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ABSTRACT
BACKGROUND: Posttraumatic stress disorder (PTSD) is heritable and a potential consequence of exposure to
traumatic stress. Evidence suggests that a quantitative approach to PTSD phenotype measurement and incorpo-
ration of lifetime trauma exposure (LTE) information could enhance the discovery power of PTSD genome-wide
association studies (GWASs).
METHODS: A GWAS on PTSD symptoms was performed in 51 cohorts followed by a fixed-effects meta-analysis (N =
182,199 European ancestry participants). A GWAS of LTE burden was performed in the UK Biobank cohort (N =
132,988). Genetic correlations were evaluated with linkage disequilibrium score regression. Multivariate analysis
was performed using Multi-Trait Analysis of GWAS. Functional mapping and annotation of leading loci was
performed with FUMA. Replication was evaluated using the Million Veteran Program GWAS of PTSD total symptoms.
RESULTS: GWASs of PTSD symptoms and LTE burden identified 5 and 6 independent genome-wide significant loci,
respectively. There was a 72% genetic correlation between PTSD and LTE. PTSD and LTE showed largely similar
patterns of genetic correlation with other traits, albeit with some distinctions. Adjusting PTSD for LTE reduced
PTSD heritability by 31%. Multivariate analysis of PTSD and LTE increased the effective sample size of the PTSD
GWAS by 20% and identified 4 additional loci. Four of these 9 PTSD loci were independently replicated in the
Million Veteran Program.
CONCLUSIONS: Through using a quantitative trait measure of PTSD, we identified novel risk loci not previously
identified using prior case-control analyses. PTSD and LTE have a high genetic overlap that can be leveraged to
increase discovery power through multivariate methods.

https://doi.org/10.1016/j.biopsych.2021.09.020
Posttraumatic stress disorder (PTSD) may develop after
exposure to traumatic life events. PTSD can severely impact
the mental and physical health of affected individuals and
impair their interpersonal relationships (1). While the estimated
community prevalence of PTSD in the United States is 5% to
10% (2), the rate of PTSD differs based on the nature of trauma
exposure (3) and other environmental (4) and genetic (5–7)
factors. Identifying the biological mechanisms associated with
the etiology of PTSD will facilitate the discovery of biomarkers
for screening and diagnostic purposes (7) and the develop-
ment of new treatments.

Genome-wide association studies (GWASs) facilitate bio-
logical understanding of PTSD (8,9), but are well known to be
limited by statistical power to identify risk variation (10).
Quantitative measures of PTSD enhance discovery power over
binary trait definitions (9,11). Appropriately accounting for
trauma exposure hypothetically enhances power, as in-
dividuals will not develop the disorder unless they are exposed
to trauma, regardless of high genetic vulnerability for PTSD
(12,13). Moreover, the notion that genetic variants can pre-
dispose to trauma exposure is only starting to be explored (14).
As trauma exposure is a prerequisite for the development and
manifestation of PTSD, investigating the genetics of trauma
exposure will hypothetically lead to a clearer picture of PTSD
genetics.

The Psychiatric Genomics Consortium (PGC)–PTSD is a
global collaborative effort to study the genetic basis of PTSD
through meta-analysis of diverse cohorts (13). Subsequent to a
case-control GWAS (8), our collaborators have provided
quantitative measures of PTSD and lifetime trauma exposure
(LTE). To obtain genomic insights from the quantitative PTSD
phenotyping, we performed a GWAS of PTSD symptoms in
182,199 participants from the PGC-PTSD Freeze 2 dataset. To
determine if accounting for LTE would provide the
Biologica
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hypothesized increase in discovery power, we performed a
GWAS of PTSD with covariate adjustment for LTE, showing
that it lowers PTSD signal. We investigated the possibility that
multicollinearity arising from high genetic correlation (rg) of
PTSD and LTE was responsible for this result. To perform this
investigation, we performed a GWAS of LTE in the most
powered and unbiased (15) subsample of the data, 132,988
participants from the UK Biobank (UKBB) (16), then evaluated
the rg of PTSD and LTE. To explore the rg further, we con-
trasted the rgs that PTSD and LTE have with other traits. We
showed that the high rg of PTSD and LTE can be leveraged to
enhance the power of PTSD GWASs using multivariate
methods. We replicated PTSD GWAS findings in the Million
Veteran Program (MVP) GWAS of total PTSD symptoms
(MVPTOT). We contextualized genomic findings through func-
tional annotation, tissue expression analyses, and phenome-
wide association study (PheWAS).
METHODS AND MATERIALS

Study Population and Phenotyping

Participants were drawn from a collection of 51 cohorts within
the PGC-PTSD Freeze 2 dataset, as previously described in
Nievergelt et al. (8). All participants included in the present
study were of genetically estimated European ancestry. PTSD
symptoms and LTE were measured within each cohort using
structured clinical interviews, self-reported inventories, or
clinical evaluation. A summary of the assessment and scoring
methods for the various studies is presented in Table S1 in
Supplement 2, and a complete description is available in
Nievergelt et al. (8). All participants provided written informed
consent, and studies were approved by the relevant
l Psychiatry April 1, 2022; 91:626–636 www.sobp.org/journal 627
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institutional review boards and the University of California San
Diego Human Research Protection Program.

GWAS Quality Control

Genotyping, quality control (QC), and imputation methods for
the included studies have been described in detail (8). In brief,
participating cohorts provided phenotype and genotype data
or GWAS summary statistics to the PGC-PTSD for quality
control and analysis. For studies in which the PGC-PTSD an-
alyst had direct access to genotype data, RICOPILI (17) was
used to perform QC and imputation. QC included standard
filters for single nucleotide polymorphism (SNP) call rates
(exclusion of SNPs with call rate ,98% or a missing difference
.0.02 between cases and controls), call rate for participant
genotypes (samples with ,98% call rate excluded), Hardy-
Weinberg equilibrium (p , 1 3 1026 in controls), and heterozy-
gosity (within 6 0.2). Datasets were phased using SHAPEIT (18)
and imputed using IMPUTE2 (19) with the 1000 Genomes
Phase 3 reference panel data (20). For the UKBB, QC and
imputation were carried out centrally by UKBB investigators as
previous described (16) and GWAS was carried out by the
PGC-PTSD analyst. For cohorts with data-sharing restrictions,
analyses were performed using similar protocols by the study
team that had individual-level data access, and GWAS sum-
mary statistics were provided to the PGC-PTSD.

Genome-wide Association Study

Only unrelated (p , 0.2) participants were retained for anal-
ysis. Principal components (PCs) were calculated within each
cohort using EIGENSOFT v6.3.4 (21). The PTSD GWAS was
performed within cohorts using PLINK 2.0 alpha with the –glm
option, with the exception of UKBB and VETSA (Vietnam Era
Twin Study of Aging) data, which were analyzed using BOLT-
LMM v2.3.4 (22). Where available, PTSD symptom scores
were analyzed using linear regression (n = 36 cohorts); PTSD
case-control status was used if symptom scores were not
available, using logistic regression (n = 15 cohorts). In both
cases, 5 PCs were included as covariates to account for
population stratification and genotyping artifacts. The UKBB
PTSD GWAS included an additional PC as well as batch and
assessment center covariates. Studies providing summary
data used similar analytic strategies, as previously described
(8). For each GWAS, SNPs with minor allele frequency ,1% or
imputation information score ,0.6 were excluded. To perform
a GWAS of PTSD conditioned on LTE, the GWAS was per-
formed with LTE included as an additional covariate as either a
count of LTEs or a binary variable, depending on data avail-
ability. The GWAS of the LTE count phenotype in the UKBB
sample was performed in BOLT-LMM using 6 PCs, batch, and
assessment center as covariates.

PTSD Meta-analysis

Sample size–weighted fixed-effects meta-analysis was per-
formed using METAL (23). To account for different analytic
methods and measure scales, effect estimates were converted
into z scores by dividing effect sizes by standard errors (24).
Case-control and quantitative GWAS subsets were evaluated
for rg to determine if they could be meta-analyzed. To account
for differences in ascertainment, heritability, and power
628 Biological Psychiatry April 1, 2022; 91:626–636 www.sobp.org/jou
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between case-control and quantitative subsets, modified
sample size weights were derived as previously described (25),
assuming 10% population prevalence of PTSD, the estimates
of SNP-based heritability (h2SNP), rg, and sample PTSD prev-
alence. Meta-analysis was conducted on the reweighted z
scores. Only SNPs available in .90% of all samples (N $

163,979) were included in analyses. Regional annotation plots
of genome-wide significant loci were produced using Locus-
Zoom (26).

Heritability and Genetic Correlation Estimation
With Linkage Disequilibrium Score Regression

Trait h2SNP and rg were estimated from GWAS summary sta-
tistics using linkage disequilibrium score regression (27). The
linkage disequilibrium score intercept was used to test for
inflation of test statistics owing to residual population stratifi-
cation or other artifacts, and the attenuation factor
{[intercept 2 1]/[mean (c2) 2 1]} was used to determine the
proportion of inflation of test statistics owing to residual pop-
ulation stratification (Table S2 in Supplement 2). Heritabilities
were contrasted using a z test where standard errors were
estimated using the block-jackknife approach. To estimate rg
with other disorders, the LD Hub web interface was used (28).
To identify genetic differences between PTSD and LTE, the rgs
observed for PTSD and LTE were contrasted using z tests,
where significance level was determined using Bonferroni
correction for the 772 traits tested (p , 6.47 3 1025).

FUMA

FUMA v1.3.6a (29) was used with the default settings
(Supplement 1) to visualize and annotate GWAS results. The
FUMA pipeline integrates the MAGMA (30) tool to perform
gene-based, gene-pathway, and tissue-enrichment analyses,
with significance based on Bonferroni correction. 1000 Ge-
nomes Europeans were used as reference genotypes. Tissue-
enrichment analysis included Genotype-Tissue Expression
(GTEx) v8 expression data (31).

Cis-Quantitative Trait Locus Mapping

The effects of GWAS loci on transcriptomic regulation of sur-
rounding genes (locus within 6 1 Mb of the gene transcription
starting site) were tested for 49 tissues in GTEx v8 with
genome-wide false discovery rate correction applied. Using
the same criteria, GTEx v8 data were also used to investigate
the effects of GWAS loci on the regulation of alternative
splicing isoforms. A detailed description regarding GTEx v8
quantitative trait locus (QTL) mapping data by the GTEx Con-
sortium is available (32). Briefly, cis-expression QTL (eQTL) and
cis-splicing QTL mapping was performed using FastQTL (33)
including the top 5 genotyping PCs, probabilistic estimation of
expression residuals factors (34), sequencing platform,
sequencing protocol, and sex as covariates.

Replication Analysis

Summary data from MVPTOT (dbGaP study accession
phs001672.v4.p1) was used to replicate GWAS results.
MVPTOT included 186,689 European ancestry participants who
completed the PTSD Checklist–Civilian Version and passed
QC. Details of MVPTOT have been published (35). SNPs were
rnal
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deemed replicated in MVPTOT if they had matching effect di-
rection and were nominally significant after Bonferroni
correction for the 9 SNPs tested (p , .006).

Multi-Trait Analysis of GWAS

Multi-Trait Analysis of GWAS (MTAG) (36) performs multivariate
analysis of genetically correlated traits to increase discovery
power for each input trait, providing trait-specific effect esti-
mates and p values. MTAG was used to perform multivariate
analysis with PTSD and LTE GWASs. The maxFDR statistic was
used to test for MTAG model assumptions (Supplement 1).

Phenome-wide Association Study

To understand further how functional changes of significant
loci are associated with human traits and diseases, we con-
ducted a PheWAS of leading SNPs from PTSD and LTE loci
using data from the GWAS Atlas (available at https://atlas.
ctglab.nl/) (37). Bonferroni correction was applied to account
for the 4756 phenotypes available that were tested (p , 1.05 3

1025).

RESULTS

The PTSD GWAS meta-analysis included 182,199 participants
of European ancestry from 51 cohorts (Table S1 in Supplement
2). The largest cohort was the UKBB (N = 134,586 partici-
pants). Across the cohorts, PTSD was assessed using a variety
of different methods (n = 19 methods); the most common
methods were versions of the Clinician-Administered PTSD
Scale (n = 18 studies) and PTSD Checklist (n = 14 studies). The
majority of participants (91%, n = 165,825, 36 studies) were
analyzed based on PTSD symptom scores; the remaining
participants (9%, n = 16,374, 15 studies) did not have symp-
tom scores available and were analyzed based on PTSD case-
control status.

PGC-PTSD GWAS Meta-analysis

The h2SNP of meta-analysis of cohorts analyzed by symptom
scores was 0.0547 (SE = 0.0042, p = 8.9 3 10239) (Table S2 in
Supplement 2). The h2SNP was similar, albeit not significant, in
Table 1. Genome-wide Significant Loci From PTSD GWASs and

Analysis rsID Chr Positiona A1 A2

PGC-P

A1 Freq z S

Identified in GWAS rs72657988 1 35688541 T G 0.08 6

rs146918648 6 28548674 A G 0.04 6

rs2721816c 7 24699329 A G 0.82 25

rs10266297 7 114143407 T C 0.59 5

rs10821140 9 96253169 A C 0.35 25

Identified in MTAG rs4557006 2 22443840 A G 0.45 4

rs1504930 5 155852066 T C 0.62 24

rs8059002 16 25417390 T G 0.86 24

rs7264419 20 47701309 A G 0.75 25

A1, allele 1 (coded); Freq, frequency; A2, allele 2; Chr, chromosome; G
GWAS; MVP, Million Veteran Program; MVPTOT, MVP total PTSD symp
stress disorder; rsID, reference SNP ID number.

aBase pair position on chromosome (hg19/GR37 Human Genome Build)
bSignificant in MVP if p , .006 (Bonferroni-corrected for 9 loci).
cLinkage disequilibrium proxy for rs2721817, the leading single nucleotid

Biologica
Downloaded for Anonymous User (n/a) at University Clinical Ho

27, 2022. For personal use only. No other uses without perm
the smaller meta-analysis of case-control cohorts (observed
scale h2SNP = 0.0580, SE = 0.0259, p = .17). The rg between the
symptom score and case-control analyses was very high (rg =
0.9646, SE = 0.36, p = .0074). Thus, symptom score and case-
control GWASs were meta-analyzed. We identified 5 genome-
wide significant loci (Table 1, Figure 1A). Leading variants in
significant loci mapped to an intergenic locus on chromosome
1, the intronic region of the GABBR1 gene on chromosome 6,
the intronic regions ofMPP6 and DFNA5 on chromosome 7, an
intron of FOXP2 on chromosome 7, and the intronic region of
FAM120A on chromosome 9. Gene-based analysis identified 6
significant genes (DCAF5, EXD2, FAM120A, FOXP2,
GALNT16, and PHF2) (Table S3 in Supplement 2).

PGC-PTSD GWAS Covariate Adjustment for LTE

We repeated the GWAS of PTSD with covariate adjustment for
LTE. h2SNP was 0.0389 (SE = 0.00340, p = 2.6 3 10230), 31%
lower than the PTSD GWAS without LTE covariate adjustment
(p = 8.6 3 10220). There was a genome-wide significant locus
in an uncharacterized region, CTC-340A15.2, on chromosome
5 that was not identified in the PTSD GWAS (Table S4 in
Supplement 2). Effects changed slightly for the loci previously
identified in the unadjusted PTSD GWAS (Table S4 in
Supplement 2). Gene-based analysis identified no significant
genes.

UKBB LTE GWAS

We performed GWAS of LTE count in the UKBB subset of the
PGC-PTSD GWAS data (132,988 UKBB participants). Of par-
ticipants, 30.9% reported 1 LTE, 14.8% reported 2 LTEs, 6.3%
reported 3 LTEs, and 3.3% reported 4 or more LTEs (Table S5
in Supplement 2). The h2SNP of LTE count was 0.0734 (SE =
0.005, p = 8.7 3 10249). Six loci showed genome-wide sig-
nificance (Figure 1B, Table 2). Leading variants in significant
loci mapped to an intron of PRUNE on chromosome 1, the
intron of noncoding RNA AC068490.2 on chromosome 2, the
intron of SGCD on chromosome 5, an intron of FOXP2 on
chromosome 7 (also identified in the PGC-PTSD GWAS), an
intergenic region in chromosome 14 near MDGA, and
MTAGs With Replication in MVPTOT GWAS

TSD GWAS PGC-PTSD MTAG MVPTOT

core p Value z p Value A1 freq z Score p Valueb

.44 1.2 3 10210 5.34 9.4 3 1028 0.07 2.18 .029

.04 1.5 3 1029 6.50 8.0 3 10211 0.04 2.00 .045

.27 1.4 3 1027 25.80 6.5 3 1029 0.82 21.45 .15

.38 7.4 3 1028 6.72 1.8 3 10211 0.59 4.97 6.7 3 1027

.71 1.2 3 1028 26.02 1.8 3 1029 0.34 23.89 1.0 3 1024

.26 2.0 3 1025 5.83 5.7 3 1029 0.45 5.53 3.2 3 1028

.26 2.0 3 1025 25.58 2.5 3 1028 0.62 24.20 2.7 3 1025

.43 9.3 3 1026 25.46 4.8 3 1028 0.85 21.50 .13

.06 4.1 3 1027 25.85 5.0 3 1029 0.76 0.55 .58

WAS, genome-wide association study; MTAG, Multi-Trait Analysis of
toms; PGC-PTSD, Psychiatric Genomics Consortium–posttraumatic

.

e polymorphism in this locus.
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Figure 1. Manhattan plots of genome-wide as-
sociation study (GWAS) associations. The x-axis is
the position on the genome, ordered by chromo-
some and base-pair position. The y-axis is
the 2log10 p value of association. Each dot repre-
sents the association between a given single nucle-
otide polymorphism and the trait. Colors alternate
between chromosomes, with odd chromosomes
colored blue and even chromosomes colored teal.
(A) Results of posttraumatic stress disorder GWASs.
(B) Results of lifetime trauma exposure GWASs. (C)
Posttraumatic stress disorder–specific results of
MTAG (Multi-Trait Analysis of GWAS) analysis of
posttraumatic stress disorder and lifetime trauma
exposure.
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upstream of CCDC8 on chromosome 19. Gene-based analysis
identified SGCD (chromosome 5: 155,297,354–156,194,799
base pairs, 2965 SNPs, 99 parameters, z = 5.53, p = 1.5 3
Table 2. Genome-wide Significant Loci From GWASs of LTE

rsID Chr Positiona A1

rs6661135 1 150999414 C

rs4665501 2 22546151 G

rs4704792 5 155757946 A

rs1476535 7 114071035 C

rs2933196 14 47285917 G

rs770444611 19 46917381 INSb

A1, allele 1 (coded); A2, allele 2; Chr, chromosome; GWAS, genome-wide
ID number.

aBase pair position on chromosome (hg19/GR37 Human Genome Build)
bInsertion of TGAGGCCAGGAGTTC.
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1028) and C20orf112 (chromosome 20:31,030,862–31,172,876
base pairs, 296 SNPs, 21 parameters, z = 4.73, p = 1.13 3

1026). GWAS of LTE count weighted by trauma-specific PTSD
A2 A1 Frequency z Score p Value

T 0.93 25.52 3.3 3 1028

T 0.44 25.77 7.7 3 1029

T 0.26 5.75 9.2 3 1029

T 0.44 25.77 8.0 3 1029

A 0.59 25.51 3.6 3 1028

T 0.59 5.66 1.5 3 1028

association study; LTE, lifetime trauma exposure; rsID, reference SNP

.
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Figure 2. Comparison of the genetic correlations of posttraumatic stress
disorder (PTSD) and lifetime trauma exposure (LTE) with other traits. The x-
axis is the genetic correlation between LTE and a given trait from the LD
Hub. The y-axis is the genetic correlation between PTSD and a given trait.
Each dot depicts a given trait. Colored (black, red, or blue) dots indicate
traits with significant genetic correlation to both PTSD and LTE after Bon-
ferroni adjustment. Noncolored (gray) dots indicate traits where genetic
correlation is not significant after Bonferroni adjustment. Blue dots indicate
traits with significantly higher genetic correlation with PTSD than with LTE.
Red dots indicate traits with significantly higher correlation with LTE than
with PTSD. The top 5 traits with a significantly higher correlation to PTSD
than LTE and top trait with significantly higher correlation to LTE than PTSD
have been labeled.

Extended Phenotyping Identifies PTSD Genetic Variants
Biological
Psychiatry
prevalences yielded highly similar results, being highly genet-
ically correlated to the unweighted count (rg = 1, SE = 0.0016, p
, 1.13 3 102100).
Genetic Overlap Between LTE and PTSD

The rg between PTSD and LTE was high (rg = 0.7239, p , 1 3

102100). To explore this genetic overlap, we contrasted pat-
terns of rg of PTSD and LTE to other traits. Testing 772 human
traits and diseases, we observed 269 and 217 rgs that survived
Bonferroni multiple testing correction (p , 6.47 3 1025) for
PTSD and LTE, respectively (Table S6 in Supplement 2). There
was complete directional concordance between PTSD and
LTE among the 187 rgs that were significant in both analyses.
For several traits, while the effect direction was concordant,
the magnitude of correlation with PTSD was significantly
different from the correlation with LTE (p , 6.47 3 1025)
(Figure 2). Fifteen traits showed significantly higher genetic
correlation with PTSD than with LTE (e.g., neuroticism score
p = 2.74 3 10224; fed-up feelings p = 1.83 3 10215; mood
swings p = 9.92 3 10215; loneliness p = 8.07 3 1028;
depressive symptoms p = 1.94 3 1027; irritability p = 2.27 3

1027). Conversely, risk taking showed a significantly higher
genetic correlation with LTE (rg = 0.55, p = 2.71 3 10255) than
with PTSD (rg = 0.33, p = 3.9 3 10220; p = 8.09 3 1026).
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Multivariate Analysis of PTSD and Trauma Exposure

MTAG analysis that combined PTSD GWAS meta-analysis and
UKBB LTE GWAS reported an effective sample size increase
of PTSD GWAS from 182,199 to 217,491. There were 8
genome-wide significant loci for the MTAG PTSD analysis,
including 4 loci not identified in the PTSD GWAS meta-analysis
(Table 1, Figure 1C). Leading variants from additional loci
mapped to an intergenic region in chromosome 2, the intron of
SGCD on chromosome 5, an intergenic region on chromo-
some 16 near ZKSCAN2 and AQP8, and the intron of STAU1
on chromosome 20. In gene-based analysis, there were 8
significant genes, including 5 genes not identified from the
original GWAS gene-based analysis (CSE1L, DFNA5, FOXP1,
SGCD, TRIM26) (Table S3 in Supplement 2).

Cross-Replication in MVPTOT

Of the 9 loci identified across the PTSD GWASs (5 from the
PGC GWAS and 4 from the MTAG), 4 replicated significantly in
MVPTOT (p , .006) (Table 1, Figures S2–S10 in Supplement 1).
Of the 11 genes identified in gene-based analyses (6 in the
GWAS and 5 in the MTAG), 7 replicated at least at a nominally
significant level in MVPTOT (Table S3 in Supplement 2). Addi-
tionally, of 15 loci identified in MVPTOT GWASs, 9 nominally
replicated in PGC-PTSD (Table S7 in Supplement 2). Overall, rg
between PGC-PTSD and MVPTOT was high (rg = 0.8359,
SE = 0.0376, p = 2.5 3 102109).

Functional Consequences of Risk Loci

We examined the functional impact of the 9 GWAS variants
associated with PTSD (5 from the GWAS and 4 from the
MTAG) (Table 1). We observed that 7 loci were related to
multiple tissue-specific eQTLs (Table S8 in Supplement 2),
where 11% of false discovery rate–significant eQTLs were in
brain regions. A similar trend was present for splicing QTLs
(Table S9 in Supplement 2), where only 7% of gene-tissue
combinations were related to brain regions. Further details of
the eQTL analysis are provided in Supplement 1.

We found enrichment of genes involved in brain tran-
scriptomic regulation in PTSD (Table S10 in Supplement 2). All
brain regions tested were at least nominally significant, with
several remaining significant after Bonferroni correction
(MTAG: cortex p = 2.9 3 1025, frontal cortex Brodmann area
(BA) 9 p = 3.53 3 1025, cerebellum p = 1.09 3 1024, anterior
cingulate cortex BA 24 p = 1.29 3 1024, cerebellar hemisphere
p = 1.43 3 1023, nucleus accumbens/basal ganglia p = 3.6 3

1024). There was no significant enrichment detected in any
sets from the list of curated gene sets and Gene Ontology
terms (Table S11 in Supplement 2).

Phenome-wide Association Study

We identified 200 phenome-wide significant associations
(Table S12 in Supplement 2), with more than half of the sig-
nificant associations related to two domains: psychiatry (34%)
and metabolism (18%). The strongest PheWAS associations
with PTSD and LTE loci included height and body mass phe-
notypes, educational attainment, social interaction, sexual
activity, risk tolerance, and sleep phenotypes (Supplement 1).
Several PTSD loci showed widespread pleiotropy across
multiple psychiatric traits: rs10266297 (35 significant
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associations, 40% psychiatric domain, top psychiatric result:
risk taking p = 1.27 3 10211), rs10821140 (37 significant as-
sociations, 38% psychiatric domain, top psychiatric result:
loneliness p = 1.11 3 10211), rs146918648 (44 significant as-
sociations, 48% psychiatric domain, top psychiatric result:
tenseness/restlessness p = 2.13 3 1029).
DISCUSSION

Our GWASs aimed to advance understanding of PTSD ge-
netics by integrating quantitative PTSD phenotypes and LTE
exposure information in 182,199 participants of European
ancestry from 51 cohorts. Overall, quantitative PTSD pheno-
typing captured similar genetic signal to our prior case-control
analysis (rg = 0.92–1.14) (8), but with substantially higher po-
wer. However, by using LTE as a covariate, which hypotheti-
cally accounts for unexpressed genetic vulnerability among
unexposed participants (12), we found a significant reduction
in heritability and gene discovery. As high rg between PTSD
and LTE would be one hypothetical explanation for this result
(i.e., multicollinearity), we performed a GWAS of LTE and
contrasted it to GWAS results for PTSD. We found that LTE
has h2SNP comparable to PTSD and high rg compared with
PTSD. We leveraged the rg to significantly enhance PTSD
discovery power using a multivariate approach (36).

One explanation for h2SNP of PTSD adjusted for LTE being
lower than the unadjusted estimate is that it may have removed
genetic effects on PTSD mediated by trauma exposure (12,13).
Given that trauma is a prerequisite for PTSD, genetic effects on
trauma exposure can have mediated (i.e., indirect) effects on
PTSD. Indeed, this seems plausible, as our LTE GWAS sug-
gested a substantial amount of h2SNP related to trauma
exposure. Therefore, the estimated h2SNP of PTSD conditional
on LTE would theoretically reflect only nonmediated (i.e.,
direct) effects and thus would be smaller.

We used rg to quantify the genetic overlap between LTE and
PTSD, finding similar magnitude to findings from twin studies
(5,6). At the same time, incomplete rg between these two
phenotypes also suggested meaningful genetic differences. To
investigate this, we contrasted the magnitudes of rg that PTSD
and LTE shared with other traits. For most traits, rg with PTSD
was quite similar in magnitude to rg with LTE. However, we
also found that negative affect traits, such as neuroticism and
irritability, were more strongly correlated with PTSD than LTE,
whereas risk-taking behavior showed higher correlation with
LTE than PTSD. This suggests that some variants influence
PTSD and LTE through somewhat distinct psychological and
behavioral mechanisms (5).

The high rg between PTSD and LTE facilitates the applica-
tion of multivariate approaches to PTSD GWASs. Whereas the
rg between PTSD and LTE induces loss of power in the PTSD
analysis when conditioned on LTE, a multivariate approach can
benefit from it. Our multivariate (36) analysis resulted in a 19%
increase in the effective sample size by adding LTE count data
from the UKBB and identified replicable loci and patterns of
tissue expression not identified in a standard PTSD GWAS.

The biological mechanisms associated with several of the
protein products of identified genes have been linked to PTSD
pathophysiology in animal and cell models: amygdala-
mediated fear extinction [FAM120A (38)], neuronal
632 Biological Psychiatry April 1, 2022; 91:626–636 www.sobp.org/jou
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transcriptional regulation [FOXP2 (39)], brain excitatory/inhibi-
tory balance [ARFGEF2, GABBR1, STAUI1 (40)], intracellular
vesicular trafficking and other synaptic activities [ARFGEF2
(41), MPP6 (42), SEMA6C (43), SGCD (44)], and inflammation
[HIATL1, TRIM26 (45), TRIM27 (46), ZMYM4, ZNF165 (47)].
Blood and brain transcription-wide association and differential
gene expression studies of PTSD have also implicated some of
these genes, including a blood-based prediction of down-
regulation of ARFGEF2 in the dorsolateral prefrontal cortex (48)
and a postmortem study of human PTSD cortex indicating
downregulation of CTSS expression in the dorsal anterior
cingulate cortex and downregulation of OSBPL3 expression in
the dorsolateral prefrontal cortex (49).

Interestingly, PTSD loci show widespread pleiotropic as-
sociations in PheWAS (50–52). Some loci point to factors
associated with existing clinical presentations of PTSD (e.g.,
sleep), while others point to potential risk/protective factors for
PTSD, such as educational attainment and cognitive func-
tioning. Loci may affect PTSD through their direct influence on
these risk/protective factors. Alternatively, the high degree of
pleiotropy shown by these loci suggests that they could in-
fluence PTSD risk through a more general alteration of bio-
logical function (37), such as general predisposition to
psychiatric illness (53). In particular, metabolic phenotypes
such as height and body mass also appeared to be enriched in
our PheWAS. This could be the influence of these loci on
previously implicated inflammatory mechanisms for PTSD (8)
or simply an artifact of their overrepresentation in the GWAS
Atlas. Nevertheless, the broad variety of behavioral and clinical
domains associated with these loci suggest complex etiologic
heterogeneity of PTSD that could relate to subtypes (54).

Further characterization of significant loci via eQTL analyses
identified expression across a variety of tissue types. Given the
high degree of shared eQTL architecture between tissues, the
presence of some of these tissues might not be directly related
to PTSD pathogenesis. Indeed, on the genome-wide level, our
tissue enrichment analysis suggests that only brain tissues are
relevant. The brain regions implicated are consistent with
functional magnetic resonance imaging and structural magnetic
resonance imaging findings of PTSD. BA 24 (as part of the
ventral anterior cingulate cortex) is implicated in PTSD response
to trauma-, fear-, and threat-related stimuli (55,56). BA 9 (as part
of the dorsomedial prefrontal cortex) reflects response to self-
referential thought, theory of mind, empathy, and moral judg-
ments and shows greater engagement in people with PTSD and
trauma-exposed individuals (55,57,58). Nucleus accumbens
expression is consistent with the neuroimaging evidence of its
role in the reward system, which is prominently affected with
emotional numbing symptoms of PTSD (59–62).
Limitations

Stress-related disorders are phenotypically complex and het-
erogeneous (63), which limits discovery power and complicates
translation to clinical application. The strategies proposed for
understanding and addressing heterogeneity in major depres-
sive disorder, such as harmonization of measures, additional
phenotypic measures, and investigations of subtypes, could be
applied to PTSD as additional avenues to enhance discovery
power (64). Sex differences may also contribute a significant
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source of heterogeneity (8,65–68). Our analyses were restricted
to participants of European ancestry given power limitations for
other ancestry groups. However, urgent scientific and ethical
reasons call for extending analyses to individuals of non-
European ancestry (69). The PGC-PTSD group has actively
been gathering data to increase representation from diverse
ancestry and developing methods to optimize analyses in
admixed populations (70). As sample sizes increase, future in-
vestigations will be powered to investigate ancestry and sex-
specific genetic influences on PTSD and trauma exposure. In
performing a GWAS of cumulative LTE, we identified several
significant loci, including loci previously identified in GWASs of
childhood trauma exposure (14). A full investigation of the ge-
netic basis of LTE is clearly warranted. Future work could also
examine the relationship between PTSD and specific types or
numbers of trauma exposure, as they plausibly have different
relationships with PTSD (6) and may therefore be more infor-
mative than our cumulative measure for LTE. Finally, trauma
was assessed via participant self-report, which may vary with
mood and PTSD symptoms at the time of reporting (71) and
could inflate genetic associations with PTSD.
Conclusions

Novel replicable risk loci for PTSD identified by incorporating
quantitative symptom data and trauma exposure information
into GWASs offer us new insights into the genetic architecture
of PTSD. Beyond the nature of LTE as an environmental
exposure, there is a heritable component to LTE that overlaps
highly with PTSD to impart an enhanced understanding of
PTSD genetics. In future investigations, the genetic architec-
tures of PTSD and LTE could be further delineated using
causal mediation analysis (72), which can provide estimates of
LTE-related mediation and gene-by-environment interaction.
Our results reinforce the notion that in addition to larger
samples, more detailed phenotyping and sophisticated
modeling are needed to account for the role of environmental
exposure in developing PTSD, as these influence GWAS dis-
covery power. Widespread pleiotropy of significant loci sug-
gests that cross-disorder analysis with PTSD (73,74) will
enhance our understanding of how these loci modify risk for
PTSD and related disorders.
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