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Background: Obstructive sleep apnea (OSA) is a chronic, highly prevalent, multi-system and sleep 
disorder, which may contribute to cognitive impairment and a variety of structural and neurophysiologic 
changes. The focus on OSA is warranted given its recognized links with major psychiatric and neurologic 
disorders, including Alzheimer’s disease. Some preliminary studies suggest a dual effect of the inflammatory 
response in OSA. Neuroinflammation may present with initial, potentially adaptive and homeostatic, and 
later, a more distinctly maladaptive, precipitating and perpetuating role. 
Objective: We here propose and argue in favour of the inflammatory process in the brain as a likely binding 
mechanism behind at least some effects that OSA may have on the brain and its function. Several OSA-
triggered molecular and cellular events, that could lead to a neurodegenerative cascade, are similarly discussed.
Methods: This perspective reviews the body of literature that investigates potential links between the 
inflammatory processes in the brain and the OSA. A special emphasis is placed on a potential role for 
neuroplastin, a novel transmembrane synaptic protein involved in the neuroplasticity and known to be 
differentially regulated in the OSA. 
Conclusions: The intricate interplay between neuroinflammation and other mechanistic correlates of 
OSA add to the evidence that neuroinflammation may be a key target for future therapeutic strategies in a 
number of comorbid disorders. The future studies will need to answer whether it is sleep fragmentation (SF) 
or intermittent hypoxia (IH) which may drive any such neuroinflammation.
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Inflammation and sleep-disordered breathing 

Obstructive sleep apnea (OSA) is the second most prevalent 
sleep disorder (1), with higher prevalence in elderly and 
obese people (2) and incidence of 24% men and 9% 
of women in 30–60 age group, with further increase in 
incidence of up to 40–60% for both genders aged sixty five 
and above (3-5).

Traditionally, the main instigators of OSA-related 
ramifications have been considered to be the intermittent 
hypoxia (IH) and sleep fragmentation (SF) (6). However, 
a more complex picture of OSA-induced injury is  
emerging (7). The current consensus is that the extent of 
the associated functional deficits in OSA is likely decided 
by an intricate interplay of all maladaptive and homeostatic 
adaptive processes in the brain (7,8). These arguably may 
include a neuroinflammatory response, along with an 
individual genetic disposition, a chronic low-grade systemic 
inflammatory state (2) and any present co-morbidities. 
In support of the idea that inflammation may play a 
pivotal role in any such interaction, several studies have 
highlighted the possible role of a systemic chronic low-
grade inflammation in OSA patients (9-11). The presence 
of inflammatory process is evident by increased levels of 
the pro-inflammatory cytokines tumor necrosis factor-α 
(TNF-α) and interleukin 6 (IL-6) that promote the innate 
immunological response (10). It should be noted that the 
very definition of chronic low-grade inflammation remains 
elusive, and that its use commonly refers to states defined 
by chronically increased inflammatory markers of the innate 
immune system [i.e., C-reactive protein, IL-6, TNF-α, 
white blood count (WBC), neutrophils] (10,12). 

In past preclinical studies, the mimicking of the OSA-
related mechanical stress in the upper airway has been 
shown able to induce a localized inflammatory cascade (13). 
For example, SF has been linked to increased upregulation 
of TNF-α in mice, and, in pediatric OSA patients, this 
increase has been reported as directly related to the degree 
of SF and the body mass index (14,15). Similarly, IH 
strongly upregulates IL-6 production, which, along with the 
abundance of TNF-α, may additionally lead to the excessive 
sleepiness seen in OSA (16). When etanercept, an anti-
TNF-α medication for rheumatoid arthritis, is offered to 
objectively sleepy OSA patients, significant symptomatic and 
measurable improvement is detected in their sleepiness (17). 
The magnitude of that improvement is three times higher 
than the reported of positive airway pressure (PAP), and 
proportional to the reduced TNF-α and IL-6 levels (17,18). 

More recently, another link between OSA and systemic 
low-grade inflammation has been proposed to occur via 
an acquired dysbiosis. The OSA-related IH increases the 
proportion of anaerobic bacteria in the microbiota, while 
the SF activates directly the innate immune system, and 
both assist in the increased intestinal permeability, that 
eventually promotes low-grade endotoxemia and chronic 
inflammation (19-22). These processes appear to develop 
even in mild severity cases of OSA (23). 

An ever increasing body of literature also supports the 
notion that the mechanistic links between IH, SF and 
the pro-inflammatory cytokines could be regulated by 
the idiosyncratic genetic predisposition and the overall 
(epigenetic) impact of the environmental factors (10). For 
example, the -174 G/C IL-6 gene polymorphism for IL-6 has 
been associated with increased IL-6 levels in OSA patients, 
but not the -572 G/C (24,25). Also, it has been further 
advanced that, in cases where CPAP treatment fails to get 
the pro-inflammatory cytokines under control, other known 
factors of low-grade inflammation such as obesity and 
cardiovascular diseases, which often coexist in OSA patients, 
likely explain that failure in statistical models (24,25). 

The prevalence of OSA in patients with obesity/
metabolic syndrome (MS) is estimated at 45–60%, and SF 
is known to promote obesity (26,27). Regrettably, even with 
the adequate treatment in place (e.g., with PAP), many of 
the patients report further weight gain (22,28). The MS (i.e., 
obesity, hypertension, hyperinsulinemia, glucose intolerance 
and dyslipidaemia) is in turn strongly associated with 
systemic low-grade inflammation mainly generated from 
the adipose tissue, and through the secretion of the pro-
inflammatory cytokines and leptin resistance (29). Leptin is 
the satiety hormone, the interactions of which commonly 
lead to a reduction in calory intake. This effect appears 
to be decreased in OSA, which may further contribute to 
development of insulin resistance and diabetes type 2 in such 
patients (30). Ultimately, it is of note that MS also posits a 
cocktail of risk factors for cardio-vascular disease (CVD), 
and presents as the linkage between CVD and OSA, with 
low-grade inflammation as their shared mechanism (29,31).

Moreover, OSA has been linked to impaired synthesis, 
secretion, and timing of melatonin (32-34). Melatonin’s 
beneficial role in suppression of development of insulin 
resistance, and thus its possible role in correction of 
ensuing metabolic dysregulation has been argued (35). 
Melatonin also plays the role in reduction of the formation 
of free oxygen radicals and prevention of mitochondrial 
dysfunction, which can lead to oxidative stress (36,37). 
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It also exerts a dual immunomodulatory function, with 
upregulation of the brain and muscle Arnt-like protein-1 
(BMAL1) transcription factor, an established inhibitor 
of herpes simplex virus and influenza (38). Its role as an 
anti-inflammatory agent under conditions concerning 
senescence have similarly been argued, and its main effects 
appear to lead to reduction of pro-inflammatory cytokines 
and upregulation of the anti-inflammatory ones (39,40). 
Thus, even smaller modulation of this effective anti-
aging agent might lead to reduction of its role against 
‘inflammaging’ and contribute to a low grade systemic 
chronic inflammation in patients with OSA (41). 

In this perspective review, we evaluate and appraise the 
current body of evidence which supports the notion that 
neuroinflammation may underly several pivotal functional 
and neuroanatomical effects of OSA on the brain. 
Moreover, we propose and argue for the potential role for 
the transmembrane synaptic protein neuroplastin in this 
process. We present the following article in accordance 
with the Narrative Review reporting checklist (available at 
https://jtd.amegroups.com/article/view/10.21037/jtd-21-
1231/rc).

Neuroinflammation in OSA 

One of the important unresolved questions in the sleep 
medicine is whether its second most prevalent sleep 
disorder, OSA, may indeed also lead to inflammatory 
responses in the brain (5,6,42,43). This is of particular 
note as neuroinflammation has been argued to act as 
a shared archetypal mechanism in the pathogenesis of 
Alzheimer’s disorder (AD), depression and several other 
major neurologic and psychiatric disorders with which OSA 
appears to share a complex bidirectional link (6,42,44). Our 
group has long argued that accumulating data does suggest 
that neuroinflammatory process occurs in OSA, and that it 
drives specific structural and behavioural changes known to 
afflict some susceptible OSA patients (42,43,45-49). More 
recently, we have been able to demonstrate that under 
OSA-like conditions in rodents, the neuroinflammatory 
response is indeed instigated in the forebrain and the septal 
nuclei regions, important cholinergic regions of the brain, 
with a later widespread and marked chronic component. 
Furthermore, we have demonstrated that subsequent 
structural changes develop in distinct neuroanatomical 
regions with monosynaptic connections to initial frontal and 
basal forebrain cortical sites of inflammatory response (6).  
It is widely accepted that acetyl-choline-mediated enhanced 

processing of sensory information underlies the cognitive 
process of attention, known to be impaired in patients with 
OSA (42). It has been argued that a variety of attention-
related cognitive operations that together contribute to the 
detection and discrimination of stimuli are significantly 
impacted in OSA, and inflammatory processes in these 
regions may contribute to this (7,45). Moreover, as the 
integrity of attention processes contributes to the efficacy 
of higher-order cognitive functions such as learning and 
memory, it is perhaps unsurprising that these domains have 
been similarly shown as impaired in some patients with 
OSA (7,45). In addition, numerous behavioral studies have 
also implicated basal forebrain cortical cholinergic inputs in 
sustained attention functioning (50). Most notably, though, 
the neuroinflammation-driven changes were also shown 
to underlie several specific observed behaviours, including 
development of agitated (mal)adaptive behaviour under 
episodes of stress, and an increased ability to gain weight (6).

Several pivotal preclinical studies over the last several 
decades have similarly supported this notion. For example, 
data from rodent studies suggest that SF significantly 
increases systemic IL-6 serum concentration and 
hippocampal transcription of IL-6 in mice without further 
cognitive impairment (51). Further studies have shown 
that few hours of sleep deprivation can cause increase in 
astrocytic phagocytosis of presynaptic elements in mouse 
cerebral cortex, which could be a compensatory response to 
increased synaptic activity after prolonged wake. Moreover, 
there is indirect evidence, from both clinical and preclinical 
studies, that sleep loss may be similarly detrimental to 
oligodendrocytes, and to the production of myelin (52,53). 
It has been reported that chronic sleep loss can reduce 
myelin thickness (52). This effect may have important 
functional consequences in patients with OSA too, especially 
given the fundamental role of myelin in optimizing the 
information flow throughout the brain (53-55). Chronic 
sleep deprivation, in addition, activates microglia and their 
phagocytic activity (56). Another study that determined 
effects of sleep disturbance in mice showed increased IL-6 
levels and induced microglial activation in hippocampus, 
but not in cortex, one and seven days after 24-hour long 
sleep disturbance (57). Mice (C57BL/6) exposed to chronic 
IH for 4 weeks showed elevation of Toll-like receptor 4 
(TLR4), myeloid differentiation factor 88 (MyD88), TIR-
domain-containing adapter-inducing interferon-β (TRIF), 
pro-inflammatory cytokines and oxidative stress which was 
ameliorated by concomitant atorvastatin administration (58). 

On the other hand, in rats, chronic sleep deprivation  

https://jtd.amegroups.com/article/view/10.21037/jtd-21-1231/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-21-1231/rc
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(21 days) results in anxiogenic behaviour and memory 
decline and in increased levels of pro-inflammatory 
cytokines (TNF-α, IL-1β) in hippocampus and piriform 
cortex, as well as increased expression of glial fibrillary acidic 
protein, GFAP and Iba1 (59). Another study showed that IH  
(2-min intervals, 10.5% O2, for one, three, or 14 days) caused 
increase in gene expression of inducible nitric oxide synthase 
(iNOS), cyclooxygenase-2 (COX-2), TNF-α, IL-1β, and IL-6 
in rat cortex, medulla, and spinal cord. Additionally, microglial 
TLR4 mRNA level was upregulated after hypoxia in a region- 
and time-dependent manner (60-62). 

Neuroinflammation has been argued to present a key 
linking element that interacts with the three neurobiological 
correlates of major depressive disorder too (63). Unregulated 
inflammatory response in the brain has been argued to 
lead to depletion of brain serotonin, dysregulation of the 
hypothalamus-pituitary-adrenal (HPA) axis, as well as to 
alteration of the continuous production of adult-generated 
neurons in the dentate gyrus of the hippocampus (63).  
In that background, it has been proposed that kynurenine 
pathway alteration and HPA axis dysregulation may have 
the common effect of increasing extracellular glutamate 
levels and glutamate neurotransmission, which can 
then impact adult hippocampal neurogenesis (63). This 
pathophysiological cascade appears to be correspondingly 
triggered during sleep deprivation (64), and it may 
present the common link between affective disorders, 
insomnia,  OSA and neurodegenerative disorders, 
including Alzheimer’s disease (AD) (42). Interestingly, an 
early antidepressogenic effect of the TLR2-dependant 
neuroinflammatory response in OSA has been demonstrated 
in the animal model, functionally linked to a distinct 
fronto-brainstem subcircuitry (6). In past, activation of a 
similar network in mice has been reported to favor effortful 
behavioral responses to challenging situations (65). For 
instance, a selective activation of a subclass of prefrontal 
cells that project to the brainstem has been shown to induce 
a rapid and reversible effect on selection of the active 
behavioral states (65). Based on this, it is tempting to argue 
that any such initial inflammatory response may play an 
adaptive role, and that it may initially help the organism to 
focus on continued trying to find its way out of a complex 
predicament (6). With time, however, any such prolonged 
behavioral response would conversely develop into an 
‘agitated’ depressive profile, with strong maladaptive anxiety 
component (6). In keeping, similar mixed anxiety and 
depression endophenotype has been previously described in 
some patients with OSA (66), and it has been traditionally 

linked with higher suicide risks in depressed patients (6,67). 
Taken together, and in spite of certain controversies, 

both preclinical, as well as human studies that investigated 
inflammatory markers in patients with OSA (68-84), 
increasingly indicate that there is reliable cumulative 
evidence supporting OSA as a low-grade chronic 
inflammatory disease which likely can also induce 
neuroinflammation and neuronal injury (10). 

Shared pathomechanism with neurologic and 
neurodegenerative disorders 

Over the last decade, the links between OSA and earlier 
onset of neurodegenerative changes and cognitive decline 
have been emphasised (42,62,85-87). The additive effect of 
changes in sleep quality and structure, cerebral blood flow 
and the cellular redox status in OSA patients may contribute 
to cognitive decline, and may further aggravate AD and 
other neurodegenerative processes’ (88) progression (42,44). 
Also, a recent meta-analysis suggests that patients with AD 
may have a five times higher chance of presenting with 
OSA than cognitively non-impaired individuals of similar 
age (44). Moreover, it has been similarly argued that around 
half of patients with AD will have experienced OSA at some 
point after their initial diagnosis (44). In addition, OSA 
prevalence increases with age (89-91), and a recent two-year 
longitudinal study showed an increase in markers of amyloid 
burden, a hallmark of AD in the cerebrospinal fluid (CSF) 
in elderly OSA patients (85,86). Furthermore, CSF levels 
of total and phosphorylated (P) tau (87), and inflammatory 
protein YKL-40 (neuroinflammation/astrocyte activation 
marker) predict poor sleep in cognitively healthy adults, 
older than 65 years, with increased Aβ42 CSF values (92). 
Studies have reported that patients with OSA are more 
likely to develop mild cognitive impairment (MCI) and 
AD at a younger age (93). In the same vein, a recent meta-
analysis of longitudinal studies reported that individuals 
presenting sleep disturbances, such as insomnia, OSA, sleep-
wake rhythm disorders, have a high risk of developing all-
cause dementia, AD, and vascular dementia (94). Moreover, 
insomnia increased the risk of AD but not vascular or 
all-cause dementia, whilst OSA was associated with an 
increased risk of all-cause dementia, AD, and vascular 
dementia (94). Shared pathological findings between OSA 
and AD include sleep architecture disturbances, neurogenic 
neuroinflammation, changes in multipartite synapse and 
impaired clearance of toxic Aβ and tau (42). Several studies, 
including a recent cross-sectional study, suggest that there is 
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an increase in brain amyloid in OSA patients, in comparison 
to healthy controls (86,95,96). However, conversely, a 
number of studies have failed to report changes in CSF tau 
protein levels in patients with OSA (87,97). Nonetheless, it 
appears that OSA could act to induce a faster longitudinal 
increase in CSF tau levels in patients with MCI and AD 
(85,87). Distinct gender effects and links with a specific 
limbic phenotype of AD have also been argued (98). 
However, the exact molecular mechanisms leading from SF 
and apnoeic events to neurodegeneration remain unclear.

Accumulating body of evidence suggests that various 
innate cellular adaptive and plasticity mechanisms are 
triggered in neurodegeneration and occur in an unregulated 
manner eventually aggravating neuropathologic and 
clinical findings (99). Moreover, when one considers some 
of the features of main AD pathological hallmarks, a clear 
convergence of at least two different types of tissue response 
to injury emerges: (I) reactivation of fetal phosphorylation 
pattern of tau protein, which contributes to cytoskeletal 
disorganization and impaired axonal transport; (II) immune 
reaction to amyloid formation and accumulation, which 
leads to chronic neuroinflammation and further structural 
and functional alterations and neurodegeneration (99,100). 

Although typical neurofibrillary degeneration and 
amyloid deposits are being distributed in a specific spatio-
temporal pattern in AD, they likely present common 
final points of long-lasting cellular changes in different 
neurodegenerative disorders and are triggered by mostly 
un-known cause(s). It has been long speculated that in 
understanding and elucidating the very early molecular 
alterations, one may learn how to unravel and prevent the 
formation of the core of several shared pathomechanisms of 
neurologic and neurodegenerative disorders (7,42). Having 
in mind that synaptic remodeling and plasticity is of pivotal 
importance for functions of brain tissue, and that dynamic 
cross-talk between neurons and different types of glial cells is 
involved in maintenance of synaptic homeostasis, searching 
for specific molecular mediators of neuron-glial interactions 
in (patho)physiological conditions becomes particularly 
promising line of enquiry. Indeed, several recent studies 
indicate new potential partners in such an interplay between 
microglia and neurons, namely TLR2 and neuroplastin. As 
reported by Polsek et al. (6), TLR2 is involved in initiating 
and modulating inflammatory response in specific brain 
areas in the murine OSA model. Moreover, immune 
response and structural changes triggered by microglial 

activation and TRL2 actions have been shown to influence 
on expression of several neuroplasticity markers such as 
neuroplastin. Transmembrane synaptic protein neuroplastin, 
which belongs to a family of cell-adhesion molecules 
(101,102), has been source of much attention since its 
discovery (103). Its role in long-term potentiation, synaptic 
plasticity and cognition has been widely acknowledged 
(104-107). Nonetheless, to date majority of neuroplastin 
actions have been predominantly reported in the preclinical 
studies, whilst just a few studies report on its expression 
and distribution in the human brain (108,109). More 
recently, however, neuroplastin has been argued as potential 
biomarker of AD progression, and its involvement in human 
hippocampal tissue reorganization has been demonstrated, 
i.e., plasticity response in the early AD neurodegeneration 
process (103,109). Arguably, a functionally relevant interplay 
between TLR2 and neuroplastin may form also through 
their intertwined intracellular signaling pathways. In 
keeping, it has been suggested that this interplay may occur 
through the same adaptor protein TNF receptor-associated 
factor 6, TRAF6 (110,111). Similarly, the early dysfunction 
of microglia-neuron cross-talk in OSA could also be a 
consequence of disturbed interactions between TLR2 and 
neuroplastin (6) (also see Figure 1). Given that TLR2 and 
neuroplastin share intracellular signaling cascade, and they 
are both involved in adaptive cellular mechanisms vital for 
neurons, i.e., regulation of immune response and synaptic 
plasticity it is tempting to argue that these membrane 
proteins may indeed play an important role in the bigger 
archetypal puzzle of brain’s vulnerability to SF and oxidative 
stress (101,111).

Conclusions and future directions 

It is undisputable that cognitive and neurologic dysfunction 
occur in the majority of patients with OSA (7). The 
evidence towards its links with the major psychiatric 
and neurologic disorders is similarly accumulating (7). 
However, the exact nature of the mechanisms that cause 
these effects remain to be defined, as does the extent of the 
relationship and directionality between these factors and 
any potential inflammatory process in the brain. It is hoped 
that well defined future multimodal imaging studies, ideally 
performed in patients with OSA but without any overt co-
morbidities, will enable us to finally resolve whether the 
neuroinflammatory process may indeed present in OSA.
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