Razvojno porijeklo intersticijskih neurona i regionalne razlike u njihovoj raspodjeli, brojnosti i fenotipovima u mozgu čovjeka

Sedmak, Goran

Doctoral thesis / Disertacija

2013

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, School of Medicine / Sveučilište u Zagrebu, Medicinski fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:105:012377

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-23

Repository / Repozitorij:

Dr Med - University of Zagreb School of Medicine Digital Repository

Središnja medicinska knjižnica

Sedmak, Goran (2013) *Razvojno porijeklo intersticijskih neurona i regionalne razlike u njihovoj raspodjeli, brojnosti i fenotipovima u mozgu čovjeka [Developmental origin of white matter interstitial neurons and their regional differences in distribution, morpology and phenotype in human brain].* Doktorska disertacija, Sveučilište u Zagrebu.

http://medlib.mef.hr/1958

University of Zagreb Medical School Repository http://medlib.mef.hr/

SVEUČILIŠTE U ZAGREBU MEDICINSKI FAKULTET

Goran Sedmak

Razvojno porijeklo intersticijskih neurona i regionalne razlike u njihovoj raspodjeli, brojnosti i fenotipovima u mozgu čovjeka

DISERTACIJA

Zagreb, 2013.

SVEUČILIŠTE U ZAGREBU MEDICINSKI FAKULTET

Goran Sedmak

Razvojno porijeklo intersticijskih neurona i regionalne razlike u njihovoj raspodjeli, brojnosti i fenotipovima u mozgu čovjeka

DISERTACIJA

Zagreb, 2013.

Disertacija je izrađena u Laboratoriju za neurohistologiju i kemijsku neuroanatomiju Hrvatskog instituta za istraživanje mozga Medicinskog fakulteta Sveučilišta u Zagrebu i laboratoriju prof.dr.sc. Nenada Šestana, Department of Neurobiology School of Medicine Yale University.

Voditelj rada: prof. dr. sc. Miloš Judaš

Su-voditelj rada: prof. dr. sc. Nenad Šestan

SADRŽAJ

1. UVOD I SVRHA RADA	1
1.1. Razvoj ljudskog mozga	1
1.1.1. Embrionalni razvoj središnjeg živčanog sustava do zatvaranja neuralne cijevi (Carnegie	
stadiji 8 – 12)	1
1.1.2. Razvoj središnjeg živčanog sustava nakon zatvaranja neuralne cijevi (Carnegie stadiji 13 –	
23)	3
1.1.3. Fetalni razvoj ljudskog mozga od 8. tjedna nakon oplodnje do rođenja	5
1.2. Subplate zone i subplate neuroni	8
1.2.1. Otkriće subplate zone	8
1.2.2. Razvojno i evolucijsko porijeklo subplate zone	8
1.2.3. Razvoj subplate zone	10
1.2.4. Morfološki i molekularni fenotipovi subplate neurona	11
1.3. Intersticijski neuroni bijele tvari odrasle moždane kore	21
1.3.1. Klasični pogled na intersticijske neurone bijele tvari	21
1.3.2. Klasični pogled o intersticijskim neuronima u razvojnim poremećajima mozga	21
1.3.3. Intersticijski neuroni bijele tvari nakon otkrića subplate zone	22
1.3.4. Morfološki i molekularni fenotipovi intersticijskih neurona	23
2. HIPOTEZA	25
3. CILJEVI RADA	26
4. MATERIJAL I METODE	27
4.1. Analiza ekspresije proteina – Imunohistokemija	27
4.2. Histokemijski prikaz aktivnosti nikotin-adenin dinukleotid fosfat-dijaforaze (NADPH-d)	33
4.3. Stereološka analiza preparata	33
4.4. In vivo analiza volumena mozga	37
4.4.1. Ispitanici i snimanje	37
4.4.2. Volumetrijska analiza	37
4.5. Analiza ekspresije gena (transkriptoma) ljudskog mozga pomoću mikropostroja	38
5. REZULTATI	41
5.1. Brojnost intersticijskih neurona bijele tvari	41
5.2. Morfologija intersticijskih neurona bijele tvari i njihov prostorni razmještaj	47
5.3. Molekularni fenotip intersticijskih neurona bijele tvari u usporedbi sa subplate neuronima	52
5.4. Ekspresija u ljudskom mozgu mišjih gena specifičnih za subplate zonu	60
6. RASPRAVA	78
6.1. Intersticijski neuroni bijele tvari su značajna populacija neurona u odraslom ljudskom mozgu	78
6.2. Intersticijski neuroni bijele tvari pripadaju različitim morfološkim tipovima	79
6.3. Intersticijski neuroni bijele tvari u odraslom mozgu su preživjeli fetalni subplate neuroni	80
6.4. Geni specifični za subplate zonu kao biomarkeri intersticijskih neurona u odraslom mozgu	81
7. ZAKLJUČAK	82
8. SAŽETAK	83
9. SUMMARY	84
10. POPIS LITERATURE	85
11. ŽIVOTOPIS	107

Popis kratica

AChE – Acetilkolinesteraza Alz-50 - protutijelo Alzheimer 50 APP – eng. Avian pancreatic polypeptide Bctl1 - eng. Neurophilin and Tolloid-like protein 1 Bctl2 – eng. Neurophilin and Tolloid-like protein 2 Bhlhb5 – eng. Basic helix-loop-helix domain containing, Class B 5 Camk4 - protein kinaza 4 ovisna o kalcij/kalmodulinu Clim2 - eng. Carboxyl-terminal LIM domain-binding protein c-Met – Receptor hepatocitnog čimbenika rasta CNR/Pcdha – eng. Cadherin-related neuronal receptor/Protocadherin a CP – kortikalna ploča Cplx3 - eng. Presynaptic protein complexin 3 CTGF - eng. Connective tissue growth factor Dab-1 - eng. Disabled 1 EGR1 – eng. Early growth response 1 Emx1 – eng. Empty spiracles homeobox 1 Emx2 – eng. Empty spiracles homeobox 2 ErbB3 – eng. V-Erb-B2 erythroblastic leukemia viral oncogene homolog 3 ErbB4 – eng. V-Erb-B2 erythroblastic leukemia viral oncogene homolog 4 Fezl – eng. Forebrain embryonic zinc finger-like protein Foxp2 – eng. Forkhead box P2 GABA – gama-amino-maslačna kiselina GAD67 – 67 kDa izoforma glutamatne dekarboksilaze GAP43 – eng. Growth associated protein 43 GAT1 – GABA transporter 1 GR - glukokortikoidni receptor HGF – eng. Hepatocyte growth factor HGF – eng. *Hepatocyte growth factor* IZ - intermedijarna zona KAT-1 - kalijski kanal KAT1 KCC2 – Kalij/kloridni transporter 2 Lmo3 – eng. LIM domain only 3 Lpar1/Edg2 – eng. G-protein-coupled lysophosphatidic acid receptor 1 MAP2 – eng. Microtubule-associated protein 2 Mibp1 – eng. Human immunodeficiency virus type 1 enhancer binding protein 2 MoxD1 – eng. Monooxygenase DBH-like 1 MZ – marginalna zona NADE – eng. p75NTR-associated cell death executor NADPH - nikotinamid adenin dinukleotid fosfat NeuN – eng. Neuronal nuclei NGF – eng. Nerve growth factor NO – Dušični oksid Nogo-A – eng. Neurite outgrowth inhibitor

NOS - sintetaza dušičnog oksida NPY – Neuropeptid Y NRIF - eng. Neurotrophin receptor interacting factor Nurr1 – eng. Orphan nuclear receptor Nr4a2 PR - progesteronski receptor PTP ζ – eng. Protein tyrosine phosphatase zeta S100A13 – S100 puferski protein za kalcij A13 S100A4 – S100 puferski protein za kalcijA4 S100A5 – S100 puferski protein za kalcijA5 SEZ-6 – eng. Seizure protein 6 SMI32 - nefosforilirani neurofilament H Sox5 – eng. Sex determening region Y-box 5 SP - subplate zone SP-1 – protein 1 specifičan za subplate zonu STOP – eng. Stable tubulin only polypeptide SVZ – subventrikularna zona Tbr1 – eng. *T-Box Brain 1* Tmem 163 - eng. Transmembrane protein 163 Trk – Tirozin kinazni receptor TUJ1 – β -tubulin klase III specifičan za neurone vGAT - vezikularni GABA transporter vGLUT1 – vezikularni glutamatni transporter VIP - Vazoaktivni intestinalni polipeptid VZ - ventrikularna zona

1. Uvod i svrha rada

1.1. Razvoj ljudskog mozga

Razvoj ljudskog mozga je složen i dugotrajan proces. Taj proces može se podijeliti u dva glavna razdoblja: embrionalno (od začeća do. kraja 8 tjedna nakon oplodnje) i fetalno (od kraja 8. tjedna nakon oplodnje do rođenja; O'Rahilly i Müller 2010). Na temelju vanjskih i unutarnjih morfoloških karakteristika embrija, embrionalno razdoblje dijelimo na 23 Carnegie stadija (Tablica 1.; O'Rahilly i Müller 2010). Svjetski poznatu Carnegie zbirku je 1887. godine utemeljio Franklin P. Mall, prvu verziju današnjeg sustava Carnegie stadija uspostavio je George L. Streeter 1940. godine (O'Rahilly i Müller 2010), a sadašnju verziju sustava razvili su Ronan O'Rahilly i Fabiola Müller (O'Rahilly i Müller 1987). U nastavku teksta koristiti ćemo se revidiranom verzijom Carnegie stadija iz 1987. godine (O'Rahilly i Müller 1987). Nažalost, za fetalno razdoblje ovakav sustav stadija ne postoji, zbog nedostatka čvrsto utvrđenih morfoloških pokazatelja (O'Rahilly i Müller 2010).

1.1.1. Embrionalni razvoj središnjeg živčanog sustava do zatvaranja neuralne cijevi (Carnegie stadiji 8 – 12)

Prva vidljiva naznaka razvoja živčanog sustava može se uočiti oko 23. dana nakon oplodnje (Carnegie stadij 8), jer tada nastaje neuralna ploča od čijeg neuroepitela se kasnije razviju sve stanice živčanog sustava (O'Rahilly i Gardner 1979, O'Rahilly i Müller 1981, 2006). Zanimljivo je primijetiti da osnova živčanog sustava nastaje prije osnove drugih organa (O'Rahilly i Müller 1981, 2006). U tom stadiju, rostralni dio embrija (buduća osnova velikog mozga) je širi od kaudalnog. U drugoj polovici ovog stadija (Carnegie stadij 8b) po prvi puta može se uočiti neuralni žlijeb (O'Rahilly i Müller 2006). U carnegie stadiju 9 (oko 26 dana nakon oplodnje), medijalni dijelovi počinju zadebljavati i uzdizati se te nastanu neuralni nabori, koji ograničavaju neuralni žlijeb (O'Rahilly i Gardner 1971; O'Rahilly i Müller 1983, 2006). U Carnegie stadiju 10 (oko 29 dana nakon oplodnje), počnu se u području rombencefalona i spinalne moždine spajati neuralni nabori i tako se počne oblikovati neuralna cijev (Müller i O'Rahilly 1985, O'Rahilly i Müller 2006). Rostralni otvor (neuroporus rostralis) neuralne cijevi zatvori se u Carnegie stadiju 11 (oko 30 dana nakon oplodnje; Müller i O'Rahilly 1986, O'Rahilly i Müller 2006). Proces preobrazbe neuralne ploče u neuralnu cijev naziva se primarna neurulacija.

Stadij	Prosječna najveća duljina (GL) u mm	Predloženi dani
1	0.1-0.15	1
2	0.1-0.2	2-3
3	0.1-0.2	4-5
4	0.1-0.2	6
5	0.1-0.2	7-12?
6	0.3	16-18?
7	0.6	18 - 21?
8	1.1	21 - 25
9	1.4	25 - 27
10	2.1	28-30?
11	3.2	28-30
12	3.9	29-31
13	4.9	30 - 33
14	6.5	33 - 35
15	7.8	35 – 37
16	9.6	37 - 40
17	12.2	39-42
18	14.9	42-45
19	18.2	45 - 47
20	20.7	47 - 50
21	22.9	49 - 52
22	25.5	52 - 55
23	28.8	53 – 58

Tablica 1. Podjela embrionalnog razdoblja na Carnegie stadije. Preuzeto, uz manje izmjene, iz O'Rahilly i Müller (2010). Najveća duljina (eng. Greatest length – GL) se definira kao najveća duljina embrija ili fetusa bez donjih udova.

Vrlo rano tijekom embrionalnog razvoja mogu se uočiti razvojne osnove različitih moždanih struktura. Na prijelazu iz Carnegie stadija 8 u stadij 9 (oko 26 dana nakon oplodnje), a prije nastanka neuralne cijevi, mogu se rostralno prepoznati tri glavna dijela budućeg velikog mozga: prosencephalon (većinom diencephalon), mesencephalon i rhombencephalon, te ušna pločica (discus oticus) kao osnova budućeg unutarnjeg uha (Bartelmez 1923; O'Rahilly i Müller 1983, 2006). Oko 29. dana nakon oplodnje (Carnegie stadij 10), u razvojnoj osnovi diencefalona mogu se uočiti osnova budućeg talamusa i vidna pločica (discus opticus) kao osnova mrežnice, te hijazmatska ploča kao osnova budućeg križanja vidnog živca (Müller i O'Rahilly 1985, O'Rahilly i Müller 2006). U ovom stadiju mogu se uočiti i prvi tragovi telencefalona, kao lateralni dijelovi prosencefalona ispred hijazmatske ploče (Müller i O'Rahilly 1985, O'Rahilly i Müller, 1987, 2006). U Carnegie stadiju 11 nastaju razvojne osnove završne ploče (lamina terminalis) i komisurne ploče u dnu neparnog dijela telencefalona (telencephalon impar) (Müller i O'Rahilly 1986, O'Rahilly i Müller 2006). Također se

mogu uočiti i razvojne osnove adenohipofize i neurohipofize, koje se razvijaju kao jedinstveni organ, te razvojna osnova corpora mamillaria (Müller i O'Rahilly 1986, O'Rahilly i Müller 2006). Pojava marginalne zone u ovom stadiju prva je naznaka funkcionalnog razvoja središnjeg živčanog sustava (Müller i O'Rahilly 1986). Razvojna osnova malog mozga se može po prvi put uočiti oko 32 dana nakon oplodnje, kao zadebljanje alarne ploče rombencefalona (O'Rahilly i Müller 2006).

1.1.2.Razvoj središnjeg živčanog sustava nakon zatvaranja neuralne cijevi (Carnegie stadiji 13 – 23)

Carnegie stadij 13 je prvi stadij u kojemu je živčani sustav potpuno zatvoren i odijeljen od ostatka organizma (Müller i O'Rahilly 1988a, O'Rahilly i Müller 2006). U ovom stadiju još nema karakterističnog proširenja kranijalnog dijela neuralne cijevi (Müller i O'Rahilly 1988a). U stijenci središnjeg, neparnog dijela telencefalona (telencephalon impar) po prvi puta se mogu uočiti razvojne osnove moždanih polutki, a u razvojnoj osnovi diencefalona mogu se uočiti mamilarno i infundibularno područje (Müller i O'Rahilly 1988a). Oko 32 dana nakon oplodnje pojavljuje se po prvi puta razvojna osnova malog mozga, u alarnoj ploči prvog segmenta rombencefalona (Müller i O'Rahilly 1988a, O'Rahilly i Müller 2006). Razvojna osnova telencefaličkih mjehurića pojavljuje se prvi puta u Carnegie stadiju 14, odvojena od osnove diencefalona di-telencefaličkim žlijebom (oko 33 dana nakon oplodnje; Müller i O'Rahilly 1988b, O'Rahilly i Müller 2006). U ovom stadiju, stijenka telencefaličkih mjehurića sastoji se samo od ventrikularne zone, s iznimkom tri područja u kojima postoji i marginalna zona, a to su: a) razvojna osnova njušnog područja, b) razvojna osnova amigdala i c) razvojna osnova hipokampusa (Müller i O'Rahilly 1988b). U ovom stadiju pojavljuje se i medijalni ganglijski brežuljak, koji potječe od razvojne osnove diencefalona (Müller i O'Rahilly 1988b). Klasična podjela razvojne osnove velikog mozga na pet moždanih mjehurića (telencephalon, diencephalon, mesencephalon, myelencephalon i metencephalon) u potpunosti je vidljiva u Carnegie stadiju 15 (O'Rahilly i Müller 2006). Karakteristika ovog stadija je pojava mnogih struktura diencefalona, koje do tada nisu bile uočljive. Diencefalon se može podijeliti u pet longitudinalnih zona: epitalamus, dorzalni talamus, ventralni talamus, subtalamus i hipotalamus (Müller i O'Rahilly 1988c, O'Rahilly i Müller 2006). Vidi se i hipotalamički žlijeb, koji odvaja ventralni talamus od hipotalamusa (Müller i O'Rahilly 1988c). Također se po prvi puta uočavaju habenularne i mamilarne jezgre (Müller i O'Rahilly 1988c). U ovom stadiju pojavljuje se i drugi dio razvojne osnove bazalnih ganglija – lateralni ganglijski brežuljak, koji potječe od razvojne osnove telencefalona (Müller i O'Rahilly 1988c, O'Rahilly i Müller 2006). Spajanjem rostralnog dijela malog mozga, koji nastaje od istmičkog segmenta, u ovom stadiju nastaje razvojna osnova za velum medullare superius (Müller i O'Rahilly 1988c). U Carnegie stadiju 16 moguće je prepoznati glavne tipove moždane kore:

archicortex (hipokampus), palaeocortex (njušno područje) i neocortex (Müller i O'Rahilly 1989a). Zbog rasta moždanih polutki prema rostralno i dorzalno, telencefalon postupno prekriva diencefalon, a pojavi se i fissura longitudinalis (Müller i O'Rahilly 1989a). U ovom stadiju pojavljuje se i commisura posterior (Müller i O'Rahilly 1989a). U Carnegie stadiju 17, po prvi put mogu se uočiti bulbus olfactorius i tuberculum olfactorium (Müller i O'Rahilly 1989b, O'Rahilly i Müller 2006), kao i pojava mnogih važnih jezgara u velikom mozgu (amigdala, septalne jezgre), u mezencefalonu (nucleus niger, nucleus ruber i nucleus interpeduncularis), te locus coeruleus u rombencefalonu (Müller i O'Rahilly 1989b, O'Rahilly i Müller 2006). Pojavom stražnje komisure u ovom stadiju može se odrediti jasna granica između diencefalona i mezencefalona, koja prolazi kroz stražnju komisuru i komisuru gornjih kolikula (Müller i O'Rahilly 1989b). Rast moždanih polutki se nastavlja i u Carnegie stadiju 18, a fissura longitudinalis cerebri dopire do polovice moždanih polutki (Müller i O'Rahilly 1990a, O'Rahilly i Müller 2006). Vidi se i lateralni ganglijski brežuljak, to jest budući corpus striatum (Müller i O'Rahilly 1990a, O'Rahilly i Müller 2006). U ovom stadiju može se po prvi put uočiti i razvojna osnova nucleus dentatus u malom mozgu (Müller i O'Rahilly 1990a, O'Rahilly i Müller 2006). Na prijelazu iz Carnegie stadija 18 u stadij 19, pojavljuje se razvojna osnova vanjskog segmenta paliduma, globus pallidus externus (Müller i O'Rahilly 1990a, O'Rahilly i Müller 2006). U Carnegie stadiju 19 možemo uočiti nucleus accumbens septi (O'Rahilly i Müller 2006), a u stadiju 20 počinju se razvijati medijalna septalna jezgra i dijagonalna jezgra (Müller i O'Rahilly 1990a, O'Rahilly i Müller 2006). U Carnegie stadiju 21, po prvi puta se u stijenci telencefalona pojavljuje kortikalna ploča (Müller i O'Rahilly 1990b, O'Rahilly i Müller 2006). Mogu se razaznati tri važna dijela subtalamičkog područja: nucleus subthalamicus proper, nucleus entopeduncularis (budući globus pallidus internus) i globus pallidus externus (O'Rahilly i Müller 2006). U Carnegie stadiju 22 javlja se vrlo važan snop vlakana – capsula interna, koja u ovom razdoblju povezuje neokorteks s tri područja: a) epitalamusom, b) dorzalnim talamusom i c) mesencefalonom (Müller i O'Rahilly 1990b, O'Rahilly i Müller 2006). Posljednji klasični bazalni ganglij, klaustrum, također se počinje razvijati, a uz njega nastaje i capsula externa (Müller i O'Rahilly 1990b, O'Rahilly i Müller 2006). Carnegie stadij 23 je posljednji stadij embrionalnog razdoblja. Karakteristike tog stadija su: a) kortikalna ploča se proteže kroz skoro cijeli neokorteks, b) hipokampus je smješten u temporalnom polu, c) inzula se nazire kao udubljeno područje, d) u strijatumu se uočavaju razvojne osnove kaudatusa i putamena, e) globus pallidus externus se premjestio iz diencefaličkog u telencefalički dio hemisfere, f) commisura anterior se počela razvijati, g) križanje piramida (decussatio pyramidum) se vidi na granici rombencefalona i spinalne moždine, h) colliculi superiores i colliculi inferiores mogu se prepoznati u tektumu mezencefalona i i) dva para krakova malog mozga (gornji i donji) su dobro razvijeni (Müller i O'Rahilly 1990b, O'Rahilly i Müller 2006).

1.1.3. Fetalni razvoj ljudskog mozga od 8. tjedna nakon oplodnje do rođenja

U fetalnom razdoblju dolazi do novih morfoloških, kemijskih, genetskih i funkcionalnih promjena već ranije opisanih struktura, te pojave novih, dosad neopisanih struktura. Moždane polutke odraslog mozga sastoje se od moždane kore, bijele tvari i bazalnih ganglija. No, stijenka fetalnog telencefalona je bitno drugačije građena. Svi dijelovi te stijenke su privremene, fetalne strukture, koje se postupno pretvaraju u strukture karakteristične za odraslu dob. Za te privremene fetalne strukture postoji i posebno nazivlje (The Boulder Committee 1970). To su tzv. embrionalne i fetalne zone, koje brojimo od ventrikularne prema pijalnoj površini telencefalona: a) ventrikularna zona, b) subventrikularna zona, c) intermedijalna zona i d) marginalna zona. Ta izvorna podjela na četiri zone danas je revidirana i dopunjena (Bystron i sur. 2008), pa u ostatku teksta koristimo današnju podjelu, kako slijedi: a) ventrikularna zona (VZ), b) subventrikularna zona (SVZ), c) intermedijalna zona (IZ), d) subplate zona (SP), e) kortikalna ploča (CP) i f) marginalna zona (MZ). Takva tipična laminacija stijenke fetalnog telencefalona se najbolje uočava u razdoblju od 15. do 24. postovulacijskog tjedna.

Ventrikularna i subventrikularna zona su zone proliferacije, to jest mitotičkih dioba preteča neurona i glije. Ventrikularna zona je prva proliferacijska zona telencefalona, vidljiva od trenutka nastanka neuralne cijevi. Nakon zatvaranja neuralne cijevi, a prije početka neurogeneze, ventrikularna zona se sastoji od jednog (pseudostratificiranog) reda neuroepitelnih stanica, čiji radijalni izdanci sežu do pijalne površine (Rakic 1988, Rakic 1995, Bystron i sur. 2008). U to vrijeme se stanice ventrikularne zone dijele simetričnim diobama (svaka stanica preteča se podijeli na dvije nove stanice preteče), te tako povećavaju i površinu i volumen ventrikularne zone i broj preteča budućih neurona (Rakic 1995, Bystron i sur. 2008). Početak neurogeneze je označen pojavom asimetričnih dioba u ventrikularnoj zoni, tijekom 5. postovulacijskog tjedna (Rakic 1988, 1995, Bystron i sur. 2006). Asimetričnom diobom nastaje jedan postmitotički neuron buduće moždane kore (koji se više nikada ne dijeli) te jedna stanica preteča koja se dalje dijeli (Rakic 1985, 1988, 1995, Noctor i sur. 2001, Bystron i sur. 2008). U ventrikularnoj zoni postoji više vrsta stanica preteča, no najvažnija i najveća skupina su radijalne glijalne stanice (Zecevic 2004, Howard i sur. 2004, Gal i sur. 2006, Kriegstein i Alvarez-Buylla 2009, Franco i Müller 2013). Pretpostavlja se da neurogeneza u ventrikularnoj zoni čovjeka završava oko 18. postovulacijskog tjedna (Rakic i Sidman 1968, Rakic 1995). Po završetku neurogeneze, ventrikularna zona se pretvori u ependim. Subventrikularna zona se javlja između 7. i 8. postovulacijskog tjedna (Zečević 1993), kada se mitotički aktivne stanice (intermedijalne preteče) počnu nakupljati na bazalnoj granici ventrikularne zone (The Boulder Committee 1970, Bystron i sur. 2009). Studije na miševima su pokazale da intermedijalne preteče nastaju u ventrikularnoj zoni asimetričnom diobom radijalnih glijalnih stanica, a potom se premještaju (migriraju) u subventrikularnu zonu, gdje se podijele na dva postmitotička neurona buduće moždane kore

(Haubensak i sur. 2004, Noctor i sur. 2004, Miyata i sur. 2004, Bystron i sur. 2009). Kod čovjeka, subventrikularna zona proizvodi većinom interneurone, subplate neurone i neurone supragranularnih slojeva moždane kore (Letinic i sur. 2002, Smart i sur. 2002, Rakic 2003, Zecevic i sur. 2005). U razdoblju od 18. postovulacijskog tjedna (prestanak neurogeneze u ventrikularnoj zoni) do 24. postovulacijskog tjedna (prestanak neurogeneze u subventrikularnoj zoni), subventrikularna zona je jedino mjesto neurogenze za moždanu koru, a u tom razdoblju se stvaraju neuroni za supragranularne slojeve moždane kore (Zecevic i sur. 2005). Po završetku neurogeneze, subventrikularna zona se pretvori u subependimnu zonu, u kojoj se nalazi zaliha matičnih stanica u odraslom mozgu (Sanai i sur. 2004). Postmitotički neuroni iz ventrikularne i subventrikularne zone radijalnom migracijom (duž radijalnih glijalnih stanica) i tangencijalnom migracijom napuštaju zone proliferacije te putuju do svog konačnog položaja u kortikalnoj ploči, to jest budućoj moždanoj kori (Rakic 1972, Hatten 1999, Marín i Rubenstein 2001, 2003).

Intermedijalna zona je područje ograničeno s jedne strane zonama proliferacije, a s druge strane kortikalnom pločom, odnosno subplate zonom nakon njezinog formiranja (The Boulder Committee 1970, Bystron i sur. 2008). Intermedijalna zona ispunjena je tangencijalno usmjerenim aksonima, migrirajućim neuronima i radijalnim nastavcima radijalnih glijalnih stanica (The Boulder Committee 1970, Bystron i sur. 2008). Intermedijalna zona se postupno pretvara u bijelu tvar odraslog mozga, te ju zbog toga često opisujemo i kao fetalnu bijelu tvar.

Kortikalna ploča nastaje tijekom 7. postovulacijskog tjedna (Bystron i sur. 2008). Postmitotički neuroni se u kortikalnu ploču smještaju po tzv. pravilu "iznutra prema van" (eng. "inside-out") što znači da mlađi (kasnije stvoreni) neuroni moraju migrirati kroz sloj starijih neurona i smjestiti se iznad njih, bliže pijalnoj površini. Drugim riječima, neuroni dubljih slojeva su stariji od neuron površinskih slojeva (Angevine i Sidman 1961, Rakic 1974). Vrhunac migracije neurona za kortikalnu ploču zbiva se između 12. i 20. postovulacijskog tjedna, a migracija svih kortikalnih neurona se dovrši tijekom trećeg trimestra (Sidman i Rakic 1973, Rakic i sur. 1994, Gressens 2000, Bystron i sur. 2009). Molekularni fenotip, te arealna i laminarna pripadnost neurona moždane kore određeni su trenutkom rođenja u ventrikularnoj i subventrikularnoj zoni (Rakic 1988, Krubitzer i Kaas 2005, Shen i sur. 2006). Posljednjih godina, tehnološki napredak omogućio je otkriće specifičnih gena za pojedine subpopulacije projekcijskih neurona moždane kore. Do danas je otkriveno više od 60 različith biomarkera za različite subpopulacije projekcijskih neurona moždane kore, specifičnih za pojedini sloj ili za pojedine subpopulacije unutar nekog sloja moždane kore (Molyneaux i sur. 2007). Do kraja sedmog mjeseca trudnoće se kortikalna ploča zajedno s marginalnom zonom pretvori u univerzalnu šestoslojnu moždanu koru (Bystron i sur. 2008). Regionalna i arealna diferencijacija moždane kore započne između šestog i osmog mjeseca trudnoće (Brodmann 1906), pa nakon toga postupno nastaju razlike u citoarhitektonskoj građi različitih polja i područja moždane kore (npr. broj

6

slojeva, veličina stanica, oblik stanica) na kojima se temelje različite citoarhitektonske mape moždane kore.

Marginalna zona je fetalna zona smještena ispod pijalne površine (isprva iznad ventrikularne zone, a potom iznad kortikalne ploče), a sadrži malobrojne neurone (The Boulder Committee 1970, Bystron i sur. 2008). Vrijeme nastanka neurona marginalne zone se bitno razlikuje u glodavaca i primata. Dok se svi neuroni marginalne zone glodavaca stvore prije pojave kortikalne ploče (Jiménez i sur. 2003), u primata se njihova neurogeneza nastavlja i nakon pojave kortikalne ploče, tijekom prve dvije trećine trudnoće (Zecevic i Rakic 2001, Rakic i Zecevic 2003). Posebnost ljudske marginalne zone je i pojava iznimno razvijenog subpijalnog zrnatog sloja tijekom 11. postovulacijskog tjedna (Brun 1965, Gadisseux i sur. 1992, Meyer i Goffinet 1998, Rakic i Zecevic 2001, Bystron i sur. 2008, Judaš i Pletikos 2010). Marginalna zona sadrži posebne, krupne fetalne neurone, tzv. Cajal-Retziusove stanice (Krmpotić-Nemanić i sur 1987, Meyer i González-Hernández 1993, Verney i Derer 1995, Meyer i Goffinet 1998, Meyer i Wahle 1999, Meyer i sur. 2000, 2002, 2003, Abraham i sur. 2004, Cabrera-Socorro i sur. 2007, Meyer 2010). Ova populacija neurona iznimno je važna za uspostavu ispravne laminacije moždane kore, zbog toga što ti neuroni sintetiziraju protein reelin, koji je bitan sastojak izvanstaničnog matriksa (Meyer i sur. 1999, Tissir i Goffinet 2003, Meyer 2010). Prve Cajal-Retziusove stanice mogu se uočiti u marginalnoj zoni čovjeka u 7. postovulacijskom tjednu (Larroche 1981, Larroche i Houcine 1982). Cajal-Retziusove stanice sintetiziraju neuropeptid Y, NPY (Uylings i Dellale 1997), te sadrže kalbindin, kalretinin i poneke parvalbumin (Verney i Derer 1995, Cao i sur. 1996, Yan i sur. 1997). U novorođenčeta, Cajal-Retziusove stanice sadrže parvalbumin i pokazuju znakove degeneracije (Ding i sur. 2000). Cajal-Retziusove stanice mogle bi biti jedina populacija prolaznih stanica u mozgu čovjeka (Meyer 2010). Cajal-Retziusove stanice posebne su i u evolucijskom smislu. Marginalna zona se tijekom razvoja pretvori u sloj I moždane kore, u kojem se nalaze završeci apikalnih dendrita piramidnih neurona i poneki neuron.

1.2. Subplate zona i subplate neuroni

1.2.1. Otkriće subplate zone

Povijest otkrića subplate zone detaljno je opisana u nedavno objavljenom preglednom članku (Judaš i sur. 2010a), pa ovdje ističemo samo ključne činjenice. Wilhelm His subplate zonu nije smatrao zasebnom zonom, nego dijelom intermedijalne zone (His 1904), a kao vanjski dio intermedijalne zone opisali su je i Von Economo (Von Economo i Koskinas 1925) te Filimonov (Filimonoff 1929). Kao uvod u otkriće subplate zone može se označiti tri neurofiziološke studije prenatalnog razvoja somatosenzibilne moždane kore u ovce (Aström 1967, Bernhard i sur. 1967, Molliver 1967). Pritom je posebice bitan rad Aströma (Aström 1967), koji je jasno opisao krupne zvjezdaste neurone ispod kortikalne ploče i smatrao ih dijelom razvojne osnove moždane kore, te Marka Molliver (Molliver 1967) koji je pretpostavio da su baš ti neuroni izvor pozitivnih kortikalnih potencijala kod fetalnih ovaca. Stoga su Mark Molliver i Hendrik van der Loos na Sveučilištu The Johns Hopkins (Baltimore) započeli elektronsko-mikroskopsku analizu fetalne moždane kore glodavaca, mačaka i pasa, a 1972. im se pridružio i Ivica Kostović čija je zadaća bila istraživanje sinaptogeneze u fetalnoj moždanoj kori čovjeka (Judaš i sur. 2010a). Tijekom te suradnje, otkrivena je rana bilaminarna sinaptogeneza u ljudskoj moždanoj kori (Molliver i sur. 1973) i po prvi puta je opisana subplate zona kao zasebni arhitektonski sloj i ključan dio razvojne osnove moždane kore (Kostović i Molliver 1974).

1.2.2. Razvojno i evolucijsko porijeklo subplate neurona

Subplate neuroni su jedna od najranije stvorenih populacija neurona tijekom neurogeneze moždane kore sisavaca (Kostović i Rakic 1980, Luskin i Shatz 1985, Valverde i sur. 1989, Allendoerfer i Shatz 1994, Price i sur. 1997, Hoerder-Suabedissen i Molnár 2013). Postoje značajne razlike u porijeklu subplate neurona između različitih vrsta, te različite teorije o evolucijskom nastanku subplate neurona. Kod vrsta iz reda *Rodentia* i *Carnivora* subplate neuroni se rađaju prije pojave kortikalne ploče i sastavni su dio prolaznog *preplate* sloja, te njihova neurogeneza prestaje s početkom neurogeneze za kortikalnu ploču, a novonastala kortikalna ploča podijeli *preplate* sloj u marginalnu zonu i subplate zonu (König i sur. 1975, Raedler i Sievers 1975, Rickmann i sur. 1977, Marin-Padilla 1978, Raedler i Raedler 1978, Caviness 1982, Luskin i Shatz 1985, Valverde i sur. 1989, Allendoerfer i Shaz 1994, Price i sur. 1997, Bystron i sur. 2008, Hoerder-Subedissen i Molnár 2013). Kod ovih vrsta sisavaca, subplate neuroni nastaju u dva područja: a) projekcijski (glutamatni) neuroni nastaju u ventrikularnoj zoni, a b) interneuroni nastaju u ganglijskom brežuljku bazalnog telencefalona (Bystron i sur. 2008). No, u redu *Primates* došlo je do značajne promjene u neurogenezi subplate neurona (Kostović i Rakic 1980, 1990, Smart i sur. 2002, Lukaszewicz i sur. 2005, Bayatti i sur. 2007). Kod majmuna (a i kod čovjeka), neke vrste subplate neurona odgovaraju populaciji subplate neurona kod Rodentia i Carnivora. Pravo postojanje preplate sloja koji se podijeli na marginalni sloj i subplate zonu nije dokazano niti histološkim niti imunohistokemijskim metodama. Kostović i Rakic opisali su kod čovjeka i majmuna da velika većina rano generiranih neurona smještenih između marginalne i intermedijalne zone, prije pojave kortikalne ploče, bude uključena u subplate zonu, no nisu opisali postojanje histološkog preplate sloja (Kostović i Rakic 1990). Bayatti i suradnici analizirali su razvoj neokorteksa kod čovjeka između 8. i 17. postovulacijskog tjedna različitim imunohistokemijskim markerima (Bayatti i sur. 2007). U toj studiji prvi znakovi pojave subplate zone u vidu ekspresije imunohistokemijskih markera aktivnih sinapsi (sinaptofizin i vGAT) uočeni su tek između 10. i 13. postovulacijskog tjedna, što odgovara presubplate stadiju Kostovića i Rakica, tj. dva tjedna nakon pojave kortikalne ploče (Kostović i Rakic 1990, Bayatti i sur. 2007). Za razliku od ranog nastanka i prestanka neurogeneze subplate neurona kod Rodentia i Carnivora, uz iznimku kod štakora gdje se pojedinačni neuroni mogu dodavati u subplate sloj nakon početka neurogeneze za kortikalnu ploču (Rickmann i sur. 1977, Raedler i Raedler 1978), glavnina subplate neurona se kod Primates kontinuirinao stvara usporedno s neuronima za kortikalnu ploču (Smart i sur. 2002, Lukaszewicz i sur. 2005, Molnár i sur. 2006, Bystron i sur. 2008). Glavni izvor ovih subplate neurona je subventrikularna zona, koja je evolucijski značajno narasla kod primata, te je glavni izvor neurona za supragranularne slojeve moždane kore i potencijalno za novu subpopulaciju subplate neurona (Tarabykin i sur. 2001, Smart i sur. 2002, Lukaszewicz i sur. 2005). Važno je spomenuti da se, za razliku od *Rodentia*, gdje se većina interneurona rađa u ganglijskom brežuljku bazalnog telencefalona (Anderson i sur. 1999), kod čovjeka 65% interneurona rađa u ventrikularnoj i subventrikularnoj zoni (Letinić i sur. 2002), što vjerojatno znači da u primata nastaju nove vrste interneurona, kakvih nema kod glodavaca.

Stoga subplate zona kod čovjeka i majmuna nije ostatak rane *preplate* zone, nego se javlja kasnije, nakon nastanka kortikalne ploče i sadrži puno više fenotipski raznovrsnijih subpopulacija neurona.

Filogenetsko porijeklo subplate zone i neurona dosada nije detaljno istraženo. Trenutno postoje tri hipoteze o evolucijskom porijeklu subplate neurona (Montiel i sur. 2011). Prva hipoteza smatra da su subplate neuroni isključivo prisutni u vrstama iz razreda *Mammalia*, te da se složenost subplate zone povećava u većim mozgovima i evolucijski novijim kortikalnim područjima (Kostović i Rakic 1990, Supėr i Uylings 2001, Molnár i sur. 2006, Montiel i sur. 2011). Druga hipoteza smatra da su subplate neuroni prisutni već u zajedničkom pretku vrsta iz razreda *Mammalia* i *Reptilia* (Marin-Padilla 1978, Aboitiz i sur. 2005, Montiel i sur. 2011). Treća hipoteza je mješavina prve dvije hipoteze. Ova hipoteza smatra da je populacija subplate neurona mješavina neurona prisutnih u zajedničkom pretku *Mammalia* i *Reptilia* i novijih populacija koje su se razvile kako je razvoj moždane kore i njezinih veza kroz evoluciju postajao sve složeniji (Aboititz 1999, Aboitiz i sur. 2005,

Montiel i sur. 2011, Wang i sur. 2011). Za rješenje ove dvojbe oko porijekla subplate neurona potrebno je dodatno analizirati morfološke i molekularne fenotipove subplate neurona, te detaljno analizirati ekspresiju gena u subplate neuronima kod različitih vrsta sisavaca. Zasad je razborito pretpostaviti da je u čovjeka populacija subplate neurona sastavljena i od subpopulacije neurona stvorenih prije oblikovanja koritkalne ploče (što bi odgovaralo *preplate* populaciji u *Rodentia* i *Carnivora*) i od mnogo veće i raznovrsnije subpopulacije neurona koji se nastavljaju stvarati usporedno s neurogenezom neurona kortikalne ploče.

1.2.3. Razvoj subplate zone

Razvoj subplate zone može se podijeliti u četiri stadija: a) presubplate stadij, b) stadij formiranja subplate zone, c) stadij razvijene subplate zone i d) stadij postupnog nestanka subplate zone (Kostović i Rakic 1990). Najranije naznake subplate zone mogu se vidjeti oko 12. postovulacijskog tjedna, u presubplate stadiju (Kostović i Rakic 1990). U tom stadiju može se uočiti na prijelazu između kortikalne ploče i intermedijalne zone uski pojas tkiva s rijetko raspoređenim stanicama, bogat dendritima i aksonima orijentiranima u različitim smjerovima i malim brojem asimetričnih sinapsi (Kostović i Rakic 1990). Oko 13. postovulacijskog tjedna počinje se formirati subplate zona (Kostović i Rakic 1990). U ovom stadiju gustoća stanica u dubokim dijelovima kortikalne ploče se smanjuje i postupno transformira u široki sloj smješten između kortikalne ploče i intermedijalne zone (Kostović i Rakic 1990). Subplate zona može se podijeliti u dva sloja: gornji subplate podsloj, koji nalikuje na "rahli, raspršeni" duboki dio kortikalne ploče, i donji subplate podsloj (Kostović i Rakic 1990). Oko 15. postovulacijskog tjedna subplate zona je formirana i u tom obliku postoji do otprilike 35. postovulacijskog tjedna. To razdoblje dijelimo u dvije faze : a) fazu povećanja debljine subplate zone i b) fazu maksimalne razvijenosti subplate zone (Kostović i Rakic 1990). Između 15. i 18. postovulacijskog tjedna, subplate zona se ubrzano podebljava i postaje najdeblji sloj stijenke fetalnog telencefalona (Kostović i Rakić 1990). Debljina se povećava prvenstveno zahvaljujući obilnom urastanju aksona, a ne pristizanju novih neurona (Rakic 1977, 1988, Kostović i Rakic 1990). Pri kraju ovog razdoblja, debljina subplate zone je četiri puta veća od debljine kortikalne ploče (Kostović i Rakic 1990). Tri vrste stanica mogu se uočiti u subplate zoni u ovom razdoblju: a) postmitotični migrirajući neuroni (Rakic 1972, Kostović i Rakic 1990), nezreli astrociti (Schmechel i Rakic 1979, Kostovic i Rakic 1990) i c) veliki multipolarni i piramidni neuroni (Kostović i Rakic 1980, 1990). Sinaptički kontakti između neurona subplate zone i aksona protežu se cijelom debljinom subplate zone i te sinapse većinom su asimetrične (Kostović i Rakic 1990). Faza maksimalne razvijenosti subplate zone je između 20. i 35. postovulacijskog tjedna, pa subplate zona ostaje najdeblji dio stijenke fetalnog telencefalona (Kostović i Rakic 1990). U ovom razdoblju možemo razlikovati pet morfoloških tipova

subplate neurona: a) veliki multipolarni neuroni, b) piramidni neuroni, c) veliki fuziformni neuroni, d) obrnuti piramidni neuroni i e) polimorfni neuroni s kruškolikim tijelom (Kostović i Rakic 1990). Postupno nestajanje subplate zone započinje oko 35. postovulacijskog tjedna (Kostović i Rakic 1990). Kako se tada počnu razvijati vijuge i brazde, te dolazi do citoarhitektonske diferencijacije kortikalne ploče, dolazi i do regionalnih razlika u nestajanju subplate zone. Subplate zona prvo nestaje u dubini sulkusa, a tek nakon toga u krunama vijuga (Kostović i Rakic 1990). Nestanak subplate zone završava između prvog i šestog postnatalnog mjeseca (Kostović i Rakic 1990). S druge strane, subplate neuroni ne nestaju sa subplate zonom, nego se uključe u supkortikalnu bijelu tvar kao intersticijski neuroni bijele tvari (Kostović i Rakic 1980, 1990).

1.2.4. Morfološki i molekularni fenotipovi subplate neurona

Subplate neuroni mogu se podijeliti u pet različitih morfoloških tipova: a) polimorfni, b) fuziformni, c) multipolarni, d) piramidni i e) obrnuti piramidni neuroni (Mrzljak i sur. 1988, 1992, Kostović i Rakic 1990). Subplate neuroni su morfološki razvijeniji od neurona moždane kore, a njihovi dendriti su dulji od dendrita kortikalnih neurona sve do 32. postovulacijskog tjedna (Mrzljak i sur. 1992). Intenzivna diferencijacija subplate neurona zbiva se između 17. i 25. postovulacijskog tjedna, dok su razne skupine aferentnih aksona smještene u subplate zoni (Mrzljak i sur. 1988, 1992). Dendritičko stablo subplate neurona kontinuirano se povećava tijekom razvoja ljudskog mozga, te je najveće pri rođenju i tijekom prvih tjedana života (Mrzljak i sur. 1988, 1992).

Subplate neuroni imaju raznovrsne molekularne fenotipove, pri čemu je osobito bitno da pokazuju svojstva i inhibicijskih GABA interneurona (Tablica 2 i 3) i projekcijskih glutamatnih neurona (Tablica 4). Ekspresija različitih neurotransmitera kod subplate neurona bila je predmet brojnih istraživanja (Tablica 2). Nazočnost inhibicijskog neurotransmitera GABA u subplate neuronima je dokazana izravnom imunohistokemijom (Tablica 2), te prisustvom sintetskih proteina (GAD 67, Tablica 4) i različitih transportera (GAT1 i vGAT, Tablica 4). S druge strane, nazočnost glutamata je pokazana na temelju indirektnih dokaza. Prisutnost vezikularnog transportera za glutamat (vGLUT, Tablica 4), sintetskog enzima (glutaminaza, Tablica 4) i različitih strukturnih proteina koji se nalaze jedino u glutamatnim piramidnim neuronima (npr. MAP2, Tablica 4), te piramidna morfologija mnogih subplate neurona danas se uzimaju kao dovoljno snažan dokaz za prisutnost glutamata kao neurotransmitera u subplate neuronima. Daljnja klasifikacija subplate neurona u zasebne skupine je vrlo složena. Na primjer, Petilla Interneuron Nomenclature Group je 2008. godine predložila skupinu kriterija za klasifikaciju interneurona. Prema tim kriterijima, interneurone treba klasificirati na temelju morfoloških, molekularnih i fizioloških kriterija (Petilla Interneuron Nomenclature Group 2008). U važne molekularne kriterije spadaju ekspresija različitih neurotransmitera, puferskih proteina za kalcij (eng. calcium-binding proteins), strukturnih proteina, ionskih kanala, transportera, receptora, transkripcijskih faktora, koneksina, te različith markera na staničnoj membrani (Petilla Interneuron Nomenclature Group 2008). Ekspresija različitih molekula iz gore navedenih kategorija opisana je u subplate zoni. Osim dva glavna neurotransmitera, subplate neuroni eksprimiraju i mnoge druge neurotransmitere kao što su NPY, somatostatin, tvar P, NO, kolecistokinin, APP i VIP (Tablica 2). Puferski proteini za kalcij (kalbindin, kalretinin i parvalbumin), kao klasični markeri različitih subpopulacija interneurona, također su eksprimirani u subplate zoni (Tablica 3). Subplate neuroni eksprimiraju i važne sinaptičke proteine (npr. sinaptofizin), ionske kanale (npr. KCC2), citoskeletne proteine (npr. MAP2, TUJ1), enzime važne za pravilno funkcioniranje raznih neurotransmiterskih sustava (npr. acetilkolinesteraza), te mnoge druge strukturne proteine poznatih i nepoznatih funkcija (Tablica 4). Subplate je ujedno i najranije mjesto ekspresije mnogih od navedenih proteina. Na primjer, prva ekspresija sinaptofizina kao markera sinapsi u mozgu čovjeka javlja se već u 16. postovulacijskom tjednu, što je znatno ranije nego u kortikalnoj ploči (Bayatti i sur. 2007, Wang i sur. 2011). Receptori za različite neurotransmitere (npr. GABA, glutamat, adrenalin), faktore rasta (NGF, HGF), hormone (estrogen), te drugi različiti receptori mogu se uočiti u subplate zoni (Tablica 5). Subplate neuroni eksprimiraju mnoge transkripcijske faktore (Tablica 6). Subplate neuroni eksprimiraju i različite membranske i ekstracelularne proteine (Tablica 7). U ovoj skupini mogu se pronaći faktori rasta (npr. HGF i CTGF), adhezijske molekule (npr. PTP ζ, neurocan) i plazmatski proteini (npr. fetuin). Posljednjih godina, pojavom visokoprotočnih metoda za analizu ekspresije gena, moguće je analizirati veliki broj eksprimiranih gena kako u subplate zoni tako i u drugim područjima mozga. Ovakv tip analize najčešće se koristi za analizu ekspresije gena u subplate zoni miša (Osheroff i Hatten 2009, Wang i sur. 2010, 2011, Oeschger i sur. 2012, Hoeder-Suabedissen i sur. 2013). Ove studije iznjedrile su nekoliko potencijalnih gena specifičnih za subplate zonu kao što su Nurr1, Ctgf, Cplx3, MoxD1 (Wang i sur. 2010, 2011, Hoerder-Suabedissen i Molnár 2013, Hoeder-Suabedissen i sur. 2013).

Tablica 2. Popis neurotransmiterskih biomarkera u subplate i intersticijskim neuronima. E = embrionalni dani; P = postnatalni dani; GW = tjedni trudnoće; PCW = postovulacijski tjedni; g = godine

BIOMARKER	VRSTA	DOB	IZVOR
	Čovjek		Okhotin i Kalinchenko 2003
APP	Majmun		Okhotin i Kalinchenko 2003
	Štakor		Okhotin i Kalinchenko 2003
		14, 17, 20, 24, 26, 28,	Yan i sur. 1992
	Čovjek	30, 32 GW	
		7 – 13 PCW	Zecevic i Milosevic 1997
	Maimun		Huntley i sur. 1988
	Majilluli		Meinicke i Rakic 1992
	Mačka	E50, E56, E60	Chun i Shatz 1989a
	IVIACKA		Chun i Shatz 1989b
UADA			Lauder i sur. 1986
		E16-21	Van Eden i sur. 1989
	Štakor	E16-P0	Cobas i sur. 1991
	Stakoi	P0-P3	Fonseca i sur. 1995
		P0 - P40	Robertson 2000
		P54	Arimatsu i sur. 2003
	Miš	E13-18	Del Rio i sur. 2000
	Čovjek	Odrasli	Ang i Shul 1995
Kolecistokinin	Mačka	E60	Chun i Shatz 1989a
	Miš	E16>	Del Rio i sur. 2000
		33-94g.	Meyer i sur. 1992
			Fischer i Kuljis 1994
		GW 15, 17, 20, 24, 28,	Yan i sur. 1996
		32	
		15 – 28 PCW	Yan i Ribak 1997
	Čovjek	Odrasli	Smiley i sur. 1998
NO i NADPH		18 – 40 PCW i odrasli	Downen i sur. 1999
			Judaš i sur. 1999
		20 – 35 PCW	deAzevedo i sur. 2002
		Odrasli	García-Marín i sur. 2010
	Majmun	Odrasli	Barone i Kennedy 2000
	Mačka	Odrasle	Mizukawa i sur. 1988
	Štakor		Clancy i sur. 2001
		E16-P10	Csillik i sur. 2002

Tablica 2. Nastavak

BIOMARKER	VRSTA	DOB	IZVOR
		67-91g.	Chan-Palay i sur. 1985
		1g., 27g., 32g., 40g.	Berman i Fredrickson 1992
			Fischer i Kuljis 1994
		Odrasli	Ang i Shul 1995
	Čoviek	14 PCW – 34 godine	Delalle i sur. 1997
	Covjek	14 PCW – 34 godine	Uylings i Delalle 1997
		16 PCW	Okhotin i Kalinchenko 2003
		11 – 40 PCW	Wai i sur. 2004
		12.5 PCW, 16 PCW	Bayatti i sur. 2008
		16 PCW	Wang i sur. 2011
			Huntley i sur. 1988
NPY	Maimun		Mehra i Hendrickson 1993
	Majinun		Smiley i sur. 2000
			Okhotin i Kalinchenko 2003
			Chun i sur. 1987
	Mažlia		Whale i Meyer 1987
	Маска	E50, E56, E60	Chun i Shatz 1989a
		P2 i P4	Antonini i Shatz 1990
		P0-P40	Robertson 2000
	Štakor	P7-P10	Csillik i sur. 2002
			Okhotin i Kalinchenko 2003
	Mix	E16>	Del Rio i sur. 2000
	IVIIS		Beglopoulos i sur. 2005
	Čovjek	22 – 32 PCW	Kostović i sur. 1991
			Fischer i Kuljis 1994
		Odrasli	Ang i Shul 1995
			Okhotin i Kalinchenko 2003
			Huntley i sur. 1988
	Majmun		Smiley i sur. 2000
Somatostatin			Okhotin i Kalinchenko 2003
			Chun i sur. 1987
	Mačka	E50, E56, E60	Chun i Shatz 1989a
		P2 i P4	Antonini i Shatz 1990
			Feldman i sur. 1990
	Štakor	P0 - P40	Robertson 2000
			Okhotin i Kalinchenko 2003
	Čavial	Odrasli	Ang i Shul 1995
	Covjek		Okhotin i Kalinchenko 2003
Tyron D	Majmun		Okhotin i Kalinchenko 2003
I Var P	Štoleon		Del Rio i sur. 1991
	Stakul		Okhotin i Kalinchenko 2003
	Miš		Beglopoulos i sur. 2005
VIP	Miš	P5>	Del Rio i sur. 2000

Tablica 3. Popis biomarkera puferskih proteina za kalcij u subplate i intersticijskim neuronima. Skraćenice kao u prethodnoj tablici.

BIOMARKER	VRSTA	DOB	IZVOR
	Čovjek	20 PCW>	Ulfig 2002
		Odrasli	García-Marín i sur. 2010
Calbindin	Mačka	Rođenje	Alcantara i Ferres 1995
	Štakor	E18>	Liu i Graybiel 1992
			Sanchez i sur. 1992
	Miš	E13-18	Del Rio i sur. 2000
		20 PCW>	Ulfig 2002
	Čovjek		Bayatti i sur. 2007
	5	16 PCW	Wang i sur. 2011
		Odrasli	García-Marín i sur. 2010
Calretinin	Štakor	E14-E21, P0-P3	Fonseca i sur. 1995
	Miš	E14.5, 15.5, 16.5	Zhou i sur. 1999
		E12, E15-18	Del Rio i sur. 2000
			Hevner i sur. 2003
			Beglopoulos i sur. 2005
	Čovjek	26 PCW >	Honig i sur. 1996
Darvalhumin		Odrasli	García-Marín i sur. 2010
	Štakor	E16-P10	Csillik i sur. 2002
	Miš		Beglopoulos i sur. 2005
\$10044	Čovjek	12-32 tjedna (zadnja	Chan i sur. 2003.
3100A4		menstruacija)	
S100A5	Čovjek	12-32 tjedna (zadnja	Chan i sur. 2003.
		menstruacija)	
S100A13	Čovjek	12-32 tjedna (zadnja	Chan i sur. 2003.
5100/115		menstruacija)	

Tablica 4. Popis biomarkera različitih strukturnih staničnih proteina u subplate i intersticijskim neuronima. Skraćenice kao u tablici 2.

BIOMARKER	VRSTA	DOB	IZVOR
AChE	Čovjek	Odrasli	Kostovic i Rakic 1980
		Odrasli	Smiley i sur. 1998
	Majmun	Odrasli između 4 i 7 g.	Smiley i sur. 1998
	Štakor	P0 – P40	Robertson 2000
Adenilat ciklaza 1 i 8	Miš	P3-4, Odrasli	Nicol i sur. 2005
	Čovjek		Wolozin i sur. 1988
			Valverde i sur. 1990
Alz-50	Mačka		Naegele i sur. 1991
			Dunn i sur. 1995
	Štakor		Al-Ghoul i Miller 1989
Bctl1	Miš	E15 i E18	Michishita i sur. 2004
Camk4	Štakor	E17>	Navarro i sur. 2013
Cnlv3	Mič		Osheroff i Hatten 2009
Сріхэ	10115		Hoeder-Suabedissen i Molnar 2013
	Štakor	E18>	Wolff i sur. 1984
GAD (67)	Stakor	P8	Navarro i sur. 2013
	Miš		Beglopoulos i sur. 2005
	Čovjek	14 – 42 PCW	Honig i sur. 1996
UAP45			Bayatti i sur. 2008
CAT 1	Čovjek	Odrasli	García-Marín i sur. 2010
UAI-I	Štakor	P5-P30	Yan i sur. 1997
	Čovjek	10.5 PCW	Bayatti i sur. 2007
VUAT		Odrasli	García-Marín i sur. 2010
vGLUT1	Čovjek	Odrasli	García-Marín i sur. 2010
VOLUTI	Miš	E13-E17	Ina i sur. 2007
Glutaminase	Štakor	P54	Arimatsu i sur. 2003
KAT-1	Štakor	E16-21, P1-7	Csillik i sur. 2002
KCC2	Čoviek	16 PCW	Bayatti i sur. 2007
KCC2	Covjek	16 PCW	Wang i sur. 2011
		16 – 22 GW	Sims i sur. 1988
MAP2		33-94g.	Meyer i sur. 1992
	Čovjek	22 – 42 PCW	Honig i sur. 1996
		16 PCW	Bayatti i sur. 2007
		Odrasli	García-Marín i sur. 2010
			Chun i sur. 1987
	Mačka	E50, E56, E60	Chun i Shatz 1989a
		E30-E60	Allendoerfer i sur. 1990
	Štakor		Choi i sur. 2010

Tablica 4. Nastavak

BIOMARKER	VRSTA	DOB	IZVOR
NADE	Miš	E15-P1	Kendall i sur. 2003
	Čovjek	Odrasli	García-Marín i sur. 2010
NeuN	Štakor		Torres-Reveron i Frielander 2007
INCUIN		P8	Navarro i sur. 2013
	Miš	P1-P9	Couégnas i sur. 2007
NRIF	Miš	E15-P1	Kendall i sur. 2003
SMI32	Čovjek	Odrasli	García-Marín i sur. 2010
SP-1	Mačka	P6, 10, 11, 12, 14	Wahle i sur. 1994
STOP	Miš	P1-P9	Couégnas i sur. 2007
Synaptojanin	Čovjek	15GW>70g.	Arai i sur. 2001
TUJ1	Štakor	E18	Sun i sur. 2002
			Choi i sur. 2010
	Miš	P0>	Del Rio i sur. 2000

Tablica 5. Popis biomarkera neurotransmiterskih receptora u subplate i intersticijskim neuronima. Skraćenice kao u tablici 2.

BIOMARKER	VRSTA	DOB	IZVOR
	Majmun		Meinicke i Rakic 1992
GABA A receptor		E16-P0	Cobas i sur. 1991
	Štakor	GD 18, 20, PD 1	Van Eden i sur. 1995
			Toress-Reveron i Frielander 2007
GABA B R1 i R2	Štakor	E16-18, P7	Lopez-Bendito i sur. 2002
	Čovjek		Okhotin i Kalinchenko 2003
Tyar D recentor	Majmun		Okhotin i Kalinchenko 2003
I var I Teceptor	Mačka	P 17	Matute i sur. 1993
	Štakor		Okhotin i Kalinchenko 2003
Somatostatin receptor	Štakor		Gonzalez i sur. 1989
Calcitonin receptor	Štakor	E19	Tolcos i sur. 2003
(CTR C1a)	Stakor		
AMPA/kainate	Štakor		Torres-Reveron i Frielander 2007
receptors	Sunor		
NMDA receptori	Štakor		Torres-Reveron i Frielander 2007
α^2 adrenergic receptor	Majmun	E65-E143, P1>	Lidow i Rakic 1994
	Štakor	P1>	Winzer-Serhan i Leslie 1999
β adrenergic receptor	Majmun	E90-128 (BA17) i	Lidow i Rakic 1994
p warener8re receptor		E107-128	
a4 nAChR	Covjek	17-24 GW i 34-42 GW	Schroder i sur. 2001
	Stakor	E20-P25	Ostermann i sur. 1995
α7 nAChR	Stakor	E16-P10	Csillik i sur. 2002
m2 receptori	Covjek	Odrasli	Smiley i sur. 1998
	Majmun	Odrasli između 4 i 7 g.	Smiley i sur. 1998
	Covjek		Kordower i Mufson 1992
	Majmun		Meinicke i Rakic 1993
p75NGFR	Mačka		Allendoerfer i sur. 1990
	Stakor		Koh i Higgins 1991
	Miš	E16.5	Zhou i sur. 1999
Estrogen-R	Stakor	E18, E20, P0-P21	Miranda i Toran-Allerand 1992
Lpar1/Edg2	Miš		Hoerder-Suabedissen i Molnar 2013
c-Met	Stakor	E18	Sun i sur. 2002
Trk	Covjek	5-34 GW	Chen i sur. 1996
Erbb3 i Erbb4	Majmun		Thompson i sur. 2007
GR	Miš	E17.5	Tsiarli i sur. 2013
PR	Štakor		Jahagirdar i Wagner 2010
~			Jahagirdar i sur. 2012
Glicinski receptor	Stakor		Kilb i sur. 2008
VGFR-3	Stakor	E17>	
Prickle1	Miš	E16.5 – E17.5	Liu i sur. 2013

Tablica 6. Popis transkripcijskih faktora i drugih gena eksprimiranih u subplate i inersticijskim neuronima. Skraćenice kao u tablici 2.

BIOMARKER	VRSTA	DOB	IZVOR
Bcl11b	Miš		Kwan i sur. 2008
Bhlhb5	Miš	E16.5	Brunelli i sur. 2003
Clim2	Miš	P3	Bulchand i sur. 2003
Dab-1	Čovjek	Sredina gestacije	Meyer i sur. 2003
EGR-1 (zif-268)	Mačka	0.5 i 1 tjedan	Kaplan i sur. 1995
Emx1, Emx2	Miš		Bishop i sur. 2003
	Štakor	E12.5	Hirata i sur. 2004
Fezf2	Mič		Chen i sur. 2005
	IVIIS	E14.5, E16.5	Kwan i sur. 2008
Foxp2	Miš	E14.5	Ferland i sur. 2003
Lmo3	Miš	E17.5, P3	Bulchand i sur. 2003
Mibp1	Miš	E15.5-17.5	Campbell i Levitt 2003
NUDDI	Čovjek	12 – 22 PCW	Wang i sur. 2011
	Štakor	E18, E20, E22, P3, P7,	Arimatsu i sur. 2003
		P14, P48, P54	
		P8	Navarro i sur. 2013
NORKI	Miš		Osheroff i Hatten 2009
		E15, E17, P9	Wang i sur. 2011
			Hoerder-Suabedissen i Molnar 2013
			Hoerder-Suabedissen i sur. 2013
Sox5	Miš	E14.5, E16.5	Kwan i sur. 2008
TDD 1	Čovjek	Prenatalno	Bayatti i sur. 2007
IDKI	Miš		Beglopoulos i sur. 2005
Tle4	Miš		Kwan i sur. 2008
Zfpm2	Miš		Kwan i sur. 2008

Tablica 7. Popis biomarkera membranskih i ekstracelularnih proteina u subplate i intersticijskim neuronima. Skraćenice kao u tablici 2.

BIOMARKER	VRSTA	DOB	IZVOR
α2zinc-binding globulin	Čovjek	14 PCW	Wang i sur. 2011
CNR/Pcdha	Miš	E15-E17.5	Morishita i sur. 2004
	Čovjek	12 – 22 PCW	Wang i sur. 2011
	Štakor	E16>	Heuer i sur. 2003
CTGF		E15, E17, P8	Wang i sur. 2011
	Miš		Hoerder-Suabedissen i Molnár 2013
			Hoerder-Suabedissen i sur. 2013
Dab-1	Čovjek	Sredina gestacije	Meyer i sur. 2003
	Majmun	E65, E80,E95	Donoghue i Rakic 1999
Efrini	Štakor		Kenmuir i sur. 2012
	Miš		Bishop i sur. 2003
	Čovjek	14 PCW	Wang i sur. 2011
Fetuin		20 – 40 PCW	Elsas i sur. 2012
	Štakor	P0 – P8	Elsas i sur. 2012
GAP 43	Čovjek	16 PCW	Bayatti i sur. 2007
HGF	Štakor	E18	Sun i sur. 2002
MoxD1	Miš		Hoerder-Suabedissen i sur. 2009
Neurexophilin 3	Miš		Beglopoulos i sur. 2005
	Štakor	E16>	Miller i sur. 1995
Neurocan			Fukuda i sur. 1997
	Miš	E14.5	Ohyama i sur. 2004
Nogo-A	Čovjek	16 – 36 PCW	Haybaeck i sur. 2013
Podocalyxin	Miš	E14-P0	Vitureira i sur. 2005
ΡΤΡ ζ	Miš	E14.5, E 15.5	Ohyama i sur. 2004
SEZ-6	Miš	E17.5	Kim i sur. 2002
Tmem163	Miš		Osheroff i Hatten 2009

1.3. Intersticijski neuroni bijele tvari odrasle moždane kore

1.3.1. Klasični pogled na intersticijske neurone bijele tvari

Prvi opis intersticijskih neurona bijele tvari dao je Theodor Meynert 1867. godine kao fuziformne neurone vertikalno orijentirane u kruni vijuge, a horizontalno ispod brazde (Meynert 1867, Judaš i sur. 2010a). Mnogi drugi istraživači toga doba uočili su intersticijske neurone bijele tvari i smatrali ih normalnom sastavnicom bijele tvari čovjeka (Boll 1874, Henle 1879, Judaš i sur. 2010a). Ovakav pogled na intersticijske neurone bijele tvari dobio je konačnu potvrdu u dvjema vrlo utjecajnim klasičnim publikacijama o citoarhitektonici ljudskog mozga. Prvo su Cécile i Oskar Vogt u svojem radu iz 1919. godine uveli "sedmi sloj" moždane kore koji zbog povijesnih razloga nazivaju slojem VIb (Vogt i Vogt 1919, Judaš i sur. 2010a). Druga važna potvrda postojanja intersticijskih neurona bijele tvari kao normalnog dijela bijele tvari došla je u knjizi Von Economa i Koskinasa (Judaš i sur. 2010a). U njihovoj knjizi iz 1925. godine, Von Economo i Koskinas detaljno su opisali podsloj VIb, prijelaz u bijelu tvar, prisutnost intersticijskih neurona bijele tvari i njihovo razvojno porijeklo (Von Economo i Koskinas 1925, Judaš i sur. 2010a). Važno je za spomenuti da osim što su ih smatrali normalnim nalazom u bijeloj tvari čovjeka, Von Economo i Koskinas su tvrdili da se ovi neuroni ne razvijaju od embrionalne kortikalne ploče, nego od neuroblasta koji su zastali u migraciji ispod kortikalne ploče (Von Economo i Koskinas 1925, Judaš i sur. 2010a). Von Economov učenik José Aldama analizrao je moždanu koru djece (u dobi od 11 mjeseci i 5.5 godina), te je pokazao da i u ovom stadiju postoje mnogobrojni intersticijski neuroni bijele tvari, zbog čega je teško odrediti preciznu granicu između moždane kore i bijele tvari u ovom stadiju (Aldama 1930, Judaš i sur. 2010a). Zanimljivo je za spomenuti da Santiago Ramón v Cajal, koji je prvi upotrebljavao termin "intersticijski" za neurone smještene izvan sive tvari mozga, neurone smještene u bijeloj tvari mozga čovjeka nije smatrao posebnom skupinom neurona nego kao dislocirane duboke neurone dubokih slojeva moždane kore (Ramón y Cajal, 1911, 1995, Judaš i sur. 2010a). Na temelju ovih radova možemo zaključiti da su intersticijski neuroni bijele tvari na prijelazu 19. u 20. stoljeće smatrani normalnim sastojkom supkortikalne bijele tvari čovjeka. No ovakav stav bit će snažno poljuljan u nadolazećim godinama.

1.3.2. Klasični pogled o intersticijskim neuronima u razvojnim poremećajima mozga.

U to doba mnogi neuropatolozi zainteresirali su se za razvojne poremećaje mozga, a te studije razvijale su se u dva glavna pravca (Judaš i sur. 2010a). Constantin von Monakow i njegovi studenti razvili su prvi pristup ovom pitanju. Prema njihovom shvaćanju, većina poremećaja migracije

kortikalnih neurona može se svrstati pod naziv "heterotopia", a najblaži oblik su pojedinačni neuroni ili male grupice neurona koje su tijekom migracije zastale (ili su preusmjerene) na krivom mjestu (uobičajeno u bijeloj tvari; Von Monakow 1901, Judaš i sur. 2010a). Heinrich Vogt je podržao sličan koncept najlakšeg poremećaja migracije, ali je istaknuo da se ovi neuroni mogu dalje razvijati, preživjeti i stvoriti veze, pa tako prolazni migracijski stadij postane trajno fiksirano stanje (Vogt 1905, Judaš i sur. 2010a). Isto tako tvrdio je da se intersticijski neuroni mogu uočiti i u normalnim mozgovima, ali uvijek unutar giralne bijele tvari, a u patološkim slučajevima su mnogo brojniji i mogu se uočiti i u dubokoj bijeloj tvari (Vogt 1905, Judaš i sur. 2010a). Drugi pristup razvio je Otto Ranke (Judaš i sur. 2010a). U svojoj studiji iz 1910. godine Ranke (Ranke 1910) je uveo dva bitna shvaćanja o neuronima smještenim u bijeloj tvari: a) da ova populacija neurona predstavalja specifičnu funkcionalnu, ali prolaznu, fetalnu populaciju neurona, koja nestaje nakon što ispuni svoju razvojnu ulogu i b) da je njihovo preživljenje u postnatalnom ili odraslom mozgu očiti znak patologije (Judaš i sur. 2010a). Velika većina neuropatologa je prihvatila Rankeov stav o neuronima bijele tvari, te su trebala gotovo dva desetljeća da se intersticijski neuroni bijele tvari ponovno počnu smatrati normalnim dijelom bijele tvari (Judaš i sur. 2010a).

1.3.3. Intersticijski neuroni bijele tvari nakon otkrića subplate zone

Kako je već spomenuto, subplate zona postupno nestaje kao zasebni, prepoznatljiv arhitektonski sloj. S druge strane, subplate neuroni su očuvani i uključuju se u bijelu tvar moždane kore, te se nazivaju intersticijski neuroni bijele tvari (Kostović i Rakic 1980, 1990, Valverde i Facal-Valverde 1988, Chun i Shatz 1989b). Autoradiografijom kod majmuna (Kostović i Rakic 1980) i mačke (Chun i Shatz 1989b) je dokazano da intersticijski neuroni bijele tvari potječu od subplate neurona i da su među najstarijim neuronima moždane kore. Kod Rodentia i Carnivora uočena je značajna degeneracija subplate neurona, i njihova programirana smrt, pa je populacija intersticijskih neurona bijele tvari značajno smanjena (Luskin i Shatz 1985, Wahle i Meyer 1987, Valverde i Facal-Valverde 1988, Chun i Shatz 1989, Woo i sur. 1991, Allendoerfer i Shatz 1994, Hoerder-Suabedissen i Molnár 2013). Programirana smrt subplate neurona ne pogađa jednako sve subpopulacije. U nedavnoj studiji Hoerder-Suabedissen i Molnár su pokazali na mišu da subpopulacije suplate neurona koje eksprimiraju Nurr1, Lpar1 i Cplx3 selektivno preživljavaju programiranu smrt stanica (Hoerder-Suabedissen i Molnár 2013). S druge strane, iako je kod primata i čovjeka opisana degeneracija i programirana smrt pojedinačnih subplate neurona, masivno nestajanje subplate neurona nije nikada uočeno (Kostović i Rakic 1980, 1990, Mrzljak i sur. 1988). Studije koje bi se bavile brojnošću intersticijskih neurona u bijeloj tvari čovjeka i analizom preživjelih subpopulacija subplate neurona dosada nisu rađene.

Neuroni bijele tvari mogu se pronaći ispod svih područja moždane kore, kako kod čovjeka tako i kod eksperimentalnih životinja (Valverde i Facal-Valverde 1988, Valverde i sur. 1989, Meyer i sur. 1992, García-Marín i sur. 2010). Postoje razlike u gustoći neurona bijele tvari u različitim područjima moždane kore (Meyer i sur. 1992, Rojiani i sur. 1996, Smiley i sur. 1998, Okhotin i Kalinichenko 2003, Eastwood i Harrison 2003, 2005, García-Marín i sur. 2010). Najveća gustoća intersticijskih neurona bijele tvari uočljiva je odmah ispod moždane kore i opada s udaljenosti od granice sive i bijele tvari (Meyer i sur. 1992, Rojiani i sur. 1996, Smiley i sur. 1998, Okhotin i Kalinichenko 2003, Eastwood i Harrison 2003, 2005, García-Marín i sur. 2010). Zanimljivo je da je nedavna studija García-Marína i suradnika pokazala da razlike u gustoći intersticijskih neurona bijele tvari, dok je gustoća neurona u dubokom dijelu bijele tvari vrlo slična u različitim područjima (García-Marín i sur. 2010).

1.3.4. Morfološki i molekularni fenotipovi intersticijskih neurona.

Intersticijski neuroni bijele tvari su heterogena skupina različitih morfoloških fenotipova, kao što su: fuziformni (Kostović i Rakic 1980, Okhotin i Kalinichenko 2003, García-Marín i sur. 2010), polimorfni (Kostović i Rakic 1980, Okhotin i Kalinichenko 2003, García-Marín i sur. 2010), piramidni (Meyer i sur. 1992) i zvjezdasti (Meyer i sur. 1992). O udjelu različitih morfoloških tipova postoje oprečni stavovi. Većina autora navodi da su ti neuroni uglavnom fuziformni i polimorfni, dok su Meyer i suradnici opisali intersticijske neurone bijele tvari kao pretežno piramidne (Meyer i sur. 1992). García-Marín i suradnici su na temelju imunohistokemijske analize ekspresije SMI32 proteina u intersticijskim neuronima bijele tvari zaključili da su to većinom ekscitacijski neuroni s dendritičkim trnovima, no nisu ih izrijekom opisali kao piramidne (García-Marín i sur. 2010). Polimorfni neuroni su smješteni bliže granici sive i bijele tvari, dok su fuziformni neuroni smješteni dublje u bijeloj tvari (Kostović i Rakic 1980, Okhotin i Kalinichenko 2003, García-Marín i sur. 2010). Pretpostavlja se da na morfologiju neurona utječe orijentacija snopova aksona u bijeloj tvari (Okhotin i Kalinichenko 2003).

Aktivni sinaptički kontakti se mogu uočiti na dendritima i somi intersticijskih neurona bijele tvari. Broj aksosomatskih sinapsi je malen, smanjuje se s dobi i praćen je povećanjem broja aksodendritičkih sinapsi (Kostović i Rakic 1980). O vrsti sinapsi na tijelu i dendritima intersticijskih neurona postoje oprečni nalazi. Kostović i Rakic su u svojoj studiji 1980. godine pokazali da su aksosomatske sinapse simetrične i asimetrične dok su aksodendritičke sinapse samo asimetrične (Kostović i Rakic 1980). Rezultati nedavne studije García-Marín i suradnika iz 2010 godine pokazuju da su aksosomatske sinapse samo simetrične, dok su aksodendritičke sinapse simetrične i asimetrične (García-Marín i sur. 2010). Gustoća sinapsi na intersticijskim neuronima bijele tvari je vrlo niska, te se smanjuje s dubinom smještaja u bijeloj tvari (Kostović i Rakic 1980, García-Marín i sur. 2010).

Intersticijski neuroni mogu biti i projekcijski (glutamatni) neuroni i interneuroni (GABA + peptidi). Za razliku od subplate neurona, gdje je GABA kao neurotransmiter dokazana izravnom imunohistokemijom, kod intersticijskih neurona bijele tvari ni jedna studija nije analizirala ekspresiju GABA na ovakav način. Indirektni dokaz da intersticijski neuroni bijele tvari pripadaju GABAergičkoj subpopulaciji nalazimo u ekspresiji tri najčešća puferska proteina za kalcij (kalbindin, kalretinin i parvalbumin, Tablica3) i GABA transportera (Tablica 4). Studije koje su analizirale ekspresiju različitih neurotransmitera kod intersticijskih neurona bijele tvari najčešće su se bavile ekspresijom NO (Tablica 2, Okhotin i Kalinchenko 2003). NO pozitivni neuroni vrlo često šalju svoje aksone prema krvnim žilama, pa je stoga predloženo da reguliraju lokalnu mikrocirkulaciju (Okhotin i Kalinichenko 2003, Suárez-Solá i sur. 2009). Uz NO opisana je i ekspresija NPY, somatostatina, tvari P, kolecistokinina i APP neuropeptida u intersticijskim neuronima bijele tvari (Tablica 2). Slično kao i za GABA populaciju, glutamatna populacija dokazana je na temelju piramidne morfologije (Meyer i sur. 1992) i molekularnih biomarkera (vGLUT, MAP2, SMI32; Tablica 4).

2. Hipoteza

Ovaj rad se temelji na dvije međusobno povezane hipoteze, od kojih je prva bitna za komparativnu razvojnu neurobiologiju, a druga za razvojnu i odraslu neuropatologiju. Prva hipoteza jest da SP/intersticijski neuroni imaju dvojno porijeklo, to jest da "subplate" zona u mozgu majmuna i čovjeka sadrži: (a) filogenetski stariju populaciju projekcijskih neurona koji su nastali u VZ i molekularne markere dijele s neuronima infragranularnih slojeva VI i V, te (b) filogenetski noviju populaciju projekcijskih neurona koji su nastali u SVZ i molekularne markere dijele s neuronima supragranularnih slojeva III i II. Prva populacija je zajednička mozgu glodavaca i primata, a druga populacija je specifična za evoluciju mozga primata i čovjeka.

Druga hipoteza jest da postoje regionalne razlike u morfološkim i molekularnim fenotipovima intersticijskih neurona, da su te razlike u skladu s regionalnim trendovima u samoj moždanoj kori (slojevima II – IV – npr. trendovi piramidalizacije, granularizacije) te da te razlike ne ovise o topografskom položaju neurona u različitim dijelovima girusa (culmen, stijenka, fundus).

3. Ciljevi rada

Opći cilj rada jest analizirati razvojno porijeklo intersticijskih neurona i regionalne razlike u njihovoj distribuciji, morfološkim i molekularnim fenotipovima u odraslom mozgu.

Specifični ciljevi su:

- 1. Utvrditi jesu li kod intersticijskih neurona očuvani svi morfološki tipovi fetalnih subplate neurona ili su u odraslom mozgu preostali samo neki od tih tipova
- Usporediti regionalne razlike u brojnosti intersticijskih neurona u primarnim osjetnim (vidno, somatosenzibilno), primarnim motoričkim (gyrus precentralis), asocijacijskim (prefrontalna kora, donji tjemeni režnjić) i limbičkim (gyrus cinguli) područjima moždane kore.
- 3. Utvrditi postoje li razlike u relativnoj učestalosti intersticijskih neurona piramidne, vretenaste ili interneuronske morfologije u kortikalnim područjima koja su karakterizirana piramidalizacijom (većina stanica poprima piramidni oblik npr. precentralni girus), odnosno granularizacijom (većina stanica poprima zrnati oblik npr. primarna vidna kora).
- 4. Utvrditi jesu li regionalne razlike u morfologiji intersticijskih neurona ovisne o morfologiji i topografiji kortikalnih vijuga jesu li razlike u morfološkim tipovima uočljive jedino u bijeloj tvari krune girusa, dok su neuroni na dnu svih sulkusa uniformno fuziformni i vodoravno orijentirani?
- 5. Utvrditi imaju li intersticijski neuroni iste molekularne biomarkere (transkripcijske faktore) kao neuroni infragranularnih slojeva (slojevi VI i V), kao neuroni supragranularnih slojeva (slojevi III i II), ili kombinaciju obje vrste biomarkera u različitim omjerima, ovisno o kortikalnom području (asocijacijska vs. primarna kora).

4. Materijal i metode

U izradi ove studije korištene su metode za analizu ekspresije gena te analizu ekspresije proteina. Posljedično tome korištene su i tri vrste uzoraka tkiva. Studija je izrađena na postmortalnim uzorcima ljudskog moždanog tkiva. Svi korišteni uzorci su uzeti iz mozgova bez vidljivih neuropatoloških promjena, s urednom citoarhitektonskom građom, te bez anamnestičkih znakova postojanja psihijatrijske ili neurološke bolesti.

4.1. Analiza ekspresije proteina – Imunohistokemija

Za analizu ekspresije proteina koristili smo metodu imunohistokemije. Imunohistokemija je rađena prema standardnom protokolu laboratorija za imunohistokemiju Hrvatskog instituta za istraživanje mozga. Postmortalni uzorci odraslog ljudskog mozga fiksirani su u otopini 4% paraformaldehida puferiranog fosfatnim puferom (pH = 7.4) od 4 do 8 tjedana. Potpuno fiksirani mozgovi serijski su izrezani u koronarnoj ravnini u kriške debljine 1.5 do 2 cm (Slika 1.). Svaka takva kriška je podijeljena u manje blokove (Slika 2.) koji su dvojako obrađeni: blokovi namijenjeni za krioprezervaciju stavljeni su u 10% otopinu saharoze, a blokovi namijenjeni za parafinsko uklapanje stavljeni su u 70% otopinu etanola. Postupak krioprotekcije se provodio na sljedeći način: nakon potpunog potonuća blokova u 10% otopini saharoze, mozgovi su premješteni u 20% otopinu saharoze. Nakon potonuća blokova u 20% otopini saharoze blokovi su zaleđeni na suhom ledu te pohranjeni za trajno čuvanje na -80 °C. Blokovi namijenjeni za parafinsko uklapanje su prošli postupak dehidracije kroz seriju etanola kako slijedi: 70%, 90%, 95% i 100% etanol. Nakon toga blokovi su uronjeni u parafin, te nakon orijentacije blokova uklopljeni u parafin i pohranjeni na sobnoj temperaturi. Krioprotektirani blokovi su odabrani za imunohistokemijsku studiju (5 blokova po mozgu, Tablica 8.). Blokovi su rezani na kriostatu (Leica CM3000) na 100 µm debljine. Za potrebe studije analizirani su sljedeći proteini: NeuN (1:500), MAP2 (1:200), KCC2 (1:2000) i Parvalbumin (1:1000) (Tablica 8.). Korištena je "free-floating" metoda imunohistokemije prema sljedećem protokolu:

- Pretretman u otopini metanol peroksida (7.5ml metanola, 2.5ml dH₂O, 15μm H₂O₂) 30 minuta
- 2. Ispiranje u PBS-u 3x 10 minuta
- 3. Blokiranje u otopini 5% BSA i 0.5% Tritona X-100 pripremljenoj u PBS-u 1 sat

- 4. Inkubacija u primarnom protutijelu na sobnoj temperaturi 1 sat
- 5. Inkubacija u primarnom protutijelu na +4 °C preko noći
- 6. Ispiranje u PBS-u 3x 10 minuta
- 7. Inkubacija u sekundarnom protutijelu 1 sat
- 8. Ispiranje u PBS-u 3x 10 minuta
- 9. Inkubacija u tercijarnom protutijelu 1 sat
- 10. Isprianje u PBS-u 3x 10 minuta
- 11. Razvijanje preparata s pomoću DAB kompleksa (Sigma fast DAB with metal enhancer set) prema potrebi
- 12. Ispiranje u PBS-u 3x 10 minuta
- 13. Sušenje preparata na sobnoj temperaturi
- 14. Pokrivanje preparata sredstvom Histamount

Slika 1. Podijela moždane polutke na kriške. Desna polutka ljudskog mozga podijeljena je u 10 kriški označenih kao D1 – D10. Debljina jedne kriške (1.5 do 2 cm) uvjetuje ukupan broj kriški u polutci.

Slika 2. Podjela kriški na manje blokove tkiva. Primjer podjele i označavanja kriški na manje blokove za izradu histoloških preparata. Svaki blok označen je s dva slova i jednom brojkom. Prvo slovo označava polutku (u ovom slučaju desna polutka – D), broj označava redni broj kriške u mozgu od čeonog pola prema zatiljnom polu (npr. D2 – druga kriška u desnoj polutci) i drugo slovo označava manji blok u kriški (u smjeru kazaljke na satu).

MOZAV	DOP	МЕТОРА	DI OK
MUZAK	DOR	NIE I UDA	
			D2 VENI D4 DODZ MED
		NouN	
ČO 266	66 andina	IneuIn	D4 DUKZ LAT
0 300	oo godina		
		Parvalbumin	D4 DOKZ LAT
			D2B
			D4A
		NeuN	D6A
			D8A
			D2B
ČO 369	51 godina	KCC2	
		KCC2	D7C
		MAP2	L2A L4B
		1VII XI 2	L4D
			L 2B
			I 4A
		NeuN	L5 ANG
			L6 HIPP A
v			L9A
CO 371	N/A		L2B
			L4A
		Parvalbumin	L5 ANG
			L6 HIPP A
			L9A
			ENT
č. 7. 277	10	WGGO	HIPP
CD 277	13 mjeseci	KCC2	FRONT
			VIDNI
ČF 588	17 PCW	KCC2	L3
ČD 297	20 PCW	KCC2	D2
S40/09	20 PCW	KCC2	D3
F89/09	22 PCW	KCC2	D3
ČD 220	22 DOW	KCCO	D2
CD 320	23 PC W	KUU2	D3
ČD 293	24 PCW	KCC2	D2

Tablica 8. Popis uzoraka korištenih u ovom radu. PCW = postovulacijski tjedni.

MOZAK	DOB	METODA	BLOK
ČD 311	25 PCW	KCC2	D3
			CING2
ČD 289	3 mjeseca	KCC2	CING3
			CING4
ČF 597	31 PCW	KCC2	L4
ČF 551	33 PCW	KCC2	D4
ČF 554	36 PCW	KCC2	D2A
ČF 587	40 PCW	KCC2	D5
			D1 DORZ
		DOBMETODA25 PCWKCC23 mjesecaKCC231 PCWKCC233 PCWKCC236 PCWKCC240 PCWKCC26,5 godinaKCC213 mjeseciMAP2	D4 DORZ
ČD 255	KDOBMETODA25 PCWKCC23 mjesecaKCC231 PCWKCC233 PCWKCC236 PCWKCC240 PCWKCC256,5 godina6,5 godinaKCC2713 mjeseciMAP2	KCC2	D4 VENT
ČF 597 ČF 551 ČF 554 ČF 587 ČD 255	0,5 gouina	KCC2	D8B
			HIPP
			L1 DORZ
ČD 277	12 miasoci	ΜΑΡΆ	FRONT
CD 277	15 injeseci	MIAP2	VIDNI

4.2. Histokemijski prikaz aktivnosti nikotin-adenin dinukleotid fosfatdijaforaze (NADPH-d)

Mozgovi korišteni za NADPH-d histokemiju fiksirani su u 4% paraformaldehidu puferiranom fosfatnim puferom (pH = 7.4) u trajanju od 24 do 48 sati, te su izrezani u koronarnoj ravnini. Blokovi su krioprotektirani u seriji otopina saharoze koncentracija od 5% do 30%, smrznuti i izrezani na kriostatu (Leitz, Savezna Republika Njemačka) u preparate debljine 40 – 90 μ m. NADPH-d histokemija rađena je prema standardnom protokolu laboratorija za neurohistologiju i kemijsku anatomiju Hrvatskog instituta za istraživanje mozga (Ellison i sur. 1987, Judaš i sur. 1999). Inkubacijska otopina (50 ml 0.1M PBS – ph = 8.0; 1 ml 0.8% Triton X-100; 1 mM beta-NADPH-d; 0.8 mM nitro-blue tetrazolium) je svježe pripremljena, te su slobodno plutajući rezovi ili rezovi montirani na predmetna stakalca inkubirani od 3 do 7 sati na 37 °C. Reakcija je prekinuta uranjanjem obojanih rezova u 0.1 M PBS. Rezovi su nakon toga isprani u destiliranoj vodi, postavljeni na predmetna stakalca, sušeni preko noći, dehidrirani u stupnjevanoj seriji etanola, kratko očišćeni u xylolu i pokriveni pokrovnim stakalcima uz korištenje medija Permount.

4.3. Stereološka analiza preparata

U svrhu određivanja brojnosti intersticijskih neurona bijele tvari učinjena je stereološka analiza imunohistokemijskih NeuN preparata. Analiza je učinjena pomoću programa Stereo Investigator (MBF Bioscience, Sjedinjene Američke Države) i Olympus BX51 motoriziranog mikroskopa sa sljedećim postavkama: veličina optičkog polja = 1 mm², veličina polja brojanja = 100 μ m², visina optičkog disektora = 80 μ m. Sveukupno je analizirano 42 preparata (Tablica 8). Na svakom preparatu prvo je određena kontura preparata, te nakon toga bijela tvar preparata podijeljena je u segmente prema pripadnosti različitim vijugama. Bijela tvar koja pripada određenoj vijuzi definirana je kao bijela tvar između stijenki vijuge, te bijela tvar ispod dna dviju susjednih brazdi do dubine od 3 mm (Slika 3, 4 i 5). Svaki segment bijele tvari zasebno je analiziran.

Slika 3. Segmenti bijele tvari u ČO 366. Bijela tvar podijeljena je u segmente ispod vijuga. Svaki segment označen je drugom bojom, a bijele točke predstavljaju mjesta gdje se nalaze intersticijski neuroni bijele tvari. ČO 366 D2 VENT (A – C), ČO 366 D4 DORZ LAT (E – G), ČO 366 D4 DORZ MED (H – I), ČO 366 D5 TEMP (J – L), ČO 366 D10 OCC VIS (M – O).

Slika 4. Segmenti bijele tvari u ČO 369. Bijela tvar podijeljena je u segmente ispod vijuga. Svaki segment označen je drugom bojom, a bijele točke predstavljaju mjesta gdje se nalaze intersticijski neuroni bijele tvari. ČO 369 D2B (A – C), ČO 369 D4A (E – G), ČO 369 D6A (H – I), ČO 369 D8A (J – L).

Slika 5. Segmenti bijele tvari u ČO 371. Bijela tvar podijeljena je u segmente ispod vijuga. Svaki segment označen je drugom bojom, a bijele točke predstavljaju mjesta gdje se nalaze intersticijski neuroni bijele tvari. ČO 371 L2B (A – C), ČO 371 L4A (E – G), ČO ČO 371 L5 ANG (H – I), ČO 371 L6 HIPP A (J – L), ČO 371 L9A (M – O).

4.4. In vivo analiza volumena mozga

4.4.1. Ispitanici i snimanje

U svrhu određivanja volumena bijele tvari kod čovjeka učinjeno je MR snimanje četvoro zdravih dobrovoljaca u dobi od 21 - 24 godine života (Tablica 9). MR snimanja učinjena su na Poliklinici Neuron pri Hrvatskom institutu za istraživanje mozga na MR uređaju snage magnetskog polja 3 Tesla (Magnetom TrioTim, Siemens, Savezna Republika Njemačka). Ispitanici su snimani u 12 kanalnom prijamniku za glavu, a za volumetrijsku analizu je korištena visoko rezolucijska 3D MPRAGE sekvenca u sagitalnoj ravnini sa sljedećim parametrima snimanja: TR/TE = 2300/3ms, kut savijanja = 9°, matrica = 256 x 256, veličina voksela = 1x1x1 mm.

Mozak	Volumen bijele tvari (mm ³)	Volumen bijele tvari izvan vijuga (mm ³)	Volumen bijele tvari vijuga (mm ³)		
MM 001	740.028,45	122.257,7	617.770,75		
MM 002	571.764,5	81.212,59	490.551,91		
MZ 001	523.782,63	95.374,67	428.407,96		
MZ 002	481.036,53	86.673,86	394.362,67		
Srednja vrijednost	579.153,0275	96.379,705	482.773,3225		

Tablica 9. Ispitanici i volumeni bijele tvari.

4.4.2. Volumetrijska analiza

Za volumetrijsku analizu korištena je automatska metoda segmentacije moždanih volumena uz pomoć računalnog programa CIVET (McGill University, Montreal , Kanada). Korišteni program na temelju razlika u intezitetima pojedinačnih voksela automatski pronalazi granicu između različitih moždanih volumena (npr. između sive i bijele tvari ili između sive tvari i likvora). Nakon što je učinjena automatska segmentacija moždanih volumena, pristupilo se određivanju volumena bijele tvari vijuga. Bijelom tvari koja ne pripada vijugama smatrana je sva bijela tvar koja se nalazi ispod 3 mm od dna brazde. Za tu svrhu korišten je program Analyze 8.1. (Mayo Clinic, Sjedinjene Američke Države). Na MR snimkama određena je dubina od 3 mm ispod dna brazde, te su susjedne točke povezane u jedinstveni volumen. Nakon što je utvrđen volumen ovako dobivene bijele tvari koja ne pripada vijugama, isti je oduzet od ukupne bijele tvari te je dobiven volumen bijele tvari vijuga.

4.5. Analiza ekspresije gena (transkriptoma) ljudskog mozga pomoću mikropostroja

Analiza ekspresije gena učinjena je u laboratoriju prof. dr. sc. Nenada Šestana (Yale University School of Medicine, Department of Neurobiology) pomoću metode mikropostroja (eng. Microarray). Uzorci korišteni u ovom dijelu studije podijeljeni su u 15 stadija prema razvojnoj dobi (Tablica 10). Analizirano je 16 različitih područja ljudskog mozga (Tablica 11) iz 57 ljudskih mozgova u rasponu dobi od 5.7 postovulacijskih tjedana do 82 godine života. Uzorci su uzeti svježi, nefiksirani i smrznuti u izopentanu ohlađenom na -40 °C, te pohranjeni u ledenice na -80 °C. Prvi korak izolacije RNA iz uzoraka je mehaničko usitnjavanje uzoraka u tarionicima u tekućem dušiku, kako bi se spriječilo topljenje uzoraka i degradacija RNA. Za lizu tkiva korišten je homogenizator s metalnim kuglicama (Bullet Blender, Next Advance), pri čemu su 60 mg smrvljenog tkiva i jednaka količina metalnih kuglica stavljeni u ohlađenu tubicu za mikrocentrifugu. Dva volumena RTL otopine (Qiagen) su dodani tkivu i kuglicama. Uzorci su miješani u homogenizatoru 1 minutu. Nakon provjere pogledom da je postignuta željena homogenizacija, uzorci su 5 minuta inkubirani na 37 °C. Nakon toga, RTL otopina je dodana do 0.6 ml te ponovno homogenizirana 1 minutu. Ukupna RNA izolirana je pomoću nefenolnog postupka, koristeći Rneasy Plus Mini kit (Qiagen), pri čemu su uzorci tretirani DNase-om (Turbo DNase, Ambion) prema uputama proizvođača. Apsorbancija izolirane RNA je izmjerena uređajem NanoDrop (Thermo Scientific), te su uzorci s omjerom A₂₆₀-A₂₈₀ iznad 1.9 smatrani kvalitetnim uzorcima pogodnim za daljnju analizu. Vrijednost RIN (eng. RNA integrity number - Broj RNA integriteta) određena je pomoću Bioanalyzer RNA 6000 Nano ili 6000 Pico paketa (Agilent) ovisno o količini RNA, te su uzorci s vrijednostima većim od 5.5 smatrani dovoljno kvalitetnima za nastavak analize. Za analizu transkriptoma ljudskog mozga korišteni su Affymetrix GeneChip Human Exon 1.0 ST mikropostroji. Hibridizacija na mikropostroj učinjena je u Yale Center for Genome Analysis (Yale University, New Haven, CT, Sjedinjene Američke Države) i u Gene Logic Inc. (Gaithersburg, MD, Sjedinjene Američke Države) prema uputama proizvođača, te nakon provjere kvalitete hibridizacije na mikropostroj, kreirani su CEL dokumenti. Nakon provjere kvalitete dobivenih rezultata i eliminacije uzoraka nezadovoljavajuće kvalitete, 1.340 uzoraka korišteno je za analizu transkriptoma ljudskog mozga (za detalje vidi Kang i sur. 2011). Za analizu uzoraka korišten je program Partek Genomic Suite 6.5 (Partek Incorporated, St. Louis, MO. Sjedinjene Američke Države). Korištene postavke za analizu uzoraka su: RMA korekcija pozadinskog šuma, kvantilna normalizacija, aritmetička sredina za sumaciju setova proba i log₂-transformacija dobivenih inteziteta flourescencije. Za analizu korišteni su setovi proba iz "proširenog" seta proba (setovi proba koje hibridiziraju na Genebank mRNA koje nisu označene kao puni transkripti i Ensembl kolekciju gena). Iz analize su isključene sve probe koje sadržavaju SNP-ove u svojoj sekvenci. Srednja vrijednost za

sve probe u "proširenom" setu korištena je za određivanje razine ekspresije gena. Geni s log₂transformiranom vrijednošću većom od 5.50 smatrani su kao eksprimirani u našim uzorcima (log₂vrijednost>5.50).

STADIJ	DOB
1	4 – 8 PCW
2	8 – 10 PCW
3	10 – 13 PCV
4	13 – 16 PCW
5	16 – 19 PCW
6	19 – 24 PCW
7	24 – 38 PCW
8	0 – 6 Mjeseci
9	6 – 12 Mjeseci
10	1 – 6 Godina
11	6 – 12 Godina
12	12 – 20 Godina
13	20 – 40 Godina
14	40 – 60 Godina
15	60 Godina >

Tablica 10. Stadiji razvoja ljudskog mozga prema Kang i sur. (2011). PCW = postovulacijski tjedni.

KRATICA	PODRUČJE
OFC	Orbitalna prefrontalna kora
DFC	Dorzolateralna prefrontalna kora
VFC	Ventrolateralna prefrontalna kora
MFC	Medijalna prefrontalna kora
M1C	Primarna motorička kora
S1C	Primarna somatosenzibilna kora
IPC	Stražnja parijetalna kora
A1C	Primarna slušna kora
STC	Gornja temporalna kora
ITC	Donja temporalna kora
V1C	Primarna vidna kora
HIP	Hipokampus
AMY	Amigdala
STR	Strijatum
MD	Mediodorzalna jezgra talamusa
СВС	Mali mozak

Tablica 11. Popis analiziranih područja mozga prema Kang i sur. (2011).

5. Rezultati

5.1. Brojnost intersticijskih neurona bijele tvari

Ukupan broj intersticijskih neurona bijele tvari u mozgu čovjeka dosada nije utvrđen. U svrhu utvrđivanja broja intersticijskih neurona bijele tvari potrebno je dobiti dvije vrste podataka: a) gustoću intersticijskih neurona bijele tvari u mozgu po mm³ (Tablica 12) i b) prosječan volumen bijele tvari u vijugama ljudskog mozga (Tablica 9). Prosječan volumen bijele tvari mozga čovjeka iznosi 579.153,03 mm³, a prosječan volumen bijele tvari vijuga iznosi 482.773,32 mm³ što iznosi 83% ukupne bijele tvari. Prijašnje studije su pokazale da gustoća intersticijskih neurona bijele tvari pokazuje velike interindividualne razlike, te se mijenja s dobi (García-Marín i sur. 2010). U našoj studiji prosječna gustoća neurona bijele tvari u tri mozga iznosila je: 861,78, 1263,31 i 1403,65 neurona/mm³. Množeći prosječni volumen bijele tvari vijuga s gustoćom intersticijskih neurona bijele tvari dolazimo do ukupnog broja intersticijskih neurona bijele tvari u mozgu koji iznosi: 416.044.391,7, 609.892.362,9 i 677.644.770,6 neurona u mozgu čovjeka. Prema ovim rezultatima intersticijskih neurona bijele tvari u čovječem mozgu ima više od ukupnog broja neurona u mozgu miša, hrčka, štakora i zamorca (Herculano-Houzel i sur. 2006), a njihov broj je usporediv s ukupnim brojem neurona u mozgu majmuna vrste marmozet (Herculano-Houzel i sur. 2007). Ovako veliki broj ukazuje da su intersticijski neuroni bijele tvari vrlo važna funkcionalna populacija u mozgu čovjeka, te da velika većina subplate neurona u ljudskom mozgu preživi do odrasle dobi.

Analiza regionalnih razlika u gustoći intersticijskih neurona bijele tvari pokazala je da postoje male regionalne razlike između različitih režnjeva. Najmanja gustoća intersticijskih neurona zabilježena je u limbičkom režnju (Gyrus cinguli – 916,66). Čeoni (1.229,59), tjemeni (1.208,38), zatiljni (1.195,11) i sljepoočni (1.124,79) režanj pokazuju slične vrijednosti gustoće intersticijskih neurona.

Preparat	Područje	Procijenjeni broj neurona	Volumen (mm ³)	Gustoća neurona po mm ³
CO366 D2 VENT 001	Segment 1	3 000	2 22	1 351 35
CO366 D2 VENT 001	Segment 2	3 375	2.22	1 264 04
CO366 D2 VENT 001	Segment 3	4.875	2.43	2.006.17
CO366 D2 VENT 001	Segment 4	2 875	3 31	868 58
CO366 D2 VENT 001	Segment 5	3.000	3.58	837.99
CO366 D2 VENT 001	Segment 6	7.375	4.67	1.579.23
CO366 D2 VENT 001	Segment 7	8.375	4.59	1.824.62
CO366 D2 VENT 001	Segment 8	3.125	2.77	1.128.16
CO366 D2 VENT 001	Segment 9	12.250	3.65	3.356,16
CO366 D2 VENT 003	Segment 1	3.625	2.88	1.258,68
CO366 D2 VENT 003	Segment 2	5.375	2.38	2.258,40
CO366 D2 VENT 003	Segment 3	4.250	2.40	1.770,83
CO366 D2 VENT 003	Segment 4	3.250	3.22	1.009,32
CO366 D2 VENT 003	Segment 5	3.125	3.61	865,65
CO366 D2 VENT 003	Segment 6	6.375	4.23	1.507,09
CO366 D2 VENT 003	Segment 7	10.000	4.24	2.358,49
CO366 D2 VENT 003	Segment 8	1.500	2.64	568,18
CO366 D2 VENT 003	Segment 9	10.625	3.51	3.027,07
CO366 D2 VENT 004	Segment 1	2.375	2.08	1.141,83
CO366 D2 VENT 004	Segment 2	4.125	2.84	1.452,46
CO366 D2 VENT 004	Segment 3	3.625	2.53	1.432,81
CO366 D2 VENT 004	Segment 4	2.500	3.38	739,64
CO366 D2 VENT 004	Segment 5	4.625	3.65	1.267,12
CO366 D2 VENT 004	Segment 6	7.000	5.19	1.348,75
CO366 D2 VENT 004	Segment 7	8.750	4.88	1.793,03
CO366 D2 VENT 004	Segment 8	3.375	2.71	1.245,39
CO366 D2 VENT 004	Segment 9	16.125	4.27	3.776,35
CO366 D4 DORZ MED 005	Segment 1	6.875	5.65	1.216,81
CO366 D4 DORZ MED 005	Segment 2	17.625	14.76	1.194,11
CO366 D4 DORZ MED 005	Segment 3	7.750	4.34	1.785,71
CO366 D4 DORZ MED 004	Segment 1	4.750	5.67	837,74
CO366 D4 DORZ MED 004	Segment 2	16.750	14.04	1.193,02
CO366 D4 DORZ MED 004	Segment 3	4.000	3.95	1.012,66
CO366 D4 DORZ MED 003	Segment 1	5.500	5.50	1.000,00
CO366 D4 DORZ MED 003	Segment 2	22.250	13.07	1.702,37
CO366 D4 DORZ MED 003	Segment 3	5.750	4.66	1.233,91
CO366 D4 DORZ LAT 005	Segment 1	10.375	5.80	1.788,79
CO366 D4 DORZ LAT 005	Segment 2	6.875	7.49	917,89
CO366 D4 DORZ LAT 005	Segment 3	13.750	15.71	875,24

Tablica 12. Gustoća intersticijskih neurona bijele tvari u pojedinačnim segmentima bijele tvari

Preparat	Područje	Procijenjeni broj neurona	Volumen (mm ³)	Gustoća neurona po mm ³
CO366 D4 DORZ LAT 002	Segment 1	4.750	4.88	973,36
CO366 D4 DORZ LAT 002	Segment 2	7.875	6.96	1.131,47
CO366 D4 DORZ LAT 002	Segment 3	10.625	14.68	723,77
CO366 D4 DORZ LAT 001	Segment 1	7.500	5.44	1.378,68
CO366 D4 DORZ LAT 001	Segment 2	8.500	6.14	1.384,36
CO366 D4 DORZ LAT 001	Segment 3	9.500	15.94	595,98
CO366 D5 TEMP 005	Segment 1	7.000	9.52	735,29
CO366 D5 TEMP 005	Segment 2	5.625	4.69	1.199,36
CO366 D5 TEMP 005	Segment 3	11.750	10.17	1.155,36
CO366 D5 TEMP 003	Segment 1	10.125	9.27	1.092,23
CO366 D5 TEMP 003	Segment 2	6.000	4.60	1.304,35
CO366 D5 TEMP 003	Segment 3	13.000	9.22	1.409,98
CO366 D5 TEMP 001	Segment 1	6.250	10.84	576,57
CO366 D5 TEMP 002	Segment 2	8.250	5.29	1.559,55
CO366 D5 TEMP 003	Segment 3	11.250	12.15	925,93
CO 366 OCC VIS 005	Segment 1	1.875	1.89	992,06
CO 366 OCC VIS 005	Segment 2	750	2.91	257,73
CO 366 OCC VIS 005	Segment 3	5.000	3.78	1.322,75
CO 366 OCC VIS 005	Segment 4	2.500	4.21	593,82
CO 366 OCC VIS 005	Segment 5	4.125	3.79	1.088,39
CO 366 OCC VIS 004	Segment 1	4.250	1.71	2.485,38
CO 366 OCC VIS 004	Segment 2	5.250	3.39	1.548,67
CO 366 OCC VIS 004	Segment 3	9.625	4.01	2.400,25
CO 366 OCC VIS 004	Segment 4	1.750	3.86	453,37
CO 366 OCC VIS 004	Segment 5	4.875	3.80	1.282,89
CO 366 OCC VIS 001	Segment 1	2.875	1.50	1.916,67
CO 366 OCC VIS 001	Segment 2	4.375	3.41	1.282,99
CO 366 OCC VIS 001	Segment 3	5.875	4,20	1.398,81
CO 366 OCC VIS 001	Segment 4	2.125	3,94	539,34
CO 366 OCC VIS 001	Segment 5	7.125	4,03	1.767,99
CO369 D6A 005	Segment 1	3.250	6,91	470,33
CO369 D6A 005	Segment 2	6.125	10,13	604,64
CO369 D6A 003	Segment 1	5.875	5,93	990,73
CO369 D6A 003	Segment 2	5.750	10,02	573,85
CO369 D6A 001	Segment 1	4.857	7,47	650,20
CO369 D6A 001	Segment 2	5.750	10,35	555,56
CO369 D4A 003	Segment 1	4.625	2,95	1.567,80
CO369 D4A 003	Segment 2	3.375	5,79	582,90
CO369 D4A 003	Segment 3	7.375	6,14	1.201,14
CO369 D4A 003	Segment 4	8.000	6,53	1.225,11
CO369 D4A 002	Segment 1	2.125	2,84	748,24

Preparat	Područje	Procijenjeni broj neurona	Volumen (mm ³)	Gustoća neurona po mm ³
CO369 D4A 002	Segment 2	3.875	5,87	660,14
CO369 D4A 002	Segment 3	7.375	7,73	954,08
CO369 D4A 001	Segment 1	3.625	2,78	1.303,96
CO369 D4A 001	Segment 2	5.125	5,72	895,98
CO369 D4A 001	Segment 3	6.875	6,90	996,38
CO369 D2B 003	Segment 1	1.750	2,53	691,70
CO369 D2B 003	Segment 2	5.125	5,59	916,82
CO369 D2B 003	Segment 3	3.625	3,96	915,40
CO369 D2B 003	Segment 4	2.750	4,03	682,38
CO369 D2B 003	Segment 5	3.125	2,82	1.108,16
CO369 D2B 003	Segment 6	7.625	8,43	904,51
CO369 D2B 004	Segment 1	3.125	2,58	1.211,24
CO369 D2B 004	Segment 2	5.375	6,89	780,12
CO369 D2B 004	Segment 3	3.250	3,44	944,77
CO369 D2B 004	Segment 4	3.375	3,71	909,70
CO369 D2B 004	Segment 5	2.125	3,05	696,72
CO369 D2B 004	Segment 6	5.500	7,40	743,24
CO369 D2B 001	Segment 1	2.500	2,65	943,40
CO369 D2B 001	Segment 2	3.250	5,42	599,63
CO369 D2B 001	Segment 3	7.250	3,91	1.854,22
CO369 D2B 001	Segment 4	2.500	3,82	654,45
CO369 D2B 001	Segment 5	3.250	3,20	1.015,63
CO369 D2B 001	Segment 6	4.500	7,98	563,91
CO369 D8A 004	Segment 1	5.250	3,83	1.370,76
CO369 D8A 004	Segment 2	3.750	5,40	694,44
CO369 D8A 004	Segment 3	1.750	2,58	678,29
CO369 D8A 004	Segment 4	3.375	6,40	527,34
CO369 D8A 004	Segment 5	3.375	3,32	1.016,57
CO369 D8A 004	Segment 6	1.625	2,46	660,57
CO369 D8A 002	Segment 1	4.875	3,43	1.421,28
CO369 D8A 002	Segment 2	3.375	4,42	763,57
CO369 D8A 002	Segment 3	3.125	2,38	1.313,03
CO369 D8A 002	Segment 4	2.625	5,61	467,91
CO369 D8A 002	Segment 5	3.125	3,30	946,97
CO369 D8A 002	Segment 6	3.125	2,47	1.265,18
CO369 D8A 001	Segment 1	5.000	3,53	1.416,43
CO369 D8A 001	Segment 2	1.625	3,85	422,08
CO369 D8A 001	Segment 3	2.875	3,48	826,15
CO369 D8A 001	Segment 4	5.000	5,36	932,84
CO369 D8A 001	Segment 5	2.000	3,36	595,24
CO369 D8A 001	Segment 6	3.500	2,83	1.236,75

Preparat	Područje	Procijenjeni broj neurona	Volumen (mm ³)	Gustoća neurona po mm ³
CO371 L9A 005	Segment 1	8.375	7,13	1.174,61
CO371 L9A 005	Segment 2	9.000	6,40	1.406,25
CO371 L9A 005	Segment 3	6.750	5,28	1.278,41
CO371 L9A 005	Segment 4	10.125	6,56	1.543,45
CO371 L9A 003	Segment 1	9.625	6,91	1.392,91
CO371 L9A 003	Segment 2	8.750	6,60	1.325,76
CO371 L9A 003	Segment 3	7.000	5,46	1.282,05
CO371 L9A 003	Segment 4	7.875	5,93	1.327,99
CO371 L9A 001	Segment 1	10.875	7,06	1.540,37
CO371 L9A 001	Segment 2	8.625	7,05	1.223,40
CO371 L9A 001	Segment 3	7.625	6,05	1.260,33
CO371 L9A 001	Segment 4	13.250	7,50	1.766,67
CO371 L2B 003	Segment 1	7.625	4,63	1.646,87
CO371 L2B 003	Segment 2	5.500	5,16	1.065,89
CO371 L2B 003	Segment 3	3.375	4,81	701,66
CO371 L2B 003	Segment 4	7.000	7,51	932,09
CO371 L2B 003	Segment 5	5.375	5,60	959,82
CO371 L2B 003	Segment 6	7.375	7,75	951,61
CO371 L2B 003	Segment 7	7.375	3,66	2.015,03
CO371 L2B 003	Segment 8	9.750	3,79	2.572,56
CO371 L2B 002	Segment 1	6.625	5,04	1.314,48
CO371 L2B 002	Segment 2	6.500	5,91	1.099,83
CO371 L2B 002	Segment 3	5.000	6,12	816,99
CO371 L2B 002	Segment 4	9.500	7,59	1.251,65
CO371 L2B 002	Segment 5	4.250	5,38	789,96
CO371 L2B 002	Segment 6	10.375	7,53	1.377,82
CO371 L2B 002	Segment 7	6.875	3,85	1.785,71
CO371 L2B 002	Segment 8	9.750	3,19	3.056,43
CO371 L2B 001	Segment 1	6.625	4,40	1.505,68
CO371 L2B 001	Segment 2	5.125	5,96	859,90
CO371 L2B 001	Segment 3	2.625	5,19	505,78
CO371 L2B 001	Segment 4	10.125	7,89	1.283,27
CO371 L2B 001	Segment 5	8.875	5,47	1.622,49
CO371 L2B 001	Segment 6	7.750	7,06	1.097,73
CO371 L2B 001	Segment 7	6.000	3,72	1.612,90
CO371 L2B 001	Segment 8	6.625	3,00	2.208,33
CO371 L5 ANG 003	Segment 1	15.375	9,85	1.560,91
CO371 L5 ANG 003	Segment 2	18.125	9,27	1.955,23
CO371 L5 ANG 002	Segment 1	15.125	9,81	1.541,79
CO371 L5 ANG 002	Segment 2	18.750	8,81	2.128,26
CO371 L5 ANG 001	Segment 1	17.625	9,74	1.809,55

Preparat	Područje	Procijenjeni broj neurona	Volumen (mm ³)	Gustoća neurona po mm ³
CO371 L5 ANG 001	Segment 2	19.125	9,39	2.036,74
CO371 L6HIPPA 003	Segment 1	6.000	6,26	958,47
CO371 L6HIPPA 003	Segment 2	6.125	3,95	1.550,63
CO371 L6HIPPA 003	Segment 3	2.000	2,61	766,28
CO371 L6HIPPA 002	Segment 1	6.375	5,68	1.122,36
CO371 L6HIPPA 002	Segment 2	7.375	4,23	1.743,50
CO371 L6HIPPA 002	Segment 3	1.500	2,44	614,75
CO371 L6HIPPA 001	Segment 1	8.000	6,79	1.178,20
CO371 L6HIPPA 001	Segment 2	5.875	3,96	1.483,59
CO371 L6HIPPA 001	Segment 3	2.375	2,73	869,96
CO371 D4A 003	Segment 1	3.875	5,70	679,82
CO371 D4A 003	Segment 2	4.500	6,60	681,82
CO371 D4A 003	Segment 3	9.750	5,46	1.785,71
CO371 D4A 003	Segment 4	11.500	7,12	1.615,17
CO371 D4A 003	Segment 5	25.500	20,95	1.217,18
CO371 D4A 002	Segment 1	4.375	5,12	854,49
CO371 D4A 002	Segment 2	6.875	7,12	965,59
CO371 D4A 002	Segment 3	9.375	5,17	1.813,35
CO371 D4A 002	Segment 4	11.125	6,79	1.638,44
CO371 D4A 002	Segment 5	22.625	17,84	1.268,22
CO371 D4A 001	Segment 1	3.875	5,70	679,82
CO371 D4A 001	Segment 2	7.375	6,19	1.191,44
CO371 D4A 001	Segment 3	9.000	5,07	1.775,15
CO371 D4A 001	Segment 4	11.250	7,11	1.582,28
CO371 D4A 001	Segment 5	25.875	17,27	1.498,26

5.2. Morfologija intersticijskih neurona bijele tvari i njihov prostorni razmještaj

Intersticijski neuroni bijele tvari prema svojoj morfologiji mogu su klasificirati u dvije velike skupine: a) intersticijski neuroni piramidne morfologije i b) intersticijski neuroni interneuronske morfologije (Slika 6, 7). U skupinu intersticijskih neurona piramidne morfologije uključili smo sve neurone piramidnog tj. trokutastog oblika tijela. U interneuronskoj skupini nalaze se neuroni različitih morfologija kao što su vretenasti, poligonalni, bipolarni tj. svi oblici tijela neurona koji ne odgovaraju profilu piramidne skupine. Morfološki tipovi intersticijskih neurona iz ove dvije skupine mogu se pronaći u svim dijelovima mozga i u svim dijelovima bijele tvari s različitom učestalošću (Slika 8, 9). Intersticijski neuroni piramidne morfologije češće se pronalaze u krunama girusa, te njihova učestalost u populaciji opada s udaljavanjem od granice između moždane kore i bijele tvari (Slika 8, 9). S druge strane intersticijski neuroni interneuronske morfologije češće se pronalaze ispod dna sulkusa, a učestalost u populaciji im raste s udaljavanjem od granice moždane kore i bijele tvari (Slika 8, 9). Iako se svi morfološki tipovi intersticijski neuroni piramidne morfologije češći su u čestalost u populaciji im raste s udaljavanjem od granice moždane kore i bijele tvari (Slika 8, 9). Iako se svi morfološki tipovi intersticijski neurona mogu uočiti u svim područjima mozga, postoje regionalne razlike u njihovoj učestalosti. Intersticijski neuroni piramidne morfologije češći su u čeonom i tjemenom režnju, dok ih ima vrlo malo ili gotovo uopće nema u primarnom vidnom području i entorinalnom području, gdje prevladavaju intersticijski neuroni interneuronske morfologije.

Slika 6. Glavni morfološki tipovi intersticijskih neurona. Dva morfološka tipa intersticijskih neurona prevladavaju u bijeloj tvari – stanice piramidne morfologije (strelica) i bipolarni, vretenasti neuroni (dvostruka strelica). Mjerka je 50 μm.

Slika 7. MAP2 pozitivni intersticijski neuroni u čeonoj moždanoj kori. Bipolarni (A), piramidni (B), triangularni (C) i obrnute piramide (D) mogu se uočiti u svim dijelovima bijele tvari kore mozga djeteta starog 13 mjeseci. Mjerka je 100 μm.

Slika 8. Gustoća intersticijskih neurona u kruni i stijenci vijuge,te u dnu sulkusa, u tjemenom režnju. Gustoća intersticijskih neurona se smanjuje od krune vijuge (A) preko stijenke (B) do najnižih vrijednosti u dnu sulkusa (C). U kruni i stijenci vijuga mogu se uočiti isti morfološki tipovi intersticijskih neurona, dok u dnu sulkusa prevladavaju bipolarni neuroni. Mjerka je 200 μm.

Slika 9. Intersticijski neuroni bijele tvari u kruni vijuge i dnu sulkusa u čeonom režnju. Gustoća intersticijskih neurona bijele tvari veća je u kruni vijuga (A) nego u dnu sulkusa (B). Piramidni (strelica), multipolarni (dvostruka strelica) i bipolarni (zvjezdica) neuroni mogu se vidjeti u kruni vijuga, dok je većina neurona u dnu sulkusa bipolarne morfologije (zvjezdica u B). Mjerka je 200 μm.

5.3. Molekularni fenotip intersticijskih neurona bijele tvari u usporedbi sa subplate neuronima

Mnoge prijašnje studije bavile su se ekspresijom različitih molekularnih biomarkera fetalnih subplate neurona i intersticijskih neurona u odraslom mozgu čovjeka (Tablica 2-7). U svrhu analize preživljavanja pojedinih subplate populacija u odraslom mozgu (kao intersticijskih neurona supkortikalne bijele tvari) analizirali smo dva molekularna biomarkera: KCC2 kao biomarkera GABAergičkih sinapsi i NADPH pozitivne neurone kao biomarker nitrinergičkih (NO) interneurona. Najranija ekspresija KCC2 proteina u čeonoj moždanoj kori uočena je u subplate neuronima već u 18. postovulacijskom tjednu (Slika 10). Oko 24. postovulacijskog tjedna, kada je subplate zona najveća i najbolje razvijena, KCC2 imunoreaktivnost može se uočiti u svim područjima moždane kore (Slika 10, 11, 12, 13). U odrasloj dobi, KCC2 je eksprimiran u svim područjima moždane kore i u svim morfološkim tipovima intersticijskih neurona (Slika 10, 11, 12, 13). Analizom ekspresije KCC2 proteina u odrasloj dobi i usporedbom s ekspresijom KCC2 proteina u fetalnom razdoblju, dolazimo do zaključka da su svi morfološki tipovi KCC2 pozitivnih neurona prisutnih u fetalnom razdoblju u subplate neuronima također prisutni i u odrasloj dobi u intersticijskim neuronima. NADPH-d pozitivni neuroni mogu se uočiti u subplate zoni već u 15. postovulacijskom tjednu, a od 18. postovulacijskog tjedna NADPH-d neuroni u subplate zoni su najbrojniji NADPH-d neuroni u stijenci telencefalona. U novorođenčeta, NADPH-d neuroni su vrlo brojni, a njihovi dendriti nastavljaju rasti. U odrasloj dobi, brojni NADPH-d neuroni vidljivi su kroz cijelu bijelu tvar vijuga (Slika 14). Najčešći tipovi NADPHd pozitivnih intersticijskih neurona su triangularni, piramidni, vretenasti i bipolarni, što odgovara morfološkim tipovima NADPH-d subplate neurona (Slika 14, 15, 16).

Slika 10. Ekspresija KCC2 proteina u čeonoj moždanoj kori od 16. postovulacijskog tjedna do 51. godine. KCC2 nije eksprimiran u kortikalnoj ploči (A) i subplate zoni (B) u 16. postovulacijskom tjednu. Od 18. postovulacijskog tjedna, ekspresija KCC2 može se uočiti u subplate neuronima (D) i ponekom neuronu kortikalne ploče (C). Od 23. postovulacijskog tjedna, KCC2 je eksprimiran i u kortikalnoj ploči i u subplate neuronima, koji se postnatalno pretvore u intersticijske neurone bijele tvari. Kortikalni neuroni – 24. postovulacijski tjedan (G), 3 mjeseca (I), 13 mjeseci (K), 6m5 godina (M), 51 godina (O). Subplate neuroni i intersticijski neuroni – 24. postovulacijski tjedan (H), 3 mjeseca (J), 13 mjeseci (L), 6,5 godina (N), 51 godina (P). Mjerka je 100 μm.

Slika 11. Ekspresija KCC2 proteina u moždanoj kori (gyrus cinguli) od 20. postovulacijskog tjedna do 51. godine. KCC2 nije eksprimiran u kortikalnoj ploči (A) u 20. postovulacijskom tjednu, ali je prisutan u subplate zoni (B). U 22. postovulacijskom tjednu, slabija ekspresija KCC2 može se uočiti u kortikalnoj ploči (C) i jača ekspresija u subplate zoni (D). Sličan obrazac ekspresije KCC2 može se uočiti i u 31. postovulacijskom tjednu (E, F) te 34. postovulacijskom tjednu (G, H). Od 36. postovulacijskog tjedna, snažna ekspresija KCC2 može se uočiti i u kortikalnoj ploči (I) i u subplate zoni (J). Kortikalna ploča – novorođenče (K), 6,5 godina (M), 51 godina (O). Subplate zona - novorođenče (L), 6,5 godina (N), 51 godina (P). Mjerka je 100 μm.

Slika 12. Ekspresija KCC2 proteina u hipokampusu i entorinalnoj moždanoj kori od 25. postovulacijskog tjedna do 6,5 godina. Piramidni neuroni hipokampusa (A) i entorinalne moždane kore (B) pokazuju snažnu ekspresiju KCC2 već od 25. postovulacijskog tjedna. Sličan obrazac ekspresije KCC2 može se uočiti u hipokampusu (C, E, G, I, K) i entorinalnoj moždanoj kori (D, F, H, J, L) u 31. (C, D), 33. (E, F) i 38. postovulacijskom tjednu (G, H), te u djece stare 13 mjeseci (I, J) i 6,5 godina (K, L). Mjerka je 100 μm.

Slika 13 Ekspresija KCC2 proteina u tjemenoj, sljepoočnoj i zatiljnoj moždanoj kori od 22. postovulacijskog tjedna do 51. godine. Isti obrazac ekspresije KCC2 u kortikalnoj ploči i subplate zoni (ekspresija u tijelu neurona i proksimalnim dendritima) može se uočiti u različitim dijelovima tjemeno-sljepoočno-zatiljne moždane kore od 22. postovulacijskog tjedna pa do 51. godine. Kortikalna ploča (A, C, E, G, I, K, M) i subplate i intersticijski neuroni (B, D, F, H, J, L, N, P) u 22. postovulacijskom tjednu (A, B), 23 PCW (C,D), te 31. (E,F), 33. (G,H) i 38. postovulacijskom tjednu (I,J), u djece stare 13 mjeseci (K,L) i 6,5 godina (M,N) te u odrasle osobe stare 51 godinu (O,P). Mjerka je 100 μm.

Slika 14. NADPH-d pozitivni intersticijski neuroni u bijeloj tvari. NADPH-d pozitivni neuroni vidljivi su u cijeloj bijeloj tvari donje čeone vijuge (A, B) u djece stare 3 godine i 12 godina (C, D). Slika C prikazuje tipičan multipolarni intersticijski neuron. Slika D prikazuje vretenasti neuron koji pruža akson prema moždanoj kori. Mjerka 150 µm (A i B), 100 µm (C i D).

Slika 15. Morfološki tipovi NADPH-d intersticijskih neurona. U premotoričkoj kori mogu se uočiti triangularni (A, B, F) i piramidni (C, D, E) intersticijski neuroni u djece stare 3 godine (A) i 12 godina (D, E, F), te u odrasle osobe stare 57 godina (B, C,). Mjerka je 20 μm.

Slika 16. Morfološki tipovi NADPH-d intersticijskih neurona. Vretenasti (A, B, C), i "bitufted" (D, E, F) NADPH-d pozitivni intersticijski neuroni vidljivi su u srednjoj i donjoj čeonoj vijuzi djeteta starog 12 godina. Ovi morfološki tipovi dominiraju u dnu sulkusa, ali se mogu uočiti i u krunama i stijenkama vijuga. Mjerka je 20 μm.

5.4. Ekspresija u ljudskom mozgu mišjih gena specifičnih za subplate zonu

Trenutačno ne postoje podaci o genima specifičnim za subplate zonu u ljudskom mozgu. Jedini dostupni podaci su dobiveni na miševima (Osheroff i Hatten 2009, Hoerder-Suabedissen i sur. 2009, 2013, Oeschger i sur. 2011, Wang i sur. 2011, Hoerder-Suabedissen i Molnár 2012). Na temelju tih studija odabrali smo osam gena specifičnih za subplate zonu (*Adra2a, Ctgf, Htr1d, Innp48, Moxd1, Nurr1, Nxph4* i *Tpd52l1*), koji su eksprimirani i u odrasloj bijeloj tvari, te analizirali njihovu ekspresiju u mozgu čovjeka.

ADRA2A (Alfa 2A podjedinica adrenalinskog receptora) je eksprimiran u vrlo visokim vrijednostima u prenatalnom razdoblju u neokorteksu, te u nižim vrijednostima u CBC, HIP, MD i STR (Tablica 13 i Slika 17). Od 24. postovulacijskog tjedna, vrijednosti ekspresije *ADRA2A* značajno se smanje u svim područjima mozga. Nakon rođenja, *ADRA2A* prisutan je u svim područjima osim STR, a nakon 60. godine nema ekspresije u mozgu čovjeka (Tablica 8 i Slika 17).

CTGF (faktor rasta vezivnog tkiva) nije eksprimiran prenatalno do 24. postovulacijskog tjedna u većini kortikalnih područja (osim ITC). Nakon 24. postovulacijskog tjedna, *CTGF* je eksprimiran u niskim vrijednostima u cijelom mozgu, s iznimkom pojedinih stadija i područja (Tablica 14 i slika 18) te CBC nakon nakon 6. godine života.

HTR1D (serotoninski receptor 1D) nije eksprimiran u ljudskom mozgu osim u STR nakon rođenja (Tablica 15 i Slika 19).

INPP4B (tip II inozitol fosfat 4-fosfataze) eksprimiran je kontinurirano u MD od 10. postovulacijskog tjedna. U drugim područjima mozga, *INPP4B* nije eksprimiran prenatalno do rođenja, a nakon rođenja varijabilno se javlja ekspresija u pojedinim područjima i vremenskim razdobljima (Tablica 16 i Slika 20) u vrlo niskim vrijednostima.

MOXD1 (monooksigenaza) ima varijabilan obrazac ekspresije u ljudskom mozgu. Dvije strukture u kojima *MOXD1* nije eksprimiran su CBC (s izuzetkom stadija 6) i MD (s izuzetkom stadija 3 i 4). U svim područjima moždane kore, *MOXD1* je eksprimiran od 6. godine života nadalje. U prenatalnom razdoblju, većina područja moždane kore pokazuje ekspresiju niskih vrijednosti od najranijih stadija, s prolaznim razdobljima nestanka ekspresije od 24. postovulacijskog tjedna do 6. postnatalnog mjeseca (Tablica 17 i Slika 21).

NURR1 (nuklearni receptor) eksprimiran je prenatalno u kortikalnim područjima od 10. do 19. postovulacijskog tjedna (s iznimkom STC u stadiju 4 i V1C i MFC u stadiju 5), u sljepoočnotjemenom dijelu između 19. i 24. postovulacijskog tjedna, te u CBC nakon rođenja. U ostalim područjima i vremenskim razdobljima *NURR1* nije eksprimiran (Tablica 18 i Slika 22). Četiri područja mozga ne pokazuju ekspresiju *NXPH4* (neureksofilin 4) ni u jednom vremenskom razdoblju (A1C, ITC, MD i STR). Ekspresija *NXPH4* postoji u AMY samo između 6. postnatalnog mjeseca i prve godine života. Najduža ekspresija prisutna je u CBC, gdje postoji od 10. postovulacijskog tjedna do 20. godine (s iznimkom stadija 10). U ostalim područjima, ekspresija *NXPH4* prisutna je od 10. do 16. postovulacijskog tjedna, s iznimkom S1C, V1C koje pokazuju ekspresiju do 19. postovulacijskog tjedna, te M1C, koja pokazuje ekspresiju do 19. postovulacijskog tjedna, te S1C, koja pokazuje ekspresiju do 19. postovulacijskog tjedna, te S1C, koja pokazuje ekspresiju do 19. postovulacijskog tjedna, te S1C, koja pokazuje ekspresiju do 19. postovulacijskog tjedna, te S1C, koja pokazuje ekspresiju do 19. postovulacijskog tjedna, te S1C, koja pokazuje ekspresiju do 19. postovulacijskog tjedna, te S1C, koja pokazuje ekspresiju do 19. postovulacijskog tjedna, te S1C, koja pokazuje ekspresiju do 19. postovulacijskog tjedna, te S1C, koja pokazuje ekspresiju do 19. postovulacijskog tjedna, te S1C, koja pokazuje ekspresiju do 19. postovulacijskog tjedna, te S1C, koja pokazuje ekspresiju do 19. postovulacijskog tjedna, te S1C, koja pokazuje ekspresiju do 19. postovulacijskog tjedna i između 6. postnatalnog mjeseca i prve godine života (Tablica 19 i S1ika 23).

TPD52L1 (prvi tumorski protein nalik na D52) nije eksprimiran ni u jednom području ljudskog mozga (Tablica 20 i Slika 24).

Area	3	4	5	6	7	8	9	10	11	12	13	14	15
OEC	9.92	9.54	10.6	9.72	7.16	7.43	6.71	5.17	6.68	6.99	5.99	5.68	4.97
OFC	184	018	903	262	945	925	206	943	047	954	884	76	773
MEC	8.94	8.74	10.0	10.0	7.28	7.32	6.62	5.10	6.19	6.40	5.97	5.19	4.57
MFC	745	339	531	569	285	571	579	286	1	605	886	216	258
DEC	9.59	9.37	10.4	9.84	7.52	6.64	6.23	5.61	7.20	6.96	6.47	5.04	4.61
DFC	898	453	21	337	213	143	32	347	238	233	114	759	951
VEC	10.0	9.95	10.8	10.1	7.87	7.32	6.33	5.59	6.79	7.25	6.20	5.67	5.15
VIC	721	305	166	915	755	629	599	372	154	693	437	122	105
MIC	10.1	9.34	10.9	10.0	7.05	7.29	7.69	6.02	6.02	6.99	6.40	5.45	5.54
MIC	236	616	449	854	545	991	664	492	226	341	979	602	849
SIC	10.3	9.64	11.0	9.70	7.11	6.96	6.32	5.98	7.14	7.31	6.04	5.97	5.43
510	978	018	166	547	299	456	868	555	846	944	683	838	451
IDC	10.6	10.4	10.7	9.78	7.36	7.38	6.77	5.34	6.68	6.94	6.31	5.67	4.70
пс	491	488	227	936	504	101	202	423	917	598	655	514	258
STC	10.7	10.7	10.0	9.51	8.11	7.17	6.18	5.43	5.94	6.66	6.12	5.58	4.90
510	886	943	936	163	206	013	663	424	874	523	724	448	352
AIC	10.9	10.5	10.5	9.65	7.70	6.91	7.30	5.51	7.23	6.92	6.13	5.48	5.13
AIC	083	099	367	953	001	861	186	033	137	212	838	318	761
ITC	10.3	9.87	9.79	9.34	6.96	7.39	6.41	5.49	6.29	6.65	5.97	4.84	4.36
ne	033	785	076	225	161	639	973	065	048	585	139	31	561
V1C	10.0	9.70	10.5	9.41	5.10	7.88	6.40	5.86	7.00	7.13	6.38	6.27	5.28
VIC	031	288	055	998	001	136	773	697	865	759	589	012	893
AMY	6.18	6.38	8.98	9.03	5.81	5.31	6.47	4.82	5.34	4.68	4.56	4.12	4.05
	497	479	571	459	066	608	432	685	175	714	105	16	929
CBC	7.88	7.24	6.88	7.39	5.61	6.99	6.09	5.28	5.74	6.19	6.03	5.08	4.77
СЪС	822	225	673	97	325	175	124	73	182	565	291	077	269
нір	6.79	6.68	7.74	7.46	5.46	6.44	5.49	5.55	5.60	5.11	5.20	4.24	4.40
	784	623	321	087	019	788	798	832	058	187	224	092	984
MD	6.68	6.62	6.16	6.27	5.42	6.63	5.38	5.45	7.09	5.96	4.79	4.85	4.10
	221	966	641	153	88	773	88	574	803	653	975	288	44
STR	7.28	6.61	6.67	5.73	4.01	4.25	4.04	3.94	3.73	3.91	4.08	3.64	3.78
SIK	943	322	741	886	855	452	552	579	713	833	33	296	16

Tablica 13. Ekspresija gena *ADRA2A* **u ljudskom mozgu.** Sivo osjenčana polja su uzorci u kojima *ADRA2A* nije eksprimiran.

ADRA2A

Slika 17. Ekspresija gena *ADRA2A* **u ljudskom mozgu.** *ADRA2A* je eksprimiran u visokim vrijednostima do 24. postovulacijskog tjedna, kada se počinje smanjivati na niže vrijednosti u odrasloj dobi.

Area	3	4	5	6	7	8	9	10	11	12	13	14	15
OFC	4.97	5.43	5.33	4.97	6.08	7.01	7.23	7.87	6.54	6.43	6.12	5.36	6.29
OFC	094	144	768	355	637	594	593	374	707	591	89	697	714
MEC	5.15	5.74	5.63	5.86	6.96	7.59	7.99	7.51	6.63	7.57	6.37	5.84	6.50
MFC	975	951	151	37	431	25	752	517	129	226	191	977	507
DEC	5.32	5.25	4.80	5.43	6.66	6.48	7.18	7.33	6.75	6.49	6.25	6.39	6.34
DFC	141	37	972	194	697	952	439	067	87	593	107	182	274
VEC	5.27	5.38	4.79	5.98	6.99	7.81	6.97	6.01	6.20	7.09	6.03	5.89	5.36
VFC	345	128	68	927	693	898	638	397	885	276	009	323	911
MIC	4.96	5.30	5.20	6.17	6.57	7.40	8.24	7.39	7.21	6.93	6.07	5.96	6.34
MIC	996	208	217	082	906	496	697	941	783	008	341	34	12
SIC	5.21	4.96	5.38	5.31	6.22	7.11	7.64	6.80	6.28	6.58	5.76	5.66	5.85
510	191	885	566	245	741	276	61	863	293	193	941	895	977
IDC	5.34	5.13	5.12	4.73	6.43	6.50	7.08	7.17	6.30	6.48	6.17	5.46	5.72
пс	984	009	506	89	956	168	231	5	098	634	458	495	431
STC	4.79	4.72	4.32	4.80	5.75	6.69	7.35	7.43	5.90	6.46	6.17	5.59	5.91
510	439	739	349	016	576	431	93	48	927	704	962	784	532
AIC	5.40	5.22	4.30	4.30	5.74	7.23	7.95	6.76	6.13	6.80	6.31	5.70	6.19
ЛС	627	834	669	719	971	798	186	302	558	651	569	836	472
ITC	5.97	6.47	6.78	5.94	6.32	7.44	7.46	6.72	5.75	6.89	5.68	5.93	6.67
ne	03	96	347	327	766	071	955	589	383	081	823	805	971
V1C	4.98	5.31	4.76	4.56	6.20	6.51	6.72	6.36	6.38	5.82	6.03	5.94	6.64
VIC	343	935	219	311	049	807	465	357	77	407	928	593	05
ΔΜΥ	5.60	6.41	4.72	6.55	7.02	7.51	8.56	7.14	5.48	6.19	6.19	5.89	6.74
	874	863	37	596	308	68	54	774	27	583	58	748	92
CBC	5.29	6.17	4.97	4.63	6.77	5.71	4.49	5.68	4.28	4.63	4.65	4.50	4.67
СЪС	891	136	272	725	411	446	911	962	964	319	69	882	41
нр	6.26	7.12	6.96	7.40	7.37	7.58	7.45	7.40	6.74	6.02	6.53	6.30	6.28
1111	35	019	871	836	391	347	855	329	424	276	429	247	927
MD	6.41	6.37	4.95	5.25	7.15	5.02	5.66	6.08	6.08	5.58	5.23	5.39	5.56
	807	719	246	958	385	509	018	16	791	514	561	445	041
STR	4.70	5.80	4.38	4.34	7.50	6.33	6.59	6.33	5.63	5.15	4.94	5.87	6.35
SIK	754	155	199	925	468	494	239	19	733	91	93	589	567

Tablica 14. Ekspresija gena *CTGF* **u ljudskom mozgu.** Sivo osjenčana polja su uzorci u kojima *CTGF* nije eksprimiran.

OFC MFC DFC VFC M1C S1C IPC STC A1C ITC V1C AMY CBC HIP MD STR 12 Godina – 6 Godina 🗕 16 PCW -19 PCW -12 Mjeseci – 20 Godina -90 Godina -13 PCW -6 Mjeseci -40 Godina -24 PCW -ROĐENJE -10 PCW -60 Godina

Slika 18. Ekspresija gena *CTGF* **u ljudskom mozgu.** *CTGF* nije eksprimiran u moždanoj kori prije 24. postovulacijskog tjedna, kad postane eksprimiran u svim područjima moždane kore. Iznimka je jedino ITC, gdje je *CTGF* eksprimiran tijekom cijelog života.

CTGF

Area	3	4	5	6	7	8	9	10	11	12	13	14	15
OFC	3.67	3.94	3.73	3.84	3.97	4.35	4.74	3.59	4.07	4.49	4.80	4.69	4.13
OFC	362	174	954	749	406	983	992	136	64	938	543	384	179
MEC	3.78	3.68	3.83	3.78	4.11	4.90	4.46	4.18	4.32	4.40	4.14	4.25	3.79
MFC	333	778	103	445	676	716	497	674	623	646	838	143	279
DEC	3.61	3.57	3.76	3.85	3.83	5.00	4.67	3.68	4.48	4.34	4.38	4.86	4.31
DFC	925	959	662	777	184	709	002	706	692	92	712	57	929
VEC	3.75	3.71	3.89	4.04	4.14	4.21	5.18	3.93	4.16	4.73	4.81	4.43	4.27
VFC	427	405	966	6	167	45	652	859	413	053	85	659	504
MIC	3.80	3.60	3.86	3.82	3.98	4.41	4.70	3.92	4.15	3.90	4.12	4.14	3.78
MIC	564	931	539	964	06	469	222	908	86	318	559	793	332
SIC	3.60	3.71	4.10	4.00	4.08	4.62	4.70	3.98	4.32	4.65	4.21	4.38	3.75
SIC	553	172	987	453	112	736	243	807	884	856	09	131	295
IDC	3.56	3.78	3.67	3.85	4.04	4.45	4.75	4.04	4.50	4.43	4.69	4.50	4.19
IFC	959	314	671	108	26	683	256	611	039	131	92	12	961
STC	3.87	4.07	3.80	4.16	3.88	4.29	4.73	4.34	4.09	4.73	4.74	4.82	4.06
510	396	091	742	337	136	023	057	45	817	999	194	013	298
AIC	3.55	3.99	3.72	4.10	3.77	4.69	5.00	3.79	4.19	4.73	4.86	4.96	4.34
AIC	525	307	174	321	463	329	597	042	666	106	387	356	442
ITC	3.80	4.17	3.90	3.87	3.69	4.73	3.97	3.93	4.46	4.37	4.82	4.87	4.54
пс	937	515	385	052	878	767	103	035	615	234	075	83	009
V1C	3.72	4.02	4.00	4.35	4.55	5.33	5.75	4.41	5.05	4.49	5.01	5.44	4.71
VIC	466	353	026	736	252	072	396	27	194	63	429	788	872
AMV	5.14	4.30	4.60	4.08	3.70	4.57	3.99	4.28	5.97	4.87	4.70	4.64	3.80
	535	145	377	844	581	106	65	44	105	75	533	607	032
CBC	3.73	3.99	4.28	3.90	3.85	3.90	3.61	3.41	3.47	3.52	3.60	3.74	3.75
СВС	039	132	78	942	867	763	273	338	951	771	964	439	181
нр	3.68	3.93	3.87	3.82	3.60	3.99	4.12	3.80	4.26	3.80	4.14	3.97	3.77
1111	021	64	094	945	57	232	649	557	723	918	84	924	295
MD	3.83	3.81	3.69	3.98	3.95	3.78	5.19	4.38	3.75	4.20	3.72	3.80	4.33
	174	83	964	821	65	386	08	418	943	56	461	805	237
STR	4.13	3.98	4.65	4.80	3.92	5.51	7.45	6.67	7.29	7.76	8.02	7.65	7.55
51K	748	577	967	137	307	968	678	268	202	043	48	654	07

Tablica 15. Ekspresija gena *HTR1D* **u ljudskom mozgu.** Sivo osjenčana polja su uzorci u kojima *HTR1D* nije eksprimiran.

HTR1D

Slika 19. Ekspresija gena *HTR1D* **u ljudskom mozgu.** *HTR1D* **je eksprimiran jedino u strijatumu nakon šestog postnatalnog mjeseca.**

Area	3	4	5	6	7	8	9	10	11	12	13	14	15
OFC	4.22	4.18	4.12	4.23	5.01	5.32	5.97	5.09	5.62	5.58	5.71	6.00	6.03
OFC	098	465	142	606	48	348	843	74	217	654	919	185	873
MEC	4.17	4.19	4.03	4.14	4.88	5.46	5.54	5.38	6.09	5.52	5.73	5.57	5.92
MFC	955	746	264	097	998	486	942	079	356	465	706	152	674
DEC	4.05	3.98	4.06	4.04	5.22	5.80	5.86	5.10	4.93	5.49	5.61	5.87	5.80
DFC	151	155	623	787	452	546	127	47	499	725	921	144	052
VEC	4.24	4.13	4.18	4.37	5.00	5.54	5.68	5.21	6.40	5.73	5.47	6.11	5.86
VFC	58	815	369	813	268	118	489	473	941	535	327	086	626
MIC	4.07	4.12	3.89	4.50	5.02	5.42	5.14	5.39	5.61	5.49	5.47	5.52	5.68
MIC	378	99	813	27	782	37	165	761	882	464	314	166	27
S1C	4.07	3.99	3.91	4.42	4.73	5.48	5.31	5.14	5.32	5.60	5.62	5.70	5.90
SIC	123	218	261	506	888	546	501	706	975	087	678	454	314
IDC	4.06	4.05	3.93	4.02	4.77	5.38	5.49	5.42	5.59	5.71	5.72	6.30	5.91
IPC	635	241	373	606	126	826	58	028	183	605	815	659	22
STC	4.03	3.99	3.98	4.03	4.76	5.52	5.42	5.45	5.87	5.64	5.92	5.94	5.54
SIC	911	495	413	321	001	046	738	879	462	602	672	921	872
AIC	4.08	4.07	3.88	4.01	4.68	4.98	5.02	5.22	6.03	5.44	5.82	5.74	5.58
AIC	795	489	106	282	355	102	563	949	604	501	335	258	339
ITC	4.03	4.07	3.98	4.20	4.85	5.71	5.47	5.63	6.50	5.69	6.00	5.78	5.79
ne	662	607	796	092	206	308	987	336	934	772	502	356	069
VIC	3.97	3.98	3.88	3.93	4.52	4.87	5.17	5.14	5.41	5.20	5.92	6.22	5.43
VIC	277	386	09	472	401	321	93	2	57	35	832	717	706
AMV	4.74	4.81	4.38	4.36	5.37	5.41	5.23	4.93	6.38	5.88	6.04	6.29	5.92
ANII	634	05	517	535	968	595	714	045	132	53	395	26	478
CBC	4.30	4.23	4.78	4.69	5.18	5.95	5.81	5.06	6.16	5.78	5.85	4.78	5.34
CBC	889	234	069	366	078	214	317	688	478	703	057	442	461
LID	4.17	4.35	4.36	4.60	5.08	5.59	5.35	5.56	5.95	5.64	5.94	6.28	5.55
1111	135	67	32	735	974	103	569	155	042	222	379	324	03
MD	5.54	5.66	6.48	6.98	6.01	5.58	6.67	6.27	7.17	6.52	7.20	7.34	6.12
MD	315	05	176	379	338	841	71	524	208	168	43	166	531
STP	4.87	4.92	4.59	4.52	5.37	5.21	5.30	5.35	5.46	5.28	5.88	6.08	5.12
SIK	254	099	504	046	241	858	81	009	313	541	155	493	804

Tablica 16. Ekspresija gena *INPP4B* **u ljudskom mozgu.** Sivo osjenčana polja su uzorci u kojima *INPP4B* nije eksprimiran.

INPP4B

Slika 20. Ekspresija gena *INPP4B* **u ljudskom mozgu.** *INPP4B* nije eksprimiran u mozgu do 6. godine života, s iznimkom MD. Nakon 6. godine života, eksprimiran je u niskim vrijednostima.

Area	3	4	5	6	7	8	9	10	11	12	13	14	15
OFC	7.71	9.37	7.92	5.83	4.65	5.63	6.15	5.35	6.34	6.18	6.16	6.49	6.70
OFC	63	727	933	882	022	328	819	639	623	133	162	651	112
MFC	5.88	7.87	8.81	5.06	5.80	5.11	5.54	5.04	6.62	6.16	6.27	6.24	6.63
	721	187	115	895	876	706	751	833	137	047	804	938	731
DEC	6.97	8.06	7.43	4.92	5.16	5.25	5.40	5.19	5.94	6.61	6.08	6.63	6.55
DFC	759	494	276	45	863	233	474	567	948	177	415	747	433
VEC	6.13	5.65	5.86	4.55	4.55	5.17	5.31	5.61	6.21	6.56	5.95	6.67	6.60
VFC	998	421	074	901	645	71	269	29	848	339	305	956	022
MIC	5.57	5.92	5.56	4.57	4.80	5.47	5.65	5.27	6.59	6.87	6.70	7.21	7.29
MIC	558	483	756	033	471	914	365	689	221	231	404	114	895
S1C	5.51	6.20	4.65	4.21	5.02	5.39	5.86	5.44	6.86	6.30	5.83	6.98	6.47
510	897	286	015	808	671	118	962	586	33	15	37	183	314
IDC	4.98	5.29	4.55	4.10	4.55	5.28	5.85	5.94	6.25	6.83	6.22	6.59	7.22
IFC	59	928	995	567	021	062	977	833	998	801	772	455	707
CTC.	4.68	5.59	6.70	4.24	4.85	6.11	6.53	5.69	6.99	6.60	6.36	6.66	6.48
SIC	076	216	452	954	027	748	134	389	6	188	072	51	805
AIC	4.78	5.13	4.27	4.26	4.79	5.76	5.95	5.75	6.68	6.64	6.15	6.24	6.18
AIC	214	191	232	682	574	927	421	199	904	273	584	035	366
ITC	4.73	5.97	6.24	4.65	4.99	6.54	6.48	6.23	7.37	6.79	6.75	6.36	7.27
ne	465	735	586	516	666	805	472	712	185	206	736	874	416
VIC	5.25	6.06	7.89	6.09	4.95	6.31	5.58	6.16	5.86	5.76	5.45	4.90	5.41
VIC	981	872	965	108	32	823	842	497	93	193	076	285	939
AMV	9.10	9.27	8.06	8.26	6.88	7.61	8.58	7.01	9.21	8.16	8.11	6.46	7.71
ANI I	644	402	733	648	119	546	678	758	616	865	543	55	198
CPC	4.98	4.47	5.46	5.72	4.06	3.75	3.78	3.82	3.78	3.88	3.79	3.81	3.70
CBC	922	198	2	092	803	95	603	046	12	094	084	377	142
ШD	4.18	4.91	6.03	6.05	5.81	7.66	7.86	7.36	8.30	7.79	7.30	6.96	6.80
піг	015	853	948	65	336	638	933	774	553	437	169	702	864
MD	6.95	6.31	4.42	4.17	4.17	4.33	4.98	4.28	5.06	4.72	4.73	4.39	4.99
MD	604	079	705	75	968	452	816	818	578	362	636	739	74
STD	5.86	6.72	5.18	6.21	5.51	5.59	6.03	5.38	6.16	5.81	6.25	6.64	6.11
STR	047	847	495	489	454	705	272	06	663	117	592	938	341

Tablica 17. Ekspresija gena *MOXD1* u ljudskom mozgu. Sivo osjenčana polja su uzorci u kojima*MOXD1* nije eksprimiran.

MOXD1

Slika 21. Ekspresija gena *MOXD1* **u ljudskom mozgu.** *MOXD1* je eksprimiran tijekom cijelog života u moždanoj kori, s iznimkom perinatalnog razdoblja (između 24. postovulacijskog tjedna i 6. postnatalnog mjeseca).

Area	3	4	5	6	7	8	9	10	11	12	13	14	15
OFC	6.65	6.21	5.64	4.93	4.59	4.78	4.95	4.28	4.84	5.42	4.64	4.53	4.81
OFC	27	097	432	325	071	135	345	318	994	858	83	725	711
MEC	6.72	6.22	5.19	4.81	4.58	4.84	4.72	4.27	4.51	4.98	4.72	4.81	4.79
MITC	929	341	987	005	142	718	722	944	327	99	683	55	349
DEC	7.06	6.42	5.86	5.06	4.59	4.55	5.17	4.50	4.76	5.22	4.90	4.58	4.77
DIC	802	677	104	702	741	699	15	962	258	647	423	119	846
VEC	6.34	5.67	5.91	5.02	4.68	4.69	5.08	4.19	4.86	4.92	4.86	4.64	4.81
vre	814	308	542	092	215	905	57	045	35	548	112	666	514
MIC	6.56	6.08	5.46	5.02	4.56	4.64	4.94	4.77	4.84	5.33	4.85	4.75	4.87
MIC	26	033	007	251	195	413	335	592	758	499	597	726	482
SIC	6.38	5.66	5.74	5.13	4.53	5.17	5.09	4.75	5.35	4.76	4.73	4.73	4.77
SIC	274	81	279	476	96	395	636	157	905	507	612	091	472
IDC	6.41	5.51	5.99	5.84	4.74	4.47	4.95	4.82	4.76	5.07	4.94	4.64	4.68
IFC	629	846	57	902	502	944	466	689	057	289	036	894	496
STC	5.77	5.40	6.34	6.96	4.55	4.80	4.95	4.86	4.62	4.88	4.79	4.70	4.56
SIC	833	856	665	816	73	911	132	498	957	368	512	883	057
AIC	6.20	5.69	7.16	6.78	4.71	4.59	5.03	4.77	5.03	4.99	4.89	4.59	4.81
AIC	679	079	645	134	75	546	491	289	438	706	111	027	604
ITC	6.28	5.72	6.27	5.88	4.62	4.92	5.18	4.73	4.87	5.12	4.84	4.58	4.76
ne	932	876	816	195	58	189	683	594	861	234	487	389	415
VIC	6.41	5.58	5.40	4.90	4.14	4.72	4.73	4.42	4.58	4.90	4.91	4.70	4.78
VIC	027	392	947	809	08	031	123	257	457	9	024	532	37
AM	4.25	4.23	4.99	4.83	5.11	5.21	5.12	4.80	4.97	4.94	4.75	4.76	5.08
Y	761	756	255	03	124	019	55	613	128	875	629	889	021
CPC	4.05	4.06	4.08	3.99	4.64	5.78	7.16	5.70	7.15	6.64	7.24	6.52	6.04
СВС	314	948	128	986	176	563	285	353	712	544	096	873	721
LIID	5.11	5.15	4.92	5.00	5.00	4.65	4.78	4.84	4.88	4.69	4.92	4.47	4.98
піг	864	171	211	782	044	744	034	455	324	489	34	691	553
MD	3.92	3.92	4.00	3.79	3.84	3.99	4.12	4.07	4.82	4.43	4.08	4.14	4.51
MD	833	816	158	965	869	238	901	077	095	215	897	006	025
стр	3.94	4.14	4.10	3.77	3.96	3.95	4.17	4.41	4.88	4.47	4.13	3.92	4.10
STR	422	864	231	49	627	185	424	72	538	816	172	485	66

Tablica 18. Ekspresija gena *NURR1* **u ljudskom mozgu.** Sivo osjenčana polja su uzorci u kojima *NURR1* nije eksprimiran.

NURR1

Slika 22. Ekspresija gena *NURR1* u ljudskom mozgu. *NURR1* nije eksprimiran u moždanoj kori nakon 19. postovulacijskog tjedna i tijekom cijelog života u AMY, HIP, MD, STR. U CBC postane eksprimiran nakon rođenja.

Area	3	4	5	6	7	8	9	10	11	12	13	14	15
OEC	6.11	5.70	5.32	4.85	4.31	4.59	4.97	4.36	4.43	4.77	4.58	4.60	4.37
OFC	819	422	24	14	962	639	842	68	805	393	187	841	247
MFC	6.03	6.30	5.48	4.78	4.41	4.84	4.81	4.37	4.28	4.91	4.84	4.82	4.55
	49	896	609	832	948	203	686	315	658	085	693	874	463
DEC	6.23	6.28	5.29	4.87	4.73	4.69	4.84	4.77	4.51	5.02	4.73	4.43	4.39
DFC	926	836	322	05	665	55	679	745	335	133	601	795	649
VEC	6.19	6.12	5.06	4.86	4.65	4.91	5.07	4.29	4.36	5.16	4.73	4.64	4.65
VFC	37	262	618	646	276	326	078	513	844	66	07	376	384
MIC	6.18	6.25	6.12	5.38	4.89	4.85	5.51	4.58	4.56	5.09	4.77	4.53	4.48
MIC	208	494	756	264	61	147	614	842	743	879	935	889	763
SIC	6.29	6.24	5.84	5.15	4.81	4.83	4.94	4.45	4.59	4.52	4.61	4.51	4.58
SIC	243	975	74	869	643	613	109	912	553	431	431	866	977
IDC	5.94	6.29	5.11	4.62	5.02	4.29	4.94	4.43	4.49	4.45	4.61	4.38	4.41
IFC	618	617	663	814	043	094	141	803	14	908	969	142	588
CTC.	5.77	5.71	4.48	4.24	4.57	4.80	5.07	4.41	4.05	4.69	4.64	4.32	4.33
SIC	848	842	508	979	447	699	645	293	645	917	525	025	281
AIC	5.38	5.25	4.32	4.49	4.35	4.49	4.96	4.59	4.69	4.57	4.53	4.33	4.68
AIC	802	96	648	279	83	813	853	38	521	629	826	924	025
ITC	5.14	5.41	4.93	4.53	4.85	5.14	4.96	4.48	4.34	4.76	4.50	4.50	4.55
пс	421	63	075	282	128	394	693	086	462	045	05	431	241
VIC	6.89	6.64	5.67	4.92	4.44	4.88	4.86	4.42	4.44	4.81	4.41	4.44	4.37
VIC	349	377	423	987	426	262	561	026	238	784	862	205	163
AM	4.77	4.83	4.72	4.58	4.24	4.78	5.71	4.74	4.62	4.83	4.62	4.74	4.45
Y	193	909	763	437	387	055	129	748	921	911	208	385	781
CBC	8.19	7.93	6.77	6.68	6.12	6.42	5.74	4.77	5.77	6.08	5.49	5.45	4.93
СЪС	55	092	505	292	457	968	828	033	357	49	591	566	431
нір	6.39	6.29	4.84	4.51	4.26	4.61	4.36	4.41	4.56	4.51	4.38	4.41	4.32
1111	34	077	848	125	669	123	652	327	434	674	305	923	543
MD	4.44	4.77	4.43	4.15	4.64	4.27	4.14	4.30	4.45	4.64	4.20	4.22	4.50
	232	666	411	147	561	051	67	408	381	599	03	182	932
STR	4.54	4.62	4.64	4.17	4.60	4.30	4.80	4.25	4.23	4.61	4.28	4.30	4.32
SIK	887	331	738	584	686	241	881	082	477	327	663	68	95

Tablica 19. Ekspresija gena *NXPH4* **u ljudskom mozgu.** Sivo osjenčana polja su uzorci u kojima *NXPH4* nije eksprimiran.

Slika 23. Ekspresija gena *NXPH4* **u ljudskom mozgu.** *NXPH4* je eksprimiran u moždanoj kori do 16. postovulacijskog tjedna, te u CBC do 20. godine. U drugim područjima i vremenskim razdobljima nije eksprimiran.

Area	3	4	5	6	7	8	9	10	11	12	13	14	15
OFC	3.88	3.71	3.86	4.01	4.02	4.28	4.42	4.34	4.43	4.54	4.56	4.63	4.70
OFC	242	412	252	959	411	348	528	599	201	377	693	189	458
MEC	3.95	3.74	3.85	4.12	3.80	4.07	4.19	4.37	4.60	4.37	4.42	4.64	4.55
MFC	126	08	182	151	403	642	943	56	466	36	441	664	934
DEC	3.76	3.73	3.82	3.98	3.98	4.09	4.09	4.29	4.32	4.48	4.62	4.72	4.69
DFC	387	117	82	15	965	746	085	711	118	39	074	614	999
VEC	3.77	3.77	3.83	4.01	3.86	4.04	4.32	4.32	4.43	4.27	4.52	4.74	4.79
VFC	954	165	633	115	268	326	48	523	28	492	753	771	552
MIC	3.71	3.69	3.79	3.87	3.92	4.09	4.41	4.35	4.35	4.51	4.57	4.61	4.54
MIC	107	429	626	318	207	797	738	879	663	306	935	385	186
S1C	3.80	3.85	3.84	3.83	3.82	4.06	4.19	4.63	4.83	4.51	4.49	4.56	4.79
SIC	964	841	222	528	794	585	46	406	593	621	864	933	582
IDC	3.84	3.76	3.78	3.81	3.76	4.06	4.32	4.66	4.57	4.38	4.37	4.76	4.59
IFC	421	139	767	128	379	387	802	32	726	119	784	923	48
CTC.	3.77	3.83	3.78	3.73	3.75	4.04	4.25	4.64	4.53	4.29	4.55	4.62	4.57
510	21	598	82	59	214	496	87	071	292	389	062	184	351
A1C	3.80	3.95	3.69	3.78	3.91	4.29	4.19	4.32	4.24	4.54	4.31	4.80	4.69
AIC	262	794	177	736	704	072	451	76	297	423	665	768	491
ITC	3.84	3.94	3.80	3.87	3.98	4.11	4.24	4.42	4.85	4.69	4.61	4.59	4.47
ne	225	464	718	925	489	43	129	751	434	841	992	5	507
VIC	3.90	3.77	3.73	3.71	3.97	4.10	4.10	4.52	4.39	4.42	4.51	4.49	4.66
VIC	748	507	836	438	619	103	287	953	274	258	918	045	736
AMV	4.05	3.89	3.89	3.84	3.96	4.17	4.50	4.37	4.65	4.42	4.60	4.32	4.97
ANII	534	213	479	532	805	875	737	313	946	949	588	026	089
CBC	4.21	4.02	4.06	4.18	3.89	4.27	4.07	3.84	3.88	3.89	3.90	4.21	4.08
CBC	327	956	986	579	24	625	271	901	03	984	778	305	44
нр	3.79	3.75	3.95	3.94	3.93	4.29	4.25	4.37	4.57	4.47	4.59	4.50	4.84
1111	05	29	024	562	878	832	792	492	79	729	632	733	287
MD	4.17	4.19	4.22	4.20	4.17	4.27	4.27	4.08	3.87	4.33	4.27	4.09	4.08
WID	345	994	159	202	83	546	009	304	865	939	996	218	844
STD	4.50	4.41	5.06	4.76	3.95	4.41	5.17	4.88	4.83	4.76	5.11	5.26	5.17
SIR	815	084	445	631	079	954	129	873	399	873	396	724	309

Tablica 20. Ekspresija gena *TPD52L1* **u ljudskom mozgu.** Sivo osjenčana polja su uzorci u kojima *TPD52L1* nije eksprimiran.

TPD52L1

Slika 24. Ekspresija gena *TPD52L1* **u ljudskom mozgu.** *TPD52L1* nije eksprimiran u mozgu niti u jednom životnom razdoblju.

6. Rasprava

6.1. Intersticijski neuroni bijele tvari su značajna populacija neurona u odraslom ljudskom mozgu

Dosadašnje studije o intersticijskim neuronima bijele tvari nisu se bavile njihovom brojnošću u mozgu (Das i Kreutzberg 1968, Kostović i Rakic 1980, Meencke 1983, Meyer i sur. 1992, Akbarian i sur. 1993a, 1993b, 1996, Ang i Shul 1995, Anderson i sur. 1996, Rojiani i sur. 1996, DeAzevedo i sur. 1997, Smiley i sur. 1998, Kirkpatrik i sur. 1999, 2003, Beasley i sur. 2002, van de Nes i sur. 2002, Eastwood i Harrison 2003, 2005, 2006, Rioux i sur. 2003, Connor i sur. 2009, García-Marín i sur. 2010, Judaš i sur. 2010b). Kako bismo odredili prosječan broj intersticijskih neurona u mozgu čovjeka, potrebno je odrediti volumen bijele tvari i prosječnu gustoću neurona u mozgu čovjeka u što većem broju područja, kako bi se dobila što preciznija vrijednost. Za ostvarivanje ovog cilja, naš laboratorij je u jedinstvenoj poziciji zbog dugogodišnjeg iskustva s citoarhitektonskom analizom ljudskog mozga i MR snimanjem ljudskog mozga. Prosječna brojnost intersticijskih neurona od pola milijarde u bijeloj tvari više je od ukupnog broja neurona u mozgu miša i štakora (Herculano-Houzel i sur. 2006). Studije koje su se bavile brojem intersticijskih neurona ograničile su se na procjenu gustoće intersticijskih neurona u određenom području kod zdravih mozgova (Rojiani i sur. 1996, Eastwood i Harrison 2005, García-Marín sur. 2010) ili usporedbom gustoće između zdravih kontrolnih mozgova i patoloških mozgova (Meencke 1983, Akbarian i sur. 1993a, 1993b, 1996, Kirkpatrick i sur. 1999, 2003, Eastwood i Harrison 2003, 2005, Molnar i sur. 2003, Rioux i sur 2003, Connor i sur. 2009). Usporedba dobivenih vrijednosti gustoće intersticijskih neurona u ovim studijama je vrlo teška zbog korištenja različitih metodologija. Prosječna gustoća intersticijskih neurona u prijašnjim radovima je vrlo varijabilna. Dva su razloga ovoj varijabilnosti. Prvi uzrok su interindividualne varijabilnosti zbog dobi, te zbog postmortalnog vremena. Drugi uzrok ovoj varijabilnosti je različita metodologija analize gustoće intersticijskih neurona. Na primjer, ako usporedimo gustoću intersticijskih neurona, dobivenu u ovom radu u čeonoj moždanoj kori, s dvije prijašnje studije koje su analizirale gustoću intersticijskih neurona na dva različita načina, dolazimo do vrijednosti od 1.229 neurona/mm³ u ovom radu, 1.145 neurona/mm³ u studiji iz 1983. godine (Meencke 1983), a u nedavno objavljenoj studiji García-Marín i suradnika iznosi 1.591 neurona/mm³ (2.660 neurona/mm³ u površinskom dijelu bijele tvari i 522 neurona/ mm³ u dubinskom dijelu bijele tvari; García-Marín i sur. 2010). García-Marín i suradnici su pokazali da postoje regionalne razlike u gustoći intersticijskih neurona bijele tvari. Prema njihovim rezultatima, razlike postoje zbog različitih gustoća neurona u površinskom dijelu bijele tvari, dok je gustoća neurona u dubinskom dijelu bijele tvari slična u svim područjima mozga. Rezultati ove disertacije pokazuju da regionalne razlike u gustoći neurona postoje samo između limbičkog režnja (gyrus cinguli) i ostatka moždane kore. Razlike između čeonog, tjemenog, sljepoočnog i zatiljnog

režnja su minimalne i zanemarive (manje od 10% ukupne gustoće). Razlog za ovakav nalaz može se pronaći u metodologiji računanja. García-Marín i suradnici su mjerili gustoću neurona u dva odvojena odjeljka (površinski i dubinski dio bijele tvari; García-Marín i sur. 2010), dok smo u ovoj disertaciji mjerili gustoću neurona zajedno u oba odjeljka. Kako je dubinski dio bijele tvari površinom puno veći od površinskog dijela bijele tvari, doprinosi i više u gustoći neurona, pa će razlike između pojedinih regija koje se uoče u površinskom dijelu bijele tvari nestati kada se oba odjeljka analiziraju zajedno. I u ovoj disertaciji uočili smo da je najveći broj intersticijskih neurona smješten bliže granici bijele i sive tvari, kako je opisano i u prethodnim studijama. Točna procjena gustoće neurona važna je za neuropatologiju. Mnoge studije tvrdile su da postoje razlike u gustoći intersticijskih neurona u patološkim stanjima kao što su: shizofrenija (Anderson i sur. 1996, Kirkpatrick i sur. 1999, 2003, Eastwood i Harrison 2003, 2005, 2006, Molnar 2003, Rioux i sur. 2003, Connor i sur. 2009), bipolarni poremećaj (Connor i sur. 2009), epilepsija (Meencke 1983), depresija (Molnar 2003) i Alzheimerova bolest (van de Nes 2002). No, zbog velikih interindividualnih razlika, razlika u metodologiji analiziranja gustoće, te zbog toga što su analizirana različita kortikalna područja, kvalitetna usporedba nije moguća. Za kvalitetnu usporedbu prijeko je potrebno prvo utvrditi normalne vrijednosti intersticijskih neurona, pa ih usporediti s patološkim mozgovima koristeći istu metodu.

6.2. Intersticijski neuroni bijele tvari pripadaju različitim morfološkim tipovima

Intersticijski neuroni bijele tvari pripadaju različitim morfološkim tipovima. Najčešće opisivani morfološki tipovi intersticijskih neurona su piramidni, vretenasti, bipolarni i poligonalni (Kostović i Rakic 1980, Meyer i sur. 1992, Okhotin i Kalinichenko 2003, Suárez-Solá i sur. 2009, García-Marín i sur. 2010, Judaš i sur. 2010b). Analiza morfoloških tipova intersticijskih neurona u ovoj disertaciji potvrdila je rezultate prijašnjih studija. Meyer i suradnici u svojoj studiji iz 1992. godine tvrde da je više od 90% intersticijskih neurona piramidne morfologije (Meyer i sur. 1992). García-Marín i suradnici podržavaju ovu tvrdnju na temelju njihove analize ekspresije SMI32 proteina (García-Marín i sur. 2010). U ovoj disertaciji, iako nismo kvantitativno analizirali omjer pojedinih morfoloških tipova intersticijskih neurona, na temelju kvalitativne analize ne možemo podržati ovu tvrdnju. Iako je gustoća piramidnih neurona u površinskom dijelu bijele tvari (bliže granici sive i bijele tvari) veća, tu postoji i mnogo neurona interneuronske morfologije. Nadalje, Meyer i suradnici su u svojoj studiji klasificirali kao piramidne neurone mnoge intersticijske neurone koji nemaju klasičnu piramidnu morfologiju. Mnogi neuroni koje su oni označili kao piramidne zapravo imaju bipolarnu,

multipolarnu ili vretenastu morfologiju (Slika 2 – 4. Meyer i sur. 1992). Ovakve neurone uočavali smo i u ovoj disertaciji u svim razinama bijele tvari. Mnogi od ovih neurona mogu biti glutamatni (kao npr. zvjezdaste zrnate stanice s dendritičkim trnovima), ali ne moraju nužno biti piramidne morfologije. U skladu s ovom tvrdnjom, SMI32 bi prepoznao glutamatne neurone bijele tvari koji nisu piramidne morfologije (García-Marín i sur. 2010). Stoga posljednji autori nisu prihvatili tvrdnju o 90% neurona piramidne morfologije.

6.3. Intersticijski neuroni bijele tvari u odraslom mozgu su preživjeli fetalni subplate neuroni

Kostović i Rakic su 1980. godine predložili, na temelju autoradiografskih eksperimenata, da intersticijski neuroni u mozgu čovjeka potječu od subplate neurona (Kostović i Rakic 1980, 1990, Judaš i sur. 2010b). Nakon njih, mnoge druge studije su potvrdile ovu tvrdnju kod mačke (Luskin i Shatz 1985, Chun i Shatz 1989), miša (Hoerder-Subedissen i Molnar 2013), te mnogih drugih vrsta (Reep 2000). Pitanje o broju i tipovima subplate neurona koji prežive u postnatalnom razdoblju, te u odraslom mozgu ostanu kao intersticijski neuroni bijele tvari, još uvijek nije riješeno. Mnoge studije (uglavnom na eksperimentalnim životinjama) tvrde da većina subplate neurona nakon rođenja podliježe programiranoj smrti, te da samo mala subpopulacija tih neurona preživi kao intersticijski neuroni bijele tvari (Luskin i Shatz 1985, Wahle i Shatz 1987, Chun i Shatz 1989, Allendoerfer i Shatz 1994). Većina ovih studija svoje rezultate je dobila na različitim eksperimentalnim životinjama. Što se tiče ljudskog mozga, nema uvjerljivih rezultata koji bi potvrđivali masivnu programiranu smrt subplate neurona. Dvije studije Mrzljaka i suradnika, koje su se bavile razvojem i rastom subplate neurona, pokazale su da se u subplate zoni može uočiti pet morfoloških tipova subplate neurona (polimorfni, vretenasti, multipolarni, piramidni i obrnute piramide) koji kod novorođenčeta i u ranom postnatalnom razdoblju ne pokazuju znakove smanjivanja i degeneracije dendrita (Mrzljak i sur. 1988, 1992). KCC2 je natrij-kloridni transporter važan za inhibicijsko djelovanje GABAergičke sinapse, te je prisutan u svim GABAergičkim sinapsama (Rivera i sur. 1999, Blaesse i sur. 2009). KCC2 je pogodan za analizu različitih morfoloških tipova neurona zbog ubikvitarne ekspresije na svim neuronima s GABAergičkim sinapsama. Prisustvo svih morfoloških tipova KCC2 imunorekativnih intersticijskih neurona u odraslom mozgu (koji odgovaraju morfološkim tipovima subplate neurona koje su opisali Mrzljak i suradnici; Mrzljak i sur. 1988) kao i u fetalnom razdoblju, govori u prilog tvrdnji da velika većina subplate neurona preživi u odraslom mozgu. Stoga rezultati ove disertacije

također pokazuju da, barem u ljudskom mozgu, većina subplate neurona preživi u odraslom mozgu kao intersticijski neuroni bijele tvari.

6.4. Geni specifični za subplate zonu kao biomarkeri intersticijskih neurona u odraslom mozgu

Pojavom modernih metoda visoke protočnosti za analizu ekspresije gena, postalo je moguće analizirati ekspresiju cijelog genoma u jednom uzorku. Takav napredak u tehnologiji omogućio je analizu ekspresije gena u različitim područjima mozga ili slojevima moždane kore, te otkriće gena specifičnih za pojedine strukture. Trenutno postoji nekoliko skupova podataka kod čovjeka, miša i majmuna koji mogu poslužiti ovoj svrsi. Nažalost, kod čovjeka (Kang i sur. 2011) i majmuna (Bernard i sur. 2012) podaci o transkriptomu u mozgu postoje samo za moždanu koru, a ne i za subplate/intersticijske neurone. Usporedba transkriptomskih podataka o ekspresiji gena kod miša u moždanoj kori (Belgard i sur. 2010) i u subplate zoni (Hoerder-Suabedissen i sur. 2013) dovela je do otkrića osam gena specifičnih za mišju subplate zonu. Zbog postojanja velikih razlika u ekspresiji gena između različitih vrsta (Watakabe i sur. 2007, Watakabe 2009) sama spoznaja da je gen specifično eksprimiran u subplate zoni kod miša ne znači da je nužno eksprimiran i u čovjeka po istom obrascu. To se potvrdilo i na obrascu ekspresije mišjih subplate specifičnih gena u mozgu čovjeka, gdje samo pet kandidata zbog niskih razina vrijednosti ekspresije su potencijalni geni kandidati specifični za subplate/intersticijske neurone. Ovakav pristup pronalaženju gena specifičnih za subplate/intersticijske neurone opravdan je, jer suzuje skupinu potencijalnih kandidata na manji broj, što u konačnici vodi bržem i efikasnijem pronalaženju stvarnih razlika. Svaki od ovih gena dobiven metodama genetske analize potrebno je evaluirati i u histološkim preparatima pomoću imunohistokemije ili in-situ hibridizacije, zbog mogućnosti različitog obrasca ekspresije u različitim vrstama. Analiza ranog stadija nastanka subplate zone (između 17. i 22. postovulacijskog tjedna) potvrdila je da postoji razlika u ekspresiji između miša i čovjeka za dva često analizirana gena (*Ctgf* i Nurr1) specifična za mišju subplate zonu (Wang i sur. 2010). Otkriće gena/proteina specifičnog za ljudske subplate/intersticijske neurone uvelike bi unaprijedilo razumijevanje i dijagnostiku mnogih razvojnih i degenerativnih bolesti ljudskog mozga. Stoga ova disertacija služi kao pilot studija za opsežnu analizu transriptoma ljudske subplate zone i intersticijskih neurona odraslog mozga, te njegovo "smještanje" u citoarhitektonske i stanične okvire, uz primjenu imunohistokemije i in-situ hibridizacije (u sklopu projekta Hrvatske zaklade za znanost - voditelj: Prof.dr.sc. Miloš Judaš).

7. Zaključak

Intersticijski neuroni bijele tvari su značajna populacija neurona u mozgu čovjeka. Broj intersticijskih neurona bijele tvari veći je od ukupnog broja neurona u važnim eksperimentalnim modelima u neuroznanosti kao što su štakor i miš. Regionalne razlike u gustoći intersticijskih neurona nisu značajne, zbog velikog udjela intersticijskih neurona u dubokoj bijeloj tvari koja ne pokazuje regionalnu varijabilnost. Na temelju dosadašnjih studija, te rezultata ove disertacije, možemo zaključiti da su intersticijski neuroni bijele tvari preživjeli subplate neuroni, te da ne postoji opsežna programirana smrt subplate neurona nakon rođenja. Temeljem analize morfoloških tipova intersticijskih neurona i njihovom usporedbom s tipovima subplate neurona, možemo zaključiti da su svi morfološki tipovi subplate neurona prisutni i u odraslom mozgu, što govori u prilog tvrdnji da svi tipovi fetalnih subplate neurona nastavljaju postojati i u supkortikalnoj bijeloj tvari odraslog ljudskog mozga. Iako trenutno nema podataka o genima specifičnim za subplate zonu u mozgu čovjeka, analizom ekspresije gena specifičnih za subplate zonu u mozgu miša pronašli smo potencijalne kandidate kao što su: *HTR1D*, *INPP4B*, *NURR1*, *NXPH4* i *TPD52L1*. Subplate neuroni i intersticijski neuroni u mozgu čovjeka zahtijevaju detaljniju analizu modernim metodama kao što su in-situ hibridizacija i analiza transkriptoma pomoću mikropostroja.

8. Sažetak

Broj intersticijskih neurona u bijeloj tvari moždane kore čovjeka do sada nije bio poznat. Intersticijski neuroni čine veliku populaciju neurona u bijeloj tvari ljudskog telencefalona, a vjeruje se da su uključeni u patogenezu mnogih razvojnih i degenerativnih bolesti i poremećaja mozga. Stoga je bitno poznavati njihovu regionalnu raspodjelu te morfološke i molekularne fenotipove. U ovom radu smo analizirali brojnost, i fenotipove intersticijskih neurona u pet različitih kortikalnih područja. Prosječni broj intersticijskih neurona u odraslom ljudskom mozgu je 567.860.508,4 neurona/mm³. Regionalne razlike mogu se uočiti između cingularne kore i ostalih kortikalnih područja, no nisu uočene značajne razlike u gustoći neurona između čeonog, tjemenog, sljepoočnog i zatiljnog režnja. Svi morfološki tipovi neurona fetalne subplate zone su prisutni i kod intersticijskih neurona odrasle moždane kore. Na temelju subplate specifičnih gena u miša i analizom njihove ekspresije u mozgu čovjeka pronašli smo pet potencijalnih kandidata za subplate specifične gene kod čovjeka. Ova disertacija uvod je u opsežniju analizu transkriptoma, te u detaljnu izradu molekularnog fenotipa subplate i intersticijskih neurona.

9. Summary

Title: Developmental origin of white matter interstitial neurons and their regional differences in distribution, morpology and phenotype in human brain

The number of interstitial neurons of white matter is currently unknown. The interstitial neurons of white matter are large and important population of neurons in the human brain linked with a number of developmental and degenerative brain disorders. Thus, it is of vital importance to determine regional distribution, morphologic types and molecular phenotype of interstitial neurons. In present study we analyzed the number, morphology and phenotype of interstitial neurons in five regions of adult human brain. The avarage nubmer of interstitial neurons of white matter in humans is 567.860.508,4 neurons/mm³. The only regional difference in the density of interstitial neurons is observed in cyngulate cortex. There is no significant difference in intestitial neurons density between frontal, parietal, temporal and occipital cortex. All morphological types of subplate neurons are present also in the interstitial neurons. Upon analyzing expression patterns of mouse subplate specific genes. This study is introduction for the more detailed study of gene expression and more detailed molecular profile of subplate and interstitial neurons of white matter.

10. Popis literature

Aboitiz F (1999) Comparative development of the mammalian isocortex and the reptilian dorsal ventricular ridge. Evolutionary considerations. Cereb Cortex 9:783-791.

Aboitiz F, Montiel JF, Garcia RR (2005) Ancestry of the mammalian preplate and its derivatives: evolutionary relicts or embryonic adaptations? Rev Neurosci 16:359-376.

Abraham H, Pérez-García CG, Meyer G (2004) p73 and reelin in Cajal-Retzius cells of the developing human hippocampal formation. Cereb Cortex 14:484-495.

Akbarian S, Bunney WE, Potkin SG, Wigal SB, Hagman JO, Sandman CA, Jones EG (1993a) Altered distribution of nicotine-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch Gen Psychiatry 50:169-177.

Akbarian S, Vinuela A, Kim JJ, Potkin SG, Bunney Jr. WE, Jones EG (1993b) Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies abnormal cortical development. Arch Gen Psychiatry 50:178-187.

Akbarian S, Kim JJ, Potkin SG, Hetrick WP, Bunney Jr. WR, Jones EG (1996) Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. Arch Gen Psychiatry 53:425-436.

Alcantara S, Ferrer I (1995) Postnatal development of calbindin-D28k immunoreactivity in the cerebral cortex of the cat. Anat Embryol 192:369-384.

Aldama J (1930) Cytoarchitektonik der Grosshirnrinde eines 5 jährigen und eines 1 jährigen Kindes. Zeitschrift für die gesamte Neurologie und Psychiatrie 130:532-626.

Al-Ghoul WM, Miller MW (1989) Transient expression of Alz-50 immunoreactivity in developing rat neocortex: a marker for naturally occuring neuronal death. Brain Res 481:361-367.

Allendoerfer KL, Shatz CJ (1994) The subplate, a transient neocortical structure: Its role in the development of connections between thalamus and cortex. Annu Rev Neurosci 17:185-218.

Allendoerfer KL, Shelton DL, Shooter EM, Shatz CJ (1990) Nerve growth factor receptor immunoreactivity is transiently associated with the subplate neurons of the mammalian telecephalon. Proc Natl Acad Sci USA 97:187-190.

Anderson S, Mione M, Yun K, Rubenstein JLR (1999) Differential origins of neocortical projection and local circuit neurons: Role of *Dlx* genes in neocortical interneuronogenesis. Cereb Cortex 9:646-654.

Anderson SA, Volk DW, Lewis DA (1996) Increased density of microtubule associated protein 2immunoreactive neurons in the prefrontal white matter of schizophrenic subjects. Schizophr Res 19:111-119.

Ang LC, Shul DD (1995) Peptidergic neurons of subcortical white matter in aging and Alzheimer's brain. Brain Res 674:329-335.

Angevine JB Jr., Sidman RL (1961) Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192:766-768.

Antonini A, Shatz CJ (1990) Relation between putative transmitter phenotypes and connectivity of subplate neurons during cerebral cortical development. Eur J Neurosci 2:744-761.

Arai Y, Ijuin T, Itoh M, Takenawa T, Takashima S, Becker LE (2001): Developmental changes of synaptojanin expression in the human cerebrum and cerebellum. Dev Brain Res 129:1-9.

Arimatsu Y, Ishida M, Kaneko T, Ichinose S, Omori A (2003) Organization and development of corticocortical associative neurons expressing the orphan nuclear receptor Nurr1. J Comp Neurol 466:180-196.

Aström KE (1967) On the early development of the isocortex in fetal sheep. Prog Brain Res 26:1-59.

Barone P, Kennedy H (2000) Non-uniformity of neocortex: areal heterogeneity of NADPHdiaphorase reacitve neurons in adult macaque monkeys. Cereb Cortex 10:160-174.

Bartelmez GW (1923) The subdivision of the neural folds in man. J Comp Neurol 35:231-247.

Bayatti N, Moss JA, Sun L, Ambrose P, Ward JFH, Lindsay S, Clowry GJ (2008) A molecular neuroanatomical study of the developing human neocortex from 8 to 17 postconceptional weeks revealing the early differentiation of the subplate and subventricular zone. Cereb Cortex 18:1536-1548.

Beasley CL, Cotter DR, Everall P (2002) Density and distribution of white matter neurons in schizophrenia, bipolar disorder and major depressive disorder: no evidence for abnormalities of neuronal migration. Mol Psychiatry 7:564-570.

Beglopoulos V, Montag-Sallaz M, Rohlmann A, Piechotta K, Ahmad M, Montag D, Missler M (2005) Neurexophilin 3 is highly localized in cortical and cerebellar regions and is functionally important for sensorimotor gating and motor coordination. Mol Cell Biol 25:7278-7288.

Berman NEJ, Fredrickson E (1992) Morphology and laminar distribution of neuropeptide Y immunoreactive neurons in the human striate cortex. Synapse 11:20-27.

Bernard A, Lubbers LS, Tanis KQ, Luo R, Podtelezhnikov AA, Finney EM, McWhorter MM, Serikawa K, Lemon T, Morgan R, Copeland C, Smith K, Cullen V, Davis-Turak J, Lee CK, Sunkin SM, Loboda AP, Stone DJ, Hawrylycz MJ, Roberts CJ, Jones AR, Geschwind DH, Lein ES (2012) Transcriptional architecture of the primate cortex. Neuron 73:1083-1099.

Bernhard CG, Kolmodin GM, Meyerson BA (1967) On the prenatal development of function and structure in the somesthetic cortex of the sheep. Prog Brain Res 26: 60-77.

Bishop KM, Garel S, Nakagawa Y, Rubenstein JL, O'Leary DD (2003) *Emx1* and *Emx2* cooperate to regulate cortical size, lamination, neuronal differentiation, development of cortical efferents, and thalamocortical pathfinding. J Comp Neurol 457:345-360.

Blaesse P, Airaksinen MS, Rivera C, Kaila K (2009) Cation-chloride cotransporters and neuronal function. Neuron 61:820-838.

Boll F (1874) Die Histologie und Histogenese der nervösen Centralorgane. Archiv für Psychiatrie und Nervenkrankheiten 4:1-138

Brodmann K (1906) Beiträge zur histologischen Lokalisation der Grosshirnrinde. V. Mitteilung: Ueber den allgemeinen Bauplan des Cortex pallii bei den Mammaliern und zwei homologe Rindenfelder im besonderen. Zugleich ein Beitrag zur Furchenlehre (Mit 298 Textfiguren). Journal für Psychologie und Neurologie (Ergänzungsheft) 6:275-400.

Brun A (1965) The subpial granular layer of the foetal cerebral cortex in man. Its ontogeny and significance in congenital cortical malformations. Acta Pathol Microbiol Scand 179(Suppl.):3-98.

Brunelli S, Innocenzi A, Cossu G (2003): *Bhlhb5* is expressed in the CNS and sensory organs during mouse embryonic development. Gene Expr Patterns, 3:755-759.

Bulchand S, Subramanian L, Tole S (2003) Dynamic spatiotemporal expression of *LIM* genes and cofactors in the embryonic and postnatal cerebral cortex. Dev Dyn 226:460-469.

Bystron I, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci 9:110-122.

Bystron I, Rakic P, Molnár Z, Blakemore C (2006) The first neurons of the human cerebral cortex. Nat Neurosci 9:880-886.

Cabrera-Socorro A, Hernández-Acosta NC, González-Gomez M, Meyer G (2007) Comparative aspects of p73 and reelin expression in Cajal-Retzius cells and the cortical hem in lizard, mouse and human. Brain Res 1132:59-70.

Campbell DB, Levitt P (2003) Regionally restricted expression of the transcritpion factor c-myc intron 1 binding protein during brain development. J Comp Neurol 467:581-582.

Cao QL, Yan XX, Luo XG, Garey LJ (1996) Prenatal development of parvalbumin immunoreactivity in the human striate cortex. Cereb Cortex 6:620-630.

Caviness VS (1982) Neocortical histogenesis in the normal and reeler mice: a developmental study based upon [³H]-thymidine autoradiography. Brain Res 256:293-302.

Chan WJ, Xia CL, Dong DC, Heizmann CW, Yew DT (2003) Differential expression of S100 proteins in the developing human hippocampus and temporal cortex. Microsc Res Tech 60:600-613.

Chan-Palay V, Allen YS, Lang W, Haesler U, Polak JM (1985) Cytology and distribution in normal human cerebral cortex of neurons immunoreactive with antisera against neuropeptide Y. J Comp Neurol 238:382-389.

Chan-Palay V, Lang W, Allen YS, Haesler U, Polak JM (1985) II. Cortical neurons immunoreactive with antisera against neuropeptide Y are altered in Alzheimer's-Type dementia. J Comp Neurol 238:390-400.

Chen EY, Mufson EJ, Kordower JH (1996) TRK and p75 neurotrophin receptor systems in the developing human brain. J Comp Neurol 369:591-618.

Chen JG, Rašin MR, Kwan KY, Šestan N (2005) *Zfp312* is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Procl Natl Acad Sci USA 102:17792-17797.

Choi JS, Shin YJ, Lee JY, Yun H, Cha JH, Choi JY, Chun MH, Lee MY (2010) Expression of vascular endothelial growth factor receptor-3 mRNA in the rat developing forebrain and retina. J Comp Neurol 518:1064-1081.

Chun JJ, Nakamura MJ, Shatz CJ (1987) Transient cell of the developing mammalian telencephalon are peptide-immunoreactive neurons. Nature 325:617-620.

Chun JJM, Shatz CJ (1989a) The earliest-generated neurons of the cat cerebral cortex: characterization by MAP2 and neurotransmitter immunohistochemistry during fetal life. J Neurosci 9:1648-1667.

Chun JJM, Shatz CJ (1989b) Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population. J Comp Neurol 282:555-569.

Clancy B, Silva-Filho M, Friedlander MJ (2001) Structure and projections of white matter neurons in the postnatal rat visual cortex. J Comp Neurol 434:233-252.

Cobas A, Fairén A, Alvarez-Bolado G, Sánchez MP (1991) Prenatal development of the intrinsic neurons of the rat neocortex: a comparative study of the distribution of GABA-immunoreactive cells and the GABAA receptor. Neuroscience 40:375-397.

Connor CM, Guo Y, Akbarian S (2009) Cingulate white matter neurons in schizoprenia and bipolar disorder. Biol Psychiatry 66:486-493.

Couégnas A, Schweitzer A, Andrieux A, Ghandour MS, Boehm N (2007) Expression pattern of *STOP lacZ* reporter gene in adult and developing mouse brain. J Neurosci Res 85:1515-1527.

Csillik AE, Okuno E, Csillik B, Knyhár E, Vécsei L (2002) Expression of kynurenine aminotransferase in the subplate of the rat and its possible role in the regulation of programmed cell death. Cereb Cortex 12:1193-1201.

Das GD, Kreutzberg GW (1968) Evaluation of interstitial nerve cells in the central nervous system. A correlative study using acetylcholinesterase and Golgi techniques. Adv Anat Embryol 41:3-58.

deAzevedo LC, Hedin-Pereira C, Lent R (2002) Diaphorase-positive neurons in the cingulate cortex of human fetuses during second half of gestation. Anat Embryol 205:29-35.

Del Río JA, Martínez A, Auladell C, Soriano E (2000) Developmental history of the subplate and developming white matter in murine neocortex. Neuronal organization and relationship with the main afferent systems at embryonic and perinatal stages. Cereb Cortex 10:784-801.

Del Río JA, Soriano E, Ferrer I (1991) A transitory population of substance P-like immunoreactive neurones in the developing cerebral cortex. Brain Res Dev Brain Res 64:205-211.

Delalle I, Evers P, Kostović I, Uylings HBM (1997) Laminar distribution of neuropeptide Yimmunoreactive neurons in human prefrontal cortex during development. J Comp Neurol 379:515-522. Ding SL, Rockland KS, Zheng DS (2000) Parvalbumin immunoreactive Cajal-Retzius and non Cajal-Retzius neurons in layer I of different cortical retions of human newborn. Anat Embyrol 201:407-417.

Donoghue MJ, Rakic P (1999) Molecular evidence for the early specification of presumptive functional domains in the embryonic primate cerebral cortex. J Neurosci 19:5967-5979.

Downen M, Zhao ML, Lee P, Weidenheim KM, Dickson DW, Lee SC (1999) Neuronal nitric oxide synthase expression in developing and adult human CNS. J Neuropathol Exp Neurol 58:12-21.

Dunn JA, Kirsch JD, Naegele JR (1995) Transient immunoglobulin-like molecules are present in the subplate zone and cerebral cortex during postnatal development. Cereb Cortex 5:494-505.

Eastwood SL, Harrison PJ (2003) Interstitial white matter neurons express less reelin and are abnormally distributed in schizophrenia: towards an integration of molecular and morphologic aspects of the neurodevelopmental hypothesis. Mol Psychiatry 8:821-831.

Eastwood SL, Harrison PJ (2005) Interstitial white matter neuron density in the dorsolateral prefrontal cortex and parahippocampal gyrus in schizophrenia. Schizophr Res 79:181-188.

Eastwood SL, Harrison PJ (2006) Cellular basis of reduced cortical reelin expression in schizophrenia. Am J Psychiatry 163:540-542.

Ellison DW, Kowall NW, Martin JB (1987) Subset of neurons characterized by the presence of NADPH-diaphorase in human substantia innominata. J Comp Neurol 260:233-245.

Elsas J, Sellhaus B, Herrmann M, Kinkeldey A, Weis J, Jahnen-Dechent W, Häusler M (2012) Fetuin-A in the developing brain. Dev Neurobiol 73:354-369.

Feldman SC, Harris MR, Laemle LK (1990) The maturation of the somatostatin systems in the rat visual cortex. Peptides 11:1055-1064.

Ferland RJ, Cherry TJ, Preware PO, Morriesy EE, Walsh CA (2003) Characterization of *Foxp2* and *Foxp1* mRNA and protein in the developing and mature brain. J Comp Neurol 460:266-279.

Filimonof IN (1929) Zur embryonalen und postembryonalen Entwicklung der Grosshirnrinde des Menschen. Journal für Psychologie und Neurologie (Leipzig) 39:323-389.

Fischer HC, Kuljis RO (1994) Multiple types of nitrogen monoxide synthase-/NADPH diaphorasecontaining neurons in the human cerebral neocortex. Brain Res 654:105-117. Fonseca M, Del Río JA, Martínez A, Gómez S, Soriano E (1995) Development of calretinin immunoreactivity in the neocortex of the rat. J Comp Neurol 361:177-192.

Franco SJ, Müller U (2013) Shaping our minds: Stem and progenitor cell diversity in the mammalian neocortex. Neuron 77:19-34.

Fukuda T, Kawano H, Ohyama K. Li HP,Takeda Y, Oohira A, Kawamura K (1997) Immunohistochemical localization of neurocan and L1 in the formation of thalamocortical pathway of developing rats. J Comp Neurol 382:141-152.

Gadisseux JF, Goffinet AM, Lyon G, Evrard P (1992) The human transient subpial granular layer: An optical, immunohistochemical, and ultrastructural analysis. J Comp Neurol 324:94-114.

Gal JS, Morozov YM, Ayoub AE, Chatterjee M, Rakic P, Haydar TF (2006) Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. J Neurosci 26:1045-1056.

García-Marín V, Blazquez-Llorca L, Rodriguez JR, González-Soriano J, DeFelipe J (2010) Differential distribution of neurons in the gyral white matter of the human cerebral cortex. J Comp Neurol 518:4740-4759.

Gonzalez BJ, Leroux P, Bodenant C, Laquerrière A, Coy DH, Vaudry H (1989) Ontogeny of somatostatin receptors in the rat brain: biochemical and autoradiographic study. Neuroscience 29:629-644.

Gressens P (2000) Mechanisms and disturbances of neuronal migration. Pediatr Res 48:725-730.

Hatten M (1999) Central nervous system neuronal migration. Annu Rev Neurosci 22:511-539.

Haubensak W, Attardo A, Denk W, Huttner WB (2004) Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: A major site of neurogenesis. Proc Natl Acad Sci USA 101:3196-3201.

Haybaeck J, Llenos IC, Dulay RJ, Bettermann K, Miller CL, Wälchli T, Frei K, Virgintino D, Rizzi M, Weis S (2012) Expression of Nogo-A is decreased with increasing gestational age in the human fetal brain. Dev Neurosci 34:402-416.

Henle J (1879) Handbuch der Nervenlehre des Menschen. Mit zahlreichen in den Text eingedruckten Holzstichen. Zweite verbesserte Auflage. Braunschweig: Druck und Verlag von Friedrich Vieweg und Sohn. Herculano-Houzel S, Collins CE, Wong P, Kaas JH (2007) Cellular scaling rules for primate brain. Proc Natl Acad Sci USA 104:3562-3567.

Herculano-Houzel S, Mota B, Lent R (2006) Cellular scaling rules for rodent brains. Proc Natl Acad Sci USA 103:12138-12143.

Heuer H, Christ S, Friedrichsen S, Brauer D, Winckler M, Bauer K, Raivich G (2003) Connective tissue growth factor: a novel marker of layer VII neurons in the rat cerebral cortex. Neuroscience 119:43-52.

Hevner RF, Neogi T, Englund C, Daza RA, Fink A (2003) Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdating suggest a pallial origin. Dev Brain Res 141:39-53.

Hirata T, Suda Y, Nakao K, Narimatsu M, Hirano T, Hibi M (2004) Zinc finger gene *fez-like* functions in the formation of subplate neurons and thalamocortical axons. Dev Dyn 230:546-556.

His W (1904) Die Entwickelung des menschlichen Gehirns während der ersten Monate. Leipzig: S. Hirzel.

Hoerder-Suabedissen A, Molnár Z (2013) Molecular diversity of early-born subplate neurons. Cereb Cortex 23:1473-1483.

Hoerder-Suabedissen A, Wang WZ, Lee S, Davies KE, Goffinet AM, Rakić S, Parnavelas J, Reim K, Nicolić M, Paulsen O, Molnár Z (2009) Novel markers reveal subpopulations of subplate neurons in the murine cerebral cortex. Cereb Cortex 19:1738-1750.

Hoerder-Suabedissen, Oeschger FM, Krishnan M, Belgard TG, Wang WZ, Lee S, Webber C, Petretto E, Edwards AD, Molnár Z (2013) Expression profiling of mouse subplate reveals a dynamic gene network and disease association with autism and schizophrenia. Proc Natl Acad Sci USA 110:3555-3560.

Honig LS, Hermann K, Shatz CJ (1996) Developmental changes revealed by immunohistochemical markers in human cerebral cortex. Cereb Cortex 6:794-806.

Howard B, Chen Y, Zecevic N (2006) Cortical progenitor cells in the developing human telencephalon. Glia 53:57-66.

Huntley GW, Hendry SH, Killackey HP, Chalupa LM, Jones EG (1988) Temporal sequence of neurotransmitter expression by developing neurons of fetal monkey visual cortex. Brain Res 471:69-96.

Ina A, Sugiyama M, Konno J, Yoshida S, Ohmomo H, Nogami H, Shutoh F, Hisano S (2007) Cajal-Retzius cells and subplate neurons differentially express vesicular glutamate transporters 1 and 2 during development of mouse cortex. Eur J Neurosci 26:615-623.

Jahagirdar V, Wagner CK (2010) Ontogeny of progesterone receptor expression in the subplate of fetal and neonatal rat cortex. Cereb Cortex 20:1046-1052.

Jahagirdar V, Zoeller TR, Tighe DP, Wagner CK (2012) Maternal hypothyroidism decreases progesterone receptor expression in the cortical subplate of foetal rat brain. J Neuroendocrinol 24:1126-1134.

Jiménez D, Rivera R, López-Mascaraque L, De Carlos J (2003) Origin of the cortical layer I in rodents. Dev Neurosci 25:105-115.

Judaš M, Pletikos M (2010) The discovery of the subpial granular layer in the human cerebral cortex. Transl Neurosci 1:255-260.

Judaš M, Šestan N, Kostović I (1999) Nitrinergic neurons in the developing and adult human telencephalon: transient and permanent patterns of expression in comparison to other mammals. Microsc Res Tech 45:401-419.

Judaš M, Sedmak G, Pletikos M (2010a) Early history of subplate and interstitial neurons: form Theodor Meynert (1867) to the discovery of the subplate zone (1974). J Anat 217:344-367.

Judaš M, Sedmak G, Pletikos M, Jovanov-Milošević N (2010b) Population of subplate and interstitial neurons in fetal and adult human telencephalon. J Anat 217:381-399.

Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, Sousa AM, Pletikos M, Meyer KA, Sedmak G, Guennel T, Shin Y, Johnson MB, Krsnik Ž, Mayer S, Fertuzinhos S, Umlauf S, Lisgo SN, Vortmeyer A, Weinberger DR, Mane S, Hyde T, Huttner A, Reimers M, Kleinman JE, Šestan N (2011) Spatio-temporal transcriptome of the human brain. Nature 478:483-489.

Kaplan IV, Guo Y, Mower GD (1995) Developmental expression of the immediate early gene *EGR-1* mirrors the critical period in cat visual cortex. Dev Brain Res 90:174-179.

Kendall SE, Ryczko MC, Mehan M, Verdi JM (2003) Characterization of *NADE*, *NRIF* and *SC-1* gene expression during mouse neurogenesis. Dev Brain Res 144:151-158.

Kenmuir CL, Chiaia NL, Lane RD, Mooney RD (2012) Laminar expression of Ephrin-A2 in primary somatosensory cortex of postnatal rats. Anat Rec (Hoboken) 295:105-112.

Kilb W, Hanganu IL, Okabe A, Sava BA, Shimizu-Okabe C, Fukuda A, Luhmann HJ (2008) Glycine receptors mediate excitation of subplate neurons in neonatal rat cerebral cortex. J Neurophysiol 100:698-707.

Kim MH, Gunnersen JM, Tan SS (2002) Localized expression of the seizure-related gene *SEZ-6* in developing and adult forebrains. Mech Dev 118:171-174.

Kirkpatrick B, Conley RC, Kakoyannis A, Reep RL, Roberts RC (1999) Interstitial cells of the white matter in the inferior parietal cortex in schizophrenia: an unbiased cell-counting study. Synapse 34:95-102.

Kirkpatrick B, Messias NC, Conley RR, Roberts RC (2003) Interstital cells of the white matter in the dorsolateral prefrontal cortex in deficit and nondeficit schizophrenia. J Nerv Ment Dis 191:563-567.

Koh S, Higgins GA (1991) Differential regulation of the low-affinity nerve growth factor receptor during postnatal development of the rat brain. J Comp Neurol 313:494-508.

König N, Roch G, Marty R (1975) The onset of synaptogenesis in rat temporal cortex. Anat Embryol 148:73-87

Kordower JH, Mufson EJ (1992) Nerve growth factor receptor-immunoreactive neurons within the developing human cortex. J Comp Neurol 323:25-41.

Kostović I, Molliver ME (1974) A new interpretation of the laminar development of cerebral cortex: synapotgenesis in different layers of neopallium in the human fetus. Anat Rec 178:395.

Kostović I, Rakic P (1980) Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol 9:219-242.

Kostović I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 297:441-470.

Kostović I, Štefulj-Fučić A, Mrzljak L, Jukić S, Delalle I (1991) Prenatal and perinatal development of the somatostatin-immunoreactive neurons in the human prefrontal cortex. Neurosci Lett 124:153-156.

Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149-184. Krmpotić-Nemanić J, Kostović I, Vidić Z, Nemanić D, Kostović-Knežević LJ (1987) Development of Cajal-Retzius cells in the human auditory cortex. Acta Otolaryngol (Stockh) 103:477-480.

Krubitzer L, Kaas J (2005) The evolution of the neocortex in mammals: how is phenotypic diversity generated? Curr Opin Neurobiol 15:444-453.

Kwan KY, Lam MMS, Krsnik Ž, Kawasawa YI, Lefebvre V, Šestan N (2008) *SOX5* postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons. Proc Natl Acad Sci USA 105:16021-16026.

Lauder JM, Han VK, Henderson P, Verdoorn T, Towle AC (1986) Prenatal ontogeny of the GABAergic system in the rat brain: an immunocytochemical study. Neuroscience 19:465-493.

Letinić K, Zoncu R, Rakic P (2002) Origin of GABAergic neurons in the human neocortex. Nature 417:645-649.

Lidow MS, Rakic P (1994) Unique profiles of the alpha 1-, alpha 2-, and beta-adrenergic receptors in the developing cortical plate and transient embryonic zones of the rhesus monkey. J Neurosci 14:4064-4078.

Liu C, Lin C, Whitaker DT, Bakeri H, Bulgakov OV, Liu P, Lei J, Dong L, Li T, Swaroop A (2013) *Prickle1* is expressed in distinct cell populations of the central nervous system and contributes to neuronal morphogenesis. Hum Mol Genet 22:2234-2246.

Liu FC, Graybiel AM (1992) Transient calbindin-D28k-positive systems in the telencephalon: ganglionic eminence, developing striatum and cerebral cortex. J Neurosci 12:674-690.

López-Bendito G, Shigemoto R, Kulik A, Paulsen O, Fairén A, Luján R (2002) Expression and distribution of metabotropic GABA receptor subtypes GABA_BR1 and GABA_BR2 during rat neocortical development. Eur J Neurosci 15:1766-1778.

Lukaszewicz A, Savatier P, Cortay V, Giroud, Huissoud C, Berland M, Kennedy H, Dehay C (2005) G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47:353-364.

Luskin MB, Shatz CJ (1985) Studies of the earliest generated cells of the cat's visual cortex: cogeneration of subplate and marginal zones. J Neurosci 5:1062-1076.

Marín O, Rubenstein JLR (2001) A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2:780-790.

Marín O, Rubenstein JLR (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:441-483.

Marin-Padilla M (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol 152:109-126.

Matute C, Wahle P, Gutiérrez-Igarza K, Albus K (1993) Distribution of neurons expressing substance P receptor messenger RNA in immature and adult cat visual cortex. Exp Brain Res 97:295-300.

Meencke HJ (1983) The density of dystopic neurons in the white matter of the gyrus frontalis inferior in epilepsies. J Neurol 230:171-181.

Mehra RD, Hendrickson AE (1993) A comparison of the development of neuropeptide and MAP2 immunocytochemical labeling in the macaque visual cortex during pre and postnatal development. J Neurobiol 24:104-124.

Meinecke DL, Rakic P (1992) Expression of GABA and GABA_A receptors by neurons of the subplate zone in developing primate occipital cortex: evidence for transient local circuits. J Comp Neurol 317:91-101.

Meinecke DL, Rakic P (1993) Low-affinity p75 nerve growth factor receptor expression in the embryonic monkey telencephalon: timing and localization in diverse cellular elements. Neuroscience 54:105-116.

Meyer G (2010) Building a human cortex: the evolutionary differentiation of Cajal-Retzius cells and the cortical hem. J Anat 217:334-343.

Meyer G, Goffinet AM (1998) Prenatal development of reelin-immunoreactive neurons in the human neocortex. J Comp Neurol 397:29-40.

Meyer G, González-Hernández T (1993) Developmental changes in layer I of the human neocortex during prenatal life: A DiI-tracing and AChE and NADPH-d histochemistry study. J Comp Neurol 338:317-336.

Meyer G, Wahle P (1999) The paleocortical ventricle is the origin of reelin-expressing neurons in the marginal zone of the foetal human neocortex. Eur J Neurosci 11:3937-3944.

Meyer G, Wahle P, Castaneyra-Perdomo A, Ferres-Torres R (1992) Morphology of neurons in the white matter of the adult human neocortex. Exp Brain Res 88:204-212.

Meyer G, Goffinet AM, Fairén A (1999) What is a Cajal-Retzius cell? A reassessment of a classical cell type based on recent observations in the developing neocortex. Cereb Cortex 9:765-775.

Meyer G, Schaaps JP, Moreau L, Goffinet AM (2000) Embryonic and early fetal development of human neocortex. J Neurosci 20:1858-1868.

Meyer G, Pérez-García CG, Gleeson JG (2002) Selective expression of doublecortin and LIS1 in developing human cortex suggests unique modes of neuronal movement. Cereb Cortex 12:1225-1236.

Meyer G, Lambert de Rouvroit C, Goffinet AM, Wahle P (2003) *Disabled-1* mRNA and protein expression in developing human cortex. Eur J Neurosci 17:517-525.

Meynert T (1867) Der Bau der Grosshirnrinde und seine örtlichen Verschiedenheiten, nebst einem pathologisch-anatomischen Corollarium. Vierteljahresschrift für Psychiatrie 1 77-93, 126-170, 198-217.

Michishita M, Ikeda T, Nakashiba T, Ogawa M, Tashiro K, Honjo T, Doi K, Itohara S, Endo S (2004) Expression of *Btcl2*, a novel member of *Btcl* gene family, during development of the central nervous system. Dev Brain Res 153:135-142.

Miller B, Sheppard AM, Bicknese AR, Pearlman AL (1995) Chondroitin sulfate proteoglycans in the developing cerebral cortex: the distribution of neurocan distinguishes forming afferent and efferent axonal pathways. J Comp Neurol 355:615-628.

Miranda RC, Toran-Allerand CD (1992) Developmental expression of estrogen receptor mRNA in the rat cerebral cortex: a nonisotropic in situ hybridization histochemistry study. Cereb Cortex 2:1-15.

Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M (2004) Asymetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131:3133-3145.

Mizukawa K, Vincent SR, McGeer PL, McGeer EG (1988) Reduced nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase-positive neurons in cat cerebral white matter. Brain Res 461:274-281.

Molliver ME (1967) An ontogenetic study of evoked somesthetic cortical responses in the sheep. Prog Brain Res 26:78-91. Molnar M, Potkin SG, Bunney WE, Jones EG (2003) mRNA expression patterns and distribution of white matter neurons in dorsolateral prefrontal cortex of depressed patients differ from those in schizophrenia patients. Biol Psychiatry 53:39-47.

Molnár Z, Métin C, Stoykova A, Tarabykin V, Price DJ, Francis F, Meyer G, Dehay C, Kennedy H (2006) Comparative aspects of cerebral cortical development. Eur J Neurosci 23:921-934.

Molyneaux BJ, Arlotta P, Menezes JRL, Macklis JD (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8:427-437.

Montiel JF, Wang WZ, Oeschger FM, Hoerder-Suabedissen A, Tung WL, García-Moreno F, Holm IE, Villalón A, Molnár Z (2011) Hypothesis on the dual origin of the mammalian subplate. Front Neuroanat 5:25 doi:10.3389/fnana.2011.00025.

Morishita H, Murata Y, Esumi S, Hamada S, Yagi T (2004) CNR/Pcdhalpha family in subplate neurons, and developing cortical connectivity. Neuroreport 15:2595-2599.

Mrzljak L, Uylings HBM, Kostović I, Van Eden CG (1988) Prenatal development of neurons in the human prefrontal cortex: I. A qualitative Golgi study. J Comp Neurol 271:355-386.

Mrzljak L, Uylings HBM, Kostović I, Van Eden CG (1992) Prenatal development of neurons in the human prefrontal cortex. II. A quantitative Golgi study. J Comp Neurol 316:485-496.

Müller F, O'Rahilly R (1983) The first appearance of the major divisions of the human brain at stage 9. Anat Embryol 168:419-432.

Müller F, O'Rahilly R (1985) The first appearance of the neural tube and optic primordium in the human embryo stage 10. Anat Embryol 172:157-169.

Müller F, O'Rahilly R (1986) The development of the human brain and the closure of the rostral neuropore at stage 11. Anat Embryol 175:205-222.

Müller F, O'Rahilly R (1987) The development of the human brain, the closure of the caudal neuropore, and the begining of secondary neurulation at stage 12. Anat Embryol 176:413-430.

Müller F, O'Rahilly R (1988a) The development of the human brain from a closed neural tube at stage 13. Anat Embryol 177:203-224.

Müller F, O'Rahilly R (1988b) The first appearance of the future cerebral hemispheres in the human embryo at stage 14. Anat Embryol 177:495-511.

Müller F, O'Rahilly R (1988c) The development of the human brain, including the longitudinal zoning in the diencephalon at stage 15. Anat Embryol 179:55-71.

Müller F, O'Rahilly R (1989a) The human brain at stage 16, including the initial evagination of the neurohypophysis. Anat Embryol 179:551-569.

Müller F, O'Rahilly R (1989b) The human brain at stage 17, including the appearance of the future olfactory bulb and the first amygdaloid nuclei. Anat Embryol 180:353-369.

Müller F, O'Rahilly R (1990a) The human brain at stages 18 – 20, including the choroid plexuses and the amygdaloid and septal nuclei. Anat Embryol 182:285-306.

Müller F, O'Rahilly R (1990b) The human brain at stages 21 - 23, with particular reference to the cerebral cortical plate and to the development of the cerebellum. Anat Embryol 182:375-400.

Naegele JR, Barnstable CJ, Wahle PR (1991) Expressionof a unique 56-kDa polypeptide by neurons in the subplate zone of the developing cerebral cortex. Proc Natl Acad Sci USA 88:330-334.

Navarro D, Alvarado M, Morte B, Berbel D, Sesma J, Pacheco P, Morreale de Escobar G, Bernal J, Berbel P (2013) Late maternal hypothyroidism alters the expression of Camk4 in neocortical subplate neurons: A comparison with Nurr1 labeling. Cereb Cortex doi:10.1093/cecor/bht129.

Nicol X, Muzerelle A, Bachy I, Ravary A, Gaspar P (2005) Spatiotemporal localization of the calcium-stimulated adenylate cyclases, AC1 and AC8, during mouse brain development. J Comp Neurol 486:281-294.

Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714-720.

Noctor SC, Martínez-Cerdeño V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136-144.

Oeschger FM, Wang WZ, Lee S, García-Moreno F, Goffinet AM, Arbonés M, Rakic S, Molnár Z (2011) Gene expression analysis of the embryonic subplate. Cereb Cortex 22:1343-1359.

Ohyama K, Ikeda E, Kawamura K, Maeda N, Noda M (2004) Receptor-like protein tyrosine phosphatase ζ /RTP β is expressed on tangentially aligned neurons in early mouse neocortex. Dev Brain Res 148:121-127.

Okhotin VE, Kalinichenko SG (2003) Subcortical white matter interstitial neurons: Their connections, neurochemical specialization, and role in the histogenesis of the cortex. Neurosci Behav Physiol 33:177-194.

O'Rahilly R, Gardner E (1979) The initial development of the human brain. Acta Anat 104:123-133.

O'Rahilly R, Müller F (1981) The first appearance of the human nervous system at stage 8. Anat Embryol 163:1-13.

O'Rahilly R, Müller F (1987) Developmental stages in human embyros including revision of Streeter's horizons and a survey of Carnegie collection. Publication No. 637 Carnegie Institution of Washington, Washington, D.C.

O'Rahilly R, Müller F (2006) The Embryonic Human Brain. An atlas of Developmental Stages. Hoboken, NJ: John Wiley & Sons Inc.

O'Rahilly R, Müller F (2010) Develpmental stages in human embryos: Revised and new measurements. Cell Tissue Organs 192:73-84.

Osheroff H, Hatten ME (2009) Gene expression profiling of preplate neurons destined for the subplate: genes involved in transcription, axon extension, neurotransmitter regulation, steroid hormone signaling, and neuronal survival. Cereb Cortex 19(Suppl 1):i126-134.

Ostermann CH, Grunwald J, Wevers A, Lorke DE, Reinhardt S, Maelicke A, Schröder H (1995) Cellular expression of alpha 4 subunit mRNA of the nicotinic acetlycholine receptor in the developing rat telencephalon. Neurosci Lett 192:21-24.

Price DJ, Aslam S, Tasker L, Gilles K (1997) Fates of the earliest generated cells in the developing murine neocortex. J Comp Neurol 377:414-422.

Raedler E, Raedler A (1978) Autoradiographic study of early neurogenesis in rat neocortex. Anat Embryol 154:267-284.

Raedler A, Sievers J (1975) The development fo the visual system of the albino rat. Adv Anat Embryol Cell Biol 50:3-88.

Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61-84.

Rakic P (1974) Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183:425-427.
Rakic P (1977) Prenatal development of the visual system in the rhesus monkey. Phil Trans Roy Soc Lond B 278:245-260.

Rakic P (1985) Limits of neurogenesis in primates. Science 227:1054-1056.

Rakic P (1988) Specification of cerebral cortical areas. Science 241:170-176.

Rakic P (1995) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18:383-388.

Rakic P (2003) Developmental and evolutionary adaptations of cortical radial glia. Cereb Cortex 13:541-549.

Rakic P, Sidman RL (1968) Supravital DNA synthesis in the developing human and mous brain. J Neuropathol Exp Neurol 27:246-276.

Rakic S, Zecevic N (2003) Emerging complexity of layer I in human cerebral cortex. Cereb Cortex 13:1072-1083.

Rakic P, Cameron RS, Komuro H (1994) Recognition, adhesion, transmembrane signaling and cell motility in guided neuronal migration. Curr Opin Neurobiol 4:63-69.

Ramón y Cajal S (1911) Histologie du système nerveux de l'homme & des vertébrés. Edition française revue & mise a jour par l'auteur, traduite de l'Espagnol par le Dr. L. Azoulay. Tome II. Cervelet, Cerveau moyen, Rétine, Couche optique, Corps strié, Ecorce cérébrale générale & régionale, Grand sympathique. Paris: A. Maloine.

Ramón y Cajal S (1995) Histology of the nervous system of man and vertebrates. (Traslated from the french by Neely Swanson and Larry W. Swanson), Volume Two: Cerebellum, Midbrain, Retina, Corpus Striatum, Cerebral Cortex – in General and Regional, Autonomic System. New York: Oxford University Press.

Ranke O (1910) Beiträge zur Kenntnis der normalen und pathologischen Hirnrindenbildung. Beitr Pathol Anat 47:51-125.

Reep RL (2000) Cortical layer VII and persistent subplate cells in mammalian brains. Brain Behav Evol 56:212-234.

Rickmann M, Chronwall BM, Wolff JR (1977) On the development of non-pyramidal neurons and axons outside the cortical plate: the early marginal zone as a pallial anlage. Anat Embryol 151:285-307.

Rioux L, Nissanov J, Lauber K, Bilker WB, Arnold SE (2003) Distribution of microtubuleassociated protein MAP2-immunoreactive interstitial neurons in the parahippocampal white matter in subjects with schizophrenia. Am J Psychiatry 160:149-155.

Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K⁺/Cl⁻ co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251-255.

Robertson RT (2000) Do subplate neurons comprise a transient population of cells in developing neocortex of rats? J Comp Neurol 426:632-650.

Rojiani AM, Emery JA, Anderson KJ, Massey JK (1996) Distribution of heterotopic neurons in normal hemispheric white matter: a morphometric analysis. J Neuropathol Exp Neurol 55:178-183.

Sanai N, Tramontin AD, Quiñones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Verdugo JMG, Berger MS, Alvarez-Buylla A (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740-744.

Sánchez MP, Frassoni C, Alvarez-Bolado G, Speafico R, Fairén A (1992) Distribution of calbindin and parvalbumin in the developing somtosensory cortex and its primordium in the rat: an immunocytochemical study. J Neurocytol 21:717-736.

Schmechel DE, Rakic P (1979) A Golgi study of radial glial cells in developing monkey telencephalon: Morphogenesis and transformation into astrocytes. Anat Embryol 156:115-152.

Schröder H, Schütz U, Burghaus L, Lindstrom J, Kuryatov A, Monteggia L, deVos RA, van Noort G, Wevers A, Nowacki S, Happich E, Moser N, Arneric SP, Maelicke A (2001) Expressionof the alpha4 isoform of the nicotinic acetylcholine receptor in the fetal human cerebral cortex. Dev Brain Res 132:33-45.

Shen Q, Wang Y, Dimos JT, Fasano CA, Phoenix TN, Lemischka IR, Ivanova NB, Stifani S, Morrisey EE, Temple S (2006) The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat Neurosci 9:743-751.

Sidman RL, Rakic P (1973) Neuronal migration, with special reference to developing human brain: a review. Brain Res 62:1-35.

Sims KB, Crandall JE, Kosik KS, Williams RS (1988) Microtubule-associated protein 2 (MAP2) immunoreactivity in human fetal neocortex. Brain Res 449:192-200.

Smart IHM, Dehay C, Giroud P, Berland M, Kennedy H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in monkey. Cereb Cortex 12:37-53.

Smiley JF, Levey AI, Mesulam MM (1998) Infracortical interstitial cells concurrently expressing m2-muscarinic receptors, acetylcholinesterase and nicotinamide adenine dinucleotide phosphatediaphorase in the human and monkey cerebral cortex. Neuroscience 84:755-769.

Suárez-Solá ML, González-Delgado FJ, Pueyo-Morlans M, Medina-Bolívar OC. Hernández-Acosta NC, González-Gómez M, Meyer G (2009) Neurons in the white matter of the adult human neocortex. Front Neuroanat 3:7. doi:10.3389/neuro.05.007.2009.

Sun W, Funakoshi H, Nakamura T (2002) Localization and functional role of hepatocyte gowth factor (HGF) and its receptor c-met in the rat developing cerebral cortex. Mol Brain Res 103:36-48.

Supèr H, Uylings HBM (2001) The early differentiation of the neocortex: a hypothesis on neocortical evolution. Cereb Cortex 11:1101-1109.

Tarabykin V, Stoykova A, Usman N, Gruss P (2001) Cortical upper layer neurons derive from the subventricular zone as indicated by *Svet1* gene expression. Development 128:1983-1993.

The Boulder Committee (1970) Embryonic vertebrate central nervous system: revised terminology. Anat Rec 166:257-261.

Thompson M, Lauderdale S, Webster MJ, Chong VZ, McClintock B, Saunders R, Weickert CS (2007) Widespread expression of *ErbB2*, *ErbB3* and *ErbB4* in non-human primate brain. Brain Res 1139:95-109.

Tissir F, Goffinet AM (2003) Reelin and brain development. Nat Rev Neurosci 4.496-505.

Tolcos M, Tikellis C, Rees S, Cooper M, Wookey P (2003) Ontogeny of calcitonin receptor mRNA and protein in the developing central nervous system of the rat. J Comp Neurol 456:29-38.

Torres-Reveron J, Friedlander MJ (2007) Properties of persistent postnatal cortical subplate neurons. J Neurosci 27:9962-9974.

Tsiarli MA, Monaghan AP, DeFranco DB (2013) Differential subcellular localization of the glucocorticoid receptor in distinct neural stem and progenitor populations of the mouse telencephalon *in vivo*. Brain Res 1523:10-27.

Ulfig N (2002) Calcium-binding proteins in the human developing brain. Adv Anat Embryol Cell Biol 165:1-92.

Uylings HBM, Delalle I (1997) Morphology of neuropeptide Y-immunoreactive neurons and fibers in human prefrontal cortex during prenatal and postnatal development. J Comp Neurol 379:523-540.

Valverde F, Facal-Valverde MV (1988) Postnatal development of interstitial (subplate) cells in the white matter of the temporal cortex of kittens: a correlated Golgi and electron microscopic study. J Comp Neurol 269:168-192.

Valverde F, Facal-Valverde MV, Santacana M, Heredia M (1989) Development and differentiation of early generated cells of sublayer VIb in the somatosensory cortex of the rat: A correlated Golgi and autoradiographic study. J Comp Neurol 290:118-140.

Valverde F, Lopez-Mascaraque L, De Carlos JA (1990) Distribution and morphology of Alz-50immunoreactive cells in the developing visual cortex of kittens. J Neurocytol 19:662-671.

Van de Nes JAP, Sandmann-Keil D, Braak H (2002) Interstitial cells subjacent to the entorhinal region expression somatostatin-28 immunoreactivity are susceptible to development of Alzheimer's disease related cytoskeletal changes. Acta Neuropathol 104:351-356.

Van Eden CG, Mrzljak L, Voorn P, Uylings HB (1989) Prenatal development of GABA-ergic neurons in the neocortex of the rat. J Comp Neurol 289:213-227.

Van Eden CG, Parmar R, Lichtensteiger W, Schlumpf M (1995) Laminar distribution of GABAA receptor alpha 1, beta 2, and gama 2 subunit mRNAs in the granular and agranular frontal cortex of the rat during pre- and postnatal development. Cereb Cortex 5:234-246.

Verney C, Derer P (1995) Cajal-Retzius neurons in human cerebral cortex at midgestation show immunoreactivity for neurofilament and calcium-binding proteins. J Comp Neurol 359:144-153.

Vitureira N, McNagny K, Soriano E, Burgaya F (2005) Pattern of expression of the *podocalyxin* gene in the mouse brain during development. Gene Expr Patterns 5:349-354.

Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. Journal für Psychologie und Neurologie (Leipzig) 25(Suppl 1):5-462.

Vogt H (1905) Ueber die Anatomie, des Wesen und die Entstehung mikrocephaler Missbildungen nebst Beiträgen über die Entwickelungsstörungen der Architektonik des Zentralnervensystems. Arbeiten aus der Hirnanatomisches Institut in Zürich 1:1-203. Von Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Wien: Verlag von Julius Springer.

Von Monakow C (1901) Ueber die Missbildungen des Centralnervensystems. Ergebnisse der Allgemeinen Pathologie und Pathologischen Anatomie des Menschen und der Tiere (von Lubarsch & Ostertag), 6th year: 1899., pp. 513-582, Wiesbaden:Verlag von J. F. Bergmann.

Wahle P, Meyer G (1987) Morphology and quantitative changes of transient NPY-ir neuronal populations during early postnatal development of cat visual cortex. J Comp Neurol 261:165-192.

Wahle P, Lübke J, Naegele J (1994) Inverted pyramidal neurons and interneurons in cat cortical subplate zone are labelled by monoclonal antibody SP1. Eur J Neurosci 6:1167-1178.

Wai SM, Kindler PM, Lam ETK, Zhang A, Yew DT (2004) Distribution of neuropeptide Yimmunoreactive neurons in the human brainstem, cerebellum, and cortex during development. Cell Mol Neurobiol 24:667-684.

Wang WZ, Hoerder-Suabedissen A, Oeschger FM, Bayatti N, Ip BK, Lindsay S, Supramaniam V, Srinivasan L, Rutherford M, Møllgård K, Clowry GJ, Molnár Z (2010) Subplate in the developing cortex of mouse and human. J Anat 217:368-380.

Wang WZ, Oeschger FM, Montiel JF, García-Moreno F, Hoerder-Suabedissen A, Krubitzer L, Ek CJ, Saunders NR, Reim K, Villalón A, Molnár Z (2011) Comparative aspects of subplate zone studied with gene expressionin sauropsids and mammals. Cereb Cortex 21:2187-2203.

Watakabe A (2009) Comparative molecular neuroanatomy of mammalian neocortex: What can gene expression tell us about areas and layers? Dev Growth Differ 51:343-354.

Watakabe A, Ichinohe N, Ohsawa S, Hashikawa T, Komatsu Y, Rockland KS, Yamamori T (2007) Comparative analysis of layer-specific genes in mammalian neocortex. Cereb Cortex 17:1918-1933.

Winzer-Serhan UH, Leslie FM (1999) Expression of alfa2a adrenoreceptors during rat neocortical development. J Neurobiol 38:259-269.

Wolff JR, Böttcher H, Zetzsche T, Oertel WH, Chronwall BM (1984) Development of GABAergic neurons in rat visual cortex as identified by glutamate decarboxylase-like immunoreactivity. Neurosci Lett 47:207-212.

Wolozin B, Scicutella A, Davies P (1988) Reexpression of a developmentally regulated antigen in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA 85:6202-6206.

Woo TU, Beale JM, Finlay BL (1991) Dual fate of subplate neurons in a rodent. Cereb Cortex 1:433-443.

Yan XX, Ribak CE (1997) Prenatal development of nicotinamide adenine dinucleotide phosphatediaphorase activity in the human hippocampal formation. Hippocampus 7:215-231.

Yan XX. Zeng DS, Garey LJ (1992) Prenatal development of GABA-immunoreactive neurons in the human striate cortex. Dev Brain Res 65:191-204.

Yan XX, Garey LJ, Jen LS (1996) Prenatal development of NADPH-diaphorase-reactive neurons in human frontal cortex. Cereb Cortex 6:737-745.

Yan XX, Cariaga WA, Ribak CE (1997) Immunoreactivity for GABA plasma membrane transporter, GAT-1, in the developing rat cerebral cortex: transient presence in the somata of neocortical and hippocampal neurons. Dev Brain Res 99:1-19.

Zečević N (1993) Cellular composition of the telencephalic wall in human embryos. Early Hum Dev 32:131-149.

Zecevic N (2004) Specific characteristic of radial glia in the human fetal telencephalon. Glia 48:27-35.

Zecevic N, Milosevic A (1997) Initial development of γ -Aminobutyric acid immunoreactivity in the human cerebral cortex. J Comp Neurol 380:495-506.

Zecevic N, Rakic P (2001) Development of layer I neurons in the primate cerebral cortex. J Neurosci 21:5607-5619.

Zecevic N, Chen Y, Filipovic R (2005) Contributions of cortical subventricular zone to the development of the human cerebral cortex. J Comp Neurol 491:109-122.

Zhou C, Qiu Y, Pereira FA, Crair MC. Tsai SY, Tsai MJ (1999) The nuclear orphan receptor COUP-TFI is required for differentiation of subplate neurons and guidance of thalamocortical axons. Neuron 24:847-859.

11. Životopis

Rođen sam 15. srpnja 1983. godine u Zagrebu, Republika Hrvatska, kao prvo dijete u obitelji Božidara i Ivanke Sedmak. Osnovnu školu Dr. Ivan Merz pohađao sam od 1989. do 1997. godine, te sam iste godine upisao opću gimnaziju (II. Gimnazija) u Zagrebu. Gimnaziju sam završio s odličnim uspjehom 2001. godine. Iste godine upisujem Medicinski fakultet Sveučilišta u Zagrebu na kojem 2007. godine stječem zvanje doktora medicine. Za vrijeme studija kao student-demonstrator sudjelujem u izvođenju kolegija Temelji neuroznanosti, te pod mentorstvom prof.dr.sc. Miloša Judaša izrađujem rad pod naslovom "Razvoj dendrita neokortikalnih neurona u lisencefaliji tipa II (syndroma Walker-Warburg)" za koji sam dobio Rektorovu nagradu 2007. godine. Poslijediplomski studij Neuroznanost upisao sam 2007. godine na Medicinskom fakultetu Sveučilišta u Zagrebu. Prijedlog moje disertacije pod naslovom "Razvojno porijeklo intersticijskih neurona i regionalne razlike u njihovoj raspodjeli, brojnosti i fenotipovima u mozgu čovjeka" prihvaćen je 2008. godine, a za voditelja i su-voditelja određeni su prof.dr.sc. Miloš Judaš (Hrvatski institut za istraživanje mozga, Medicinski fakultet Sveučilišta u Zagrebu) i prof.dr.sc. Nenad Šestan (Department of Neurobiology, Yale University School of Medicine). U sklopu izrade disertacije proveo sam godinu i pol dana na usavršavanju u suradnom laboratoriju prof.dr.sc. Nenada Šestana. Do sada sam kao koautor objavio 9 radova u časopisima indeksiranim u bazi podataka Current Contents i 3 rada u časopisima indeksiranim u Science Citation Index - Expanded. Ovi radovi ukupno su citirani 113 puta u bazi podataka Web of Knowledge i 132 puta u bazi podataka Scopus. Trenutno sam zaposlen kao znanstveni novak na Hrvatskom institutu za istraživanje mozga, Medicinski fakultet Sveučilišta u Zagrebu.