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Developmental dysplasia of the hip (DDH) represents a 
morphological abnormality characterized by the incon-
gruity of femoral head and acetabulum. It ranges from 
mild dysplastic changes to complete dislocation. DDH has 
been associated with several hereditary and environmen-
tal risk factors, which could explain the incidence variabil-
ity among different countries. Numerous genes may be in-
volved in the disease etiology and progression. However, 
there are controversies in the literature regarding some of 
these genes. DDH-induced secondary osteoarthritis (OA) is 
characterized by changes in the macromolecule content 
of the cartilage and the expression of cartilage degrada-
tion markers. In addition, it exhibits a pattern of specific 
histological changes, with several reported differences be-
tween primary and DDH-induced secondary OA. The ar-
ticular cartilage of patients with DDH shows specific radio-
logical characteristics, including changes visible already 
in infancy, but also at pre-arthritic stages, early stages of 
OA, and in fully developed DDH-induced secondary OA. 
Although DDH has been extensively researched in differ-
ent disease stages, the etiology of the disorder still remains 
uncertain. This review focuses on the current knowledge 
on the histomorphological status of the cartilage and the 
genetic background of DDH.
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Developmental dysplasia of the hip (DDH) is a pathologi-
cal condition characterized by the incongruity of the fem-
oral head and acetabulum. It encompasses a wide range 
of conditions, from mild dysplastic changes to complete 
dislocation (1). There is still no universally agreed defini-
tion of DDH, but the most frequently used ones are the 
anatomic definition, which defines DDH as abnormal de-
velopment of the articulating bones of the hip, and ra-
diological definition, which defines DDH as a structural 
abnormality of the acetabulum or femoral head with con-
tinuous Shenton’s line. In the same manner, subluxation 
is defined as structural abnormalities and discontinuation 
of Shenton’s line, and luxation as an abnormality without 
contact between the femur and acetabulum (2). The hip 
joint space forms in the 7th-8th week of gestation by au-
tolytic degeneration, and the hip joint basic morpholo-
gy is developed by the end of week 10. Only after this 
point can dislocation occur (3). In DDH, the acetabulum 
is altered both in form and orientation, with physiological 
width but with increased length and decreased depth, 
thus insufficiently covering the femoral head. The femoral 
head is usually aspherical and has increased anteversion, 
together with a coxa valga deformity. The insufficient 
coverage over the femoral head, the hip center of rota-
tion lateralization, and a smaller contact area may lead 
to asymmetric dispersion of forces in the hip. This results 
in increased mechanical stress on the cartilage beyond 
the level of physiological tolerance and leads to the de-
velopment of cartilage lesions and secondary osteoar-
thritis (OA) (4,5). Patients with untreated DDH may often 
require total hip replacement, for which many efficient 
approaches have been described (6-10).

Several hereditary and environmental factors have been 
associated with DDH, and these may explain the incidence 
variability among different countries (11). The risk factors 
for DDH include being firstborn, female sex, breech birth, 
presence of oligohydramnios, positive family history, joint 
laxity, swaddling, etc (12). According to Barlow (13), 1 in 60 
newborns have hip instability, and more than 60% of them 
stabilize in the first week without any treatment, while 88% 
stabilize within the first two months. The remaining 12% 
have DDH that will persist without therapy. The risk for a 
child to develop DDH is 6% if one of his or her siblings has 
DDH, 12% if one of his or her parents has DDH, and 36% if 
both a parent and a sibling have DDH (14). Canadian in-
digenous people who in their childhood were swaddled 
on a cradleboard had 10 times higher incidence of DDH 
(15). The etiology of DDH still remains uncertain, which is 
why we reviewed the current knowledge on the histomor-

phological status of the cartilage and on the genetic back-
ground of DDH.

GENETICS AND TRANSCRIPTOMICS

There are two groups of patients with DDH: a) the group 
with acetabular dysplasia caused by a large number of 
gene variations, usually diagnosed later in life, and b) the 
group with generalized soft tissue and joint laxity, usual-
ly diagnosed in the neonatal period, when hip dislocation 
occurs (14). Each gene involved in DDH pathophysiology 
has a modest effect, thus making the identification of such 
genes a challenge (16). This may explain the contradictory 
results of genetic association-based studies of DDH (17). 
Studies identified several genes that may contribute to 
the DDH etiology (Table 1) (18-32). However, other authors 
showed no association between certain single nucleotide 
polymorphisms or genes and DDH (Table 2) (33-36). These 
contradictory results may be explained by the population-
specificity of the detected genes and single nucleotide 
polymorphisms. Therefore, these results should not be 
used as a basis for causal inference and indicate the need 
for thorough population-specific studies.

A recent study, performed on samples taken from the ex-
ternal portion of the femoral head-neck junction, assessed 
the association between DDH and metabolic disorders of 
the cartilage in DDH patients, patients with primary OA, 
and patients with femoral neck fracture (FNF). DDH pa-
tients had lower mRNA expression of collagen type II and 
aggrecan compared with other groups. Furthermore, they 
had higher mRNA expression of collagen type X and matrix 
metalloproteinase-13 (MMP-13), as cartilage degradation 
markers, than the FNF group, but the expression did not 
differ from the OA group. The authors concluded that the 
DDH group had more impaired cartilage metabolism than 
the OA group. MMP-13 is responsible for the degradation 
of collagen type II and other collagens (37) and MMP-13 
in human chondrocytes was reported to be decreased by 
growth differentiation factor-5 (GDF-5) (38), which might 
explain a part of the DDH cascade.

Aki et al (18) compared the whole-genome chondrocyte 
transcriptomics in Japanese patients with DDH-associat-
ed secondary OA and FNF with that of Caucasian patients 
suffering from primary hip OA, whose data were avail-
able in the literature. The cartilage specimens of patients 
with secondary OA were obtained from a location on 
the femoral head adjacent to the weight-bearing area, 
while the specimens of FNF patients were obtained 



REVIEW262 Croat Med J. 2020;61:260-70

TA
Bl

E 
1.

 S
tu

di
es

 o
f g

en
et

ic
 b

ac
kg

ro
un

d 
of

 d
ev

el
op

m
en

ta
l d

ys
pl

as
ia

 o
f t

he
 h

ip
 (D

D
H

) s
ho

w
in

g 
co

rr
el

at
io

n 
be

tw
ee

n 
ge

ne
s 

an
d 

th
e 

di
se

as
e 

in
 d

iff
er

en
t p

op
ul

at
io

ns
*

lo
cu

s
G

en
e

Pr
ot

ei
n

Fu
nc

tio
n

Po
pu

la
tio

n
Co

rr
el

at
io

n 
to

 D
D

H
Re

fe
re

nc
e

ch
ro

m
os

om
e

1q
24

de
rm

at
op

on
tin

(D
PT
)

de
rm

at
op

on
tin

ro
le

 in
 a

ng
io

ge
ne

sis
, f

et
al

 d
ev

el
op

m
en

t, 
w

ou
nd

 h
ea

lin
g,

 
tu

m
or

 m
et

as
ta

sis
; i

nc
re

as
ed

 e
xp

re
ss

io
n 

in
 M

SC
s i

n 
ch

on
dr

o-
ge

ni
c 

di
ffe

re
nt

ia
tio

n

Ja
pa

ne
se

ov
er

ex
pr

es
se

d 
in

 D
D

H
 O

A
(1

8)

ch
ro

m
os

om
e

1q
32

AT
Pa

se
 p

la
sm

a 
m

em
br

an
e 

Ca
2+

 tr
an

sp
or

tin
g 

4 
(A
TP
2B
4)

AT
Pa

se
 2

B4
re

gu
la

tio
n 

of
 b

on
e 

ho
m

eo
st

as
is

Sa
ud

i A
ra

bi
an

in
te

ra
ct

io
n 

be
tw

ee
n 

ra
re

 h
et

er
oz

yg
ou

s v
ar

ia
nt

s o
f H

SP
G2

 a
nd

 A
TP
2B
4 

ge
ne

s 
is 

co
nn

ec
te

d 
to

 D
D

H
 in

 a
 s

tu
di

ed
 fa

m
ily

 d
ue

 to
 a

 c
om

bi
ne

d 
eff

ec
t o

f b
ot

h 
va

ria
nt

s; 
on

e 
m

em
be

r w
as

 a
sy

m
pt

om
at

ic
, w

hi
ch

 s
ug

ge
st

s i
nc

om
pl

et
e 

pe
ne

tr
at

io
n 

of
 th

is 
va

ria
nt

s

(1
9)

ch
ro

m
os

om
e

1p
36

he
pa

ra
n 

su
lfa

te
 p

ro
te

og
ly

-
ca

n 
2 

(H
SP
G2

)
pe

rle
ca

n
pr

ot
eo

gl
yc

an
 th

at
 c

ro
ss

-li
nk

s e
xt

ra
ce

llu
la

r m
at

rix
 c

om
po

ne
nt

s 
an

d 
ce

ll-
su

rf
ac

e 
m

ol
ec

ul
es

 im
po

rt
an

t i
n 

m
us

cu
lo

sk
el

et
al

 
de

ve
lo

pm
en

t

ch
ro

m
os

om
e

4q
12

in
su

lin
-li

ke
 g

ro
w

th
 fa

ct
or

-
bi

nd
in

g 
pr

ot
ei

n 
7 

(IG
FB
P7
)

in
su

lin
-li

ke
 g

ro
w

th
 fa

ct
or

-
bi

nd
in

g 
pr

ot
ei

n 
7

de
ve

lo
pm

en
t o

f c
ar

til
ag

e,
 m

us
cl

es
 a

nd
 b

on
e 

du
rin

g 
pr

en
at

al
 

an
d 

in
fa

nt
ile

 g
ro

w
th

 p
er

io
ds

Ja
pa

ne
se

ov
er

ex
pr

es
se

d 
in

 D
D

H
 O

A
(1

8)

ch
ro

m
os

om
e

4q
34

-3
5

te
ne

ur
in

 tr
an

sm
em

br
an

e 
pr

ot
ei

n 
3 

(T
EN

M
3)

te
ne

ur
in

 tr
an

sm
em

br
an

e 
pr

ot
ei

n 
3

m
ul

tif
un

ct
io

n 
tr

an
sm

em
br

an
e 

pr
ot

ei
n 

in
vo

lv
ed

 in
 s

ig
na

l 
tr

an
sd

uc
tio

n 
in

 d
ev

el
op

in
g 

lim
b 

an
d 

ex
pr

es
se

d 
in

 p
re

ch
on

-
dr

og
en

ic
 m

es
en

ch
ym

al
 c

el
ls

Ca
uc

as
ia

n
m

ut
at

io
n 

di
sc

ov
er

ed
 in

 a
 m

ul
tig

en
er

at
io

n 
D

D
H

-a
ffe

ct
ed

 fa
m

ily
(2

0)

ch
ro

m
os

om
e

4q
35

C-
X3

-C
 m

ot
if 

ch
em

ok
in

e 
re

ce
pt

or
 1

 (C
X3
CR
1)

C-
X3

-C
 m

ot
if 

ch
em

ok
in

e 
re

ce
pt

or
 1

m
ed

ia
te

s c
el

lu
la

r a
dh

es
iv

e 
an

d 
m

ig
ra

to
ry

 fu
nc

tio
ns

 a
nd

 is
 

ex
pr

es
se

d 
in

 M
SC

s d
es

tin
ed

 to
 b

ec
om

e 
ch

on
dr

oc
yt

es
Ca

uc
as

ia
n

m
ut

at
io

n 
w

ith
 a

 d
el

et
er

io
us

 e
ffe

ct
 fo

un
d 

in
 4

 g
en

er
at

io
ns

, 7
2 

fa
m

ily
 m

em
-

be
rs

 a
ffe

ct
ed

 b
y 

D
D

H
(2

1)

ch
ro

m
os

om
e 

6q
25

es
tr

og
en

 re
ce

pt
or

 1
 (E
R1
)

Es
tr

og
en

 re
ce

pt
or

 1
re

gu
la

te
s t

ra
ns

cr
ip

tio
na

l r
es

po
ns

es
Ca

uc
as

ia
n

po
ss

ib
le

 c
or

re
la

tio
n 

of
 g

en
e 

po
ly

m
or

ph
ism

 to
 D

D
H

(2
2)

ch
ro

m
os

om
e

9q
22

as
po

rin
 (A

SP
N
)

as
po

rin
ex

tr
ac

el
lu

la
r m

at
rix

 p
ro

te
in

 th
at

 c
an

 b
in

d 
to

 T
G

F-
β1

 a
nd

 
se

qu
en

tia
lly

 in
hi

bi
t T

G
F-

β/
Sm

ad
 s

ig
na

lin
g

H
an

 C
hi

ne
se

as
pa

rt
ic

 a
ci

d 
re

pe
at

 p
ol

ym
or

ph
ism

 is
 a

n 
im

po
rt

an
t r

eg
ul

at
or

 in
 th

e 
et

io
lo

gy
 

of
 D

D
H

(2
3)

ch
ro

m
os

om
e

12
q

vi
ta

m
in

 D
 re

ce
pt

or
 (V

D
R)

vi
ta

m
in

 D
 re

ce
pt

or
re

gu
la

te
s t

ra
ns

cr
ip

tio
na

l r
es

po
ns

es
Ca

uc
as

ia
n

po
ss

ib
le

 c
or

re
la

tio
n 

of
 g

en
e 

po
ly

m
or

ph
ism

 to
 D

D
H

(2
2)

Ca
uc

as
ia

n
po

ss
ib

le
 li

nk
 b

et
w

ee
n 

so
m

e 
ha

pl
ot

yp
es

 a
nd

 th
e 

ris
k 

of
 s

ev
er

e 
O

A 
in

 
pa

tie
nt

s w
ith

 D
D

H
(2

4)

co
lla

ge
n 

ty
pe

 II
 a

lp
ha

 I 
ch

ai
n 

(C
O
L2
A1
)

co
lla

ge
n 

ty
pe

 II
 a

lp
ha

 I 
ch

ai
ni

nv
ol

ve
d 

in
 c

ol
la

ge
n 

ty
pe

 II
 s

yn
th

es
is

Ca
uc

as
ia

n
po

ss
ib

le
 li

nk
 b

et
w

ee
n 

so
m

e 
ha

pl
ot

yp
es

 a
nd

 th
e 

ris
k 

of
 s

ev
er

e 
O

A 
in

 
pa

tie
nt

s w
ith

 D
D

H
(2

4)

ch
ro

m
os

om
e

13
q2

2
/

/
/

Ja
pa

ne
se

au
to

so
m

al
 d

om
in

an
t i

nh
er

ita
nc

e 
w

ith
 a

 c
on

si
de

ra
bl

y 
co

ns
is

te
nt

 p
he

no
ty

pe
(2

5)

ch
ro

m
os

om
e

17
q2

1
ho

m
eb

ox
 (H

O
X)

 g
en

es
 

cl
us

te
r

/
de

ve
lo

pm
en

ta
l r

eg
ul

at
or

y 
sy

st
em

 p
ro

vi
di

ng
 c

el
ls 

w
ith

 s
pe

ci
fic

 
po

si
tio

na
l i

de
nt

iti
es

 a
lo

ng
 th

e 
de

ve
lo

pi
ng

 jo
in

t a
nd

 s
pi

ne
/

po
ss

ib
le

 li
nk

ag
e 

to
 D

D
H

(2
6)

Ch
in

es
e

as
so

ci
at

ed
 w

ith
 D

D
H

(2
7)

ho
m

eb
ox

 B
9 
(H
O
XB
9)

ho
m

eo
bo

x 
B9

in
vo

lv
ed

 in
 e

m
br

yo
ni

c 
lim

b 
de

ve
lo

pm
en

ts
Ch

in
es

e
m

ay
 b

e 
su

sc
ep

tib
ili

ty
 g

en
e

(2
7)

co
lla

ge
n 

ty
pe

 II
 a

lp
ha

 I 
ch

ai
n 

(C
O
L1
A1
)

co
lla

ge
n 

ty
pe

 II
 a

lp
ha

 I 
ch

ai
ni

nv
ol

ve
d 

in
 c

ol
la

ge
n 

ty
pe

 I 
sy

nt
he

sis
Ch

in
es

e
m

ay
 b

e 
su

sc
ep

tib
ili

ty
 g

en
e 

fo
r D

D
H

(2
7)

ch
ro

m
os

om
e

17
q2

1-
q2

pr
eg

na
nc

y-
as

so
ci

at
ed

 
pl

as
m

a 
pr

ot
ei

n-
A

2 
(P
AP

PA
2)

pr
eg

na
nc

y-
as

so
ci

at
ed

 
pl

as
m

a 
pr

ot
ei

n-
A

2
re

gu
la

te
s I

G
F 

re
le

as
e 

an
d 

eff
ec

t, 
im

po
rt

an
t f

or
 th

e 
de

ve
lo

p-
m

en
t o

f t
he

 fe
tu

s a
nd

 n
or

m
al

 p
os

tn
at

al
 g

ro
w

th
H

an
 C

hi
ne

se
sin

gl
e 

SN
P 

as
so

ci
at

ed
 w

ith
 s

po
ra

di
c 

D
D

H
(2

8)

ch
ro

m
os

om
e

17
q2

3
T-

bo
x 

tr
an

sc
rip

tio
n 

fa
ct

or
 

4 
(T
BX
4)

T-
bo

x 
tr

an
sc

rip
tio

n 
fa

ct
or

 4
tr

an
sc

rip
tio

n 
fa

ct
or

 in
vo

lv
ed

 in
 fo

rm
at

io
n 

of
 p

os
te

rio
r m

es
o-

de
rm

 a
nd

 a
xi

al
 d

ev
el

op
m

en
t

H
an

 C
hi

ne
se

on
e 

SN
P 

as
so

ci
at

ed
 w

ith
 D

D
H

 in
 b

ot
h 

ge
nd

er
s, 

on
e 

SN
P 

on
ly

 in
 m

al
e 

pa
tie

nt
s

(2
9)

ch
ro

m
os

om
e1

9p
13

Kr
üp

pe
l-l

ik
e 

Fa
ct

or
 2

(K
LF
2)

Kr
üp

pe
l-l

ik
e 

Fa
ct

or
 2

po
te

nt
ia

l r
eg

ul
at

or
 o

f e
xp

re
ss

io
n 

of
 M

M
Ps

Ja
pa

ne
se

ov
er

ex
pr

es
se

d 
in

 D
D

H
 O

A
(1

8)

ch
ro

m
os

om
e 

20
q1

1
gr

ow
th

 d
iff

er
en

tia
tio

n 
fa

ct
or

 5
(G
D
F5
)

gr
ow

th
 d

iff
er

en
tia

tio
n 

fa
ct

or
 5

a 
m

em
be

r o
f T

G
F-

 β
 s

up
er

fa
m

ily
, c

lo
se

ly
 re

la
te

d 
to

 B
M

P 
su

bf
am

ily
, k

ey
 ro

le
 in

 o
st

eo
ge

ne
sis

, c
ho

nd
ro

ge
ne

sis
 a

nd
 jo

in
t 

fo
rm

at
io

n

H
an

 C
hi

ne
se

sin
gl

e 
fu

nc
tio

na
l S

N
P 

as
so

ci
at

ed
 w

ith
 D

D
H

(3
0)

H
an

 C
hi

ne
se

tw
o 

SN
Ps

 a
ss

oc
ia

te
d 

w
ith

 D
D

H
 in

 fe
m

al
e 

po
pu

la
tio

n
(3

1)

Ca
uc

as
ia

n
tw

o 
SN

Ps
 a

ss
oc

ia
te

d 
w

ith
 D

D
H

 in
 C

au
ca

sia
n 

po
pu

la
tio

n
(1

7)

GD
F5

 p
ro

m
ot

or
Ira

ni
an

hy
pe

rm
et

hy
la

te
d 

in
 c

ar
til

ag
e 

sa
m

pl
es

, i
nd

ic
at

in
g 

a 
po

te
nt

ia
l r

ol
e 

in
 D

D
H

 
de

ve
lo

pm
en

t
(3

2)

*M
SC

s 
– 

m
es

en
ch

ym
al

 s
te

m
 c

el
ls

; O
A

 –
 o

st
eo

ar
th

rit
is

; A
TP

 –
 a

de
no

si
ne

 tr
ip

ho
sp

ha
te

; T
G

F 
– 

tr
an

sf
or

m
in

g 
gr

ow
th

 fa
ct

or
; I

G
F 

– 
in

su
lin

-li
ke

 g
ro

w
th

 fa
ct

or
; S

N
P 

– 
si

ng
le

 n
uc

le
ot

id
e 

po
ly

m
or

ph
is

m
; M

M
P 

– 
m

at
rix

 m
et

al
lo

pr
ot

ei
na

se
; B

M
P 

– 
bo

ne
 m

or
ph

o-
ge

ne
tic

 p
ro

te
in

s.



263Bohaček et al: Genetic background of developmental dysplasia of the hip and the histomorphological status of cartilage

www.cmj.hr

from the inner and intact, non-weight bearing area of the 
femoral head. The study found 888 up-regulated and 732 
down-regulated genes in DDH-induced secondary OA pa-
tients in comparison with FNF patients. The authors also 
reported that 90% of up-regulated genes in primary OA 
were different from those in DDH-induced secondary OA. 
Furthermore, DDH-induced secondary OA samples had 
high dermatopontin (DPT), insulin-like growth factor-bind-
ing protein 7 (IGFBP7), and Krüppel-like factor 2 (KLF2) ex-
pression (18). DPT is a protein of the extracellular matrix 
(ECM) that interacts with transforming growth factor β1 
(TGF-β1) and decorin, inhibiting the formation of decorin-
TGF-β1 complex, thus enhancing the effect of TGF-β1 (39). 
TGF-β1 plays a role in bone remodeling, parenchymal fi-
brosis, blood vessel formation, fetal growth, wound heal-
ing, and other pleiotropic roles in prenatal development 
and postnatal life (known role in cancer, inflammation, etc) 
(18,40,41). IGFBPs are a part of the insulin growth factor-1 
(IGF-1) metabolic pathway (42). IGF-1 induces mesenchy-
mal to osteoblast differentiation and is highly expressed 
in the bone matrix, having a crucial role in bone forma-
tion (43). It circulates in the blood and then binds to IG-
FBPs, which control the distribution and activity of the 
IGF-1 with its receptors. IGFBP7 suppresses osteoclasto-
genesis and supports osteogenic differentiation of bone 
marrow-derived mesenchymal stem cells (42). IGFBPs are 
processed by the bone morphogenetic protein-1 (BMP-1) 
metalloproteinase, which also releases BMP-2 and BMP-4 
from their latent complexes (44). Both of these molecules 
play an essential role in osteogenesis and chondrogenesis 
and could be important in DDH development (45). KLF2 

inhibits macrophage and endothelial activation in inflam-
mation, as well as regulates cartilage degeneration by in-
hibiting MMP-13 expression, thus regulating the cleavage 
of collagen type II (18,46). Surprisingly, Aki et al showed an 
up-regulation of KLF2 expression in secondary DDH-as-
sociated OA, while previous studies showed KLF2 down-
regulation in OA patients (18,46). The authors contribute 
this difference to a different OA stage in their patients (18). 
However, in our opinion, this finding needs further clarifi-
cation.

HISTOlOGY OF THE ARTICUlAR CARTIlAGE IN DDH

The DDH-affected acetabular and femoral cartilage show 
similar histological changes. These changes are most no-
ticeable in the iliac acetabular growth plate, where irreg-
ularly arranged chondrocytes are observed, shrunken at 
some places and enlarged at others, showing a tendency 
for degeneration. In the femoral head, dysmorphic chon-
drocytes are visible, which aggregate in some areas and 
are absent in others (47,48). In DDH-affected hips, the ac-
etabular articular cartilage is thicker than in healthy hips 
(Figure 1). This phenomenon can be observed already dur-
ing infancy and is used as a sign in the early diagnosis of 
DDH (49,50). Cartilage collagenous fibrils in DDH are rare 
and disorganized, similar to decreased and scattered fibrils 
in OA patients.

Histological analysis has shown that the chondrocyte 
count in the articular cartilage is significantly decreased in 
primary OA, while, interestingly, it is not affected in DDH 

TABlE 2. Studies of genetic background of developmental dysplasia of the hip (DDH) showing no correlation between investigated 
genes and the disease in different populations*

locus Gene Protein Function Population Correlation to DDH Reference

chromosome
12q

collagen type 
II alpha I chain 
(COL2A1)

collagen type II 
alpha I chain

involved in collagen 
type II synthesis

Caucasian although variants in these genes may 
contribute to the development of OA 
in DDH patients, they do not contribute 
to DDH

(33)

vitamin D 
receptor (VDR)

vitamin D 
receptor

regulates transcrip-
tional responses

Caucasian
Saudi Ara-
bian

no significant association between 4 
SNPs and DDH

(34)

chromosome 
17q21

collagen type 
I alpha I chain 
(COL1A1)

collagen type I 
alpha I chain

involved in collagen 
type I synthesis

Chinese polymorphisms of PCOL2 (in promoter) 
and Sp1 (in intron 1) binding sites in 
COL1A1 gene may not be the major 
susceptibility genes of DDH

(35)

Caucasian no significant association between 8 
SNPs and DDH

(36)

homeobox B9 
(HOXB9)

homeobox B9 involved in embryonic 
limb developments

Caucasian no significant association between 2 
SNPs and DDH

(36)

*OA – osteoarthritis; SNP – single nucleotide polymorphism.
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FIGURE 1. Normal articular cartilage and articular cartilage in developmental dysplasia of the hip (DDH) at different stages of os-
teoarthritis (OA). (A) Normal articular cartilage. The cartilage surface is smooth, chondrocytes and collagenous fibrils are organized 
into the superficial, middle, and deep zone. A tidemark clearly separates the deep from the calcified zone. Proteoglycans are pres-
ent in all three cartilage zones. The subchondral bone plate and the trabeculae are thin. (B) Non-OA DDH. The cartilage surface is 
smooth, cartilage thickness is increased, and chondrocyte count is high. Collagenous fibrils are rare compared with normal cartilage. 
(C) Early-stage primary OA. The cartilage surface is intact, but superficial fibrillation is visible at some regions of the surface. Chon-
drocytes and collagenous fibrils are organized, but are fewer in number. Non-viable cells are visible, especially in the superficial zone. 
The color fading in the upper third of the cartilage indicates the loss of proteoglycans. Bone trabeculae are thicker. (D) Early-stage 
DDH-induced secondary OA. The cartilage surface is smooth. Total cell count is unchanged, but the incidence of cell death is high, 
especially in the superficial zone. Collagenous fibrils are rare in comparison with normal cartilage. Some proteoglycan loss is visible 
at the upper third of the cartilage. (E) late-stage primary OA. The cartilage surface is eroded and fibrillated. The chondrocyte count 
and the number of viable cells are significantly decreased. Chondrocytes form aggregates, while collagenous fibrils are rare and 
disorganized. The tidemark area is significantly increased. The loss of color indicates a decrease in total proteoglycan content. The 
subchondral bone plate and trabeculae are thicker. (F) late-stage DDH-induced secondary OA. The cartilage surface is fibrillated and 
eroded. There are a few viable chondrocytes, which are shrunken at some places and enlarged at others. Chondrocytes are irregu-
larly organized, aggregating in some regions, while being absent in others. Collagenous fibrils are rare and without any structure. A 
significant loss of proteoglycans is present. SZ – superficial zone; IZ – intermediate (middle) zone; DZ – deep zone; asterisk – tide-
mark; CZ – calcified zone; SB – subchondral zone.
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(37). Some characteristics of DDH-induced secondary OA 
are not typical for primary OA. In primary OA, the weight-
bearing regions of the femur exhibit a higher degree of car-
tilage degradation, while the cartilage in the non-weight 
bearing regions is usually still healthy or shows only early 
signs of degenerative changes. However, in DDH, the non-
weight bearing region also shows various degrees of ero-
sion. Early-stage OA in DDH patients is characterized by 
fully thick cartilage with a smooth surface and insignificant 
loss of proteoglycans. The chondrocyte density is high, but 
so is the occurrence of cell death, especially in the super-
ficial zone – which is not typically observed in the early 
stages of primary OA. The remaining cells are metabolically 
highly active. As shown by immunostaining for proteases, 
a vast majority of viable chondrocytes produce a proteolyt-
ic enzyme (ie, MMP-3 or MMP-9), thus contributing to the 
matrix and cartilage degradation. More advanced OA stag-
es in DDH patients are accompanied by a more significant 
proteoglycan loss, especially in the surface regions. The 
cartilage surface is fibrillated with a small number of viable 
cells, which produce proteases (MMP-3, MMP-9, MMP-13, 
ADAMTS-4) (51).

OA changes are associated with the changes in the abun-
dance of major ECM macromolecules, primarily collagen 
type II, aggrecan, and cartilage degradation markers (52). 
The content of collagen type II decreases with the progres-
sion of cartilage degradation, meaning that primary OA-
affected cartilage has lower collagen type II levels than 
healthy cartilage. As expected, DDH-induced secondary 
OA cartilage also has decreased collagen type II content, 
which is even more pronounced in comparison with the 
primary OA group. Another indicator of cartilage degrada-
tion are decreased aggrecan levels in the cartilage matrix, 
which are lower in DDH-induced secondary OA than in 
healthy cartilage and primary OA-affected cartilage (37).

The most important cartilage degradation markers are 
collagen type X, MMPs, and keratan sulfate (KS) (37,53,54). 
Collagen type X is particularly expressed in hypertrophic 
chondrocytes and constitutes approximately 1% of the to-
tal amount of collagen in normal cartilage. Its expression is 
increased in degenerative joint diseases, such as OA (55). 
Collagen type X content is significantly higher in DDH-in-
duced secondary OA tissue than in healthy cartilage and is 
similar to that in primary OA cartilage (37).

MMPs are the enzymes responsible for most of the pro-
teolytic reactions associated with OA, with low expression 
in healthy cartilage. Based on their substrate specificity, 

they are divided into several groups, the most important 
being collagenases, disintegrin, and metalloproteinases 
with thrombospondin motifs (ADAMTSs) (52). Their levels 
increase with advanced degradation caused by either pri-
mary or DDH-induced secondary OA, and this increase ex-
plains the loss of collagen type II in DDH (37). So far, there 
has been little information on the difference between 
DDH-induced and primary OA cartilage tissue in MMP pro-
tein content. Some studies on DNA methylation and gene 
silencing have confirmed the differences in MMP-13 ex-
pression levels between the conditions, indicating a pos-
sible difference in total MMP-13 protein content (51). How-
ever, other studies found no such difference (37). Due to 
the scarcity of these studies, the results are inconclusive 
and further research is warranted.

ADAMTSs are a group of metabolically active metallopro-
teinases involved in various developmental and homeo-
static processes (ie, fertilization, cartilage metabolism, in-
travascular coagulation, von Willebrand factor activation) 
(56). Nineteen ADAMTSs enzymes have been described 
(57). Some of them play a crucial role in cartilage degra-
dation as they act as aggrecanases, characterized by en-
zymatic cleavage at the Glu373-Ala374 peptide bond of 
the aggrecan (56). The first two described aggrecanases 
are ADAMTS-4 and ADAMTS-5. ADAMTS-4 is induced as a 
response to numerous inflammatory cytokines, ie, TGF-β, 
TNF-α, and IL-1β, while ADAMTS-5 is found in human carti-
lage in homeostasis and is essential for balancing between 
aggrecan catabolism and anabolism (58,59). Their expres-
sion profiles have so far been studied in primary OA, with 
an increased expression indicating degenerative process-
es and correlating with aggrecan loss and disease progres-
sion (59). However, it is still unclear whether the altered 
ADAMTSs expression is directly responsible for the disease 
pathogenesis or it is only a consequence of homeostasis 
imbalance (45). As with the other cartilage degradation 
markers, there is limited information on ADAMTSs expres-
sion in DDH-induced secondary OA tissue, but the same 
ADAMTS-4 content has been found in both DDH-induced 
and primary OA tissue (51). Moreover, ADAMTS-4 can de-
grade other constitutive molecules in the ECM of the hu-
man cartilage, such as cartilage oligomeric matrix protein, 
hyalectan, decorin, brevican, fibromodulin, etc. Therefore, 
ADAMTS-4 shows a broader proteolytic role in the metab-
olism, which should be addressed in terms of involvement 
in DDH-induced secondary OA pathogenesis (60).

Some of the other noteworthy biomarkers are MMP-3 
and KS. Even though both MMP-3 and KS serve as 
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markers of cartilage degradation, and their expression in-
creases with arthritic changes, there is no notable differ-
ence in their levels in early and advanced stages of DDH-
induced secondary OA (53).

RADIOlOGICAl CHARACTERISTICS OF THE ARTICUlAR 
CARTIlAGE IN DDH

An ultrasound study showed an average acetabular car-
tilage thickness of 2.6 mm in healthy infants and of 4.6 
mm in infants with DDH (49). A magnetic resonance im-
aging (MRI) study also reported that dysplastic hips carti-
lage was thicker than that of normal hips (1.77 mm vs 1.34 
mm), which correlates with histological findings (61). Both 
groups showed an increased thickness in the superior lat-
eral area, but in dysplastic hips the increase was significant 
(61). Another study reported that dysplastic hips without 
cartilage wear had relatively thicker acetabular cartilage 
in the anterosuperior area than healthy hips, while both 
groups had similar femoral cartilage thickness (62). In dys-
plastic hips, the acetabular edge was thickened, being ei-
ther inverted or everted (63).

In 88 children with unilateral DDH, acetabular depth (AD) 
in the affected hip was significantly smaller compared 
with that in the contralateral unaffected hip. Also, with in-
creased age, AD increase on the affected side was signifi-
cantly smaller compared with that on the contralateral side 
(64). In children younger than three years with untreated 
DDH, the floor of the articular portion of the acetabulum 
advanced laterally, as evidenced by the thickening of the 
bony acetabulum portion immediately superior to triradi-
ate cartilage (63). Also, the bony acetabulum lost sphericity 
in the anterior, superior, and posterior parts. Anterior and 
posterior acetabular rims were rotated toward each other, 
producing a reduced acetabular diameter (63).

Lateral acetabular coverage correlates with femoroacetab-
ular cartilage thickness, which indicates that the cartilage 
may transform under certain circumstances. In dysplastic 
hips, the cartilage at the lateral part was 35% thicker com-
pared with the hips with normal acetabular coverage, sug-
gesting that the hip morphologically changes in response 
to abnormal joint loading (65). One study showed a more 
prominent T2 signal decrease in the outer superficial ac-
etabular cartilage of dysplastic hips during weight load-
ing in comparison with normal hips. This finding may 
be explained by changes in ECM and water distribution 

caused by abnormal weight bearing forces in DDH pa-
tients (66). In addition, we assume that these chang-

es correlate with the histological evidence of lower proteo-
glycans content in DDH articular cartilage in comparison 
with healthy articular cartilage, which indirectly alters the 
water content in the cartilage.

Jessel et al (67) compared 96 symptomatic dysplastic hips 
of 74 DDH patients with the hips of healthy volunteers. 
The mean delayed gadolinium-enhanced MRI of cartilage 
(dGEMRIC) index for DDH patients with hip symptoms was 
473 ± 104 msec, while the value for healthy volunteers was 
570 ± 90 msec, suggesting a decrease in proteoglycans in 
symptomatic pre-OA DDH patients (67). Another study cor-
related dGEMRIC index of the weight bearing cartilage in 
DDH patients with dysplasia severity and pain, suggesting 
that dGEMRIC index might indicate early OA before radio-
graphic changes are present (68). Arthroscopic and imag-
ing studies showed that cartilage erosions in pre-OA DDH 
patients are usually located in the anterior superior part of 
the acetabulum, most commonly in the transitional zone 
between the cartilage and labrum (69-71).

In the early stages of DDH-induced secondary OA, T2 sig-
nal intensity in the superior acetabular cartilage was higher 
in comparison with normal hips, probably as a result of in-
creased fluid amount and mobility, as well as of a loss of 
proteoglycans and disintegration of collagen network (72). 
DDH patients with total dGEMRIC index above 500 msec, 
ie, pre-OA DDH patients, had increased T1 values in the 
weight bearing area of the acetabulum, with lower values 
in peripheral regions compared with central regions. Pa-
tients with total dGEMRIC index below 500 msec, ie, DDH-
induced secondary OA patients, had generally decreased 
T1 values, with no significant difference between central 
and peripheral regions (73).

In secondary DDH-associated OA, the cartilage thinned 
with disease progression. Due to the cartilage thinning, in 
approximately 80% of patients, a transition of the femoral 
head to an anterior and superior position was observed 
(74). Xu et al (75) studied dGEMRIC indices in different 
stages of DDH-induced secondary OA. Mild radiographic 
DDH-induced secondary OA patients showed a decline in 
chondral function from anterior-superior toward the supe-
rior region, while moderate and severe radiographic DDH-
induced secondary OA patients exhibited global chondral 
dysfunction (75).

Delayed gadolinium-enhanced MRI of cartilage index val-
ues of the cartilage surrounding focal chondral erosions 
were lower in DDH hips than in the normal cartilage, sug-
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gesting that the chondral erosions occur in combination 
with a global loss of proteoglycans. This indicates that 
DDH patients suffer not localized, but generalized, chon-
dral damage (76). This observation may be related to the 
finding that DDH hips have more metabolically active 
chondrocytes that produce enzymes causing cartilage 
degradation. Furthermore, Hingsammer et al (77) state 
that patients with early radiographic OA may have local-
ized chondral lesions, while biochemical changes (mea-
sured by dGEMRIC index) of the cartilage are present in the 
joint, although mechanical forces affecting the cartilage 
are asymmetric and localized. According to the authors, 
these data suggest that OA development in DDH may be 
induced by mechanical forces; however, there is certainly a 
biologic factor involved (77).

CONClUSION

The current knowledge on DDH is comprehensive in terms 
of early screening and treatment. However, data on etiol-
ogy and morphology behind DDH and DDH-induced sec-
ondary OA are scarce. In this review, we highlighted some 
of the molecules with a potentially crucial role in DDH and 
DDH-induced secondary OA pathogenesis that merit fur-
ther investigation. In addition, as some genetically pre-de-
termined articular surfaces do not articulate in DDH, while 
surfaces without a genetic predisposition articulate, we 
believe the hip joint requires further regional morphologi-
cal characterization.
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