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Simple Summary: Prostate cancer presents a significant global public health burden. One of its
established risk factors is high fat diet. It has been proven that cholesterol levels in blood and prostate
tissue are out of balance, while cholesterol metabolism in prostate cancer is deregulated and plays
an important role in cancer progression. In this review we have shown the connection between
commonly deregulated pathways in prostate cancer and cholesterol metabolism.

Abstract: Prostate cancer (PC) is the most common malignancy in men. Common characteristic
involved in PC pathogenesis are disturbed lipid metabolism and abnormal cholesterol accumu-
lation. Cholesterol can be further utilized for membrane or hormone synthesis while cholesterol
biosynthesis intermediates are important for oncogene membrane anchoring, nucleotide synthesis
and mitochondrial electron transport. Since cholesterol and its biosynthesis intermediates influence
numerous cellular processes, in this review we have described cholesterol homeostasis in a nor-
mal cell. Additionally, we have illustrated how commonly deregulated signaling pathways in PC
(PI3K/AKT/MTOR, MAPK, AR and p53) are linked with cholesterol homeostasis regulation.

Keywords: prostate cancer; cholesterol; SREBP2; PTEN; mTOR: MAP; p53; AR

1. Introduction

Prostate cancer (PC) with high incidence (>1.1 million new cases each year) and
mortality (~300,000 deaths per year) presents a significant global public health burden [1,2].
Established risk factors of PC are age, race and family history of disease [3,4]. Although,
many risk factors are non-modifiable, association with preventable high fat diets, risk of PC
and progression of the disease have been observed in different studies [5–9]. High fat diet
increases total and low-density lipoprotein (LDL) cholesterol and decreases high-density
lipoprotein (HDL) cholesterol in plasma [10]. Experiments on cell culture, xenografts,
clinical samples and epidemiological studies confirm aberrant cholesterol metabolism in
PC and its importance in progression [11–13].

Cancers 2021, 13, 4696. https://doi.org/10.3390/cancers13184696 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-1270-2355
https://orcid.org/0000-0002-4843-8154
https://doi.org/10.3390/cancers13184696
https://doi.org/10.3390/cancers13184696
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13184696
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers13184696?type=check_update&version=1


Cancers 2021, 13, 4696 2 of 22

In this review, we summarized current knowledge related to cholesterol metabolism
and its function in normal cells. Furthermore, we illustrated how commonly deregulated
signaling pathways in PC reflect cholesterol metabolism.

2. Prostate Metabolism

The prostate is a gland in the male reproductive system which has the main purpose of
secreting prostatic fluid which supports spermatozoa during fertilization. Prostate exhibits
a unique metabolism adapted to meet the demands of its function; production of prostatic
fluid, mostly consisting of citrate, zinc, kallikrein enzymes and cholesterol [14–16]. ATP
production in normal prostate cells, especially epithelial cells of the prostate peripheral
zone, rely on glycolysis. Acetyl-CoA generated from glucose and oxaloacetate generated
from aspartate are used for citrate synthesis. Citrate is not intended for oxidation but
for secretion, which is achieved by importing and accumulating a high concentration of
zinc, a unique characteristic of prostate cells which inhibit m-aconitase, an enzyme for
citrate-isocitrate conversion, stopping the Krebs cycle with citrate as end-product [17,18].
Along with higher glycolytic activity and reduced oxidative phosphorylation, normal
prostate epithelium has higher cholesterol synthesis than other tissue types and further
increases with aging [10], while fatty acids (FAs) are mostly diet-derived [19]. Metabolic
reprogramming is a characteristic of cancer cells [20]. Cancer epithelial cells of the prostate
peripheral zone have lower zinc concentration (70–80%) than normal counterparts, with no
exception. Decline in zinc and citrate is an early occurrence in malignant transformation,
while the protein level of aconitase is maintained [17,20]. This results in decrease of citrate
in semen and a metabolic shift to citrate oxidation and oxidative phosphorylation in
primary PC, thus the early stage of PC does not exhibit the Warburg effect [21]. Citrate
exported in cytoplasm is now cleaved to acetyl-CoA by enzyme ATP citrate lyase (ACLY)
and further used for de novo FA synthesis. Synthesis and uptake of FA and cholesterol
accumulation in PC are increased regardless of blood lipid levels [14,19,22]. Primary PC
relies on oxidation of de novo synthesized or exogenous FA, so anabolism and catabolism of
FA co-occur in the same cell [14]. Since glucose uptake in primary PC is modest, its imaging
by 18F- fluorodeoxyglucose-positron emission tomography (FDG-PET) is limited. In that
case, labeled acetate or choline are more useful tracer molecules due to increased acetate
uptake and choline kinase up-regulation [14,23]. Advanced PC becomes glycolytic again,
so FDG-PET could be effective in the advanced stages of PC and biochemical recurrence,
prediction while at the same time has increased FA synthesis [15,21,23].

3. Cholesterol Function and Prostate Cell Supply

Cholesterol accounts for approximately one third of lipids in plasma membrane [24].
Amphiphilic and almost planar molecules of cholesterol are important components of
the cell membrane, regulating its integrity, fluidity, and permeability [25]. Cholesterol is
essential for cell cycle progression and differentiation, while cholesterol depleted cells are
arrested [26]. Cholesterol-enriched micro domains, lipid rafts, serve in signal transduction
as platforms for recruiting receptors and their downstream targets. Many important regu-
lators of cell growth, cell adhesion, migration and apoptosis are located in lipid rafts, such
as epidermal growth factor receptor (EGFR), mitogen-activated protein kinase (MAPK),
Src family kinases, protein kinase C, caveolins, flotillins and others [27,28]. Cholesterol
is important for cancer stem cell maintenance, it covalently bounded to smoothened re-
ceptors and activates the oncogenic Hedgehog signaling [29–31]. In addition to its role as
a fundamental structural component of the cell membrane, cholesterol is a precursor of
oxysterols, bile acids, steroid hormones, and vitamin D [32]. Cellular cholesterol could
either be imported from extracellular source as lipoprotein or endogenously synthesized
de novo through the mevalonate pathway [25]. Cholesterol in blood originates from either
the diet or liver metabolism [33]. The majority of exogenous cholesterol is transported in
LDL particles which binds to LDL receptor (LDLR) [31]. This complex receptor-ligand is
then internalized and delivered into early endosomes via clathrin-mediated endocytosis.
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As endosome acidifies, the LDL receptor dissociates from the complex and returns to the
plasma membrane while an LDL particle remains in the maturing endosome/lysosome
and is attacked by the lysosomal acid lipase type A that hydrolyzes cholesteryl ester to
release free cholesterol. One in 500–1000 LDL particles is associated with plasma proprotein
convertase subtilisin/kexin type 9), which directs LDLR to lysosome degradation, thus re-
ducing LDLR membrane density and leading to an increase in plasma LDL [34]. Excessive
intracellular cholesterol is transferred by the ATP-binding cassette transporter A1 (ABCA1)
and the ATP-binding cassette transporter G (ABCG1) to high-density lipoprotein (HDL)
particles. HDL particles return excessive intracellular cholesterol to the liver or intestine
where it is recycled, excreted or delivered to the steroidogenic organs and utilized for
hormone synthesis [35]. The multiligand membrane receptor protein scavenger receptor
class B member 1 (SR-B1) binds to the HDL particle and facilitates cholesterol efflux from
the cell, but also can facilitate cholesterol influx [36,37]. De novo cholesterol synthesis
occurs in the cytoplasm and includes about 30 subsequent reactions. Starting molecule is
acetyl-CoA which can be obtained from citrate by cytoplasmic ACLY, acetate by acetyl-CoA
synthetases and from pyruvate by pyruvate dehydrogenase [38,39]. Cholesterol synthesis
is a complex and energetically expensive process which begins with condensation of two
acetyl-CoA molecules into aceto-acetyl-CoA by cytosolic enzyme acetyl-CoA acetyltrans-
ferase 2. [40] Aceto-acetyl-CoA can also be derived from acetoacetate produced during
keto-genesis is by mitochondrial enzyme aceto-acetyl-CoA synthetase 1. Condensation of
the third acetate molecule with aceto-acetyl-CoA leads to 3-hydroxy-3methylglutaryl-CoA
(HMG-CoA) production. 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) catalyzes
the HMG-CoA reduction to mevalonate, and this is the first rate-limiting step of cholesterol
synthesis. HMGCR is regulated via a negative feedback mechanism. Higher cholesterol
and 25-hydroxycholesterol concentrations decrease HMGCR synthesis and accelerate its
degradation. Rate-limiting steps are catalyzed by HMGCR and squalene monooxygenase
(SQLE). An increase in the concentration of cholesterol or 25-hydroxycholesterol suppresses
the synthesis of HMGCR and leads to a marked decrease in HMGCR; furthermore, choles-
terol accelerates HMGCR degradation by facilitating HMGCR ubiquitination. These two
mechanisms result in a synergistic effect, ultimately leading to a decrease in both the
HMGCR concentration and cholesterol biosynthesis to decrease the concentration of choles-
terol. Through several consecutive reactions mevalonate is converted into squalene [41,42].
Synthesis of squalene is the second rate limiting step and the first cholesterol specific step.

Besides sterol intermediates, non-sterol intermediates are produced [35]. The meval-
onate pathway is also the source of ubiquinone, dolichols, hem, isopentenyl-diphosphate,
farnesyl, and geranyl groups. Although cholesterol plays a significant role in the cell,
high levels of it are toxic. To prevent free cholesterol toxicity, excessive free cholesterol
is esterified by acyl-Co acyltransferases and stored in cytoplasmic lipid droplets together
with neutral lipids and coat proteins or is exported from cells via ABCA1 and ABCG1 [43].
Cellular cholesterol homeostasis is maintained within physiological range by complex
interplay among synthesis, uptake, efflux, and esterification [44].

4. Regulation of Cholesterol Homeostasis

Depending on the quantity of absorbed cholesterol, cholesterol synthesis and excre-
tion will be adjusted accordingly. Absorbed cholesterol is derived from food, bile and
shedding of intestinal epithelium. The main site of cholesterol absorption and secretion
is the intestine, while the liver is the main site of cholesterol synthesis, but almost all
cells can produce cholesterol [45,46]. Cellular cholesterol balance is maintained by two
main transcription factors: sterol regulatory element–binding protein-2 (SREBP2) and liver
X receptors (LXRs) [25]. SREBPs are transcription factors that regulate gene expression
included in lipid synthesis and function with global biological signaling pathways in-
volved in various physiological and pathophysiological processes. The SREBP family of
transcription factors consists of two genes coding for three proteins. Isoforms SREBP1a
and SREBP1c are coded by SREBF1 gene and are more efficient in transcriptional regu-
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lation of genes involved in fatty acid synthesis, while SREBP2 regulates genes involved
in cholesterol synthesis [47]. SREBP2 is synthetized on the endoplasmic reticulum (ER)
membrane as inactive 125 kDa precursor (Figure 1) [48]. In order to avoid degradation,
it has to be in constant contact with SREBP cleavage-activating protein (SCAP) which
binds SREBP2 immediately after SCAP synthesis [49,50]. SCAP poses a sterol-sensing
domain and coatomer II (COPII) export signal. When cholesterol in a cell is high, it binds to
SCAP triggering conformational changes that separate loop 1 from loop 7. Conformational
changes now allow interaction between SCAP and anchor proteins insulin-induced gene
(INSIG) proteins. When associated with SCAP, INSIG1 is stabile, COPII export signal is
masked and consequently SCAP/SREBP2 complex remains trapped in the membrane [50].
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Figure 1. SREBP2 activation and regulation in physiologically normal cell. Hexagons indicate points of influence by
commonly aberrant pathways in PC. Receptor tyrosine kinase (RTK); androgen receptor (AR); glycogen synthase kinase 3
(GSK3), high-density lipoprotein (HDL); low-density lipoprotein (LDL); low-density lipoprotein receptor (LDLR); ATP-
binding cassette transporter A1 (ABCA1); ATP-binding cassette transporter G1 (ABCG1); scavenger receptor class B member
1 (SR-B1); insulin-induced gene (INSIG); SREBP cleavage-activating protein (SCAP); site-1 protease (S1P); site-2 protease
(S2P); sterol regulatory element–binding protein-2 (SREBP2); sterol response element (SRE). Created with BioRender.com
(accessed on 5 September 2021).

When cholesterol in ER drops under ∼5%, or under 3% and when INSIG1 is overex-
pressed, loop 1 and loop 7 of SCAP interact. This loops interaction is probably secured
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by polyubiquitination of SCAP mediated by ring finger protein 5. COPII export signal is
exposed, SCAP binds COPII and SCAP/SREBP2 complex is transported to Golgi [51]. Soon
after, SCAP/SREBP2 dissociation forms INSIG1 which is ubiquitylated by E3 ubiquitin
ligase GP78 and marked for proteasomal degradation [50,52]. GP78 when attached to
INSIG also ubiquitinates HMGCR [53]. Heat shock protein 90 stabilizes SREBP2/SCAP
complex all the way from ER to the Golgi and in the Golgi [35]. SREBP2 is proteolytically
activated in the Golgi by Site-1 protease (S1P) and Site-2 protease (S2P). Cleaved SREBP2
enters the nucleus and, with the help of chromatin remodeling protein SMARCA4, binds
to the sterol response element (SRE) sequence. SREs are located in promoters of genes
involved in cholesterol biosynthesis, import, and also in INSIG1 gene. INSIG2 gene is not
under SREBP2 control but under insulin [35,51,54–56].

The activity of cleaved SREBP2 in the nucleus is further tuned by phosphorylation,
ubiquitination, and sumoylation. Phosphorylation of nuclear SREBP2 by AMPK attenuates
while phosphorylation by extracellular signal-regulated kinase (ERK) enhances SREBP2
transcriptional activity [35]. Cleaved SREBP2 in the nucleus is directed to proteasome
by Fbw7-mediated ubiquitination, a process that depends on prior glycogen synthase
kinase 3 (GSK3) phosphorylation [35,57]. SREBP2 protein stability is enhanced by tran-
scriptional coactivator p300 acetylation [58]. SREBP2 sumoylation reduces transcriptional
activity since it induces recruitment of a corepressor complex containing HDAC3. Since
MAPKs phosphorylate SREBP2 near the sumoylation site, it competes with sumoylation
and results in reversed SUMO-induced SREBP2 transcriptional activity attenuation [59].
NAD+-dependent protein deacetylase SIRT6 is the only sirtuin that directly regulates the
mammalian lifespan. By deacetylating H3K56 in the promoter, SIRT6 acts as negative
regulator of SREBP2 transcription while, by decreasing protein levels of S1P, S2P and SCAP,
it suppresses SREBP2 cleavage [60].

Oxysterols are cholesterol molecules that have been oxidized either by a specific en-
zyme or by reactive oxygen species (ROS) [61]. Similarly, cholesterol, which blocks SREBP2
processing by binding to SCAP and consequently SCAP anchoring via INSIG, oxysterols
(such as 24-, 25-, and 27-hydroxycholesterol) block SREBP2 processing by binding to INSIG
which than binds to SCAP [41,62]. Therefore, INSIGs are described as oxysterol-binding
proteins. Oxysterols are ligands for the LXR nuclear receptor. Isoform LXRα is coded
by NR1H3 gene and expressed in some tissues, while LXRβ isoform is coded by NR1H2
gene and ubiquitously expressed. LXRs forms heterodimers with retinoid X receptors
and recognize LXR response elements in DNA. In the absence of a ligand, heterodimer
binds a co-repressor but binding of a ligand causes replacement of co-repressors with
co-activators and transcription. LXR promotes transcription of genes involved in reverse
cholesterol transport (ABCA1 and ABCG1), conversion to bile acids and MYLIP gene (also
known as IDOL) leading to degradation of LDLR, very low density lipoprotein receptor
and lipoprotein receptor-related proteins 8 (LRP8) [28,63,64]. LXR also directly suppresses
expression of two cholesterologenic enzymes, CYP51A1 and FDFT1 [65].

In low energetic conditions, AMP-activated protein kinase (AMPK)phosphorylates
and thus inactivates first rate-limiting enzyme, HMGCR. Second rate-limiting enzyme,
SQLE, is degraded under high cholesterol conditions, but under high squalene (its sub-
strate) conditions, degradation is prevented while enzyme activity is upregulated [66,67].
Normal prostate cells, because of their function, have higher cholesterol content. Prostate
cell development and metabolism is significantly regulated by androgen receptor (AR). AR
promotes cholesterol accumulation by upregulating SCAP, inhibiting LXR and downregu-
lating genes for testosterone deactivation (described in Section 7.2) [68–71].

In summary, cholesterol homeostasis in the prostate cell is balanced by SREBP2 and
LXR activity whose activity is modulated by ER cholesterol level, INSIG/SCAP ratio,
transcriptional modifications, post-translational modifications, and mevalonate pathway
metabolites and hormones. SREBP2 increases cholesterol synthesis, import and accu-
mulation in response to low cellular cholesterol level. Increased cholesterol further sup-
presses SREBP2 activation and stimulates LXR which then decreases cellular cholesterol
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level by downregulating synthesis while promoting cholesterol efflux and LDLR degrada-
tion [53,69].

5. Cholesterol Profile in Blood

Cholesterol dysregulation is a common characteristic of PC and extensive lipid profiles
of blood from PC, benign prostatic hyperplasia (BHP) and control patients have been made.
Results are conflicting. Many studies have shown that cholesterol and LDL are significantly
higher in PC and men with hypercholesterolemia are usually at higher risk of developing
high-grade PC [72–74]. Moreover, one study suggests that extensive blood lipid profile
could distinguish PC from BHP [73]. Some studies did not find a connection between LDL
and overall PC risk but did find association of high HDL and increased risk of high-grade
PC [75]. On the other hand, some studies did not find any connection between cholesterol,
LDL or HDL and PC [24]. Possible causes of this discrepancy are prostate-specific antigen
(PSA) PSA-driven biopsy, race difference and cholesterol uptake by PC or other tissue.

PSA positively correlates with total cholesterol and LDL among white men [76]. It
is possible that PC is more frequently detected in patients with high cholesterol because,
due to higher PSA, they are more frequently biopsied, but studies on cholesterol and PC
connection did not take this into account [75]. PC overexpress LDLR but, due its small
size, prostate probably cannot uptake enough cholesterol from blood to cause significant
change, and that is why blood concentrations before and after prostate surgery do not
change much [77]. Decrease in total cholesterol level as well as faster catabolism of LDL
was recorded in patients with metastatic prostate cancer. It is not known whether clearance
of LDL was done by prostate tissue or some other tissue, but this effect was already seen
in hematological neoplasms [78–80]. Inter-individual genetic variability could contribute
to confusing epidemiological results. 17 genomic locations associated with PC are also
associated with LDL and triglycerides while there were no pleotropic loci shared between
PC and HDL [81].

6. Cholesterol Profile in the Prostate Tissue

PC cells have higher concentrations of cholesterol in membrane, cytoplasm and are
even two-fold in the nucleus when compared to normal counterpart [12,82]. Expression of
SREBP2 mRNA and protein is low in normal prostate tissue, higher in localized PC and the
highest in metastatic castrate-resistant prostate cancer (CRPC). Its expression is associated
with poor clinical outcomes [83]. As expected, genes involved in cholesterol synthesis and
uptake are upregulated. HMGCR mRNA is higher in PC and is associated with earlier
biochemical recurrence (BCR). High HMGCR protein expression in radical prostatectomy
tissue is more frequent in tumor than in normal tissue and is associated with earlier
BCR [84]. PC cells also have more lipid rafts, expressing more LDLR and cholesterol channel
on the surface of mitochondria and nucleus peripheral-type benzodiazepine receptor than
BPH and normal prostate cells [12,82]. Protein expression of cholesterol export gene ABCA1
is lower in cancer prostate tissue and is negatively correlated with Gleason pattern [85]. SR-
B1 is significantly more expressed in higher Gleason grade prostate tumors, and positively
correlates with expression of enzymes involved in androgen synthesis which indicate role in
intra-tumoral androgen synthesis and development of castration-resistant phenotype [86].

A study conducted on normal and different pathological human prostate tissues,
cell lines and tumor xenografts reported accumulation of cholesteryl ester, dominantly
cholesteryl oleate, in high-grade and metastatic human PC but not in normal prostate,
prostatitis, BPH and prostatic intraepithelial neoplasia tissues. The study revealed that
accumulated cholesterol in lipid droplets was not obtained from de novo synthesis, but
rather by enhanced uptake of LDL [87]. On the other hand, numerous data point to de
novo cholesterol synthesis prompting PC proliferation and progression [74]. PC bone
metastases had significantly higher aggregates of cholesterol than metastases of other
origins and normal bone. PC metastatic epithelial cells exhibited strong, homogenous
LDLR staining, while staining of SR-B1 and HMGCR varied [88]. Uncontrolled LDLR and
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SREBP2 expression and cholesterol influx could be due to loss of sterol feedback regulation
in prostate cancer cells [89].

7. Dysregulated Signaling Pathways in Prostate Cancer

Despite serum concentrations, cholesterol homeostasis in prostate cell is very tightly
regulated and responds to cellular cholesterol and oxysterol levels and to extracellular
stimuli by themechanisms described above. However, cholesterol level increases during
progression to PC and accumulates in PC cells as a result of disturbed homeostasis in favor
of cholesterolo-genesis [22]. Cholesterol dysregulation is involved in PC pathogenesis,
besides being necessary for cell growth as membrane building block, and cholesterol con-
tributes to intra-tumoral androgen synthesis [90]. Activation of different growth-promoting
pathways is often connected with PC initiation while progression to CRPC primarily occurs
with AR reactivation [91–93]. In contrast to other cancers, PC has relatively low overall
mutation burden (0.3–2 non-synonymous somatic mutations per mega-base) [94]. Common
genomic aberrations in prostate cancer are: TMPRSS2-ETS gene fusion, AR mutation and
amplification, mutations and loss of tumor suppressors (TP53, PTEN, RB1, CHD1, BRCA2,
APC, ATM), and mutations and amplifications of oncogenes (PIK3CA, MYC) [95]. In PC
PIK3CA, BRAF, KRAS and AKT1, mutations are rare, but PIK3CA (catalytic subunit of
PI3K) mRNA overexpression and gene amplification are frequent and correlate with pAKT
and Gleason score, although a few cases indicate an additional mechanism involved in
regulation of PIK3CA mRNA expression and pAKT [96,97].

The existing connection of altered genes and signaling pathways with SREBP2 and
cholesterol will be described further (Figure 1).

7.1. P53 and SREBP2

Up to 20% of PC harbor mutated TP53,frequently correlating with tumor grade, relapse
and resistance to androgen [98]. Mutations usually occur within the DNA-binding domain
eliciting loss of tumor suppressor and transcriptional abilities. Furthermore, mutant p53 can
bind to wild type p53 and inactivate it [99]. p53 influences SREBP2 stability, activation, and
transcriptional activity [100]. Mut p53 interacts with SREBP2 and upregulates mevalonate
pathway gene expression. In turn, mevalonate-5-phosphate, intermediate in the mevalonate
pathway, stabilizes misfolded mut p53 and protects it from a chaperone-dependent E3
ubiquitin ligase CHIP-mediated degradation, probably by enhancing mut p53-DNAJA1
interaction [99]. Mut p53 upregulates isoprenyl-cysteine carboxyl methyltransferase (ICMT)
while mevalonate pathway generates farnesyl diphosphate (FPP) and geranyl-geranyl-
pyrophosphate (GGPP) enabling oncogene prenylation, its docking to the cell membrane,
and cancer progression [99,100].

p53, through other signaling pathways, indirectly influences SREBP2 destiny. Tran-
scriptional targets of p53 are PTEN and TSC2, so p53 reduces activity of PI3K/Akt/mTORC1
signaling and SREBP2 translocation from ER, repressing transcription of mevalonate path-
way genes and ICMT (methyl transferase acquired for protein prenylation) [101]. AMPK is
kinase phosphorylated and activated in low nutrient or low energy levels. When activated
it stimulates catabolism, suppresses SREBP2 cleavage, and by TSC2 protein inactivates the
mechanistic target of rapamycin (mTOR). Wild-type p53 activates AMPK, while mutant p53
inhibits AMPK signaling and thus supports SREBP2 activation. The positive feedback loop
between mut p53 and mevalonate pathway enhances mut p53 protein stability. SREBP2
degradation is regulated by GSK3, which is phosphorylated and inactivated by Akt, so p53
signaling will lead to Akt inhibition and increased SREBP2 degradation [101–103].

Overall, abnormal p53 promotes SREBP2 activity by upregulating the mevalonate
pathway and enhancing SREBP2 stability, by inhibiting AMPK signaling and stimulating
mTORC1 signaling (which drives SREBP2 activation) and by inhibiting Akt signaling
(which reduces GSK3 activity and mature SREBP2 degradation. All mechanisms result in
the accumulation of mature SREBP2, upregulation of SREBP2 targeted genes and upregula-
tion of the mevalonate pathway [104].
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7.2. AR (Androgen Receptor)

Androgens are essential for prostate gland development, but also play an impor-
tant role in PC development and progression [105]. Androgen hormones, in order of
potency, are: dihydrotestosterone (DHT), testosterone, androstenedione and dehydro-
epianandrosterone. Serum testosterone originates from testis (95%) and adrenal gland (5%)
and mostly is bound to sex hormone-binding globulin (SHBG) and albumin, while 1–2%
is free. According to the free hormone hypothesis, only free form testosterone can enter
prostate cells via free diffusion whereas bound androgens are inactive. Circulating DHT,
whose concentration is 10 times less than testosterone, mainly originates from testosterone
to DHT conversion in non-gonadal tissues or directly from testes and adrenals [106]. It
has been shown that androgens bound to SHBG can be internalized via multiligand en-
docytic receptor megalin (encoded by LRP2, low density lipoprotein-related protein 2)
whose protein expression is increased in PC when comparing to benign prostate cells, and
certain polymorphisms appear to influence PC outcomes [107]. Around 95% of entered
testosterone is converted to DHT by the enzyme 5α-reductase [91,106,108]. Testosterone
and DHT bind toAR, a member of the nuclear hormone receptor superfamily, and activated
AR translocates to the nucleus where it binds to the androgen responsive element (ARE)
mediated with remodeling proteins and regulates expression of specific genes [71]. AR
gene is regulated in response to androgen stimulation. Under high androgen conditions,
AR recruits lysine specific demethylase LSD1 to AR binding site 2 leading to repression of
its own expression and expression of androgen synthesis genes, DNA synthesis and cell
cycle progression genes, while expression of lipid and protein anabolic genes is upregu-
lated, therefore synthesis of prostatic fluid is maintained. Under low androgen condition,
prostate cancer cells increase AR expression [93].

Mutations and amplifications of AR or its enhancer are rare in primary PC but frequent
in CRPC [109]. Progression to CRPC is primarily driven by AR reactivation under low
androgen conditions due to AR alternations, intra-tumoral androgen synthesis, increased
coactivator expression, and activation of kinases which then activate AR or even ligand
promiscuity [91–93]. CRPC can provide intra-tumoral androgen by testosterone derivatives
conversion or de novo androgen synthesized from cholesterol [92]. AR is located in
SCAP gene. By increasing SCAP expression and subsequent SCAP prevalence over its
retention proteins, androgens direct SREBP2 to activation [68]. AR competes with LXR
as coactivator [69]. Activated LXR induces expression of SULT2A1, sulfotransferase, that
deactivates testosterone by sulfurization, which further cannot activate AR [70,71].

In summary, cholesterol can influence PC progression, serving as precursor of andro-
gen and stimulating AR signaling leads to upregulated SCAP and SREBP2 activation. AR
can also bypass this by stimulating mTOR pathway [87]. Beside this canonical signaling
of AR, ligand-bound AR in cytoplasm can activate PI3K/AKT and Ras-Raf-MAPK/ERK
cascade via rapid, non-genomic AR signaling.

7.3. PI3K/AKT/MTOR

mTOR is a serine/threonine protein kinase in mTOR Complex 1 (mTORC1) and
2 (mTORC2). mTOR, MLST8 and DEPTOR are core components, RPTOR and AKT1S1 are
characteristic components of mTORC1, while RICTOR, MAPKAP1 and PRR5 are character-
istic components of mTORC2 [110]. mTORC1 is a nutrient/energy/stress sensor which
regulates cell growth and metabolism. It is a downstream target of PI3K/Akt. Activated
by hormones and growth factors under nutrient-rich conditions, it promotes anabolic
processes (lipid, nucleotide, and protein synthesis), inhibits glucose uptake, activates Foxk1
transcription factor, increases HIF1α and suppresses autophagy [111,112]. mTORC1’s
mechanism of action is phosphorylation of S6K1, S6K2, 4E-BP1 and 4E-BP2 (stimulation of
cap-dependent translation) as well as phosphorylation of other downstream targets [113].
mTORC2 is primarily regulated by PI3K signaling hormones and growth factors, and
phosphorylates Akt, SGK and some PKC isoforms. mTORC2 effects actin skeleton, cell
survival and growth [113,114].
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In contrast to benign and peritumoral prostate tissue, in PC mTOR and S6K are more
expressed, while mTOR signaling is hyperactivated. Besides phosphorylation in cytoplasm,
mTOR binds to DNA in the nucleus and directly interacts with the chromatin [115]. mTOR
supports SREBP2 activation through two mechanisms: inhibiting autophagy and preventing
the entry of Lipin-1 in the nucleus. Inactive mTORC1 allows autophagosome and endo-
some delivery to lysosomes that become loaded with membrane cholesterol. Consequently,
cholesterol in ER also increases and suppresses SREBP2. Active mTORC1 inhibits autophagy
while stimulating endosome recycling, thus the content of cholesterol in ER is reduced and
consequently SREBP2 is activated [116]. Activated mTOR phosphorylates Lipin-1 which
then translocates to cytoplasm and functions as phosphatide phosphatase. mTOR inhibition
results in Lipin-1 translocation to the nucleus which, by promoting SREBP binding to the
nuclear matrix, impairs SREBP binding to target genes [112,117]. PI3K/Akt/mTOR signaling
is antagonized by the tumor suppressor phosphatases and tensin homolog (PTEN) [118].
PTEN deletions and/or mutations are present in up to 30% of primary and 63% of metastatic
PC [119,120]. PTEN loss upregulates PI3K/AKT/mTOR pathway which in turn upregu-
lates SREBP and LDLR in PC cells, which leads to androgen independent accumulation of
cholesteryl ester in high-grade and metastatic human PC [87]. PTEN, via AKT and GSK3β
phosphorylation, labels SREBP2 and SMARCA4 for degradation. PTEN loss stabilizes SREBP2
and SMARCA4. SMARCA4 is part of the chromatin remodeling complex effecting a wide
range of genes. Increased SMARCA4 in PTEN-deficient PC cells leads to chromatin remodel-
ing and a pro-tumorigenic transcriptome, including increased c-Myc and phospho-ERK [121].
Furthermore, AR pathway can be detoured by the mTOR pathway [87]. Ligand-bound
AR activates cytoplasmic mTOR function and increases mTOR translocation to the nucleus.
Nuclear mTOR protein levels positively correlate with PC progression. It has been shown that
35% of androgen regulated genes are mTOR-mediated including mTOR-chromatin binding
and cholesterol biosynthesis genes ACLY, ADH1A, ADRM1 and AGTRAP. AR transcriptional
change in PC metabolism is accomplished via mTOR chromatin-binding, but in CRPC mTOR
metabolic reprogramming is also present in the absence of androgen [115].

In summary, mTOR decreases cholesterol level in ER, which induces SREBP2 translo-
cation, and allows SREBP2-DNA association. PTEN loss leads to constitutive mTOR
activation, chromatin remodeling and transcriptions of oncogenes. A study on mouse
prostates revealed that loss of PTEN alone leads to indolent tumors, but is not sufficient
for PC progression. High-fat diet (HFD) stimulated lipid accumulation or additional gene
alternation must be present [122].

7.4. MAPK

MAPK signaling pathway is frequently deregulated in advanced PC and its negative
regulator PML is commonly co-deleted with PTEN. In PTEN-null mouse prostates, PML
loss reactivates MAPK and promotes indolent PC into metastatic PC while SREBP2 reg-
ulated genes in PTEN and PML double-null mouse PC are upregulated on mRNA and
protein level [122]. SREBP2 is a direct target of the ERK, a subfamily of MAPK. Since
MAPKs phosphorylates SREBP2 near sumoylation site, it competes with sumoylation
which result in reversed SUMO-induced attenuation of SREBP2 transcriptional activity [59].
To conclude, MAPK pathway via ERK increases SREBP2 activity.

8. Acidity

PC progression is followed by complex tumor microenvironment transformation that
plays a critical role in PC pathogenesis and promotion. Low oxygen condition, excessive
glycolysis, carbonic anhydrase overexpression and reduced blood supply contribute to
extracellular acidosis [123] which, in PC culture further induces increased extracellular
vesicles (size: 110–180 nm) production which express higher PSA level. Amount of EV in
plasma of PC patients is two to three-fold higher than in BHP or control patients and is
homogenous and smaller in size (125–180 nm) [124]. Acid extracellular pH attenuated the
cytotoxicity of daunorubicin on PC cells [125]. A study on the pancreatic cell line revealed
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that extracellular acidic pH (pH 6.8) lowered intracellular pH and triggered SREBP2
activation and upregulated cholesterol biosynthetic genes and acetyl-CoA synthetases-
enzyme for acetate to acetyl-CoA conversion, which plays an important role in tumor cell
growth under acidic pH [126].

9. SREBP2 Targets

Activated SREBP2 is a transcription factor that binds to SREs in promoters of target
genes which activates gene expression of mevalonate pathway enzymes and enhances LDL
uptake [48]. Increased cholesterol levels allow membrane biogenesis, de novo androgen
synthesis and activation of AR signaling independently of androgens in the blood [127].

Mevalonate metabolism provides cholesterol, mevalonate-5-phosphate, ubiquinone,
dolichols, heme, isopentenyl-diphosphate, FPP and GGPP, which supports PC growth and
metastases (Figure 2).
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Mevalonate-5-phosphate stabilizes mut p53 which further inactivates wild-type p53
and, by binding to SREBP2, upregulates mevalonate pathway gene expression. Ubiquinone
(also known as coenzyme Q10) supports mitochondrial electron transport and de novo
pyrimidine biosynthesis. Oxidoreductase FSP1, a strong suppressor of ferroptosis, reduces
ubiquinone to generate lipophilic radical-trapping antioxidant and thus blocks ferroptosis,
iron-dependent nonapoptotic cell death caused by lipids peroxidation [128,129]. Dolichols
participate in protein glycosylation. Glucose- derived N-glycosylation of SCAP protects it
from proteolysis and this modification is necessary for SCAP/SREBP exit from the ER [130].
Heme is in the prostatic group of hemoproteins. Free, unbound heme (newly synthesized or
dissociated form hemoproteins) stimulate ROS production [131]. Isopentenyl-diphosphate
is generated only by the mevalonate pathway. Increased intracellular levels stimulate
T-cells to kill them [132]. Farnesyl and geranyl groups are used for G protein prenylation,
which enables them to anchor to the membrane and signal transduction. Ras and Rho are
known oncogenes that are prenylated [133]. Increased cholesterol and fatty acids lead to
increase lipid rafts formation and subsequently activation of PI3K/AKT/mTOR pathway in
lipid rafts [134]. Targeting SREBP2 activity alters composition of cell membrane and inhibits
signal transduction in lipid rafts [135]. SREBP2 promotes tumorigenicity and stemness
of PC cells through direct interaction with promoter of Myc-main downstream target of
SREBP2 in cancer regulation, while mTORC1 enhances Myc translation efficiency [136].
MYC interacts with mevalonate pathway gene promotors near SRE [137,138].

To conclude, SREBP2 supports tumor growth by providing cholesterol as building
block for membrane synthesis, lipid rafts and androgen synthesis, while the via mevalonate
pathway provides molecules required for molecular membrane docking and modification,
ferroptosis inhibition, energy, and nucleotide production.

10. Cholesterol-Lowering Drugs and HDL Particles

Statins are clinically approved cholesterol-lowering drugs for primary and secondary
cardiovascular disease prevention. Many studies have confirmed the beneficial effect of
statins on PC, but there are also disagreements [138]. Numerous studies have linked statins
with reduced risk of PC, especially advanced and lethal PC, reduced risk of BCR after
radical prostatectomy and radiotherapy, and prolonged time to progression in patients on
androgen deprivation therapy [139–141]. A comprehensive study performed on 68,432 men
with PC showed that use of statins before a PC diagnosis was associated with reduced risk
of PC-specific mortality. After considering surrogate indicators of preventive care (PSA and
cholesterol screening rate), the effect of statin use was abolished. This points out that careful
interpretation of results is required as they can be confounded [142]. Nevertheless, results
of in vitro and in vivo experiments provide a deeper molecular insight into conflicting
epidemiologic studies.

Statins are competitive inhibitors of HMGCR, the rate-limiting enzyme in mevalonate
pathway. Mevalonate-5-phosphate, an intermediate in the mevalonate pathway, stabilizes
conformational or misfolded mut p53 which further upregulates expression of meval-
onate pathway enzymes. By inhibiting the mevalonate pathway, statins reduce mut p53
generation, FPP and GGPP production, which leads to reduced prenylation of Ras and
Rho [99,143,144]. Besides blocking the binding pocket in HMGCR, some statins target other
molecules important for prostate cancer and show potential as an anti-cancer agent (listed
in Table 1). Statins induce mut p53 degradation by disrupting its interaction with DNAJA1.
DNAJA1 chaperone overexpression and ubiquitin ligase CHIP downregulation diminishes
effect of statins. Impact on wild type p53 or DNA contact mutp53 with native conformation
is minimal [143]. Few statins are also substrates of organic anionic transporter SLCO2B1,
hence competitively reduce the uptake of androgen dehydroepiandrosterone sulfate, which
is a precursor to more potent androgens [139].

Fatostatin is a drug that by binding to SCAP inhibits SCAP/SREBP dissociation
from INSIG. Since this step blocks activation of SREBP1 and SREBP2, and the effect of
fatostatin reflects cholesterogenesis and lipogenesis. It also inhibited tubulin polymer-
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ization, inhibited cell proliferation and induced apoptotic death in androgen-responsive
and androgen-insensitive PC cells, as well as in metastatic PC cell lines, especially the
one with mutant p53 [98,135,145]. Two months long treatment with fatostatin inhibited
PC proliferation and distant lymph node metastasis in a genetically engineered mouse
model of PC driven by Pten and Pml co-deletion [122]. Betulin and xanthohumol are
natural SCAP/SREBP translocation inhibitors. Betulin induces SCAP-INSIGN interaction
while Xanthohumol blocks SREBP incorporation in COPII vesicle [146,147]. Cell culture
experiments showed that their PC suppression influence is associated with interaction with
other molecules rather than SREBP [148–150].

Inhibition of HMGCR and consequently intracellular sterol pool depletion by statins
leads to feedback activation of SREBP cleavage so therapies simultaneously inhibit meval-
onate pathway and SREBP2 activation are in progress. Dipyridamole, an FDA approved
drug for cerebral ischemia, inhibits the feedback loop, cooperates with statins and induces
apoptosis in hematologic malignancies. Furthermore, dipyridamole potentiates the effect
of statins, so less statin concentration is required [84,151,152].

Table 1. List of cholesterol-lowering drugs, their targets and cellular function with emphasize on particular statin type.

Drug Target Function Reference

Statins
(in general) HMGCR Reduces HMG-CoA to mevalonate [143]

Atorvastatin SLCO2B1 Androgen transporting gene (uptake) [139]

DNAJA1 Cochaperone protein (protects mut p53 form degradation) [143]

Pravastatin SLCO2B1 Androgen transporting gene (uptake) [139]

Fatostatin SCAP SREBP2 and SREBP1 maturation [145]

Tubulin Maintenance of microtubule organization [145]

Lovastatin DNAJA1 Cochaperone protein (protects mut p53 form degradation) [143]

Mevastatin DNAJA1 Cochaperone protein (protects mut p53 form degradation) [143]

Betulin SCAP-INSIGN
interaction SCAP/SREBP translocation [147]

Xanthohumol Sec23/24
(COPII vesicle) SCAP/SREBP translocation [146]

Combination therapy

Statins +
Dipyridamole

(antiplatelet agent)
Phosphodiesterase Hydrolysis of cyclic nucleotides [84,152]

Simvastin +
enzalutamide

(antiandrogen)
AR Activation of AR signaling pathway [74]

Fatostatin +
Docetaxel

(chemotherapeutic agent)
Tubulin Maintenance of microtubule organization [98,153]

Docetaxel provides first-class chemotherapy for the currently considered incurable
metastatic CRPC. This tubulin stabilizing drug reduces AR nuclear translocation. Itwas
shown that DHT reduces tubulin protein expression in PC [153]. The benefit of this
chemotherapy is short-term and resistance connected with p53 mutation soon develops.
Fatostatin synergizes with docetaxel for greater proliferation inhibition and apoptosis
induction in PC, in vitro and in vivo mouse xenografts, particularly in high mut p53
PC. This combination might improve existing therapy for aggressive PC [98]. HMGCR
expression affects enzalutamide sensitivity. In enzalutamide-resistant cell lines, HMGCR is
overexpressed, and its activity increases after enzalutamide treatment. Simvastin restored
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sensitivity to enzalutamide. Combination of simvastin and enzalutamide significantly
inhibited proliferation and induced, potentially mTOR mediated, maximum degradation
of AR [74].Statins differ in their lipophilicity, dose, and effect on lipid profile [154,155].
Concentrations of statins used in vitro are much higher (mM range) than concentration in
plasma of statin users (nM range). Although high dosage statins in PC cell line exhibited
an anti-proliferative effect, low dosage of statins showed no effect on proliferation and
migration but elevated self-renewal capacity and anchorage-independent growth [156].
Longer high dose of atorvastatin (80 mg) taken in the period between prostate biopsy
and radical prostatectomy decreased proliferation of high-grade PC while fluvastatin
(80 mg) increased apoptosis [157,158]. Besides repurposing cholesterol-lowering drugs
into anticancer agents, HDL particles have qualities for improving drug delivery. Natural
HDL particles are small (11 nm), deliver ssRNA and act via SR-B1 receptor, and thus
avoid lysosomal processing. SR-B1 is overexpressed in PC, while minimally expressed
in normal prostate cells. These characteristics make HDL particles suitable for drug
delivery (chemotherapeutics, siRNA) via SR-B1 receptor. Encapsulating paclitaxel in
reconstituted HDL postponed its degradation and increased selective drug delivery, which
resulted in increased in vitro cytotoxicity and in vivo tolerance in comparison to free
paclitaxel [159,160].

Mimics of spherical HDL loaded with siRNA targeting AR reduced AR mRNA in
androgen-sensitive and androgen-insensitive PC cell lines. Systemic AR knockdown in
mice, achieved with particles targeting AR mRNA, reduced cell viability in vitro and in vivo
(xenograft) following reduction of hematocrit, white blood cells and neutrophils [161].
Valrubicin, incorporated in reconstituted high-density lipoprotein enhanced with super-
paramagnetic iron oxide nanoparticle, showed increased cytotoxicity of PC cell line and
increased survival of normal prostate cell line in comparison to free valrubicin [162]. Al-
though these results seem promising, off-target accumulation occurs in liver and spleen
due to -B1 expression, thus SR-B1 targeting should be combined with additional targeting
(e.g., another receptor, pH-sensitive nanoparticle, photosensitive porphyrin nanoparticle)
to increase selectiveness [159].

11. Perspective

Scientists have made remarkable effort to understand the mechanisms behind PC
etiopathogenesis. While the achievements in vitro and xenograft experiments may seem
encouraging, PC is still the second most common cancer worldwide [163]. A vast amount
of research has been done on PC cell lines, particularly on LNCaP. This cell line was derived
from the supraclavicular lymph node biopsy 40 years ago from a PC patient after oral
estrogen uptake, orchiectomy and estramustine exposure (strong mutagen). It is null
for the PTEN gene and has hypo-tetraploid karyotype. Cell lines are clonal while PC is
heterogeneous in cancer clones and cell types. Cell lines are dependent on supplied growth
factors but signaling networks not used by the cell often degrades or mutates. Therefore,
researchers need a more representative PC model [164]. Gene expression analysis in
healthy and cancer tissue samples is also common. Expression data examination of seven
patient cohorts showed that tissue heterogeneity is usually neglected, and stroma is more
commonly represented in healthy tissue samples. Consequently, cholesterol synthesis
genes are confounded by stroma tissue. When comparing healthy epithelial cells and
cancer cells with balanced stroma content, cholestero-genic genes are downregulated in
primary PC. Still, the limitation of this study is in not distinguishing reactive stroma from
healthy stroma [44]. Furthermore, changes in transcriptome do not reflect directly on
proteome. Gene copy number, DNA methylation, miRNA and mRNA expression do not
consistently predict protein landscape, particularly in CRPC. This indicates that, due to
dysfunctional regulatory systems in CRPC, many genetic and epigenetic changes arise that
do not impact protein level [165].

According to studies done so far, it is evident that cholesterol has a significant role
in PC. To understand and outwit PC, we need to base research on actual PC biopsies,
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primary cell culture and radical prostatectomy tissue. Furthermore, comprehensive analysis
that would encompass genomic, transcriptomic, and proteomic data considering tissue
homogeneity are required as well as stratification of patients according to stage, Gleason
score, interindividual genetic diversity and adjuvant treatments, which would pave the
way for a personalized approach and long-term treatments.

12. Conclusions

It is evident that cholesterol is an important PC growth supporter. Cholesterol home-
ostasis in the cell is balanced by SREBP2 and LXR activity, which is related to endoplas-
mic reticulum cholesterol level, INSIG/SCAP ratio, transcriptional modifications, post-
translational modifications, and mevalonate pathway metabolites. Many deregulated
pathways in PC are implicated in SREBP2 activation which can have an effect on:

• increased membrane/lipid rafts synthesis and protein prenylation which alter mem-
brane composition and cell signaling

• mut p53 stabilization and further mevalonate pathway promotion
• nucleotide synthesis, mitochondrial electron transport, protein anchoring and stabi-

lization, ferroptosis inhibition
• intracellular androgen synthesis
• SREBP2 interaction with Myc promoter

There are numerous data that arise from experiments on cell lines, animal models
and human studies which take into consideration only a few variables. Still, comprehen-
sive multi-omics analyses that would improve patient stratification and development of
personalized medicine strategies are required.
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Abbreviations

ABCA1 ATP-binding cassette transporter A1
ABCG1 ATP-binding cassette transporter G
ACLY ATP citrate lyase
AMPK AMP-activated protein kinase
AR Androgen receptor
ARE Androgen responsive element
BCR Biochemical recurrence
BPH Benign prostatic hyperplasia
COPII Coatomer II
CRPC Castrate-resistant prostate cancer
DHT Dihydrotestosterone
EGFR Epidermal growth factor receptor
ERK Extracellular signal-regulated kinase
FA Fatty acid
FDG-PET Fluorodeoxyglucose-positron emission tomography
FPP Farnesyl diphosphate
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GGPP Geranyl-geranyl-pyrophosphate
GSK3 Glycogen synthase kinase 3
HDL High-density lipoprotein
HMG-CoA 3-hydroxy-3methylglutaryl-CoA
INSIG Insulin-induced gene
ICMT Isoprenylcysteine carboxyl methyltransferase
LDL Low-density lipoprotein
LDLR Low-density lipoprotein receptor
LRP8 Lipoprotein receptor-related proteins 8
LXR Liver X receptor
MAPK Mitogen-activated protein kinase
mTOR Mechanistic target of rapamycin
PC Prostate cancer
PSA Prostate-specific antigen
ROS Reactive oxygen species
S1P Site-1 protease
S2P Site-2 protease
SCAP SREBP cleavage-activating protein
SHBG Sex hormone-binding globulin
SQLE Squalene monooxygenase
SR-B1 Scavenger receptor class B member 1
SRE Sterol response element
SREBP2 Sterol regulatory element–binding protein-2
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