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Abstract
Extracellular matrix proteins are regulated by metzincin pro-
teases, like the disintegrin metalloproteinases with throm-
bospondin motifs (ADAMTS) family members. This review 
focuses on the emerging role which ADAMTS-4 might play 
in vascular pathology, which has implications for atheroscle-
rosis and vessel wall abnormalities, as well as for the result-
ing diseases, such as cardiovascular and cerebrovascular dis-
ease, aortic aneurysms, and dissections. Major substrates of 
ADAMTS-4 are proteoglycans expressed physiologically in 
smooth muscle cells of blood vessels. Good examples are 
versican and aggrecan, principal vessel wall proteoglycans 
that are targeted by ADAMTS-4, driving blood vessel atro-
phy, which is why this metzincin protease was implicated in 
the pathophysiology of vascular diseases with an atheroscle-
rotic background. Despite emerging evidence, it is impor-
tant not to exaggerate the role of ADAMTS-4 as it is likely 
only a small piece of the complex atherosclerosis puzzle and 

one that could be functionally redundant due to its high 
structural similarity to other ADAMTS family members. The 
therapeutic potential of inhibiting ADAMTS-4 to halt the 
progression of vascular disease after initialization of treat-
ment is unlikely. However, it is not excluded that it might find 
a purpose as a biomarker of vascular disease, possibly as an 
indicator in a larger cytokine panel. © 2022 S. Karger AG, Basel

Introduction

The extracellular matrix (ECM) is a dynamic three-
dimensional scaffold composed of fibrillar macromole-
cules that provide structure for tissue cells to reside in. 
Specific proteolytic enzymes of the ECM mediate its con-
tinuous and controlled remodeling, a feature that is of 
vital importance throughout the life of all multicellular 
organisms [1]. The physiology of some major ECM pro-
teins is regulated by metzincin proteases, including the 
disintegrin metalloproteinases with thrombospondin 
motifs (ADAMTS) [2]. This family belongs to the 
metzincin protease superfamily that has one conserved 
Met residue in the metalloproteinase domain (MPD) and 
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a catalytic zinc ion in the active site [3, 4]. The ADAMTS 
family includes 19 secreted metalloproteinases and seven 
ADAMTS-like proteins that have no catalytic activity [5, 
6]. They are largely evolutionarily conserved, reflecting 
their ubiquitous importance in embryogenesis and tissue 
homeostasis. Unsurprisingly, ADAMTS family members 
have recently been implicated in the pathophysiology of 
a growing number of vascular diseases, such as coronary 
artery disease (CAD) and coagulation disorders [5]. This 
review focuses on ADAMTS-4 and its implications in 
vascular pathology. ADAMTS-4 (also known as aggreca-
nase-1) is expressed by an array of tissues, most promi-
nently in endocrine organs, lungs, and brain, but also in 
the cardiovascular system [7, 8]. Notably, the majority of 
ADAMTS-4 substrates are principal proteoglycans ex-
pressed physiologically in smooth muscle cells (SMCs) of 
blood vessels and the developing heart. A good example 
is versican, a large ECM proteoglycan that is targeted by 
ADAMTS-4, which is an important reason why this 
metzincin protease was originally implicated in the patho-
physiology of vascular diseases with an atherosclerotic 
background [9]. Atherosclerosis is a major underlying 
cause of cardiovascular and cerebrovascular disease and 
plays a crucial role in aortic aneurysms and dissections; 
therefore, the necessity to scrutinize the role of AD-
AMTS-4 in plaque formation and progression is apparent 
[5, 10, 11]. Therefore, this review highlights the current 
state of knowledge on the specific functions and action 
mechanisms of ADAMTS-4 in the complex pathophysi-
ology of major vascular diseases.

Molecular Structure and Expression of ADAMTS-4

The architecture of ADAMTS-4 is rather simple in 
comparison to other ADAMTS family members: it con-
sists of a proteinase domain and ancillary domains that is 
rather simple in comparison to other ADAMTS family 
members. This is a basic template that is then, didacti-
cally speaking, “upgraded” by protein and glycan struc-
tures in other ADAMTS molecules. Changing structure 
reflects various steps the protein passes as it traverses dis-
crete cellular compartments on its way towards secretion 
and activation in the extracellular space. The ADAMTS-4 
sequence starts with a signal peptide that targets the pro-
tein for secretion, followed by a prodomain whose cleav-
age activates the coming latent MPD (Fig. 1). The activity 
of MPD is likely strongly influenced by the neighboring 
disintegrin-like domain. This domain interacts with the 
substrates of ADAMTS-4 through a rather peculiar active 

site that can have an open or closed conformation, de-
pending on whether a Ca2+ ion is bound to the domain 
[12]. This rather uncommon metzincin feature might 
serve the function of binding to accessory proteins, sub-
strates, or even to ADAMTS-domains. The structure 
ends with an ancillary domain that likely also modulates 
ADAMTS-4 activity through ECM binding, regulation of 
proteinase activity, and substrate specificity fine-tuning 
[13]. This domain consists of a thrombospondin type I 
motif (TSR), a cysteine-rich domain, and a spacer do-
main, and it varies in other ADAMTS family members in 
the number of TSR and other specialized domains.

Although the expression regulation of ADAMTS-4 is 
not fully understood, it is tightly controlled on multiple 
levels, including transcription, translation and through 
physiologic enhancers or inhibitors. Several enhancers 
like interleukin 1 (IL-1), tumor necrosis factor, trans-
forming growth factor beta (TGF-β), IL-17, fibronectin, 
retinoic acid, and neprilysin have been identified. Con-
versely, alpha-2-macroglobulin and tissue inhibitor of 
metalloproteinases-3 (TIMP-3) are known to be its phys-
iologic inhibitors [14, 15]. Additionally, TIMP-3 inhibi-
tion appears to be dependent upon ADAMTS-4 TSR and 
SR interaction with its aggrecan glycosaminoglycan 
chains [2, 16].

The path toward synthesizing a fully functional AD-
AMTS-4 molecule starts by intracellular cleavage of the 
prodomain, after which the protein is transported to the 
ECM and further activated by discrete proteases. In con-
trast to other ADAMTS family members which are pro-
cessed by furin in the extracellular space (e.g., pro-AD-
AMTS-5 and -9), ADAMTS-4 is initially processed with-
in the cell [7]. Latent ADAMTS-4 is cleaved in the 
trans-Golgi network at multiple N-terminal sites by furin 
proprotein convertase (Fig. 1) [3]. This cleavage releases 
the signal peptide and prodomain, yielding three forms 
(68, 53, and 40 kDa) that are secreted into the extracellu-
lar space [17]. Once outside the cell, ADAMTS-4 binds to 
the ECM, where the processing continues at the C-termi-
nal part, mediated by matrix metalloproteinase (MMP)-
17 (MT4-MMP) or autocatalytically [18–21] (Fig. 1). The 
cleavage of the C-terminal spacer domain is a physiolog-
ic event that seems to release ADAMTS-4 from the ECM. 
It also activates the proteolytic function and likely in-
creases its substrate range, thus regulating the processing 
of ECM proteoglycans [22]. Once the protein gets traf-
ficked to the ECM, its biologic functions (as with other 
aggrecanases) are dependent upon the interplay between 
the specificity of its exosites that bind potential substrates, 
and the high specificity of the actual protease cleavage 
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Fig. 1. Expression and activation of AD-
AMTS-4. Expression of ADAMTS-4 is en-
hanced by IL-1 and IL-17, TNF, TGF-β, fi-
bronectin, retinoic acid, and neprilysin, 
and it is inhibited by α2 macroglobulin and 
TIMP-3 (the enhancers/inhibitors do not 
localize in the nucleus, that is, are depicted 
there for practicality). In the trans-GA, the 
latent ADAMTS-4 is cleaved/activated by 
furin, releasing its SP and PD. The protein 
is then secreted and bound to the ECM 
where the C-terminal SD is cleaved by 
MMP-17 or autocatalytically, effectively 
releasing ADAMTS-4 from the ECM. This 
final proteolytic step enhances the protease 
activity of ADAMTS-4 which cleaves mul-
tiple substrates in the ECM. COMP, carti-
lage oligomeric matrix protein; CRD, cys-
tein-rich domain; DLD, disintegrin-like 
domain; ER, endoplasmatic reticulum; SP, 
single peptide; PD, prodomain; TNF, tu-
mor necrosis factor; SD, spacer domain; IL, 
interleukins; GA, Golgi apparatus; ECM, 
extracellular matrix.

Fig. 2. ADAMTS-4 in atherosclerotic 
plaque formation. Damaged endothelial 
cells express adhesion molecules promot-
ing LDL uptake, monocyte extravasation 
and thrombocyte adhesion. The pro-in-
flammatory environment (supported in 
part by macrophage activation) favors the 
transformation of lipid-laden macro-
phages to foamy cells that accumulate to 
clumps forming the atherosclerotic plaque. 
SMCs migrate under the pro-inflammato-
ry conditions and contribute to oxidized 
LDL uptake, plaque formation, and ECM 
thickening. Damaged and apoptotic SMCs 
overexpress versican and aggrecan which 
are cleaved by ADAMTS-4, further pro-
moting vessel atrophy. Finally, chronic in-
flammation triggers fibrosis leading to the 
accumulation of connective tissue that 
hardens blood vessels. IFN-γ, interferon γ; 
ECM, extracellular matrix.
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site. One of the main targets of ADAMTS-4 is the proteo-
glycan aggrecan (accordingly its initial label was aggreca-
nase-1); however, its family member, ADAMTS-5, was 
shown to be 20 times more active in degrading aggrecan 
[23]. Additionally, ADAMTS-4 cleaves other members of 
the hyalectan family including versican 1, -2, and brevi-
can [17, 24], hence the protein was also named as “hyalec-
tanase” [22]. Other substrates of ADAMTS-4 include a 
known MMP inhibitor alpha-2-macroglobulin and ECM 
modulators like decorin and fibromodulin and also car-
tilage oligomeric matrix protein and transferrin [14, 25, 
26]. Obika et al. [27] showed that ADAMTS-4 might also 
play a role in the degradation of biglycan, an ECM pro-
teoglycan.

The Role of ADAMTS-4 in Atherosclerosis and 
Resulting Vascular Diseases

Atherosclerosis is the result of fatty and/or fibrous ma-
terial accumulation in the inner wall of arteries [10]. 
Plaques mostly consist of lipids, cholesterol, inflamma-
tory cells, and apoptosis debris; they reduce blood flow 
and increase the risk of blood clot formation and embo-
lization. A hallmark of progressive lesion formation is in-
flammation that favors cell adhesion to the vascular en-
dothelium through specific glycoproteins. The lesions 
initiate on damaged endothelial cells which raise their ex-
pression of adhesive molecules, decrease secretion of ni-
tric oxide, and other compounds. The net result is en-
hanced adhesion of pro-inflammatory low-density lipo-
proteins (LDLs), monocytes/macrophages, and 
thrombocytes on vessel walls (Fig. 2). The LDL is oxidized 
which in turn drives macrophage phagocytosis and pro-
inflammatory cytokine secretion, and over time lipid-lad-
en macrophages transform to foamy cells that accumulate 
to clumps (Fig. 2). Inflammatory cytokines secreted by 
the immune cells foster the migration of SMCs which 
contribute to LDL uptake and migrate to the forming 
plaque. Chronic inflammation triggers fibrosis which 
leads to the accumulation of dense, irregular connective 
tissue that hardens blood vessels [2, 9, 10, 13, 28–30].

ADAMTS family members are recognized to play sig-
nificant roles in the process of plaque formation [9, 31]. 
Their importance lies partly in the control of expression 
levels of versican, one of the most abundant proteogly-
cans produced by SMCs [32]. Versican has numerous 
roles that promote vascular disease progression through 
cell proliferation, migration, adhesion, and ECM remod-
eling [33]. In stress conditions, like increased blood flow 

and shear stress, the damaged intimal SMCs overexpress 
versican and aggrecan molecules which are then cleaved 
by ADAMTS-4. This in turn promotes SMC apoptosis 
and worsens blood vessel atrophy, further driving AD-
AMTS-4 production, which was shown to be synthesized 
by endothelial cells and localized to endosomes on the cell 
surface [9, 27, 34–36]. Moreover, the pro-inflammatory 
microenvironment present in the plaque drives the ex-
pression of ADAMTS-4 enzymes by macrophages and 
macrophage-like cells derived from vascular SMCs [9, 10, 
28, 37]. In brief, the pro-inflammatory plaque microenvi-
ronment supports a positive feedback loop where versi-
can and aggrecan enhance plaque formation and corrode 
vessel walls (Fig. 2). Cleavage of these proteoglycans by 
ADAMTS-4 further destabilizes the atherosclerotic 
plaques leading to unfavorable patient outcomes [5, 34, 
36, 38].

Over time, the ECM degrades which can lead to breaks 
in the formed atherosclerotic plaques. This process can 
result in thrombosis with life-threatening complications, 
such as myocardial infarction or ischemic stroke. AD-
AMTS-1, -4, -5, and -7 also regulate the long-term stabil-
ity and/or lipid deposition in the atherosclerotic plaque 
[5, 39]. However, it is noteworthy that Lee et al. [39] in-
dicated that ADAMTS-1 is more likely to be involved in 
plaque destabilization than -4 or -5. Furthermore, ge-
nome-wide association studies revealed functionally rel-
evant single nucleotide polymorphisms in the AD-
AMTS-7 locus which were associated with CAD [5]. 
However, to the best of our knowledge, no such associa-
tions have been suggested for ADAMTS-4 in relation to 
CAD. Interestingly, in ADAMTS-4 knockout (KO) mice, 
a decrease in high fat diet-induced atherosclerosis and 
increased plaque stability was observed [40]. The impact 
of ADAMTS-4 on the development and progression of 
atherosclerosis is clearly present; however, its potential 
therapeutic use through direct targeting is questionable 
due to its diverse roles in ECM homeostasis and the seem-
ingly overlapping functions of ADAMTS family mem-
bers.

Coronary Artery Disease
Atherosclerotic plaques can occur across the arterial 

system, but the consequences of blood vessel occlusion 
are striking when lesions form in the coronary arteries. 
This pathologic process causes CAD, the leading cause of 
death worldwide, which includes a spectrum of diagnoses 
from angina pectoris, myocardial infarction, silent myo-
cardial ischemia, to sudden cardiac death [41]. Several 
studies have suggested that serum expression levels of 
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ADAMTS-4 could be used for diagnosis and prediction 
of severity of CAD and to distinguish patients with CAD 
from patients without CAD, with 76% sensitivity and 69% 
specificity. Furthermore, serum levels of ADAMTS-4 in 
patients with atheroma plaques were significantly higher 
compared to controls and could predict CAD with 76.2% 
sensitivity and 67.7% specificity [31, 42]. The severity of 
the disease was also correlated to serum ADAMTS-4 lev-
els, as patients with increased number of diseased vessels 
and severe stenosis had higher expression levels [42]. 
However, as atherosclerosis is not limited to the coronary 
milieu, the elevated ADAMTS-4 levels could be a sign of 
a more generalized vascular disease.

The correlation of serum expression levels of AD-
AMTS-4 to the risk of developing CAD was also investi-
gated in other patient groups with different underlying 
diseases. The studied conditions could all be indirectly 
linked to atherosclerotic changes in blood vessels, sug-
gesting a possible common role for ADAMTS-4 in their 
pathophysiology. ADAMTS-4 expression levels were, 
thus, positively correlated with higher cardiovascular risk 
in patients with idiopathic hypogonadotropic hypogo-
nadism and primary hyperparathyroidism [37, 43]. 
Moreover, significantly higher levels of ADAMTS-4 in 
diabetic than nondiabetic CAD patients was observed, 
which indicates that ADAMTS-4 might also contribute to 
diabetes-associated atherosclerosis [31]. Elevated levels 
of ADAMTS-4 were also implicated in renal vascular 
changes and loss of parenchyma in chronic kidney dis-
ease, an independent risk factor for all-cause mortality in 
cardiovascular diseases in the general population [44]. 
Taken together these results suggest that the serum ex-
pression levels of ADAMTS-4 are elevated in multiple 
unrelated pathologic conditions, warranting caution in 
considering this metalloproteinase as a specific disease 
biomarker.

Cerebrovascular Disease
Ischemic stroke is another major ramification of ath-

erosclerosis – it is the leading cause of long-term disabil-
ity and the second leading cause of death worldwide [45]. 
After vessel occlusion, necrotic brain tissue is infiltrated 
by macrophages which support inflammation and cause 
secondary damages to the ischemia-affected and sur-
rounding brain tissues [46]. Necrotic tissue and leuko-
cytes that are present in the infiltrate support a pro-in-
flammatory microenvironment. The secreted 
interferon-γ, TGF-β, and tumor necrosis factor-α in-
crease the level of protein and mRNA expression of AD-
AMTS-4 on the infiltrated macrophages [30, 47, 48]. 

This is supported by a postmortem study of ischemia-
affected areas of 4 people who died of stroke that found 
elevated ADAMTS-4 levels. This finding was further 
confirmed in a mouse model of ischemic stroke that re-
vealed elevated ADAMTS-4 levels in the affected areas, 
which might be the result of “damage control,” since AD-
AMTS-4 metalloprotease catalyzes the degradation of 
chondroitin sulfate-rich proteoglycans, which inhibit 
neuroregeneration [49]. As previously mentioned, it also 
alleviates the detrimental effects of versican overexpres-
sion that is related to atherosclerotic plaque formation. 
This hypothesis is also supported by mice ischemic stroke 
models, which revealed that recombinant human AD-
AMTS-4, while having no effect on infarction area, great-
ly reduced leukocyte infiltration of necrotic tissue rela-
tive to the untreated mice [50].

ADAMTS-4 in Pathogenesis of Vascular Wall Disease
ECM degradation and the ensuing atherosclerosis, 

among others, are crucial factors in the development of 
aortic aneurysms – abnormal bulges occurring at weak 
spots in the aortic wall [11, 51–53]. An aneurysm may 
also increase the chance of tearing of the aorta lining – 
leading to aortic dissection and, possibly, a highly fatal 
aortic rupture. Diagnosis of these diseases currently relies 
on radiological imaging, which makes systematic screen-
ing fairly inaccessible for the entire population and pres-
ents the need for a noninvasive way of timely diagnosis 
and prevention [54, 55]. As ECM degradation is a key 
event in the pathogenesis of aortic dissection and aneu-
rysm formation, the involvement of metalloproteinases 
in the pathophysiology is expected [56]. ECM degrada-
tion also leads to the release of morphogens such as VEGF 
or TGF-β that are implicated in dysregulation of the in-
flammatory response in blood vessels [57].

Vorkapic et al. [58] found ADAMTS-4 levels to be de-
creased in patients with aortic disease; however, these re-
sults should be interpreted with caution due to the ubiq-
uitous link hinted between vessel wall damage and AD-
AMTS-4 expression. Furthermore, several other 
researchers found ADAMTS-4 expression to be increased 
in the aortas of patients with aneurysms and chronic dis-
section in comparison to controls [47]. To add, a small 
study found that patients with Stanford type A aortic dis-
section had significantly higher plasma concentrations of 
ADAMTS-4 than controls [59]. As ADAMTS family 
members have significant structural similarities, there is 
a strong possibility of overlapping functions, as evidenced 
by the ADAMTS-4−/− KO mice that suffer no major 
changes in growth and physiology [60].
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Although the role of ADAMTS-4 in the pathogenesis 
of these diseases is far from clear, additional insight is 
provided from the mentioned animal models. AD-
AMTS-4−/− KO mice had lower incidence of aortic an-
eurysm and dissection formation, as well as lower inci-
dence of aortic rupture; importantly, their aortas had 
reduced degradation of versican and elastic fibers, as 
well as reduced macrophage infiltration and apoptosis 
[61]. Ren et al. [61] observed that ADAMTS-4 translo-
cates to the nucleus of SMCs where it cleaves PARP-1, 
one of the key molecules responsible for DNA repair 
and cell survival, thus directly implicating it in the SMC 
apoptotic process.

Second, Wang et al. [62] suggested that a central mol-
ecule of the canonical TGF-β pathway called mothers 
against decapentaplegic homolog-4 is connected to an in-
creased risk of thoracic aortic aneurysms and dissections. 
Low expression levels of a functional mothers against de-
capentaplegic homolog-4 variant were linked to increased 
versican cleavage via ADAMTS-4, leading to increased 
SMC apoptosis and proteoglycan degradation [62]. Ver-
sican fragments formed by ADAMTS-4 accumulate in 
the human aorta and stimulate vascular SMC migration 
into the intima, which then contribute foam cell forma-
tion by lipoprotein uptake, proliferation, and ECM syn-
thesis which is required for fibrous cap production [9, 31, 
63].

Finally, Li et al. [64] found that miRNA (MiR-126a-
5p) reduced ADAMTS-4 expression and limited aneu-
rysm formation in mouse angiotensin II-induced aortic 
aneurysm models. They further demonstrated that AD-
AMTS-4-directed neutralizing antibody blockade had 
protective effects. Moreover, further research uncovered 
that ADAMTS-4 antibody administration led to a de-
crease in IL-1 signaling transduction in chondrocytes 
[64–67]. When taking these findings into account, it is 
possible that ADAMTS-4 exerts its effects on the aorta via 
inflammatory response/immune dysregulation which 
might lead to indirect collagen I and elastin degradation 
via ADAMTS-4 immunomodulation [64]. These pro-
cesses probably work synergistically in the progression of 
aortic disease pathogenesis and contribute towards creat-
ing a vicious circle involving ECM degradation and im-
mune dysregulation. However, ADAMTS-4 presumably 
presents a small thread in the greater aneurysmatic/dis-
secting proteome pattern.

Apart from its involvement in the pathogenesis of 
the arterial wall, ADAMTS-4 seems to play a role in the 
diseases of the venous component of the vascular sys-
tem. An example is chronic venous disease, a highly 

prevalent condition affecting up to 77% of the popula-
tion above 70 years of age [68–70]. A proposed mecha-
nism for chronic venous disease development is an im-
balance in the regulation of metzincins and their TIMPs 
that can either lead to overgrowth or atrophy of vessel 
walls. In some vessel regions, the disease presents as 
SMC hypertrophy where ECM accumulates, and in oth-
er regions, the venous wall is atrophic due to SMC ap-
optosis and ECM degradation [71]. ADAMTS-4 likely 
plays a role in the balancing of these processes, as it is 
an important modulator of ECM and SMC physiology. 
Serra et al. [68, 69] showed that serum levels of AD-
AMTS-4 positively correlate with increasing levels of 
chronic venous insufficiency. Moreover, varicosity de-
velopment is accompanied by downregulation of both 
aggrecan and its associated aggrecanases, ADAMTS-1 
and -4 [72]. Additionally, ADAMTS-4 could be indi-
rectly involved in the pathologic changes of vein grafts 
used for coronary artery bypass surgery. The stenosis 
(narrowing) of venous grafts is presumed to be, at least 
to some extent, a consequence of versican hyperpro-
duction coupled to its decreased degradation. As deg-
radation of versican is mediated by ADAMTS-4, its ex-
pression regulation could be a factor in intimal hyper-
plasia leading to unfavorable patient outcomes [29, 73]. 
Furthermore, the production of aggrecan is induced on 
vascular injury, which is important in autologous vein 
grafts. Aggrecan production in the vessel wall is in-
creased when a graft is transplanted from low-pressure 
to arterial high-pressure and high-stress environment 
[28]. It is known that loss and degradation of aggrecan 
is an important factor in vein stiffness, and metzincins 
could play a role in these changes [74]. However, al-
though alluring, the regulatory roles of ADAMTS-4 in 
these processes need to be elucidated by further studies 
in order to utilize these findings.

Conclusion

ADAMTS proteases are a highly conserved family of 
proteins that are expressed throughout different tissues 
and play important roles in differentiation and homeo-
stasis. Their dysregulation is thus expectedly implicated 
in the pathogenesis and progression of numerous dis-
eases. Here, we highlighted the emerging role AD-
AMTS-4 might play in vascular pathology and appreci-
ated its importance in atherosclerosis and vessel wall ab-
normalities, as well as in diseases resulting from these 
two pathophysiologic processes. However, it is impor-
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tant not to oversimplify the role of ADAMTS-4 and not 
to consider it to be a sole culprit for the progression of 
these conditions: ADAMTS-4 is likely only a small piece 
of the complex puzzle that are the pathogeneses of ath-
erosclerosis and vessel wall abnormalities. ADAMTS-4 
exerts its effects in concert with a myriad of other mole-
cules, probably in a time and tissue-context dependent 
matter. Furthermore, ADAMTS-4 is a highly conserved 
and pleiotropic molecule that exerts a plethora of func-
tions, not limited to vasculature. For these reasons and 
due to the lack of such evidence, we believe that the pos-
sibility of therapeutic potential of ADAMTS-4 inhibition 
in the context of halting vascular disease progression at 
this point is somewhat premature, although the present-
ed evidence indicates possible merits of this approach. 
For the near future, it appears to be more likely, that AD-
AMTS-4 might find its clinical purpose as a biomarker 
for vascular disease, perhaps as one of the indicators in a 
larger cytokine panel. However, further clinical and pre-
clinical research is needed to clearly elucidate the role of 
this molecule and to expound the findings that were thus 
far made.
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