beneficial effects, contrary to males, have been observed as

improved glucose tolerance: parameters relevant for diabetes (Gmax,

G0, and G(2)) decreased in comparison to the HFHSD-untreated

females. Although serum fasting insulin and HOMA-IR, as signs of

peripheral insulin resistance, did not decrease significantly,
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FIGURE 6

Sex-specific impairments in different organs contribute to DM2 to varying degrees—proposed mechanism. (A) High-fat and high-sucrose diet
(HFHSD) is the major trigger of metabolic changes in males. Diet-induced hyperglycemia and hyperlipidemia burden the secretagogue mechanism,
which leads to an increase in glucose variability (Gmax) and hyperinsulinemia. Hyperglycaemia and hyperinsulinemia increase hunger drive and
gradually lead to insulin resistance of skeletal muscle (HOMA index), liver (hepatic glucose production (HGP), G(2)), and adipose tissue (fat storage
capacity and the appearance of inflammation: M2 macrophages, TNF-a, and IL-6). In males, the liver is more sensitive to hyperinsulinemia than
skeletal muscle, so metabolic-dysfunction-associated fatty liver disease (MAFLD) caused by HFHSD occurs more quickly. Under the action of
antidiabetic drugs metformin and liraglutide, the sensitivity of the hypothalamic nuclei to insulin and leptin increases. Although both antidiabetics are
anorexigenic, there is a gradual increase in the glucose set point (G0) under the influence of HFHSD. Potentially, further degradation of the satiety
mechanism and low-grade inflammation in adipose tissue can lead to an increase in the stress response and entry into a vicious circle in which the
stress response increases HGP (reflected in the increase of G(2) mathematical parameter) and contributes to insulin resistance of other organs.
(B) In females, aging and especially HFHSD increase glucose variability. HFHSD-induced hyperinsulinemia affects skeletal muscle more than in males,
which is seen as increased mitogenesis, reduced mitochondrial efficiency, and a less-efficient ROS response, which by itself increases muscle insulin
resistance. The introduction of antidiabetic drugs only increases sensitivity to leptin but not to insulin. In liraglutide-treated females, plasma leptin
and insulin sensitivity in the satiety centers are so low that both no longer contribute to extinguishing the stress response. The increased stress
response further increases HGP, and in females treated with liraglutide, this leads to the full picture of DM2 (increased G(0) (fasting glucose) and
hyperphagia). Metformin, as an insulin sensitizer, stops the activation of the stress response and reduces the mass of mitochondria in skeletal
muscle, thereby delaying the onset of DM2. AMPAK, AMP-activated protein kinase pathway; DM2, diabetes type 2; G0, blood glucose set point; G(0),
fasting glucose; G(2), plasma glucose 2 h after load; Gmax, maximal glucose concentration after glucose load; HFHSD, high-fat and high-sucrose
diet; HGP, hepatic glucose production; HOMA-IR, Homeostatic Model Assessment for Insulin Resistance; IL-6, interleukin 6; M2, macrophage
lineage; TNF-a, tumor necrosis factor-alpha. Numbers (1, 2, 3, and 4) indicate the sequence of events in DM2 development. Note that the thickness
of the line indicates the strength of the effect. Dashed lines represent hypothetical mechanisms.
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mitochondrial mass in skeletal muscle decreased. The reduction in

mitochondrial mass corresponded with the finding of elevated levels

of PA in the metabolic profile of the skeletal muscle of HFHSD+M

females and its positive effect on mitochondrial fusion (54).

Moreover, metformin in females was associated with decreased

expression of superoxide dismutase (SOD), a central redox enzyme,

which was also a bifurcation point between two signaling pathways

that were involved in matching the efficacy of mitochondria with

metabolic energy needs. Diminished levels of superoxide dismutase

(SOD) enable the targeted propagation of superoxide signaling

toward aconitase, an enzyme from the citric acid cycle serving as a

metabolic switch in mitochondrial uncoupling and safe deciphering

of energy (55–57). These two, elevated PA and downregulated SOD,

can be related to the eventual counteracting of HFHSD-induced

H2O2 production and lipid peroxidation.

In conclusion, the group of males treated with metformin

maintained their prediabetic status, and the group of females

maintained their diabetic status. The numerous beneficial effects

justified the use of metformin as a prediabetic drug, especially in

females. It would certainly be worth checking its effectiveness in

combination with dietary measures and physical activity in future

animal studies.
The short-term positive effects of
liraglutide are lost in long-term treatment
due to hyperinsulinemia

The liraglutide treatment in both sexes was associated with

initially reduced food intake, a significant reduction in the surface

area of visceral adipocytes, and lower leptin levels. In addition,

liraglutide also showed remarkable effects in reversing fatty liver

changes and reducing peripheral inflammation. These findings were

in accordance with the observed weight-reducing effects of

liraglutide, where a significant overall decrease in the percentage

of adipose tissue was frequently reported (8, 58). Without any

doubt, these effects of liraglutide contributed to the almost complete

normalization of glucose tolerance in both sexes after 7 weeks of

treatment. Unexpectedly, the effect disappeared during the

following 7 weeks of treatment: males outperformed their control

HFHSD group and increased G0 and G(2) (which correspond to

blood glucose set points and plasma glucose 2 h after load) up to

diabetic values while females developed full clinical picture of DM2

(elevated G(0), fasting glucose).

We tried to identify what led to this unexpected deterioration in

both sexes. Liraglutide treatment in males increased insulin and

leptin sensitivity in satiety nuclei. Still, the G0 in this group

surpassed that of other male groups. Conspicuously, the glycogen

storage in the subcapsular part of the liver was depleted together

with the fat droplets, which we interpreted as a sign of hepatic

insulin resistance despite its recovery from steatosis. This was

supported by the fact that serum fasting insulin and HOMA-IR

were at the same level as in the HFHSD group, probably due to the

major liraglutide effect of hyperinsulinemia. Despite the mentioned

negative effects, IMS analysis of the skeletal muscle showed elevated

levels of PA and various phospholipids, which contributed to
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regaining characteristics of STD males. Namely, in addition to the

positive effect of PA on mitochondrial dynamics, phospholipid

levels were previously positively associated with mitochondrial

efficiency and skeletal muscle sensitivity to insulin (59).

In the case of liraglutide treatment of females, despite short-

term positive effects, long-term treatment turned out to be

deleterious. Not only was glucose tolerance not significantly

improved, but the treated females had the highest serum basal

insulin levels, the most pronounced peripheral insulin resistance,

and the largest adrenal glands (suggesting the most hyperactive

stress response). The sex differences in liraglutide response could be

partially explained by human data showing a 24% lower weight-

adjusted clearance in women compared to men (60). In accordance

with previous literature (48), our results suggested that animals

treated with liraglutide had profound central effects of treatment.

Glucagon-like peptide 1 receptor (GLP1R) was expressed on satiety

nuclei in the brain, and therefore the central action of its agonist

liraglutide was expected. Also, polyphagia and high glucose set-

point in HFHSD+L females can be explained by the main peripheral

action of liraglutide, stimulating insulin secretion and concomitant

development of insulin resistance primarily in the satiety nuclei.

The argument about insulin resistance of satiety nuclei was based

on the reduced expression of IR, a phenomenon associated with

hyperphagia (61). For final proof of insulin resistance, it would be

necessary to perform a functional study—to apply insulin and

determine the values of pAkt and pGSK3 in the tissue 1 h after

insulin application (62). In addition, hyperinsulinemia was

combined with a loss of protective leptin signaling due to a

decrease in adipocyte surface area and a consequent decrease in

their ability to excrete leptin and adiponectin. All these results

suggested that the females treated with liraglutide have a high

tendency to develop adipocyte insulin resistance—an inability to

store lipids (or blocked lipolysis) and excrete leptin at sufficient

levels to counteract central insulin resistance. Moreover, they

concomitantly developed exaggerated stress responses.

Sympathetic activation is demonstrated to promote the

conversion of stored lipids into energy metabolism pathways (63).

Intriguingly, the liraglutide-treated animals exhibited significantly

smaller visceral adipocytes compared to other HFHSD-fed animals,

which could also be due to the centrally dysregulated

sympathetic activity.

Unlike males, liraglutide did not increase PA or phospholipid

levels in female skeletal muscle, but it did increase xanthurenic acid

8-O-sulfate, which was expected to increase natriuresis (64) and

consequent glucouresis. This may explain previously reported

liraglutide-induced natriuresis that has not been mediated by

natriuretic peptides (65). Given that xanthurenic acid interferes

with the synthesis of insulin in b-cells and creates inactive

complexes with insulin (47, 66, 67), it could be part of the last

protective mechanism that acts against hyperinsulinemia and

insulin resistance and reflects the severity of the diabetic disorder.

In these circumstances, the development of insulin resistance in

female skeletal muscle after liraglutide treatment could be

considered a protective mechanism that saves energy-hungry

muscle (loaded with mitochondria) from glucose loss in

postprandial hypoglycemia that occurred after hyperinsulinemia
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following hyperphagia in conditions of gradual exhaustion of all

energy stores.

We do not know if longer follow-up would result in a similar

effect of liraglutide in males. It is worth noting that HFHSD+L

males had the lowest glucose tolerance among all male groups,

which meant that they had a significant loss of b-cells and were

close to decompensation. Yet, liraglutide has its place in prediabetic

therapy, especially in men, under the condition of personalized

dosing and strict control of hyperinsulinemia.
The strengths and limitations of the study

The strength of our study is that it included animals of both

sexes, the use of a mathematical model that sheds light on the

sequence of metabolic deterioration from prediabetes to

diabetes, and finally whole-body analysis. In translational

studies, the female gender is less represented due to difficulties

in achieving synchronization in the estrous cycle (typical for

rats) and the expectation of large variations in biochemical

parameters influenced by sex hormones. Recent studies show

that the variation among females (unstaged for cycle) is not

greater than the variation among males (68), so excluding

females is one of the obstacles to gender-sensitive personalized

medicine. The use of mathematical modeling is still rare in

biological studies, although it can reveal parameters that have

a higher sensitivity than those used in clinical practice. Finally,

whole-body analysis is complex, but it can reveal the mutual

connection of pathophysiological mechanisms.

We recognize the following limitations of our study: (1)

variability in female animals could be smaller if animals were

synchronized for their estrus cycle (which was omitted because of

animal age, duration of the study, and low variability among

females, independent of cycle stage); (2) due to the high number

of animals handled at the same time points, even if experiments

were performed at the same time of day, certain parameters (like

hormones) could be influenced by the circadian rhythm; (3)

handling of animals, even if done with special care and by

properly trained technicians, could be a source of stress that

could be avoided by using metabolic cages and continuous

glucose monitoring (which were unavailable due to limited

resources); (4) dosage of treatment medications was calculated

based on the current human therapy guidelines; however, other

doses should also be tested; (5) murine models are not well tested

for metabolic syndrome in aged animals, and female predisposition

toward development of diabetes might be strain-dependent; (6)

assessment of insulin/leptin resistance at the level of the

hypothalamic nuclei or skeletal muscle would be more precise if

it was done within the framework of a functional study, i.e., after

insulin/leptin administration followed by assessment of GLUT4 and

STAT3 expression; (7) in addition to IRS-1 phosphorylation,

GLUT4 translocation should be determined 30–60 min after

insulin challenge; and (8) the use of additional methods directed

at whole-body changes in mitochondrial function (indirect whole-

body calorimetry) should be recommended. The finding of
Frontiers in Endocrinology 16
liraglutide side effects was unexpected but was reproduced in a

replicated study (data not yet published).
Prediabetic interventions should start
earlier and become sex-specific

In conclusion, the pathophysiology of DM2 is very complex and

requires the monitoring of several clinical parameters instead of

focusing solely on insulin insensitivity. A plethora of impairments

in many different tissues and organ systems contribute to DM2 in

various degrees, including the liver (impaired carbohydrate

metabolism, hyperreactive gluconeogenesis), skeletal muscle

(impaired glucose uptake and energy metabolism), adrenal glands

(impaired stress responses), adipose tissue (impaired secretion of

adipocytokines), brain (impaired central regulation of energy

homeostasis and stress reaction), and possibly many other organs

(69, 70). While this study undoubtedly confirmed the complexity of

multiple organ involvement in the development and progression of

DM2, it also shed light on the role of sex differences, aging, and the

relative contribution of various organs or tissues to disease severity.

Moreover, significant sex differences were noted even in response to

antidiabetic medication, which was strikingly obvious from the

MALDI-TOF skeletal muscle analysis of the treated animals.

Although neither of the two antidiabetic drugs used as

prediabetes treatment, metformin and liraglutide, were able to

reverse HFHSD-induced DM2, metformin was the superior

intervention over liraglutide due to improved central leptin

sensitivity and peripheral insulin sensitivity in females. The short-

term success and long-term failure of liraglutide therapy can be

explained by its central effect on satiety nuclei and

hyperinsulinemia, which ultimately lead to insulin resistance.

Thanks to its positive effects on the metabolism of skeletal

muscle, liver, and adipocytes, with good titration, liraglutide can

find its place, especially in the treatment of males. If some future

prediabetic therapy is to be considered, this study suggests that its

success will depend on the correct identification of early biomarkers

of prediabetes and, equally early, the application and monitoring of

a well-targeted sex-specific approach.
Methods

Animal model and study design

The animal study was approved by the National Scientific

Ethical Committee on Animal Experimentation (Hungary,

registration number: IV/3084/2016). The animals were treated in

accordance with the European Communities Council Directives

(86/609/ECC) and the Hungarian Act for the Protection of Animals

in Research (XXVIII. tv. 32.§).
The study was carried out on 32 male and 32 female Sprague–

Dawley rats (Innovo Ltd, Gödöllő, Hungary). Three-week-old rats

were fed ad libitumwith standard rodent chow (Innovo Ltd, Gödöllő,

Hungary) and water. They were kept in cages in a room with
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controlled temperature (20°C–23°C), humidity (40%–60%), and

light/dark cycle (12 h light/12 h dark). STD consisted of 65%

carbohydrate (5% disaccharide, 39% polysaccharide), 11% fat, and

24% protein. When the rats reached 45 weeks of age (week 0 of the

experiment), they were randomly separated into four groups, each

composed of eight males and eight females: (1) STD, (2) HFHSD, (3)

HFHSD+M, and (4) HFHSD+L. The STD group continued

consuming standard food until the end of the experiment, while

others were transferred to HFHSD (Altromin Spezialfutter GmbH &

Co, Lage, Germany, Cat. No. C-1101) consisting of 56% carbohydrate

(18% disaccharide, 36% polysaccharide), 28% fat, and 16% protein.

From experimental week 6 (when the rats were 51 weeks old),

HFHSD+M group was treated subcutaneously with 50 mg/kg/day

of metformin [resuspended in sterile/distilled water (50 mg/mL)];

Sigma Aldrich, Budapest, Hungary) and the HFHSD+L group was

injected subcutaneously with 0.3 mg/kg/day of liraglutide

(resuspended in sterile/distilled water (50 mg/mL)); Creative

Peptides Inc., Shirley, NY, USA). STD and HFHSD groups were

administered with vehicle (sterile/distilled water) only. The dose was

determined according to reports in the literature (71, 72).

Antidiabetic treatment lasted for 13 weeks, until the end of the

experiment when rats reached 64 weeks of age.

Body mass and food consumption were measured weekly (every

morning of the first day of each experimental week) using a digital

scale (SPX621, Ohaus Corp., Parsippany, NJ, USA). Food

consumption was calculated weekly by the rodent pellet reduction

in the feeder rack of cages and expressed as caloric intake (kcal/g of

body mass) per animal group. The metabolic energy of the STD was

2.84 kcal/g and of the HFHSD was 3.89 kcal/g.

During the experiment, several animals succumbed, as follows:

three males and one female from the STD group died during or after

the GTT due to aortic aneurysm; one female from the HFHSD+M

group died due to pulmonary edema; and one female from the HFHSD

+L group died due to abdominal tumor and vaginal bleeding.

At the end of the experiment, animals were sacrificed during

deep isoflurane anesthesia (Forane) (Baxter Healthcare Corp.

Deerfield, IL, USA) by cardiac puncture, followed by the

collection of whole blood. Prepared serum and plasma samples

were stored at −20°C for later analysis. The organs (brain, liver,

adrenal glands, adipose tissue) were weighed, snap frozen, or fixed

with 4% paraformaldehyde, as previously described (73), and stored

at −80°C for further molecular studies. Nuchal region skeletal

muscles (Semispinalis capitis, Splenius capitis, and Splenius

cervicis) were cryoprotected and embedded in methylcellulose

that does not interfere with iMS. Histology was performed on

fixed cryoprotected sections, and iMS on fresh frozen. Part of the

tissue necessary for histological staining was embedded in paraffin

(adipose tissue, adrenal glands, liver). Liver mass to body mass ratio

was calculated and shown as a percentage.
Glucose and insulin tolerance tests

The GTT was carried out four times, as follows: at the beginning

of the experiment (week 0), immediately before beginning

treatments with antidiabetics (metformin, liraglutide; week 5),
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after 6 weeks of treatments (week 12), and the week before

animals were sacrificed (week 18). Animals fasted for 16 h before

the GTT. Fasting glucose level was measured first, followed by

intraperitoneally injection of glucose solution (25%) at a 2-mg/kg

dose. Blood glucose levels were determined 15, 30, 45, 60, 90, 120,

and 240 min after the injection. Blood samples were obtained from

a tail vein using a needle to collect one drop of blood (5 μL) and

place it on a test strip. Blood glucose levels were determined using a

glucometer (OneTouch UltraMini, Milpitas, CA, USA), and glucose

concentration curves were plotted. The ITT was carried out during

the week the animals were sacrificed (week 18). Animals fasted for

4 h before the ITT. The fasting glucose level was measured first, and

then each rat was injected intraperitoneally with 0.5 U/kg of

Humulin R insulin (Eli Lilly, Indianapolis, IN, USA). Blood

glucose levels were determined 15, 30, 45, 60, 90, 120, and

180 min after the injection.

In addition to calculating the AUC, the measurements were also

used for plotting the model function of glucose concentration during

GTT and ITT. AUC determination and modeling were performed as

previously described (35). NonlineraModelFit module of Mathematica

(ver. 11.0, Wolfram Research, Inc., Champaign, IL, USA) was used to

solve functions describing glucose concentration fluctuation during

GTT and ITT. The following obtained parameters revealed alterations

in glucose dynamics: fasting blood glucose concentration (G(0) in

GTT/H(0) in ITT), maximal/minimal glucose concentration (Gmax/

Hmin) and corresponding moment (tmax/tmin), 2-h blood glucose (G

(2)), coefficient of oscillation amplitude decline (a), basic period of

function (T), blood glucose setpoint (G0/H0), initial speed of blood

glucose increase/decrease (G′(0))/(H′(0)), blood glucose concentration

at which maximal speed of glucose concentration decrease/increase is

attained (GI), maximal speed of glucose concentration decrease (G′I)
and corresponding moment (tI). To evaluate the goodness-of-fit of the

model, a determination coefficient (R2) was calculated.
Tissue, serum, and plasma measurements

Serum fasting insulin was measured using a Rat Ultrasensitive

Insulin ELISA kit (ALPCO, Salem, NH, USA). Plasma leptin,

adiponectin, corticosterone, and TNF-a, IL-1, and IL-6 from

subcutaneous and visceral adipose tissues were measured using

appropriate ELISA kits from R&D Systems (Minneapolis, MN,

USA). Phosphorylated IRS-1 from the liver, visceral adipose

tissue, and muscles were measured using a Phospho-IRS-1

(panTyr) ELISA kit (Cell Signaling Technology, Danvers, MA,

USA). The enzymes AST and ALT were measured using standard

clinical laboratory methods. HOMA-IR was calculated using insulin

and glucose data with equation HOMA-IR = {fasting glucose (mg/

dL) × fasting insulin (μU/mL)}/405.
Adipose tissue histomorphometry

Visceral adipocyte surface areas were measured based on

hematoxylin and eosin histological staining (HE) of 5-μm-thick

sections of paraffin-embedded tissue using following protocol
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(xylene for 10 min; 100% ethanol (EtOH), 100% EtOH, 96% EtOH,

70% EtOH for 5 min each; distilled water (dH2O) for 5 min; Mayer’s

hematoxylin for 10 min; dH2O for 1 min; tap water for 10 min;

dH2O for 1 min; eosin Y for 30 s; dH2O for 5 s; 70% EtOH, 96%

EtOH, 100% EtOH at 5 dips in each, and 100% EtOH for 3 min;

xylene for 5 min and covesliped). Digital micrographs, collected by

an Olympus D70 camera (Olympus, Hamburg, Germany) set up on

a Zeiss Axioskop 2 MOT microscope (Carl Zeiss Microscopy,

Thornwood, NY, USA), were analyzed in CellProfiler (v. 3.1.9)

using a semiautomated protocol consisting of several modules (74).

Each micrograph was split into three color channels. The green

channel was converted to a grayscale image for subsequent analysis.

In the next module, the adipocytes were identified as primary

objects based on their typical diameter and intensity range, as

determined manually for each micrograph and using a global

threshold strategy, which classifies the pixels above the threshold

as foreground (i.e., adipocytes) and below as background. Otsu’s

algorithm was used as a thresholding method because the

percentages of areas covered by the foreground varied. Objects

touching the borders of the images were discarded from further

analysis. When a single adipocyte was identified as two or more

objects due to the intensity gradient, the Split or Merge Objects

module was applied, using the distance-based merging method.

Finally, the surface areas of the identified adipocytes were measured

in pixels and converted to square micrometers using the scale bars

of the original micrographs. Furthermore, surface areas were

divided into four distinct adipocyte size classes, based on the

distribution of median values and upper and lower quartiles in

STD groups: class 1 (< 2,197.5 μm²), class 2 (2,197.5–4,395 μm²),

class 3 (4,395–6,592 μm²), and class 4 (> 6,592 μm²).
Adrenal gland histopathology

Paraffin-embedded adrenal glands were cut using a microtome

(Leica SM2000R; Nussloch, Germany) into 5-μm-thick sections.

The HE staining of tissue was followed by a collection of digital

micrographs at ×100 magnification.
Analysis of liver fat droplets, glycogen, and
ferric ion

Liver tissue was cut using a cryostat (Leica CM3050S; Nussloch,

Germany) into 20-μm-thick sections. Liver fat droplets were stained

using Sudan Black B to show overall fat distribution and Oil Red O

for quantification, as described by Vacca (75). Digital micrographs

were collected at 200× magnification. Fat droplet size determination

was performed using FIJI software (76). Images were split into red,

green, and blue channels and converted into 8-bit images. The red

color threshold was set at 0-100, and the surface area of the

remaining particles was analyzed. The size of fat droplets was

expressed in square micrometers.

Liver glycogen was stained using a metachromatic toluidine

stain, as described by Vacca (75). Digital micrographs were

collected at 400× magnification. The images were deconvoluted
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with a Feulgen light green vector in FIJI software, and Color 1 was

used to measure integrated density value (IDV). Glycogen values

are presented as positively correlated integrated color density (the

number obtained from quantification was subtracted from maximal

IDV, which corresponds to the total pixel number of an image

multiplied by 255).
Skeletal muscle analyses

Paraformaldehyde-fixed skeletal muscle tissue from nuchal

region tissue was cut using a cryostat into 35-μm-thick sections.

Skeletal muscle fat droplets were stained using Oil Red O, as

described by Vacca (75). Digital micrographs were collected at

200× magnification and analyzed using FIJI software. Images were

split into red, green, and blue channels. In order to characterize fat

droplets, the green channel threshold was set at 0–140, and the

remaining particles were segmented by binary/watershed. The

resulting particles were analyzed with a lower limit of 25 square

pixels. The fat droplet size is presented in square pixels. To

determine the number of muscle fibers in a section, edges were

detected in a green channel, whose threshold was set at 0–35. With

interior holes included, the remaining particles were analyzed with a

lower limit of 2,000 square pixels. To obtain an average count of fat

droplets per fiber, the total number of droplets per section was

divided by the number of muscle fibers in a given section.

To determine skeletal muscle fiber type composition, snap-

frozen skeletal muscles were cut using a cryostat into 14-μm-thick

sections. Slices were stained with succinate dehydrogenase, as

described by Vacca (75). Digital micrographs were collected at

200× magnification and analyzed using FIJI software. Images were

split into red, green, and blue channels. Only a transversely cut area

of the sample was selected for further analysis. The selected region

was duplicated, the background was subtracted, and segmentation

was performed using the Statistical Region Merging algorithm. Q

was set to 4: background and three muscle fiber types (I, IIa, IIb). To

quantify areas of the specific muscle types, the image threshold was

set at 0–120 for type I fibers, 121–180 for type IIa fibers, 181–240 for

type IIb fibers, and 0–240 for total area. The protocol was adjusted

to conform to the muscle fiber classification described by Kano et al.

(77, 78).

Analysis of snap-frozen skeletal muscle tissue was used to

determine lipid peroxidation (LPO), total glutathione (tGSH), and

the activities of the following antioxidant enzymes: glutathione

reductase (GR), glutathione S-transferase (GST), catalase (CAT),

and superoxide dismutase (SOD).

LPO was estimated by measuring the thiobarbituric acid

reactive substances (TBARS), according to the method described

by Ohkawa et al. (79) The TBARS were calculated according to a

standard curve prepared from 1,1,3,3-tetraethoxypropane and

expressed in nanomoles per milligram of fresh tissue weight

(nmol/mg FW).

tGSH content was assayed using a spectrophotometric kinetic

method based on a reduction of 5,5-dithiobis(2-nitrobenzoic acid)

(DTNB) to 5-thio-2-nitrobenzoic acid by glutathione (GSH),

recorded at 412 nm and expressed in nmol/mg FW (80).
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Protein extracts (1:10, w/v) were prepared for the antioxidant

enzyme activity assay by homogenizing tissue in 100 mM phosphate

buffer (pH 7.0) containing 1 mM EDTA and by centrifugation at

20,000×g for 15 min at 4°C. Protein concentration in extracts was

estimated using the Bradford assay (81).

GR activity was determined indirectly by measuring the

consumption of NADPH during GSSG reduction, demonstrated

by a decrease in absorbance at 340 nm. The assay mixture (1 mL)

consisted of 1 mM GSSG, 0.1 mM NADPH, and protein extract in

100 mM phosphate buffer (pH 7.5). The GR activity was calculated

using a molar extinction coefficient for NADPH (ϵ = 6.220 mM/cm)

and expressed in units per gram of (U/g) protein (82).

GST activity was determined by measuring the conjugation of

1-chloro-2,4-dinitro benzene (CDNB) with GSH, demonstrated by

an increase in absorbance at 340 nm (83). The GST activity was

calculated using a molar extinction coefficient of glutathione-1-

chloro-2,4-dinitrobenzene conjugate (ϵ = 9.6 mM/cm) and

expressed in U/g protein.

CAT activity was estimated spectrophotometrically using H2O2

as a substrate, as described by Aebi (84) and expressed in U/

g protein.

SOD activity was determined by measuring the inhibition of

cytochrome c reduction with superoxide radicals generated by the

xanthine/xanthine oxidase system. The reduction rate was recorded

spectrophotometrically at 550 nm (85). Results were expressed in

units per milligram of proteins, where one unit of SOD activity was

defined as the amount of enzyme that caused 50% inhibition of

cytochrome c reduction under the assay.
MALDI-TOF skeletal muscle analysis

MALDI-TOF IMS analysis was performed using the Shimadzu

IMScope TRIOMALDI-IT-TOFMS instrument (Shimadzu, Kyoto,

Japan). Fresh-frozen nuchal skeletal muscle tissue sections (25 mm
thick) were mounted on an indium tin oxide (ITO)-coated glass

slide, with a surface resistivity of 15–25 Ω/sq (Sigma-Aldrich, St.

Louis, MO, USA). After snap washing with 20 mM ammonium

acetate buffer, the sections were dried and immediately further

processed. Matrix a-cyano-4-hydroxycinnamic acid (CHCA)

(Sigma-Aldrich, St. Louis, MO, USA) was applied to samples

using an iMLayer sublimation device (Shimadzu, Kyoto, Japan)

according to the manufacturer’s instructions (10 min sublimation at

180°C). Sublimation was followed by 2 min of recrystallization at

70°C with 0.5% methanol in a vapor chamber.

Imaging in the positive ion mode was performed using m/z

ranges 300–700 and 700–1,000 Da with the following setup:

approximately 500 pixels with a pitch of 10 × 10 μm, a laser

diameter of 10 μm, a laser intensity of 15%, 50 laser shots/pixel, and

a 200-Hz laser frequency. Data analysis was performed with R

software (86) ver. 4.2.0 (R Foundation for Statistical Computing,

Vienna, Austria). Total-ion-current (TIC)-normalized m/z signals

were used for the image generation and data analysis. Only the

strong, TIC-normalized m/z signals averaged over all pixels were

used in the statistical analysis; strong m/z signals were the ones for

which the sum of intensities across all images (∑Im/z) was greater
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than 5% of the largest ∑Im/z. For the selection of significant m/z

signals, a FDR-corrected KW ANOVA followed by pairwise Dunn–

Bonferroni test was used. Graphical presentation of the IMS results

was performed by ImageReveal ver. 1.1.010128 (Shimadzu, Kyoto,

Japan). Human metabolome database (HMDB) (87) and

METASPACE database (88) (https://metaspace2020.eu) were used

for the tentative metabolite identification. ± 10 ppm m/z accuracy

tolerance and a statistical significance cutoff of 0.05 were used in

all instances.
Immunohistochemistry

Macrophages of M1 and M2 phenotypes were immunostained

on 5-μm-thick sections of visceral adipose tissue and 20-μm-thick

cryosections of the liver. IR-a, ObR, IGF-1Rb, Iba1, and GFAP were

immunohistochemically stained on 35-μm-thick coronal

brain cryosections.

Slide-mounted sections of visceral adipose tissue were stained

using the VENTANA Benchmark Ultra IHC/ISH System (Roche,

Basel, Switzerland) and anti-CD68 (clone KP-1; Roche) and anti-

CD163 (clone MRQ-26; Roche) antibodies.

Liver and brain tissues were stained by free-floating

immunohistochemistry developed with 3,3′-diaminobenzidine

(DAB) as previously described by our group at 4°C and without

detergents applied. The following antibodies were used: rabbit anti-

CD197 diluted 1:1,000 (Abcam, Cambridge, UK) and rabbit anti-

CD206 diluted 1:1,000 (Abcam) for liver tissue; rabbit anti-alpha

subunit of IR-a diluted 1:250 (IR-a; Santa Cruz Biotechnology,

Dallas, TX, USA; SC-710), rabbit anti-beta subunit of IGF-1Rb
diluted 1:250 (IGF-1Rb; Santa Cruz Biotechnology; SC-713), rabbit
anti-ObR diluted 1:50 (ObR; Santa Cruz Biotechnology; SC-8325),

and biotinylated goat anti-rabbit IgG diluted 1:1,000 (Jackson

ImmunoResearch Laboratories, Inc. West Grove, PA, USA) for

brain tissue.

GFAP and Iba1 expressions were analyzed by free-floating

fluorescent immunohistochemistry using the same protocol

described above. After the incubation with secondary antibodies,

the sections were incubated for 10 min at room temperature with

0.1% Sudan Black B prepared in 70% ethanol to suppress

autofluorescence. Afterward, the sections were shortly rinsed with

distilled water, slide-mounted, and coverslipped with Vectashield

with 4′,6-diamidino-2-phenylindole (DAPI) (Vector Laboratories,

Burlingame, CA, USA). Rabbit anti-GFAP diluted 1:4,000 (Dako,

Agilent Technologies, Santa Clara, CA, USA), rabbit anti-Iba1

diluted 1:1,000 (Wako Chemicals, Neuss, Germany), and goat

anti-rabbit IgG conjugated with Cy3 diluted 1:300 (Jackson

ImmunoResearch Laboratories, Inc., West Grove, PA, USA)

were used.

The digital micrographs of DAB-developed staining of visceral

adipose tissue and liver tissue were collected at ×200 magnification.

Brain tissue digital micrographs were collected at ×400

magnification from hypothalamic areas associated with energy

maintenance: ARC, LH, PVN, and VMH. Immunopositive

macrophages were counted per field of view. IR-a, IGF-1Rb, and
ObR immunopositive reactions within the areas of 0.02 mm2 were
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analyzed using FIJI software by the following steps: images were

converted to 8-bit, the threshold was set to omit background (0–127

till 142), and the corresponding color area of immunopositive

reaction or IDV was measured. ROIs on fluorescent micrographs

(areas of five glial cells per image) were analyzed using the Color

Pixel Counter plugin for FIJI with a minimum intensity value set to

30 after enhancing local contrast (block size: 127, histogram bins:

256, maximum slope: 3.00, mask: none) and adjusting the gamma

value to 1.80.
Statistical analysis

Statistical analysis was performed using Statistica 12 software

(TIBCO, Palo Alto, CA, USA). The statistical significance level was

set at p < 0.05. For significance analysis of between-group

comparisons to determine the influence of sex, intervention, or

their interaction, two-way ANOVA was applied followed by

Bonferroni or Games–Howell test depending on the equality of

variances assessed by Levene’s test. To assess the influence of sex,

intervention, and duration of intervention on the ratio of the whole-

group caloric intake to the whole-group body mass, repeated

measures of three-way ANOVA were applied, and the Bonferroni

post-hoc test was performed. The statistical analysis of MALDI-TOF

was performed as mentioned above.
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