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A Machine Learning-Driven Virtual Biopsy
System For Kidney Transplant Patients

Daniel Yoo1,25, Gillian Divard1,2,25, Marc Raynaud1, Aaron Cohen3, Tom D. Mone3,
John Thomas Rosenthal4, Andrew J. Bentall 5, Mark D. Stegall6,
Maarten Naesens7, Huanxi Zhang8, Changxi Wang8, Juliette Gueguen9,
Nassim Kamar10, Antoine Bouquegneau11, Ibrahim Batal 12, Shana M. Coley12,
John S. Gill13, Federico Oppenheimer14, Erika De Sousa-Amorim14,
Dirk R. J. Kuypers7, Antoine Durrbach15, Daniel Seron16, Marion Rabant17,
Jean-Paul Duong Van Huyen1,17, Patricia Campbell18, Soroush Shojai 18,
Michael Mengel 18, Oriol Bestard16, Nikolina Basic-Jukic19, Ivana Jurić19,
Peter Boor 20, Lynn D. Cornell21, Mariam P. Alexander 21, P. Toby Coates 22,
Christophe Legendre1,23, Peter P. Reese1,24, Carmen Lefaucheur1,2,
Olivier Aubert1,23 & Alexandre Loupy1,23

In kidney transplantation, day-zero biopsies are used to assess organ quality
and discriminate between donor-inherited lesions and those acquired post-
transplantation. However, many centers do not perform such biopsies since
they are invasive, costly and may delay the transplant procedure. We aim to
generate a non-invasive virtual biopsy system using routinely collected donor
parameters. Using 14,032 day-zero kidney biopsies from 17 international
centers, we develop a virtual biopsy system. 11 basic donor parameters are
used to predict four Banff kidney lesions: arteriosclerosis, arteriolar hyalinosis,
interstitial fibrosis and tubular atrophy, and the percentage of renal sclerotic
glomeruli. Six machine learning models are aggregated into an ensemble
model. The virtual biopsy system shows good performance in the internal and
external validation sets. We confirm the generalizability of the system in var-
ious scenarios. This system could assist physicians in assessing organ quality,
optimizing allograft allocation together with discriminating between donor
derived and acquired lesions post-transplantation.

In medicine, biopsy has become a standard test for establishing a
diagnosis for both malignant and benign tumors as well as character-
izing inflammatory diseases and other pathologic processes, thereby
guiding therapeutic management1.

In transplantmedicine, the biopsy of the organ has beenperformed
since the first pioneering work of Barry et al. and of Hamburger in Paris,
becoming the gold standard for diagnosing allograft rejection and other
various pathological processes that harm the allograft2,3. The histological
evaluation of donors, also called “day-zero biopsies,” has been imple-
mented in several transplant programs4–6 to judge the quality of a donor

organ and, on occasion, to rule out the possibility of underlying diseases
in donors7. In addition, day-zero biopsies provide a valuable baseline to
which the findings of subsequent biopsies of the kidney allograft can be
compared and may also advocate therapeutic strategies8,9.

Despite their potential usefulness, day-zero biopsies are still not
performed at many transplant centers and happen only in specific
situations10,11 since they remain invasive, time-consuming, and costly
procedures that require organization of surgical, medical, pathological,
and technical resources and might increase cold ischemia time asso-
ciated with worst outcomes12. In addition, as we previously reported,
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the organ quality assessment has become ever more important in the
current worldwide increase of transplantation from older donors,
donation after circulatory death, and donors with significant clinical
risk factors to optimize the use of these kidneys to improve transplant
outcomes13–15. These vulnerable organs may carry, at the time of
transplantation, arteriosclerosis, fibrosis, hyalinosis, and glomerulo-
sclerosis lesions16. If identified in a post-transplantation biopsy without
the finding of a day-zero biopsy, these histological lesions, because of
their non-specificity, might be wrongly attributed to calcineurin inhi-
bitor toxicity, infectious diseases, or allo-immune response with sig-
nificant impact for decision-making and patient management6–8.

To circumvent these limitations, we designed a study to develop
and validate a non-invasive virtual biopsy system that uses routinely
collected donor parameters to predict the kidney day-zero biopsy
findings to help physicians in guiding diagnostics, therapeutics, and
immediate patient management post-transplant. The virtual biopsy
system, an artificial intelligence model, provides virtual results that
would have been obtained if a biopsy would have been performed.
Sincemachine learning hasdemonstrated its clinical relevance in some
medical specialities and comparative discriminative performance to
logistic regression17–20, we based our analyses on machine learning
methods, using a large and qualified international cohort of donors
who underwent routine and protocolized collection of donor para-
meters, together with day-zero biopsy assessment using the standards
of the international Banff allograft histopathology classification21.

Results
Baseline characteristics of the derivation cohort
We included a total of 12,402 day-zero biopsies from the 15-
participating transplant centers for the derivation cohort. The mean
donor age was 46.7 ± 14.9 (standard deviation, SD) years; 5450 (44.0%)
were female, and9395 (75.8%)were deceaseddonors. Themean serum
creatinine was 1.2 ± 1.0mg/dL. Baseline characteristics of the deriva-
tion cohort by country are shown in Table 1. The population is
described in detail in Supplementary Method 1. Baseline character-
istics of the derivation cohort stratified by center are described in
Supplementary Table 1.

Kidney histology lesions in the derivation cohort
Table 1 depicts the day-zero kidney biopsy findings of the derivation
cohort. The median percentage of glomerulosclerosis was of 3.0%
(interquartile range, IQR 0.0–10.0). The arteriosclerosis (Banff score
cv) lesion score’s distribution was 60.2%, 26.4%, 11.3%, and 2.1% for
Banff scores None (Banff score 0), Mild (Banff score 1), Moderate
(Banff score 2), and Severe (Banff score 3), respectively. The arteriolar
hyalinosis (Banff score ah) lesion score’s distribution was 68.8%, 21.3%,
8.1%, and 1.8% for scores 0, 1, 2, and 3, respectively. Finally, the inter-
stitial fibrosis and tubular atrophy (Banff score IFTA) lesion score’s
distribution was 64.4%, 30.0%, 4.6%, and 1.0% for scores 0, 1, 2, and 3,
respectively. Most moderate or severe (score 2 or 3) lesions of cv, ah,
and IFTA were from deceased donors (Supplementary Table 2).

Kidney virtual biopsy system development
The population cohort was imputed separately by derivation and
external cohorts then pre-processed (Supplementary Tables 3, 4). We
tuned and generated the best performing models for predicting the
lesion scores, based on the donor parameters. The details of the
hyperparameters tuning are available in Supplementary Table 5. Then,
the ensemble model that groups these models together was gener-
ated. For each biopsy lesion score, we selected the ensemblemodels as
a virtual biopsy system (see methods).

Donor parameters’ relative importance on lesion prediction
We examined the importance of the 11 donor parameters used for the
virtual biopsy system development by averaging the importance

produced by themodels (Fig. 1). Overall, the threemost important and
predictive parameters for the biopsy lesions were age, serum creati-
nine, and the body mass index (BMI). The hypertension and cere-
brovascular cause of death were the following highly important
parameters overall.

Model prediction performance on derivation cohort
The ensemble models showed discrimination performance during
cross-validation with the multi-area under the curves (multi-AUC) of
0.833 (SD 0.013), 0.773 (0.020), 0.830 (0.027) for cv, ah, and IFTA
lesions, respectively. Additionally, the ensemble models achieved area
under the receiver operating characteristic curves (AUROC) of 0.880
(0.016), 0.823 (0.019), and 0.900 (0.023) for cv, ah, and IFTA lesions,
respectively (Fig. 2). Ensemble models’ cut-offs were calibrated to
maximize Youden’s J statistic. With the calibrated cut-offs of 0.582 for
cv, 0.596 for ah, and 0.637 for IFTA, balanced accuracies (mean of
sensitivity and specificity) were 0.786 (0.021) for cv, 0.736 (0.021) for
ah, and 0.813 (0.024) for IFTA. For the glomerulosclerosis lesion, the
mean absolute error (MAE)was 5.999 (0.032) and the rootmean square
error (RMSE) was 8.888 (0.059). The ensemble models and random
forest models showed comparative performance. Table 2 summarizes
the performances of all generated models. The detail cross-validation
results are available in Supplementary Table 6. Calibration is shown as
confusion matrix for each model in Supplementary Table 7.

External validation of the virtual biopsy system
We included a total of 1630 day-zero biopsies from the USA and China
for the external validation (Supplementary Method 1). Comparison
with the derivation cohort and the baseline donor characteristics are
available in Supplementary Tables 8, 9. The median percentage of
glomerulosclerosis was 2.1% (IQR 0.0-12.5). The cv lesion score’s dis-
tribution was 27.9%, 33.9%, 36.3%, and 1.9% for Banff scores None
(Banff score 0), Mild (Banff score 1), Moderate (Banff score 2), and
Severe (Banff score 3), respectively. The ah lesion scores 0 to 3 were
distributed into 53.8%, 38.4%, 6.4%, and 1.4% for scores, respectively.
The IFTA scores 0 to 3 were distributed into 40.4%, 30.7%, 28.7%, and
0.2%, respectively. Similar to the derivation cohort, most moderate or
severe (score 2 or 3) lesions of cv, ah, and IFTA were from deceased
donors (Supplementary Table 10).

In the Columbia University cohort, the ensemble models per-
formed with the multi-AUCs of 0.740 (95% confidence interval [CI]
0.711–0.768), 0.733 (0.694–0.778), and 0.723 (0.705–0.772), for cv, ah,
and IFTA lesions, respectively. Additionally, the ensemble models
performed with the AUROCs of 0.880 (0.862–0.896), 0.922
(0.882–0.955), and 0.905 (0.889–0.920) for cv, ah, and IFTA lesions,
respectively. With the same cut-offs obtained from internal validation,
the balanced accuracies (mean of sensitivity and specificity) were
0.787 (0.764–0.808), 0.808 (0.741–0.872), and 0.843 (0.824–0.862)
for cv, ah, and IFTA, respectively. For glomerulosclerosis, the ensemble
model showed the MAE of 5.200 (4.971–5.422) and the RMSE of 6.630
(6.339–6.908).

In the Sun Yat-sen University cohort, the ensemble models
showed the multi-AUCs of 0.740 (95% CI 0.663–0.807), 0.736
(0.654–0.821), and 0.798 (0.731–0.839) for cv, ah, and IFTA lesions,
respectively. Furthermore, the AUROCs from the ensemble models
were 0.902 (0.783–0.978), 0.895 (0.825–0.950), 0.935 (0.867–0.985)
for cv, ah, and IFTA lesions, respectively. The balanced accuracies
(same cut-offs obtained from internal validation), were 0.760
(0.578–0.950), 0.840 (0.762–0.899), 0.797 (0.638–0.959) for cv, ah,
and IFTA lesions, respectively. For glomerulosclerosis, the ensemble
model showed the MAE of 4.608 (4.229–4.989) and the RMSE of 5.731
(5.269–6.197) for glomerulosclerosis.

Figure 2 summarizes the performance of the ensemble models.
Calibration in the external validation cohorts is shown in Supplemen-
tary Table 11.
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Validation of the virtual biopsy system in various scenarios
We confirmed the robustness of the virtual biopsy system in different
subpopulations and clinical scenarios in the internal cross-validation,
including (i) region (Europe, North America or Australia), (ii) donor
ethnicity (African American, Caucasian, and Others [Hispanic, Asian,
and Arabic]), (iii) donor criteria (extended criteria donors or standard
criteria donors plus living donors), and (iv) biopsy type (pre-
implantation and postreperfusion). Overall, the system showed good
performance in subpopulations. These analyses are depicted in Sup-
plementary Table 12.

Pathologists’ biopsy findings reliability
We confirmed the inter-pathologist consistency in four expert
nephropathologists from Necker hospital and Mayo clinic in evaluat-
ing the biopsy findings, with Fleiss Kappas of 0.68 (95% CI 0.63–0.73),
0.59 (0.53–0.65) and 0.51 (0.44–0.59), for cv, ah, and IFTA lesions
respectively. The overall Fleiss Kappa for all lesions was 0.63
(0.60–0.66).

Performance of kidney donor profile index (KDPI) score
The derivation cohort included 4241 biopsies, and the external vali-
dation cohort comprised 1124 biopsies (920 fromColumbia University
medical center and 204 from Sun Yat-sen University). The mean KDPI
was 53.43 (SD 29.49) in the derivation cohort and 63.24 (SD 26.63) in
the external validation cohort.

Supplementary Table 13 showsmodel performance with KDPI as
a parameter. The KDPI-based model achieved multi-AUCs of 0.688,
0.644, and 0.716 for cv, ah, and IFTA lesions during internal valida-
tion, respectively. Predicting glomerulosclerosis performed with the
MAE of 6.647. During external validations, the KDPI-based model
showed predictive performance for cv, ah, and IFTA, achievingmulti-
AUCs of 0.625, 0.668, and 0.638 for the Columbia University cohort,
and 0.659, 0.552, and 0.710 for the Sun Yat-sen University cohort,
respectively.

Virtual biopsy system online application for physicians
Based on these results, we constructed a ready-to-use online applica-
tion to offer physicians an open access to the virtual day-zero biopsy
system (Supplementary Movie 1). The application allows physicians
to enter a single patient’s data, to get (i) the personalized probabilities
of belonging to each day-zero histological lesion score and (ii)
the prediction visualization with radar chart. The application is avail-
able online: https://transplant-prediction-system.shinyapps.io/Virtual_
Biopsy_System. Figure 3 and Supplementary Fig. 1 provide examples
of usage of the application in clinical practice with real donor
clinical cases depicted. The potential clinical utility and impact of this
application is also depicted in Supplementary Fig. 2.

Discussion
In this international, multicohort study of kidney transplant biopsies
from 17 worldwide centers including the largest Organ Procurement
Organization (OPO) in the USA and labeled by expert kidney pathol-
ogists, we derived and validated a virtual biopsy system that uses non-
invasive and routinely collected donor parameters to predict kidney
histological lesions. The virtual biopsy systemwasdevelopedwith four
ensemble models based on aggregation of six machine learning algo-
rithms to decrease the bias and maximize the generalizability and
predict four biopsy lesion results. Overall, the virtual biopsy system
showed good discrimination, calibration, robustness, and general-
izability in various countries, external validation cohorts, and clinical
scenarios.

Over the past decade, the use of kidneys from older donors with
comorbidities has expanded the pool of kidneys, raising the question
of whether pathological examination of donated kidneys could help
better characterize organ quality or drive inefficiencies in organ
allocation22. Additionally, this biopsy procedure needs to be per-
formed and interpreted by trained experts, which is difficult to
implement 24/723. Furthermore, in the USA, the United Network for
Organ Sharing policy for organ allocation, recommends the use of
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Fig. 1 | Clinical and biological parameters’ importance.We performed random
forest, gradient boosting machine, extreme gradient boosting tree, linear dis-
criminant analysis, model averaged neural network, and multinomial logistic
regression to measure the parameter importance for predicting the day-zero
biopsy histological lesion scores during the derivation process. The importance
was then averaged for the ensemble model. a Donor parameter importance for
arteriosclerosis (cv Banff score). b Donor parameter importance for arteriolar

hyalinosis (ah Banff score). c Donor parameter importance for interstitial fibrosis
and tubular atrophy (IFTA Banff score). d Donor parameter importance for the
percentage of sclerotic glomeruli (glomerulosclerosis score). Banff scores: cv
arteriosclerosis, ah arteriolar hyalinosis, IFTA interstitial fibrosis and tubular atro-
phy. BMI body mass index, DCD donation after circulatory death, HCV hepatitis C
virus. Source data are provided as a Source Data file.
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KDPI, day-zero biopsy results, and donor characteristics to assess
organ quality before transplantation. Despite the importance, the lost
time due to this procedure could be precious when the biopsy result is
used for allocation purposes as every additional hour of cold ischemia
time is highly associated with worse graft outcomes. Therefore, many
centers are discouraged from performing day-zero biopsy because it
remains an invasive and time-consuming procedure that could
increase cold ischemia time10,11.

Our literature search (SupplementaryMethod2) revealed a dearth
of studies that address the creation of a virtual biopsy for evaluating
biopsy lesion presence and severity by utilizing non-intrusive factors
such as donor parameters. Meanwhile, non-invasive diagnosis using
machine learning has been studied. Yin et al. demonstrated that the
potential of multiple machine learning classifiers in distinguishing
histological features in bladder tumor images24. Detecting kidney
biopsy results has been explored predominantly with histological

images using deep learning. In 2018, Marsh et al. developed a con-
volutional neural networks model to identify and classify glomerulo-
sclerosis in day-zero kidney biopsies, improving pre-transplant
evaluation25. Hara et al. showcased a U-Net based segmentationmodel
for classifying normal and abnormal tubules in kidney biopsies26.
However, a need persists to compensate for the absence of performed
day-zero biopsy for kidney allografts by virtually assessing the pre-
sence and severity of biopsy lesions using non-invasive donor
parameters.

In this context, we believe that the virtual biopsy systemhasmany
potential implications. First, it not onlypredicts the presenceof lesions
(binary classification) but alsopredicts the severity grades of the lesion
(multiclass classification), which fosters a more complete clinical
interpretation.

Second, the virtual biopsy system can help a physician to evaluate
and contextualize post-transplant lesions, which might be inherited

Fig. 2 | Performance metrics of ensemble models across internal and external
validation cohorts. Ensemble models were internally and externally validated on
the 3-times repeated 10-folds cross-validation and the external validation cohorts
comprising Columbia university from the USA and Sun Yat-sen university from
China. For multi-AUC, the full lesion scores were used. For other metrics, such as
AUROC and sensitivity, categorical Banff scores (arteriosclerosis [cv Banff score],
arteriolar hyalinosis [ah Banff score], and interstitial fibrosis and tubular atrophy
[IFTA Banff score]) were dichotomized. Cut-offs were calibrated based on internal
validation (cross-validation): 0.582, 0.596, 0.637 for cv, ah, IFTA lesions, respec-
tively. For internal validations, performance was assessed in 30 resamples during

cross-validation. For external validations, performance was assessed using 1,000
times bootstrapping. All box plots comprise themedian line, the box indicated the
interquartile range (IQR), whiskers denote the rest of the data distribution and
outliers are denoted by points greater than ±1.5 × IQR. * For sensitivity, specificity,
balanced accuracy, accuracy, and AUROC, the Banff lesion scores, cv, ah, and IFTA
were dichotomized (scores 0–1 as negative and 2-3 as positive). Banff scores: cv
arteriosclerosis, ah arteriolar hyalinosis, IFTA interstitial fibrosis and tubular atro-
phy. multi-AUC multi-area under the receiver operating characteristic curve,
AUROC area under the receiver operating characteristic curve, MAEmean absolute
error, RMSE rootmean square error. Source data are provided as a Source Data file.
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from the donor or acquired after transplantation; this could reinforce
precision medicine and patient monitoring of these nonspecific his-
tological lesion to guide therapeutics27–30.

Third, since the virtual biopsy system is trained on high-quality
data and biopsies labeled by expert kidney pathologists, its inferences
are highly reliable. Because the day-zero biopsy labeling depends on
the skills and experience of observers (e.g., general or kidney pathol-
ogist) and temporal settings, the virtual biopsy system may partly
address the current issues of Banff classification using histology such
as physicians’ variability and reproducibility in labeling biopsy find-
ings. Additionally, it may have a great interest in many centers, espe-
cially from developing countries, that currently cannot yet afford to
perform neither digital pathology with whole-slide imaging, nor day-
zero biopsies due to the lack of resources.

Fourth, the system could decrease cold ischemia time and
mobilization of team resources by circumventing the standard of care
day-zero biopsy procedure using basic donor characteristics and vir-
tual biopsy. Eliminating the process by offering the virtual biopsy
could shorten the allocation time and improve the graft outcomes31.
Overall, this can be achieved by utilizing the virtual biopsy system
before organ retrieval (procurement) to provide physicians with a
reliable surrogate of the true day-zero biopsy.

Fifth, the virtual biopsy systemmay be attractive for clinical trials
by helping to improve the randomization of the patients at the time of
transplantation, using not only the baseline characteristics but also the
chronic lesions of kidney donors to avoid selection bias. Moreover, the
efficacy of a new treatment is very often based on protocol biopsies
where chronic lesions such as fibrosis and arteriosclerosis can be
found. Because antibody-mediated rejection or immunosuppressive
toxicity can induce those lesions27–29, knowing their origin—whether
they were inherited from the donor or from the consequence of
treatment inefficacy—is crucial to avoid misinterpretation of the find-
ings and loss of potential useful treatments6,8.

Last, although the rapid improvements in computing power and
huge digitized medical history records have led many researchers to
attempt integrative approaches to scrutinizing unknown fields of
medicine17,32,33, it is still difficult for health professionals to approach
these tools in real life. Since the virtual biopsy system is not a mere
proof of concept, we generated an easy-to-use online application to
support physicians and reinforce applicability. This online clinical
application is available immediately. Beyond transplantation, the idea
of a virtual biopsy system, using routinely accessible donor parameters
to predict biopsy findings with the power of algorithms, can be easily
cross-fertilized with other fields of medicine that have a comparable
need to predict specific lesions for an enhanced interpretation of
patient prognosis.

Our study has numerous strengths, but we also acknowledge the
following limitations.

First, due to the multi-centre nature of the study, the problem of
interobserver variability in labeling biopsy findings, practices, and
procedures may have carried compatibility issues and impacted the
study results23. However, we made four pathologists reassess 10% of
the biopsies and showed that this variability was limited, confirming
that the biopsy findings may be considered reliable. Besides, our data
collection procedure followed high-quality structured protocols to
ensure compatibility across study centers. Second, due to the large
number of centers involved, some heterogeneity was induced in
biopsy techniques, tissue processing, and tissue stain but reflecting the
different practices worldwide and remains a limited part of the deri-
vation cohort <7% used only hematoxylin and eosin stain or only fro-
zen tissue. This heterogeneity makes the model more generalizable
and robust by improving its exportability. Third, wedge biopsy
increases the risk of capturing only subcapsular tissue which could
underestimate the extent of vascular intimal thickening or over-
estimate glomerulosclerosis; this could have introduced unintendedTa
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Fig. 3 | Ready-to-use online application for physicians. The online application
aims to help physicians freely use the virtual day-zero biopsy findings for post-
transplant patient management. a A virtual biopsy finding from 63-year-old female
donor from circulatory cause of death with moderate BMI but poor kidney function
(creatinine). b A virtual biopsy finding from 51-year-old male donor from

cerebrovascular cause of death with high BMI and hypertension but moderate kid-
ney function. Banff scores: cv arteriosclerosis, ah arteriolar hyalinosis, IFTA inter-
stitial fibrosis and tubular atrophy, ci interstitial fibrosis, CT tubular atrophy, BMI
bodymass index, DCDdonation after circulatory death, HCVhepatitis C virus Link to
the app: https://transplant-prediction-system.shinyapps.io/Virtual_Biopsy_System.
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overestimation in cv and glomerulosclerosis lesions34,35. However,
most biopsies includedwere from centers that used core needle biopsy
instead of wedge biopsy. Additionally, to overcome this issue, we
included only centers with a large number of kidney transplants with a
relatively low number of inadequate biopsies (7.2%) as compared to the
literature (30%)36. Fourth, additional predictors, such as gene expres-
sion or newbiomarkers, beyond the 11 donor parameters used to derive
the virtual biopsy, may improve its performances. However, the para-
meters used in this study are the most commonly accessible, and
including less standard ones might not only increase the number of
missing data but also reduce generalizability by increasing the risk of
parametersmissing. Last, other samplingmethods such as nested cross-
validation, may help provide more precise prediction performances.
However, with the large derivation cohort from heterogeneous and
various data sources, we are confident in performing 3-times repeated
10-folds cross-validation for internal validation37. Moreover, we per-
formed model assessments in subpopulations and various clinical sce-
narios. Finally, we showed the model performances are comparable in
internal and external validations.

In conclusion, we derived and validated amachine learning-driven
virtual kidney allograft biopsy system that uses easily accessible donor
parameters at the time of transplantation. The virtual biopsy system
demonstrates good performances and robustness across 17 geo-
graphically distinct centers and inmany clinical scenarios. This system
can provide physicians with a reliable estimation of the day-zero
biopsy findings, which may reduce costs of invasive and time-
consuming procedures and help guide further biopsy interpretations
and patient management.

Methods
Study design and population
The population consisted of living or deceased and transplanted or
discarded adult donors for kidney transplantation enrolled from Jan-
uary 1st, 2000, to December 31st, 2021, who underwent kidney biop-
sies performed prior to kidney transplantation as part of standard of
care. For the derivation cohort, the study involved 15 centers including
14 institutions from seven countries (France, Belgium, Croatia, Spain,
United States, Canada, and Australia) and the largest OPO in the USA
(OneLegacy). For the external validation cohorts, two institutions from
two countries were involved: Columbia universitymedical center from
the USA and Sun-Yat-sen university fromChina. A total of 15,121 kidney
biopsies were assessed overall. Exclusion criteria were inadequate
biopsies according to Banff international classification requirements
(n = 1089, 7.2%)21. A total of 14,032 kidney allograft biopsies were
included for the final analyses including 1372 (9.8%) from discarded
kidneys. Among them, 12,402 were in the derivation cohort and 1630
were in the external validation cohorts.

Inclusion and ethics statement
All data were anonymized, and the clinical and biological data were
collected from each center and entered into the Paris Transplant
Group database (French data protection authority (CNIL) registra-
tion number 363505). On January 1st, 2021, the data were accessed
from the database. On November 19th, 2021, the Chinese data were
accessed from the database. On June 8th, 2022, the OneLegacy OPO
data were accessed from the database. The protocol of this study
(NCT04759209) was approved by the Paris Transplant Group’s
Institutional ReviewBoard (IRB).Written informed consentwas given
by all living donors at the time of transplantation. The IRB of Paris
Transplant Institute approved the study and waived the informed
consent for deceased donors (registration no. 2018-1017-Virtual-
Biopsy). The original collection and exportation of the data had the
approval of the Ministry of Science and Technology for Sun-Yat-sen
university in China. All data from the Paris Transplant Group centers
(Necker, Saint Louis, and Toulouse Hospitals) were entered

prospectively at the time of transplantation; a structured protocol
was used to ensure harmonization across study centers. To ensure
data accuracy, an annual audit was performed. As part of standard
clinical procedures, other datasets from the European, North Amer-
ican, Australian, and Asian centers were compiled, entered in the
databases of the centers in accordance with local and national reg-
ulatory standards, and submitted to the Paris Transplant Group
anonymously.

Kidney biopsy histological assessment and protocols
Day-zero biopsies were performed after the organ was removed from
the donor in accordance with standard practices by a surgeon using a
16-gauge needle device or a straight blade. The tissue was immediately
fixed in an aqueous formaldehyde solution (formalin) or
alcohol–formalin–acetic acid solution and subsequently embedded in
paraffin or immediately frozen. The biopsy sections (4μm) were
stained with periodic acid-Schiff, Masson’s trichrome, hematoxylin,
and eosin. Using the international Banff classification kidney lesions
scoring system21, expert kidney pathologists graded the graft biopsy
lesions using the following criteria: glomeruli number, arteriosclerosis,
arteriolar hyalinosis, interstitial fibrosis and tubular atrophy, and the
percentage of sclerotic glomeruli. A detailed table summarizing the
participating centers’ biopsy practices and procedures is presented in
Supplementary Table 14.

Outcomes of interest
The outcomes of interest were the biopsy findings according to the
international Banff classification of allograft pathology, which uses a
validated semi-quantitative ordinal grading scheme for all kidney
compartments including: (i) arteriosclerosis defined by arterial intimal
thickening in the most severely affected artery (Banff “cv” score), (ii)
arteriolar hyalinosis defined by periodic acid-Schiff (PAS)-positive
arteriolar hyaline thickening (Banff “ah” score), and (iii) interstitial
fibrosis and tubular atrophy (Banff “IFTA” score) computed with the
extent of cortical fibrosis (Banff “ci” score) and cortical tubular atrophy
(Banff “ct” score)21. These semi-quantitative lesion grading scores are
not linear. Last, the continuous percentage of sclerotic glomeruli was
defined by the percentage of the total number of glomeruli affected by
global sclerosis (“glomerulosclerosis” score)5. The Banff grading
scheme in detail is available in Supplementary Method 3 and Supple-
mentary Table 15.

Candidate predictors of kidney biopsy histological lesions
Eleven candidates, universally collected donor predictors at donation,
of kidney day-zero histological lesions were examined. They com-
prised donor’s age, sex, type (living or deceased donor), donor’s cer-
ebrovascular cause of death, donor’s circulatory cause of death (DCD),
donor’s history of hypertension, diabetes, hepatitis C virus (HCV)
status, body mass index (BMI), lowest serum creatinine at donation,
and donor proteinuria status. The details of these predictors are
available in Supplementary Method 4.

Statistical analyses
We used TRIPOD (Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis) statement for the
reporting of the development and validation of the virtual biopsy
system38, which was adapted to machine learning (Supplementary
Method 5). Figure 4 summarizes the process of generating and vali-
dating machine learning models.

Descriptive analyses of baseline characteristics
For continuous variables, means and standard deviations or medians
and interquartile ranges were used. We compared means and pro-
portions between groups using Student’s t-test, analysis of variance
(ANOVA) (or Mann-Whitney test and Kruskal-Wallis if appropriate), or
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the chi-squared test (or Fisher’s exact test if appropriate). All tests were
two tailed.

Algorithm pre-process
Tominimize the data imbalance in the lesion scores andmaximize the
predictive performance, which had more mild/lower grades (over-
represented) than severe/higher grades (under-represented), we
applied an up-sampling method during the model training process by
resampling random kidneys from the severe/higher grades. Three
numeric continuous donor parameters (age, body mass index, and
creatinine) were standardized to have mean of zero and a standard
deviation of one. These pre-process steps were done with caret R
Package39.

Development of the virtual biopsy system
To develop the virtual biopsy system, we computed probabilities for
each day-zero histological lesion score from six machine learning
models: random forests (RF)40, model averaged neural networks
(avNNet)41, gradient boosting machine (GBM)42, extreme gradient
boosting tree (XGBoost)43, linear discriminant analysis (LDA)41, and
multinomial logistic regression (MNOM)44. To avoid overfitting and
sampling bias, hyperparameters were optimized by robust 3-times
repeated 10-folds cross-validation when tuning themodels45. Then, we
aggregated the classification models by averaging probabilities pro-
vided by each model: this generated an ensemble model, or meta-
classifier, which is aimed at decreasing bias and overfitting to take into
account the “no free lunch” theorem46–48. MNOM and LDA were not
used to predict glomerulosclerosis lesion (regression) because they
are exclusively designed to predict categorical variables (classifica-
tion). For the regression model, we built a linear model of regression
models to create an ensemble model, a meta-regression.

Virtual biopsy system prediction performances
Models’ performances were assessed as internal and external vali-
dation. For the internal validation, the performance was assessed in
30 resamples from the 3-times repeated 10-folds cross-validation on

the derivation cohort. For the external validation, the performance
was assessed on the external cohorts. To assess the discrimination
performance of the machine learning models used for glomerulo-
sclerosis, which is continuous, we used the MAE and RMSE as a
supplementary metric49. For ordinal day-zero histological lesion
scores, cv, ah, and IFTA, we used the multi-area under curve (multi-
AUC) using Hand and Till’s formula50. Further supplementary metrics
for cv, ah, and IFTA were also reported for both internal and external
validation: sensitivity, specificity, balanced accuracy (average of
sensitivity and specificity), accuracy, and area under the receiver
operating characteristic curve (AUROC). To present these supple-
mentary metrics, we dichotomized the categorical Banff scores
“None” (Banff score 0) and “Mild” (Banff score 1) as the negative class
and “Moderate” (Banff score 2) and “Severe” (Banff score 3) as the
positive class. Cut-offs for dichotomized Banff lesions were calcu-
lated using the method of Youden’s J statistic on internal validation51.
Supplementary Method 6 contains the rationale for the cut-offs used
to measure the performance. The 1000 bootstraps were used to
obtain 95% CIs while the external validation cohorts’ samples were
used for point estimate for each metric.

Model calibration was examined with confusion matrices. Fur-
thermore, to assess the donor parameters that drive the performance
of the models, we averaged the feature importance by RF, GBM,
XGBoost, LDA (for classificationmodels only), avNNet, andMNOM (for
classification models only).

Imputation of missing data
For biopsies with at least one missing data element for predictors of
interest, random forest imputation algorithmwasperformedusing the
missForest R package52. Themaximum iteration was set to 10 times for
imputation. The details of the imputation process and results are
presented in Supplementary Method 7.

Kidney donor profile index (KDPI)
We conducted a sensitivity analysis to investigate whether KDPI could
predict the day-zero biopsy lesions. We developed a model using only

Fig. 4 | Flow chart of virtual biopsy systemmachine learning pipeline. The study comprises threemain processes to develop and validate the virtual biopsy system for
kidney transplant patients. Each step also comprises three sub-processes. multi-AUC multi-area under the receiver operating characteristic curve.
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the KDPI score. Biopsies from living donors and those with missing
ethnicity, height, or weight data were excluded from the imputed
dataset. Organ Procurement and Transplantation Network (OPTN)
guidelines, based on the database as of April 07, 2023, were followed
for KDPI calculations. An ensemble of RF, XGBoost, LDA, avNNet, and
MNOM models was employed. LDA and MNOM were excluded for
predicting glomerulosclerosis lesion. GBM was excluded due to the
difficulty of deriving a univariate model.

Assessment of the consistency in the biopsy evaluation
Toevaluate the inter-pathologist’s consistency inevaluating thebiopsy
findings, we randomly selected 10% of the biopsies and made them
reassessed in the original two transplant centers (Necker Hospital and
Mayo Clinic) by four expert nephropathologists. Pathologists were
blinded to the previous biopsy findings. Fleiss Kappa was used to
measure the consistency and was weighted to take into account the
magnitude of errors in the re-assessment.

Software and package
Descriptive analyses and machine learning analyses were conducted
using R (version 3.5.1, R Foundation for Statistical Computing) and
RStudio (version 2022.7.2.576). Packages used for data and machine
learning analyses were: randomForest (version 4.6-14), gbm (version
2.1.5), xgboost (version 1.4.1.1), plyr (version 1.8.4), MASS (version 7.3-
51.4), nnet (version 7.3-12), caret (version 6.0-84), caretEnsemble
(version 2.0.1), tidyverse (version 1.3.0), ggsci (version 2.9), rsample
(version 0.1.1), tidymodels (version 0.0.2), patchwork (version 1.0.0),
dplyr (version 1.0.7), ggplot2 (version 3.3.1), yardstick (version 0.0.8),
readr (version 1.3.1), cvms (version 1.3.3), pROC (version 1.18.0), rlist
(version 0.4.6.2), autoxgboost (version 0.0.0.9000), shiny (version
1.6.0), shinythemes (version 1.1.2), kableExtra (version 1.3.4), and
compareGroups (version 4.0.0).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The figure data generated in this study have been deposited in the
public Synapse database (https://www.synapse.org/#!Synapse:
syn51702348/files/)53. The figure data can be obtained by the signing-
in process. The raw data are available from the corresponding
author. Source data are provided with this paper.

Code availability
Complete code to reproduce the figures is available in the synapse
public Synapse database (https://www.synapse.org/#!Synapse:
syn51702348/files/)53. A sign-in process is required to access the code.
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