Razvojne promjene mediosagitalnog presjeka korpusa kalozuma kao pokazatelji perinatalnog rasta interhemisferičnih veza u mozgu čovjeka

Čuljat, Marko

Doctoral thesis / Disertacija

2012

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, School of Medicine / Sveučilište u Zagrebu, Medicinski fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:105:777587

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-09

Repository / Repozitorij:

Dr Med - University of Zagreb School of Medicine Digital Repository

SVEUČILIŠTE U ZAGREBU MEDICINSKI FAKULTET

Marko Čuljat

Razvojne promjene mediosagitalnog presjeka korpusa kalozuma kao pokazatelji perinatalnog rasta interhemisferičnih veza u mozgu čovjeka

DISERTACIJA

Zagreb, 2012. godina

Rad je izrađen na Hrvatskom institutu za istraživanje mozga, Medicinskog fakulteta Sveučilišta u Zagrebu te Odjelu za psihologiju Sveučilišta u Urbani/Champaignu, Illinois, SAD i Beckmanovom institutu u Champaignu, Illinois, SAD.

Voditelj rada: akademik Ivica Kostović

Zahvalio bih svom mentoru, akademiku Kostoviću, koji me na nezaboravan način uveo u područje neuroznanosti. Također bih zahvalio profesorici Janice M. Juraski, bez koje interpretacija rezultata elektronske mikroskopije ne bi bila moguća.

Zbog intelektualne i emocionalne potpore koju su mi pružili tijekom različitih stadija izrade ove disertacije, posebice bih se zahvalio Nataši Jovanov-Milošević, Marini Dobrivojević i Domagoju Džaji.

Izrada histoloških i imunohistokemijskih preparata te preparata za elektronsku mikroskopiju bi mi bilo neshvatljivo područje da nije bilo pomoći Zdenke Cmuk, Danice Budinščak, Božice Popović, Maje Horvat i Iris Elezović. Administrativna potpora Sunčane Rubić i Željke Pavlović se pokazala ključnom u cijelom procesu.

Posebna zahvala ide mojoj obitelji, koja je bila uz mene čitavo vrijeme, i bez koje bi bilo nemoguće završiti ovaj doktorski rad.

SADRŽAJ

I. Uvod i svrha rada 1
I.1. Anatomija korpusa kalozuma 1
I.2. Razvitak korpusa kalozuma i kalozalnih vlakana u eksperimentalnih glodavaca mačke
I.3. Razvitak korpusa kalozuma i kalozalnih vlakana u rezus majmuna i čovjeka9
I.4. Topografski ustroj korpusa kalozuma14
I.5. Segmentacija korpusa kalozuma17
I.6. Sažetak dosadašnjih istraživanja i potreba za daljnjim istraživanjima 20
II. Hipoteza
III. Ciljevi rada
IV. Materijali i metode
IV.1. Pregled uzoraka korištenih u istraživanju 24
IV.2. Analiza promjene površine korpusa kalozuma 30
IV.2.A. Površina korpusa kalozuma čovjeka 30
IV.2.B. Površina korpusa kalozuma štakora 30
IV.2.C. Segmentacija korpusa kalozuma i mjerenje njegove debljine 31
IV.3. Analiza promjene broja aksonalnih elemenata 32
IV.3.A. Elektronska mikroskopija i osmificirani polutanki rezovi
IV.3.B. Metoda srebrne impregnacije po Holmesu
IV.4. Određivanje nastupa mijelinizacije metodom po Loyezu
IV.5. Analiza glijalne arhitektonike korpusa kalozuma čovjeka 40
V. Rezultati
V.1. Površina, duljina i segmentacija korpusa kalozuma čovjeka 42
V.2. Površina, duljina i segmentacija korpusa kalozuma štakora 46

V.3. Određivanje vremena nastupa mijelinizacije 4	9
V.4. Broj aksonalnih elemenata u korpusu kalozumu štakora i analiza aksonaln ultrastrukture pomoću elektronske mikroskopije5	ie 0
V.4.A. Analiza broja i promjera aksonalnih elemenata5	0
V.4.A.1. Ukupan broj aksonalnih elemenata u tri razvojna stadija 5	1
V.4.A.2. Analiza gustoće i udjela aksonalnih elemenata duž rostro kaudalne osi unutar dobne skupine)- 2
V.4.A.3. Analiza gustoće i udjela aksonalnih elemenata duž rostro kaudalne osi između dobnih skupina)- 7
V.4.A.4. Analiza gustoće i udjela aksonalnih elemenata duž dorzo ventralne osi)- 1
V.4.A.5. Promjer aksona6	4
V.4.B. Analiza aksonalne ultrastrukture6	7
V.4.C. Sažetak rezultata elektronske mikroskopije na uzorcima korpusa kalozum štakora	ia 9
V.5. Broj aksonalnih elemenata u korpusu kalozumu čovjeka 7	0
V.6. Analiza glijalne arhitektonike korpusa kalozuma čovjeka	1
VI. Rasprava	6
VI.A. Osvrt na metodologiju korištenu u istraživanju7	6
VI.B. Interpretacija rezultata istraživanja	8
VI.C. Značenje normativnih podataka za studije patoloških promjena i abnormalno razvitka središnjeg živčanog sustava	g 5
VII. Zaključci	8
VIII. Sažetak na hrvatskom jeziku	0
IX. Sažetak na engleskom jeziku	1
X. Popis literature	2
XI. Biografija pristupnika	2

POPIS KRATICA

- CC corpus callosum, korpus kalozum, žuljevito tijelo
- DTI diffusion tenson imaging
 - E embrionalni dan
- EM elektronska mikroskopija
- GT gestacijski tjedan
- MR (nuklearna) magnetska rezonancija
 - P postnatalni dan
- PB fosfatni pufer
- PM postnatalni mjesec

I. UVOD I SVRHA RADA

I.1. ANATOMIJA KORPUSA KALOZUMA

Bijela tvar velikog mozga je podjeljena u tri sustava: 1. asocijativni, koji povezuje različite dijelove moždane kore iste moždane polutke, 2. komisurni, koji povezuje moždanu koru dviju polutki i 3. projekcijski, koji povezuje više sa nižim moždanim centrima^{1,2}.

Korpus kalozum (CC) je najveći komisurni sustav vlakana u velikom mozgu čovjeka. Povezuje glavninu neokortikalnih područja velikog mozga te je upravo zbog toga najrazvijeniji u čovjeka. CC čine aksoni, čija se tijela neurona nalaze pretežno u III sloju moždane kore velikog mozga čovjeka, dok se kod štakora nalaze u II/III i V sloju moždane kore^{3,4,5,6}.

Na mediosagitalnom presjeku, CC možemo anatomski podijeliti u nekoliko dijelova. U njegovom prednjem dijelu se nalaze *rostrum* (kljun) i *genu* (koljeno). Ono se nastavlja na *truncus* (tijelo), koje prema straga završava splenijumom. Između trupa i splenijuma se kod nekih ljudi nalazi suženje, nazvano *isthmus*^{1,2}. Izuzev te grube podjele na djelomice proizvoljne segmente, ne postoji mogućnost neke točnije podjele bazirane na makromorfologiji, koja bi govorila nešto više o njegovoj histološkoj strukturi. Postojali su pokušaji njegove podjele u klinički i funkcionalno važne segmente (detaljnije u poglavlju I.5. Segmentacija korpusa kalozuma).

Kalozalna vlakna tvore krov prednjeg roga i trupa lateralnih komora, a dio njegovih vlakana koja odlaze prema zatiljnom režnju tvore *tapetum*, koji čini krov sljepoočnog roga lateralnih komora. Kako idemo prema lateralno, primjećujemo kako se kalozalna vlakna raspršuju od svog gustog, nabijenog rasporeda unutar samog CC-a, prema raspršenom rasporedu

unutar bijele tvari moždanih polutki, što nazivamo kalozalnom radijacijom. Ulazeći u bijelu tvar moždanih polutki, kalozalna vlakna se susreću sa silaznim i uzlaznim putevima, s kojima interdigitiraju. Ti putevi zajedno prolaze između vlakana asocijativnih putova, kako bi došli do moždane kore velikog mozga. Kalozalna vlakana u bijeloj tvari osim *tapetuma* čine još dvije prepoznatljive strukture. To su *forceps minor*, kojeg čine vlakna koja povezuju čeone režnjeve lijeve i desne strane, i *forceps major*, koji se sastoji od aksona koji potječu od neurona zatiljnih režnjeva^{1,2,7}.

Aksoni koji prolaze kroz CC spajaju većinom homotipna područja moždane kore, npr. deseto Brodmannovo polje lijeve strane sa desetim Brodmannovim poljem desne strane^{1,8}. Jedan manji dio aksona spaja heterotipna područja moždane kore lijeve i desne strane, i moždanu koru jedne strane s nižim moždanim područjima suprotne strane. No, ti aksoni čine vrlo mali udio u ukupnom broju kalozalnih aksona⁷.

Homotipna vlakna su raspoređena topografski unutar CC-a. Granice između područja kroz koja prolaze vlakna različitih Brodamnnovih polja moždane kore su jasnije izražene u primata (rezus majmun, čovjek). Kod ostalih životinja navedene granice su slabije izražene, što je detaljno istraženo u mačaka⁹ (detaljnije u poglavlju I.4. Topografski ustroj korpusa kalozuma).

Postoji i razlika u promjeru aksona u CC-u. Primjećeno je da su kod odraslih jedinki vlakna koja spajaju primarna motorička i somatosenzorička područja, većeg promjera s debljom mijelinskom ovojnicom, dok aksoni koji povezuju asocijativna područja moždane kore, manja i slabije mijelinizirana^{10,11}. To upućuje i na njihovu ulogu u povezivanju dviju polutki. Veći, mijeliniziraniji aksoni brže provode impulse, i time brže funkcionalno povezuju moždanu koru lijeve i desne strane, koja je odgovorna za obradu motoričkih i osjetnih informacija. Dijelovi moždane kore zaduženi za više moždane funkcije, tj. asocijativna moždana kora lijeve i desne

strane, sporije primaju informacije jedni od drugih. Kako starimo, manja vlakna polako nestaju, a ostaju veća, mijeliniziranija vlakna, koja prenose osnovne informacije o našoj okolini. Razlika u promjeru aksona se može primijetiti i tijekom razvitka, što je posebice istraženo u rezus majmuna¹².

Zbog ograničenja kod prikupljanja i pripreme ljudskog možanog tkiva za analizu, prije svega dugačkog postmortalnog vremena koje smanjuje broj metoda koje se učinkovito mogu koristiti, točan broj aksona u CC-u čovjeka nije lako odrediti. Stoga imamo samo pretpostavke o njihovom broju, a kreću se između 200 i 300 milijuna u odraslom čovjeku^{11,13}. Dodatni problem u određivanju točnog broja kalozalnih aksona leži u tome da nisu svi jednakog promjera, i nisu nasumično raspoređeni unutar CC-a. To izravno utječe na gustoću aksona u određenom kalozalnom segmentu. Da bi se ukupan broj aksona pravilno procijenio, treba uzeti u obzir tu razliku u rasporedu aksona različitih promjera^{10,13,15,16}.

Zbog ograničenja s kojima se susrećemo u analizi humanog tkiva, veći dio saznanja koja imamo o razvoju i morfologiji korpusa kalozuma čovjeka se temelje na analizi ostalih životinjskih vrsta, posebice miševa, štakora, mačaka i rezus majmuna.

I.2. RAZVITAK KORPUSA KALOZUMA I KALOZALNIH VLAKANA U EKSPERIMENTALNIH GLODAVACA I MAČKE

Prije no što kalozalni aksoni mogu uopće početi prelaziti medijalnu liniju, medijalna strana moždanih hemisfera se mora pripremiti za pristizanje rastućih aksona. Odmah nakon što su hemisferički mjehurići stvoreni, potpuno su odvojeni jedan od drugoga. Jedan mali dio telencefalona (velikog mozga), *lamina terminalis*, predstavlja početak spoja lijeve i desne

polutke. Glija počinje urastati iz tog područja u medijalne stijenke hemisfera, te stvori dva stupa stanica, koje će se ubrzo spojiti, stvarajući tako medijalnu gliju (engl. *midline zipper glija*)¹⁷. Kaudalnije od ovih stupova stanica, dolazi do medijalne migracije stanica sa stijenki postraničnih komora. Stanice jedne i druge strane se susreću u medijalnoj liniji, stvarajući glijalnu omču (engl. *glial sling*) i glijalni klin (engl. *glial wedge*)^{18,19,20}. Medijalna omča je tanak sloj stanica neurona i glije, koji se naslanjaju na dorzalnu površinu glialnog klina, strukture koja na frontalnim presjecima ima trokutasti oblik s bazom usmjerenom prema lateralno, a sastoji se od tijela glijalnih stanica i glijalnih nastavaka. Kalozalni aksoni neće prolaziti kroz glijalnu omču, već će rasti kroz dorzalnije smješteno područje. Rastući prema naprijed, CC će razdvojiti prvotno jedinstvenu skupinu stanica, na dva dijela, dorzalno smještenu *indusium griseum* gliju i ventralno smještenu medijalnu gliju (Slika I.1.). Ove glijalne strukture ne tvore samo anatomsku granicu i fizičku prepreku rastu kalozalnih aksona, već izlučuju molekule vodilje (*guidance cues*), koje usmjeravaju rast kalozalnih aksona preko mediosagitalne ravnine²⁰.

U petnaestom embrionalnom danu (E15) dolazi do fuzije ispred *lamine terminalis*, čime se stvara područje koje odgovara *massi commissuralis* u fetusa čovjeka (detaljnije u poglavlju I.3. Razvitak korpusa kalozuma i kalozalnih vlakana u rezus majmuna i čovjeka). Iznad područja fuzije se javljaju *columnae fornicis*. Sljedećeg dana (E16) područje fuzije se šiti prema rostralno, a *columnae fornicis* postaju izraženije. Tijekom E17 se u dorzalnom dijelu diencefalona javlja *commissura hippocampalis*. Smještena je ventralno i kaudalno u odnosu na područje fuzije, a dorzalni dio je prekriven pijom mater. U E18 bijela tvar telencefalona se polako širi sa njegovog lateralnog dijela, prema medijalnoj plohi, a sastoji se, između ostalog, od pristižućih kalozalnih vlakana. Ta će vlakna tijekom E18 i E19 (kao prosjek se uzima E18,5) prijeći medijalnu liniju, time stvarajući CC. On se javlja na antero-dorzalnoj strani hipokampalne komisure, u području koje je bogato astrocitima (područje glijalne omče i glijalnog klina). Na mediosagitalnom presjeku, CC ima eliptični oblik, i nastavlja se na hipokampalnu komisuru, smještenu ventro-

kaudalno). CC postupno raste prema rostralno, polako se utiskujuću prednjim dijelom u septalnu regiju, dok mu je ventralni dio odvojen od *columnae fornicis* sa područjem bogatim makrofazima, za koje se vjeruje da su odgovorni za stvaranje *cavum septi pellucidi. Cavum septi pellucidi* je šupljina, koja se rasprostire između CC-a s jedne strane, i hipokampalne komisure i forniksa s druge. Tijekom E20, kalozum se blago proširi prema kaudalno, pokrivajući tako dorzalnu stranu hipokampalne komisure u potpunosti. Do E21 je dovoljno vlakana uraslo u CC, da se genu i splenijum mogu jasno vidjeti. Kalozum nastavlja rasti prema kaudalno, tako da se splenijum već u ovom danu nađe kaudalnije od hipokampalne komisure. No, glavnina rasta se u ovom razdoblju odvija prema rostralno. Usporedno s rastom kalozuma, cavum septi pellucidi se postupno širi, i nakon E21 je u potpunosti formiran. Dan kasnije, E22, što je ujedno dan okota štakora, tj. postnatalni dan nula (P0), počinje intenzivniji rast CC-a prema kaudalno. Taj proces se odvija do početka drugog postnatalnog tjedna, kada CC doseže svoju konačnu dužinu u odnosu na ostale moždane strukture^{21,16}.

Dugo se raspravljalo o tome koji aksoni prvi prelaze medijalnu liniju. Kandidati su bili aksoni subplate neurona, aksoni neurona rostrolateralnog telencefalona i cingularni aksoni^{22,23}. Nedvojbeno je pokazano da se neuroni, čiji aksoni prvi počinju urastati u CC, nalaze u cingularnom girusu²⁴. Cingularna moždana kora je najbliža CC-u, te njezini aksoni trebaju prijeći najkraći put da bi došli do homotipnog korteksa suprotne strane. Aksoni koji prvi uđu u CC se nazivaju pionirski aksoni i imaju veliku ulogu u daljnjem rastu, jer će predstavljati već stvoreni put aksonima koji će kasnije pristizati, usmjeravajući njihov rast preko medijalne linije. Primjećeno je da aksoni neokortikalnih područja fascikuliraju s cingularnim aksonima na svom putu preko medijalne linije. Cingularni aksoni su u svom rastu potpuno ovisni o molekulama koje privlače i odbijaju aksone, a koje izlučuju okolne strukture, napose glijalne. Već spomenuta

glijalna omča, glijalni klin i glija indusium griseuma, su upravo te strukture koje usmjeravaju aksone u njihvom rastu, sprječavajući da urastu u okolne ipsilateralne strukture. Svi kasnije pristigli aksoni, tj. aksoni neokortikalnih regija, osim tih glijalnih signalnih mehanizama, koriste već prisutne cingularne aksone za prijelaz medijalne linije²⁵.

Još jedna značajka urastanja aksona u CC je otkrivena u studijama na štakorima i miševima. Aksoni neurona smještenih u medijalnijem dijelu kore velikog mozga prolaze kroz dorzalnije dijelove CC-a. Što je izvor urastajućih aksona lateralnije, to je njihov smještaj u CC-u ventralniji^{26,27}.

Neizgled jednostavan, kontinuirani rast CC-a, kako se vidi na mediosagitalnom presjeku, u svojoj podlozi ima nekoliko paralelnih procesa koji utječu na promjenu njegove površine. To su urastanje vlakana, njihovo povlačenje i mijelinizacija²⁹. Potpuno isti temeljni mehanizmi su aktivni tijekom razvoja ostalih puteva bijele tvari središnjeg živčanog sustava, poput piramidnog puta³⁰.

Neuroni, čija će vlakna tvoriti CC štakora, su većinom neuroni II/III i V sloja kore velikog mozga, a rađaju se između E17 i E22³. Već za vrijeme svoje migracije, oni šalju svoj akson prema medijalnoj liniji, i prvi aksoni prelaze u drugu hemisferu tijekom E18,5. Kako aksoni urastaju u CC, to ne čine odvojeno, već se grupiraju u male fascikule, okružene astrocitnim nastavcima, i vrlo malo izvanstaničnog matriksa. Kada prijeđu u suprotnu hemisferu, postupno rastu kroz bijelu tvar velikog mozga, prema odgovarajućem dijelu kore velikog mozga. U koru velikog mozga stižu petog postnatalnog dana (P5)²¹. Do P9 raspored sinaptičkih veza koje su kalozalni aksoni uspostavili u moždanoj kori se ne može razlikovati od onog prisutnom u odrasloj jedinki².

Onaj dio vlakana koji nije uspio uspostaviti trajne sinpse s neuronima kore suprotne

strane, se povlači³¹. No, jednako kao što nisu svi aksoni urasli u suprotnu hemisferu istog trenutka, već je proces urastanja trajao nekoliko tjedana, tako se i povlačenje aksona odvija različitom dinamikom u pojedinim dijelovima CC-a. Iako nijedna studija nije pregledala broj aksona CC-a štakora u potpunosti, pojedine studije, koje su promatrale promjenu broja aksona u CC-u unutar njegovih pojedinih segmenata, su otkrile da dolazi do smanjenja ukupnog broja i gustoće aksona u CC-u štakora u vremenskom periodu od P15 do P60^{15,16}.

Postoji još jedan razlog povlačenja aksona. Neki neuroni tijekom razvoja, šalju svoje aksone i ipsilateralno (u istostranu moždanu koru) i kontralateralno (u suprotnostranu moždanu koru) ³³. Jedan dio njih povuku svoj kontralateralni ogranak, zadržavajući samo ipsilateralnu vezu, dovodeći tako do smanjenja broja aksona u CC-u³².

Povrh promjene broja aksona, odvija se proces njihove mijelinizacije. U vrijeme kada prvi aksoni prijeđu medijalnu liniju u području fuzije, nijedan nije mijeliniziran. Mijelinizacija CC-a štakora se počinje odvijati između desetog i trinaestog postnatalnog dana³⁴. Brzina mijelinizacije se postupno povećava, dosežući maksimum krajem prvog postnatalnog mjeseca. Nakon toga dolazi do platoa u brzini mijelinizacije, koji se održava do P60^{16,34}.

Razumno je za pretpostaviti da bi odnos brzine urastanja i povlačenja aksona, prije početka mijelinizacije, mogao direktno utjecati na promjenu mediosagitalne površine CC-a. Čim proces mijelinizacije postane očit, promjene broja aksona se više neće izravno odražavati na promjenu površine.

Odgovori na ova pitanja su dobivena u istraživanjima na mačkama. Dvije različite studije^{9,35} su pokazale da u ranom postnatalnom razdoblju dolazi do smanjenja površine CC-a, koje se javlja u isto vrijeme kada dolazi do dramatičnog pada broja aksona u CC-u mačke. Ono što je važno za napomenuti je da je ovaj pad u broju aksona prisutan i nakon početka

mijelinizacije, ali se više ne očituje na površini mediosagitalnog reza CC-a.

Dosadašnji radovi nisu odgovorili na pitanje promjene površine CC-a glodavaca i njezinog odnosa sa brojem aksona u korpusu kalozumu. No, smatra se da ne dolazi do smanjenja ukupne površine CC-a štakora, kao kod čovjeka³⁶. Takve promjene u površini su moguće u njegovim segmentima, nešto što je istraženo u splenijumu CC-a, koji sadrži aksone iz zatiljnih režnjeva¹⁶.

Obrazac rasta CC-a glodavaca, mačaka, rezus majmuna i čovjeka ima niz dodirnih točaka. Međutim, zbog veće površine moždane kore primata, prije svega prefrontalne asocijativne moždane kore, razvoj njihovog CC-a ima i niz specifičnosti.

I.3. RAZVITAK KORPUSA KALOZUMA I KALOZALNIH VLAKANA U REZUS MAJMUNA I ČOVJEKA

Kuglasti prozencefalički mjehurić, koji čini osnovu cijelog velikog mozga čovjeka, počinje dobivati duboku udubinu (*fissura longitudinalis*) u medijalnoj liniji, razdvajajući tako dva telencefalička mjehurića, osnove za dvije hemisfere. Telencefalički mjehurići su međusobno spojeni malim nepodjeljenim dijelom prozencefalona, *laminom terminalis*. Na medijalnoj strani tih telencefaličkih mjehurića se javljaju *sulcus hemispherici*, koji odvaju hemisfere velikog mozga s jedne strane od *lamine reuniens* s druge. *Lamina reuniens* čini dorzalni dio lamine terminalis. *Sulcus hemispherici* se šire prema rostralnom dijelu *lamine reuniens*, spajajući se sa sulcus medianus telencephali medii, uleknuće na rostralnoj površini *lamine reuniens*. U 10. tjednu *sulcus medianus* u dorzalnom dijelu *lamine reuniens* počinje približavati međusobno svoje rubove, koji se krajem 10. tjedna u potpunosti stope, stvarajući tako *massu commissuralis*.

Massa commisuralis predstavlja osnovu za urastanje kalozalnih vlakana. Kalozalna vlakna prvi put prelaze medijalnu liniju između 11. i 12. tjedna trudnoće. *Massa commissuralis* nastavlja rasti prema rostralno brže od urastanja komisuralnih vlakana. Tijekom narednih tjedana čini se da se nova kalozalna vlakna dodaju na ventralnu stranu CC-a, čineći ga tako sve širim, ali i na rostralnu i kaudalnu stranu, čineći ga tako sve dužim. S 18 do 20 tjedana, CC poprima oblik s prepoznatljivim morfološkim dijelovima (*rostrum, genu, truncus, isthmus, splenium*) i zauzima mjesto u odnosu na ostale moždane strukture, koje odgovara onome kod odraslog čovjeka³⁷. Sada mu jedino preostaje da prima nova kalozalna vlakna, koja intenzivno urastaju od 18 do 34 tjedna, čime kalozum postupno raste²⁸.

Kao i kod glodavaca, tako i kod ljudi postoje prolazna područja, smještena mediosagitalno i parasagitalno, koja omogućuju kalozalnim aksonima da prelaze medijalnu liniju. Sa dorzalne strane CC-a čovjeka se nalazi, jednako kao i kod glodavaca, *idusium griseum*³⁸. S ventralne strane CC-a se u medijalnoj liniji nalazi subkalozalna zona, a paramedijalno (neposredno uz središnju liniju) subkalozalna subventrikularna zona³⁹. Prva odgovara medijalnom dijelu glijalne omče glodavaca, dok druga odgovara lateralnom dijelu glijalne omče i glijalnom klinu glodavaca. Po staničnom sastavu, molekulama koje te stanice izlučuju i sastavu izvanstaničnog matriksa, ove dvije zone u čovjeka u potpunost odgovaraju ranije opisanim zonama glodavaca^{38,39}. Pretpostavlja se da i kod ljudi čine anatomsku i "fukcionalnu" granicu, koja usmjerava kalozalne aksone da rastu prema središnjoj liniji i potom prema moždanoj kori suprotne strane.

Za razliku od glodavaca, kod čovjeka se u fetalnom razdoblju razvije još jedna struktura. To su kalozalne septe, izdanci subkalozalne subventrikularne zone, koji prodiru u samo tijelo CC-a²⁸. Ne zna im se točna uloga, ali se pretpostavlja da imaju potpornu ulogu u rastu CC-a čovjeka, zbog velikog porasta u njegovoj veličini. Septe su najizraženije u razdoblju od 18. do 34. postkoncepcijskog tjedna. To je ujedno i radoblje u kojemu kod čovjeka kalozalni aksoni najintenzivnije rastu, i urastaju u CC²⁸. Kalozalne septe su izraženije na ventralnoj strani CC-a, te su tamo i međusobno spojene. Osim glije i neurona, u septama se nalazi i bogati izvanstanični matriks, sastavljen od molekula za koje je pokazano da potiču rast aksona⁴⁰. Kako sve više aksona urasta, strukturna potpora koja je bila potrebna u najranijem razvitku, gubi svoju važnost, te kalozalne septe postepeno nestaju u prvim mjesecima života. Kako kalozum prestaje primati nove aksone, i ostale glijalne strukture čovjeka nestaju tijekom trećeg gestacijskog trimestra i prvih postnatalnih mjeseci.

Obrazac i razlozi povlačenja aksona se teže istražuje na ljudskim mozgovima, stoga se mnogi zaključci izvedeni iz istraživanja na životinjama primjenjuju i na razvoj ljudskog mozga.

Kod rezus majmuna je ustanovljena da perinatalno dolazi do dramatične promjene broja aksona CC-a. 188 milijuna aksona je prisutno u CC-u rezus majmuna u vrijeme rođenja, dok odrasli rezus majmun ima 56 milijuna aksona, dakle pad u broju aksona od oko 3,5 puta. Glavnina ovog izuzetnog gubitka se odvija u prva 4 postnatalna mjeseca^{10,12} (Slika I.2.).

Smanjenje broja aksona u svojoj podlozi ima tri procesa. Prvi je povlačenje aksona, koji nisu uspjeli uspostaviti sinaptičku vezu u kontralateralnom korteksu⁴¹. Drugi je povlačenje kalozalne kolaterale, koju neki ipsilateralno projecirajući neuroni šalju tijekom razvitka^{42,43}. Osim aksona koji potječu od neurona kortikalne ploče, u kalozumu se nalaze i aksoni subplate neurona, koji se također tijekom razvitka povuku^{44,45}. LaMantia i Rakić^{10,12} su također utvrdili da se opći topografski ustroj kalozuma razvija paralelno sa urastanjem aksona. Bez obzira na dramatični gubitak aksona, topografski ustroj ostaje. U svojem su radu promatrali mijelinizaciju, i ustanovili da postoji velika segmentalna razlika u nastupu i brzini mijelinizacije, koja u rezus majmuna počinje u prvim postnatalnim danima, a ubrzava se nakon 20 postnatalnog dana. Odnos stope povlačenja aksona i stope mijelinizacije preostalih aksona, utječe na površinu CC-a.

Zbog poteškoća u pribavljanju ljudskog tkiva u tom razdoblju, slične studije nisu mogle biti obavljene na ljudskim mozgovima. One studije koje jesu obavljene, usredotočile su se na promjenu mediosagitalne površine CC-a. Clarke³⁶ je sistematskom analizom ljudskih mozgova, koji su uključivali mozgove fetusa starosti između 20. i 40. gestacijskog tjedna, i mozgove novorođenčadi i dojenčadi, ustanovila da postoji smanjenje površine CC-a tijekom druge polovice gestacije. Zaključili su da se ne može sa sigurnosti utvrditi razlog smanjenja površine tijekom druge polovice gestacije, no kao moguće razloge su naveli promjenu u gustoći aksona unutar CC-a, veličinu izvanstaničnog prostora te promjene u udjelu vaskularnog i glijalnog udjela u CC-u³⁶.

Kada mijelinizacijski proces uzme maha, površina CC-a će se kontinuirano povećavati. Povećanje površine se odvija intenzivno do 10 godine života, a sporijim tempom do 25 godine, kada dosiže plato te mu je medijan oko 600 mm², koji će biti održan do dobi od 60 godina^{36,48-52}.

Luttenberg⁴⁷ je 1966 istraživao mijelinizaciju CC-a čovjeka. Ustanovio je da proces počinje formiranjem malih mijelinskih čestica, prikazanih histološkim metodama po Schultzu i Maliku, u 30. gestacijskom tjednu, no da se potpunu mijelinski prsteni oko pojedinih aksona mogu vidjeti tek sa 40 gestacijska tjedna, tj. u vrijeme terminski rođenog djeteta. U trećem postnatalnom mjesecu (PM) su mijelinski prstenovi prisutni u svim područjima CC-a. Ovu dinamiku mijelinizacije nitko nije opovrgao. Od tog razdoblja pa na dalje, povećanje površine CC-a se temelji samo na mijelinizaciji. Noviji radovi, koji koriste metode slikovnog prikaza mozga, točnije magnetsku rezonanciju, su pratili promjenu signala u T1 i T2 vremenu. Meta-analizom tih radova se došlo do zaključka da je početak mijelinizacije korpusa kalozuma pomoću magnetske rezonancije vidljiv između 4. i 6. postnatalnog mjeseca. Ta istraživanja govore u prilog originalnom Luttenbergovom zaključaku o povećanju brzine mijelinizaciju od trećeg postnatalnog mjeseca nadalje⁵³.

Zbog nastupa mijelinizacije je teško procjenivati broj aksona na temelju površine CC-a na mediosagitalniom rezu. Stoga smatramo da je samo razdoblje prije nastupa izražene mijelinizacije pogodno za utvrđivanje korelacije između promjene broja aksona i promjene

13

površine CC-a.

I.4. TOPOGRAFSKI USTROJ KORPUSA KALOZUMA

S obzirom na nepostojanje sistematskih topografskih analiza CC-a eksperimentalnih glodavaca, moramo usmjeriti pozornost na druge životinjske vrste. Autoradiografskim istraživanjem na mozgu mačke⁸⁸, utvrđeno je da unutar CC-a postoji topografski raspored aksona. Motorička i somatosenzotička područja moždane kore su spojena aksonima koja prolaze kroz *genu* CC-a i područje rostralnog dijela trupa. Cingularni aksoni su smješteni u dorzalnoj polovici trupa CC-a, također poštujući rostro-kaudalni gradijent, tj. aksoni rostralnog cingularnog girusa prolaze kroz rostralniji dio CC-a od aksona kaudalnog cingularnog girusa. Aksoni slušne moždane kore prolaze kroz stražnji dio trupa i kroz *splenium*⁸⁸.

Topografski ustroj CC-a primata je među prvima ustanovio Deepak Pandya^{54,55}. Presijecajući CC rezus majmuna u cjelini ili u pojedinim dijelovima te pažljivo analizirajući gdje se javlja terminalna degeneracija aksona, koja je posljedica njihova presijecanja u korpusu kalozumu, došao je do nekoliko zaključaka. *Genu corpori callosi* sadrži aksone koji spajaju prefrontalna područja kore velikog mozga lijeve i desne strane. Kroz prednji dio trupa prolaze aksoni koji spajaju primarna i sekundarna polja motoričke moždane kore. Iako su ta područja moždane kore jasno odvojena jedna od druge, komisuralni aksoni koje šalju neuroni tih polja jednim dijelom zauzimaju ista područja unutar korpusa kalozuma, iako su načelno aksoni sekundarnih motoričkih polja smještena rostralnije od aksona primarnih motoričkih polja. Kako idemo kaudalnije, nailazimo na vlakna koja spajaju primarna i sekundarna somatosenzorička

područja. Kaudalnije od njih u kalozumu se nalaze aksoni koji spajaju temporalnu moždanu koru i koru inzule obiju strana. U području splenijuma, najkaudalnijem dijelu kalozuma, se nalaze aksoni okcipitalnih područja.

Metode istraživanja moždanih putova postajale su sve sofisticiranije te se u finije detalje mogla istražiti topografija CC-a. Jedna od tih metoda je autoradiografska metoda, koja je uključivala aplikaciju radioaktivnog izotopa u koru mozga rezus majmuna, koji se nakon određenog razdoblja, potrebnog da izotop otputuje duž aksona, obradio na način kojim bi se označeni aksoni prikazali. Tim metodama se povrdila topografija, koja je već ranije bila ustanovljenja, ali uz pojedine novine. Primjetilo se da su skupine aksona koja povezuju mala područja moždane kore, klinasto raspoređena, tj. da prate zakrivljenost CC-a, što je najbolje vidljivo u području *genu corpori callosi*. Već ranije ustanovljeno postojanje preklapanja, primjerice primarnog i sekundarnog motoričkog polja, se potvrdilo i u drugim područjima kalozuma. Parijetalna i temporalna vlakna zauzimaju dobrim dijelom ista područja CC-a, ali i jedna i druga su jasno odvojena od područja splenijuma, dijela kalozuma kroz koji prolaze aksoni okcipitalnih područja⁶⁸⁻⁷¹ (Slika I.3.).

Rana istraživanja topografije na ljudskom mozgu su se obavljala na mozgovima umrlih pacijenata, koji se prebolili moždani infarkt ili fokalno oštećenje velikog mozga. Nikakvi detaljni rezultati topografije nisu dobiveni, ali se potvrdilo opće načelo koje je pronađeno kod mozga majmuna, da rostralni dijelovi kalozuma spajaju frontalne dijelove mozga, a kaudalni okcipitalni, sa topološkom distribucijom vlakana između. Već se tada primjetilo da postoje opsežna područja preklapanja područja aksona, koji pristižu iz različitih područja kore velikog mozga⁵⁶.

Za istraživanje topografije ljudskog CCa, koje bi dalo jednako detaljnu topografiju kao kod rezus majmuna, trebalo se čekati do pojave modernih metoda za slikovni prikaz mozga, koje su omogućile *in vivo* analizu ljudskog mozga. Metoda koja nam to pruža je DTI (diffusion tensor imaging), metoda magnetske rezonancije, koja koristi anizotropnu (prostorno nejednaku) difuziju vode za prikaz moždanih puteva⁵⁷.

Pri izvođenju DTI metode se označe dva područja mozga. Prvo je područje moždane kore, za kojeg nas zanima kamo njegovi neuroni šalju aksone, a drugo je CC. Time smo definirali dva područja i želimo istražiti jesu li i u kojem opsegu povezani. Označavajući tako pojedine dijelove moždane kore, moguće je odrediti topografiju CC-a⁷².

Nađeno je da je opći topografski ustroj koji je ustanovljen kod rezus majmuna održan i kod čovjeka. Orbitalni dio frontalnog režnja šalje aksone kroz *rostrum corpori callosi*. Aksoni ostatka frontalnog režnja prolaze kroz *genu* i prednji dio trupa korpusa kalozuma. Ostatak trupa i gornji dio splenijuma zauzimaju vlakna parijetalnih režnjeva. Otprilike jednako područje u splenijumu zauzimaju aksoni iz temporalnih režnjeva, dok kaudalni dio splenijuma zauzimaju aksoni okcipitalnih režnjeva. Obrazac preklapanja aksonskih područja pojedinih područja moždane kore velikog mozga u CC-u se primjećuje i kod ljudi. Dok su rostrum, genu i prednji dio trupa gotovo isključivo prožeti orbitalnim i frontalnim aksonima, područje prednjeg

Osim rostro-kaudalne topografije, postoji nešto slabije izražena dorzo-ventralna topografska distribucija aksona u CC-u. Aksoni cingularnog girusa su smješteni u dorzalnoj polovici trupa CC-a, što je pokazano traktografskim studijama kod mačaka⁸⁸ i *in vivo* DTI studijama kod čovjeka⁷⁴. Također je pokazano da su aksoni koji povezuju medijalne dijelove moždane kore smješteni dorzalnije u CC-u. Moždana polja smještena na lateralnoj i ventralnoj površini velikog mozga šalju svoje aksone kroz ventralnija područja CC-a^{26,27}.

I.5. SEGMENTACIJA KORPUSA KALOZUMA

Kako se utvrdilo da su aksoni u CC-u topografski raspoređeni^{14,54,55,56}, pojavila se potreba za njegovom segmentacijom. Problem kod korpusa kalozuma je u tome da nema jasnih anatomskih značajki koje bi poslužile za njegovu podjelu. Stoga se od samog početka pribjeglo geometrijskoj metodi segmentacije CC-a. Prve segmentacije su se vršile na fotografijama i crtežima CC-a napravljenih na temelju uzoraka tkiva mozga čovjeka. Najranija i najuvriježenija podjela je ona po Witelsonovoj⁶⁴, koja je istraživala utjecaj spola i dominantnosti ruke na oblik i površinu CC-a. Liniju koja je spajala najrostralniju i najkaudalniju točku je podjelila na polovice, trećine, stražnju petinu, a prednji segment je određen u odnosu na udubljenje koljena CC-a. Time se dobilo sedam segmenata. Jednostavnost ove metode ju je učinila popularnom (Slika I.5.A.)

Prvu metodu koja je uvažila zakrivljenu prirodu CC-a je upotrijebila Clarke³⁶. Pomoću točke gravitacije (točka čija je x i y koordinata srednja vrijednost x i y koordinata svih točaka, koje sačinjavaju CC), povukla je liniju po sredini CC-a, koju je podjelila na 29 segmenata. Analizirala je širinu tako dobivenih segmenata tijekom razvoja i među spolovima (Slika I.5.B1 i B2).

Po sličnom principu su LaMantia i Rakić¹² podjelili CC rezus majmuna za svoju analizu broja aksona elektronskim mikroskopom.

Denenbergova skupina je također smatrala važnim praćenje zakrivljenosti CC-a pri njegovoj podjeli. Podjelili su kalozum na 99 dijelova, te im računali širinu. Potom su optrijebili faktorsku analizu da bi grupirali pojedine dijelove CC-a u veće skupine. Metoda nije jednostavna te nije zaživjela. Iako, pricipi te metode su korišteni u kasnijim radovima^{58,75} (Slika I.5.C).

Clarke JM⁵⁹ je usporedio Witelsonovu podjelu⁶⁴ i modifikaciju metode Clarke Stephanie³⁶, u analizi utjecaja spola i dominantnosti ruke na površinu CC-a, te je zaključio da nema statistički značajne razlike među metodama, te se odlučio za jednostavniju, Witelsonovu metodu.

Tijekom godina se pojavilo još metoda koje su djelile kalozum po geometrijskom principu, dobivajući vrlo velike segmente CC-a koje su potom analizirali^{50,60}. Nijedna se nije bitno razlikovala od Witelsonove metode.

Kako se zanimanje za površinu CC-a širio van utjecaja koji su na njega imali spol i dominacija ruke, te je uključivalo detaljnu topografsku analizu i analizu promjene njegove površine kod oštećenja mozga, uvidjelo se da grube geometrijske podjele na velike segmente nisu bile primjerene. Tako je Moses Pamela⁶¹ podjelila CC na 30 segmenata, te analizirala utjecaj perinatalnog oštećenja mozga na površinu pojedinih segmenata.

Podjela po Witelsonovoj u slučaju ozljeda mozga se nije pokazala učinkovitom, jer se tada odnosi unutar CC-a mijenjaju, utječući na njegov oblik. Stoga segmenti dobiveni Witelsonovom podjelom različitih pojedinaca nisu usporedivi^{76,77}.

Prednost svake od ovih metoda je da su mogu koristiti i na postmortalnim uzorcima tkiva i na slikama magnetske rezonancije.

Razvoj DTI metode (diffusion tensor imaging) je otvorio posve nove mogućnosti u određivanju topografije CC-a čovjeka. Geometrijska podjela kod DTI nije potrebna, jer ona odmah daje rezultat o stvarnoj topografiji, neposredno analizirajući povezanost između dviju hemisfera velikog mozga. Iako metoda ima svoje nedostatke, koji se polako rješavaju, dala nam je uvid u ljudski CC, koji prije nismo imali¹⁴ (Slika I.4.).

I.6. SAŽETAK DOSADAŠNJIH ISTRAŽIVANJA I POTREBA ZA DALJNJIM ISTRAŽIVANJIMA

Nakon što kalozalni aksoni počinju prelaziti središnju liniju (kod štakora E18-E19; kod mačke E38; kod čovjeka 11.-12. GT), površina CC-a postupno raste. U svim navedenim vrstama (osim u štakora, kod kojeg to nije istraženo) je primjećeno razdoblje platoa površine CC-a ili čak njenog smanjenja. Kod mačaka taj period traje od P0 do P30, a kod čovjeka se javlja tijekom druge polovice trudnoće. Iako u radu nije eksplicitno opisana¹², stanka u rastu CC-a u drugoj polovici trudnoće u rezus majmuna je vidljiva iz njihovih podataka.

Na mačkama je dokazano da razdoblje smanjenja povšine CC-a odgovara razdoblju masovne eliminacije aksona u CC-u. Zanimljivo je da kod rezus majmuna plato površine vremenski odgovara razoblju maksimalnog broja aksona. U obje vrste ponovno povećanje površine CC-a se javlja početkom mijelinizacije.

U literaturi ne postoji sustavno istraživanje broja aksona u CC-u štakora u ranom postnatalnom razvitku, niti postoji analiza površine CC-a štakora u istom razdoblju. S obzirom da je odnos broja aksona i površine CC-a prije nastupa mijelinizacije dijelom u različitom odnosu kod mačke i rezus majmuna, smatramo da je potrebno analizirati taj odnos u barem još jednoj vrsti. Najpodložniji tom tipu istraživanja bili bi štakori.

Također smatramo da je potrebno pokušati utvrditi broj aksona tijekom razvoja CC-a čovjeka, posebice u razdoblju karakteristične promjene površine CC-a.

S obzirom na prisutnost glijalnih potpornih elemenata uz CC (*indusium griseum* glija i subkalozalna subventrikularna zona) te razvoj dodatnih glijalnih struktura u primata – kalozalnih septi, koje su najrazvijenije u čovjeka, važno je analizirati i njihov utjecaj na površinu CC-a.

II. HIPOTEZA

Promjena mediosagitalne površine korpusa kalozuma, prije početka ubrzane stope mijelinizacije, je u izravnoj povezanosti s promjenom broja kalozalnih aksona i unutarnjom glijalnom reorganizacijom.

III. CILJEVI RADA

Opći cilj: Analiza promjena površine presjeka korpusa kalozuma tijekom perinatalnog razvitka čovjeka.

Specifični ciljevi su podjeljeni u tri grupe:

- 1) mjerenje promjene površine korpus kalozuma kod čovjeka
 - odrediti krivulju rasta presjeka korpusa kalozuma u perinatalnom razdoblju čovjeka
- 2) promjena glijalne arhitekture korpus kalozuma
- promjene broja aksona u korpus kalozumu čovjeka u razdobljima u kojima očekujemo znakovite promjene mediosagitalnog presjeka, koja ćemo odrediti temeljem rezultata prvog specifičnog cilja

odrediti razdoblje prekomjernog broja i redukcije broja aksona u korpusu kalozumu.

Da bi se utvrdila gornja vremenska granica istraživanja, utvrdit ćemo kada dolazi do pojave izrazite mijelinizacije u korpus kalozumu čovjeka, na našem materijalu.

Na uzorcima mozga štakora ćemo istražiti odnos broja i gustoće aksonalnih elemenata s mediosagitalnom površinom korpusa kalozuma u kritičnim razdobljima, koja ćemo definirati tijekom istraživanja.

IV. MATERIJALI I METODE

IV.1. Pregled uzoraka korištenih u istraživanju

Istraživanje je provedeno na uzorcima ljudskog i štakorskog moždanog tkiva. Studija i prikupljanje materijala se odvijala sukladno odobrenju Etičkog komiteta Medicinskog fakulteta, Sveučilišta u Zagrebu, i pravnim propisima iz 1984. i 1996. godine.

Analiza ljudskih mozgova je izvršena na dvije skupine uzoraka. Prvu skupinu, na kojem je izvršena glavnina istraživanja, čine postmortalni uzorci fetalnih i dječjih ljudskih mozgova, koji čine dio Zagrebačke neuroembriološke zbirke⁷⁸.

Drugi uzorak čine slike dobivene nuklearnom magnetskom rezonacijom (MR). U istraživanje nisu uključeni ispitanici s postmortalnim, kliničkim ili MR nalazom koji bi mogao utjecati na veličinu, položaj i razvojni obrazac CC-a (leukomalacija, dismijelinizacijske i demijelinizacijske bolesti, tumori, cerebrovaskularni inzult, kortikalna atrofija, poremećaji giracije, trauma moždanog parenhima, subarahnoidalno, subduralno i epiduralno krvarenje).

Za analizu površine CC-a čovjeka u razdoblju od 20. GT do kraja prve godine života je analiziran 61 uzorak, od kojih je 37 bilo u razdoblju od 20. do 41. GT.

Za analizu glijalne ahitektonike analizirano je 17 ljudskih mozgova u dobi od 20. do 40. GT.

Za analizu broja aksona je analizirano šest ljudskih mozgova u razdoblju od 22. do 40. GT.

Image it its in Image it i	Oznaka uzorka	GT	Mjerena površina i dužina CC a	Holmes	Loyez	Osmificirani uzorci	GFAP	S100β / vimontin
CF 549 20 V V V V V $CF 537$ 22 V V V V V $CF 537$ 22 V V V V V $CF 537$ 22 V V V V V $CF 539$ 24 V V V V V $CF 546$ 24 V V V V V $CF 546$ 24 V V V V V V $CF 6406$ 26 V V V V V V $CF 575$ 26 V V V V V V $CF 571 27 V ČF 55220metouabojanjevinicitui$	ČF 552	20		metoua	bojanje			vinicitui
CF 302 22 \vee \vee \vee \vee \vee CF 566 22 \vee \vee \vee \vee \vee \vee CF 566 24 \vee \vee \vee \vee \vee \vee ČF 505 24 \vee \vee \vee \vee \vee \vee ČF 506 24 \vee \vee \vee \vee \vee \vee ČF 506 26 \vee \vee \vee \vee \vee \vee ČF 260 26 \vee \vee \vee \vee \vee \vee \vee ČT 575 26 \vee	ČF 549	20						
CF 837 22 V V V V $CF 586$ 22 V V V V V $CF 586$ 24 V V V V V $CF 561$ 24 V V V V V $CF 610$ 24 V V V V V $CF 610$ 26 V V V V V $CF 202$ 26 V V V V V $CD 233$ 26 V V V V V $CF 5757$ 27 V V V V V $CF 5570$ 27 V V V V V V $CF 571$ 27 V <td>ČF 302</td> <td>22</td> <td>•</td> <td></td> <td></td> <td></td> <td>~</td> <td>1</td>	ČF 302	22	•				~	1
CF 566 22 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark CF 561 24 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark CF 561 24 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark CF 505 24 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark CF 506 26 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark CF 405 26 \checkmark \sim \checkmark \checkmark \checkmark \checkmark \checkmark CD 233 26 \checkmark \sim \checkmark </td <td>ČF 537</td> <td>22</td> <td></td> <td></td> <td></td> <td></td> <td>· ·</td> <td>· ·</td>	ČF 537	22					· ·	· ·
CF 903 22 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark $\tilde{C}F 505 24 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \tilde{C}F 505 24 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \tilde{C}F 505 26 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \tilde{C}F 306 26 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \tilde{C}F 202 26 \checkmark \sim \checkmark \checkmark \checkmark \checkmark \tilde{C}D 293 26 \checkmark \sim \checkmark \checkmark \checkmark \checkmark \tilde{C}F 575 26 \checkmark \sim \checkmark \checkmark \checkmark \checkmark \checkmark \tilde{C}F 575 26 \checkmark \sim \checkmark \checkmark$	CF 566	22					v	· ·
CF 561 24 \checkmark \checkmark \checkmark \checkmark \checkmark ČF 505 24 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark ČF 610 26 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark ČF 405 26 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark ČD 293 26 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark ČD 294 26 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark ČF 575 26 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark ČF 575 26 \checkmark	CF 593	22		<u></u>			· ·	· ·
CF 505 24 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark ČF 610 24 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark ČF 610 26 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark ČF 405 26 \checkmark \sim \checkmark \checkmark \checkmark \checkmark ČD 293 26 \checkmark \sim \checkmark \checkmark \checkmark \checkmark ČD 294 26 \checkmark \sim \checkmark \checkmark \checkmark \checkmark ČD 394 26 \checkmark \sim \checkmark \checkmark \checkmark \checkmark ČT 507 27 \checkmark \sim \checkmark \checkmark \checkmark \checkmark ČF 501 27 \checkmark \sim \checkmark	CF 561	24						•
CF 610 24 V V V V $\tilde{C}F$ 306 26 V V V V $\tilde{C}F$ 206 26 V V V V $\tilde{C}F$ 206 26 V V V V $\tilde{C}F$ 260 26 V V V V $\tilde{C}F$ 575 26 V V V V $\tilde{C}F$ 575 26 V V V V $\tilde{C}F$ 575 26 V V V V $\tilde{C}F$ 577 27 V V V V $\tilde{C}F$ 567 27 V V V V $\tilde{C}F$ 567 27 V V V V $\tilde{C}F$ 311 27 V V V V V $CF 244 28 V V V V V V \tilde{C}F 305 29 V V V V V V V \tilde{C}F 305 22 V V $	ČF 505	24	· · · ·					
CF 306 24 V V V ČF 405 26 V V V V ČF 260 26 V V V V V ČD 293 26 V V V V V V ČF 575 26 V V V V V V ČF 571 27 V V V V V V V ČF 560 27 V	ČF 610	24						
CF 405 25 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark $CF 260$ 26 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark $CD 293$ 26 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark $CD 294$ 26 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark $CF 575$ 26 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark $CF 571$ 27 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark $CF 307$ 27 \checkmark	ČF 306	24						
CF 260 26 V Image: Constraint of the second s	ČF 405	20					V	V
CD 203 26 v v v v CD 294 26 v v v v v CF 575 26 v v v v v CF 560 27 v v v v v CF 381 28 v v v v v v CF 244 28 v v v v v v v CF 579 28 v <td< td=""><td>ČF 403</td><td>20</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	ČF 403	20						
C D 293 26 V V V V Č F 575 26 V V V V V Č F 575 26 V V V V V Č F 575 26 V V V V V Č F 577 27 V V V V V Č F 307 27 V V V V V Č F 307 27 V V V V V C F 311 27 V V V V V V V C F 311 27 V <t< td=""><td>ČD 202</td><td>20</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	ČD 202	20						
C D 294 26 V V V V V Č F 575 26 V V V V V Č F 575 26 V V V V V Č F 575 26 V V V V V Č F 560 27 V V V V V Č F 567 27 V V V V V V Č F 311 27 V <td< td=""><td>ČD 293</td><td>20</td><td>V</td><td></td><td></td><td></td><td></td><td></td></td<>	ČD 293	20	V					
CF 5/5 26 V V V V ČF 571 27 V ČF 560 27 V ČF 567 27 V V V ČF 367 27 V V V ČF 311 27 V V V CF 311 27 V V V CF 311 27 V V V V V CF 281 28 V V V V V CF 579 28 V V V V V CF 505 29 V V V V V ČF 406 32 V V V V V ČF 502 30 V V V V V ČF 406 32 V V V V V ČF 513 35 V V V V V ČF 490 37 V V V V V <td>CD 294</td> <td>20</td> <td>•</td> <td></td> <td></td> <td>v</td> <td></td> <td></td>	CD 294	20	•			v		
$ \vec{C} F 571 $ 27 $ \vec{V} $	CF 5/5	20	v				v	~
ČF 560 27 \checkmark <t< td=""><td>ČF 571</td><td>27</td><td> ✓ </td><td></td><td></td><td></td><td></td><td></td></t<>	ČF 571	27	 ✓ 					
ČF 567 27 ✓ </td <td>ČF 560</td> <td>27</td> <td>v</td> <td></td> <td></td> <td></td> <td></td> <td></td>	ČF 560	27	v					
ČD 307 27 ////////////////////////////////////	ČF 567	27	v				v	v
ČF 311 27 V V V CF 381 28 V V V V CF 244 28 V V V V V CF 79 28 V V V V V V CF 799 29 V V V V V V ČF 305 29 V V V V V V V ČF 248 30 V	ČD 307	27					v	~
CF 381 28 V V V V V CF 244 28 V V V V V CF 579 28 V V V V V V CF 579 28 V V V V V V V CF 299 29 V <td>ČF 311</td> <td>27</td> <td></td> <td></td> <td></td> <td></td> <td>~</td> <td>v</td>	ČF 311	27					~	v
CF 244 28 V V V V CF 579 28 V V V V V CF 299 29 V V V V V ČF 305 29 V V V V V ČF 305 29 V V V V V ČF 248 30 V V V V V ČF 502 30 V V V V V ČF 406 32 V V V V V ČF 507 32 V V V V V CF 575 32 V V V V V CF 597 33 V V V V V V V ČF 551 35 V V V V V V V ČF 409 37 V V V V V V V ČF 554 39 V V	CF 381	28	v	~				
CF 579 28 V V Image: CF 299 29 V Image: CF 297 20 20 20 20 20 20 20 20 20 20 20 20 20 20 <th< td=""><td>CF 244</td><td>28</td><td>v</td><td>v</td><td></td><td></td><td>~</td><td> ✓ </td></th<>	CF 244	28	v	v			~	 ✓
CF 299 29 ✓ </td <td>CF 579</td> <td>28</td> <td>v</td> <td>v</td> <td></td> <td></td> <td></td> <td></td>	CF 579	28	v	v				
ČF 305 29 V Image: Constraint of the second s	CF 299	29	✓ ✓					
ČF 248 30 V Image: constraint of the second s	ČF 305	29	✓					
ČF 502 30 V V V Image: constraint of the stress of	ČF 248	30						
ČF 265 32 V V V V ČF 406 32 V V V V V ČF 406 32 V V V V V V ČF 575 32 V V V V V V V ČD 315 32 V V V V V V V ČF 597 33 V <	ČF 502	30	V					
CF 265 32 V V V V V V ČF 406 32 V V V V V V V CF 575 32 V <td>ČE A/F</td> <td>00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ČE A/F	00						
CF 406 32 V V V V V V CF 575 32 V V V V V V V ČD 315 32 V V V V V V V CF 597 33 V V V V V V V ČF 551 35 V I I V V V V ČF 492 35 V I I V <	CF 265	32		v	<i>✓</i>			
ČF 575 32 V V V V V ČD 315 32 V V V V V ČF 597 33 V V V V V ČF 597 33 V V V V V ČF 597 35 V V V V V ČF 551 35 V V V V V ČF 492 35 V V V V V ČF 409 37 V V V V V V ČK 409 37 V V V V V V V ČK 534 39 V <td< td=""><td>CF 406</td><td>32</td><td>✓</td><td></td><td><i>✓</i></td><td></td><td>~</td><td>~</td></td<>	CF 406	32	✓		<i>✓</i>		~	~
CD 315 32 V V V V CF 597 33 V Image: Second Seco	CF 575	32	v	~				
CF 597 33 V Image: constraint of the second s	CD 315	32			 ✓ 		~	~
CF 551 35 V Image: CF 551 35 V Image: CF 551 V V V ČF 492 35 V Image: CF 551 37 V Image: CF 562 Image: CF 553	CF 597	33	v			 ✓ 		
CF 492 35 V Image: Second secon	CF 551	35	v				~	~
CF 409 37 V Image: CF 409 37 V ČD 243 37 V Image: CF 409 37 V Image: CF 409 Image: CF 409<	CF 492	35	v					
CD 243 37 ✓ ✓ ✓ ✓ PK 50 38 ✓ ✓ ✓ ✓ ČF 554 39 ✓ ✓ ✓ ✓ ČF 397 40 ✓ ✓ ✓ ✓ ČF 477 40 ✓ ✓ ✓ ✓ ✓ PK 87 40 ✓ ✓ ✓ ✓ ✓ ČD 29 40 ✓ ✓ ✓ ✓ ✓ ČD 183 40 ✓ ✓ ✓ ✓ ✓ PK 58 41 ✓ ✓ ✓ ✓ ✓	CF 409	37	v					
PK 50 38 Image: Mark of the state o	CD 243	37	✓					
ČF 554 39 V Image: CF 397 40 V Image: CF 397 Image: CF 397 40 V Image: CF 397 Image: CF 397 <thimage: 397<="" cf="" th=""></thimage:>	PK 50	38	✓					
CF 397 40 Image: Constraint of the system of the syst	ČF 554	39	v				~	 Image: A start of the start of
ČF 477 40 ✓ ✓ ✓ ✓ ✓ PK 87 40 ✓	CF 397	40	V					
PK 87 40 ✓ ✓ ✓ ČD 29 40 ✓ ✓ ✓ ČD 183 40 ✓ ✓ ✓ PK 58 41 ✓ ✓ ✓ ČO 327 ✓ ✓ ✓ ✓	ČF 477	40	V		v	v	~	~
ČD 29 40 Image: Constraint of the state of the s	PK 87	40	V					
ČD 183 40 ✓ ✓ ✓ ✓ ✓ ✓ PK 58 41 ✓ ✓ ✓ ✓ ✓ ✓ ČO 327 ✓ ✓ ✓ ✓ ✓ ✓ ✓	ČD 29	40					~	
PK 58 41 ✓ ČO 327 ✓	ČD 183	40	V	v	 ✓ 		~	~
ČO 327 🗸 🖌	PK 58	41	V					
	ČO 327				v			

TABLICA IV.1. Popis uzoraka fetalnih mozgova čovjeka i korištenih postupaka i metoda.

TABLICA IV.2. Popis broja i starosti uzoraka ljudskog mozga dobivenih MR-om, starosti od rođenja do navršene prve godine života, koji su korišteni za mjerenje površine CC-a.

Starost uzorka (postnatalni mjeseci)	Broj uzoraka
1	2
2	1
3	2
4	2
5	3
6	1
7	3
8	6
9	2
10	0
11	1
12	1

Da bismo izabrali koje ćemo razvojne stadije u štakora podvrgnuti detaljnoj analizi elektronskom mikroskopijom, bilo je potrebno odrediti korelaciju vremena nastupa ključnih razvojnih promjena CC-a između čovjeka i štakora. Pregledom literature^{2,21,37,83,84} smo napravili sljedeću tablicu korelacije, specifičnu za CC-a (Tablica IV.3.).

TADIICA IIIA TI 11'	1 1	1 4 1	1 1	1 · · · · 1
-IABLICAIV + Iablica	korelacije razvojnih	i događaja kornijs	sa kalozuma izmedu s	takora i covieka
	Koronacije ruž vojim	i uoguduju Korpus	su kulozullu, izilicuu s	andra i covjena.

Štakor - starost	Čovjek - starost	Događaj
E18,5	1112. GT	Prijelaz prvih kalozalnih aksona preko središnje linije
E21	1214. GT	Stvaranje cavum septi pellucidi
P5-7	3335. GT	Početak urastanja kalozalnih aksona u kortikalnu ploču suprotne hemisfere
P10-13	3540. GT	Početak mijelinizacije CC-a
P15	2. PM	Mijelinizacije prisutna duž cijelog CC-a

E-embrionalni dan, P-postnatalni dan, GT-gestacijski tjedan, PM-postnatalni mjesec

Na temelju ove tablice smo se odlučili na daljnju analizu CC-a štakora u sljedećim dobnim skupinama: P0, P7 i P12, koje odgovaraju sljedećim razvojnim stadijima u čovjeka: 28.GT, 35.GT i 40.GT.

Za analizu CC-a štakora je korišteno 35 životinja. Za analizu površine CC-a štakora je analizirano svih 35 životinja (u dobnim skupinama P0, P3, P7, P12, P21, P75), dok je za analizu broja aksona elektronskom mikroskopijom i Holmesovom metodom u istraživanje uključeno 12 životinja (četiri po stadiju P0, P7 i P12). Analizu mijelinizacije smo izvršili na 24 uzorka u rasponu dobi od P0 do P75.

TABLICA IV.4	Pregled	broja i	starosti	uzoraka	Wistar	albino	štakora,	korištenih	u	istraživanju,	te
primjenjenih me	etoda										

Oznaka štakorskog mozga	Starost (P)	Mjerena površina i dužina CC-a	Analiza elektronskom mikroskopijom	Holmes metoda	Loyez bojanje
P 0 1	0	v			
P 0 2	0		✓	✓	
P 0 3	0	v	✓	 ✓ 	
P 0 5	0		✓	✓	
P 0 7	0		✓	✓	
P 0 1 pre	0	✓			 ✓
P 0 2 pre	0	v			 ✓
P 0 3 pre	0	v			
P 3 4 pre	3	v			
P 3 5 pre	3	v			
P 3 6 pre	3	v			
P 3 8 pre	3	v			
P 3 9 pre	3	v			
P 7 1	7	v			
P 7 2	7	v	v	v	
P 7 3	7	v	v	v	
P 7 4	7	 ✓ 			
P 7 5	7	✓	✓	✓	 ✓
P 7 6	7		✓	 ✓ 	 ✓
P 7 1 pre	7	v			 ✓
P 7 2 pre	7	v			~
P 7 3 pre	7	v			

P 12 1	12	4	1	1	1
D 12 2	12				
P 12 2	12	v	~	v	v
P 12 3	12	✓	✓	✓	✓
P 12 4	12		 ✓ 	✓	✓
P 12 1 pre	12	 ✓ 			✓
P 12 2 pre	12	✓			✓
P 12 3 pre	12	✓			✓
P 12 8 pre	12	 ✓ 			 ✓
D 21 1 pm	21				
r 21 1 pre	21	v			~
P 21 2 pre	21	✓			✓
P 21 3 pre	21	✓			✓
P 21 4 pre	21	 ✓ 			✓
P 21 5 pre	21	v			 ✓
Adult 1 pre	75	 ✓ 			v
Adult 2 pre	75	 ✓ 			✓
Adult 3 pre	75	 ✓ 			 ✓
Adult 4 pre	75	✓			v
Adult 5 pre	75	V			V

P – postnatalni dan, CC – korpus kalozum, ✓ – izvršeno

Uzorci CC-a štakora su prikupljeni od Wistar albino štakora, uzgojenih u vivariju Hrvatskog instituta za istraživanje mozga. Koristili smo sljedeći protokol parenja. Jednog mužjaka i jednu ženku smo stavili u kavez u 20.00 sati te ih razdvojili u 08.00 sljedećeg dana. Time smo osigurali da maksimalna pogreška u određivanju starosti bude 12 sati, tj. unutar jednog dana. Štakori su bili žrtvovani u ključnim razvojnim stadijima između P0 (E22), P3, P7, P12, P21 i P75.

Postupak pripreme štakorskog moždanog tkiva je u skladu s postupcima provedenim na drugim životinjskim vrstama^{9,12,15,16}. Životinje su anestezirane intraperitonealnom aplikacijom tiopentala. Otvorili smo prsni koš, pristupili srcu te započeli postupak perfuzije. Iglom smo ušli u lijevu klijetku, dok smo desnu pretkljetku prerezali, kako bi se omogućilo istjecanje krvi iz cirkulatornog sustava. Prvo smo aplicirali otopinu fosfatnog pufera (PB), koji se primjenjuje sve dok bistra tekućina ne počne istjecati kroz rez na desnoj pretkljetki i dok tkivo jetre ne problijedi.

Potom smo aplicirali otopinu dvaju fiksirajućih sredstava (4%-tni paraformaldehid i 0,5%-tni glutaraldehid u PB-u). Otopina se aplicirala dok nije nastupio rigiditet mišića. Nakon završetka perfuzije štakor se dekapitira te se pažljivo odstrani mozak iz lubanje, prethodno presjecajući kranijalne živce na njihovom izlazištu iz lubanje. Tako izolirani mozak smo mediosagitalnim rezom podjelili u dvije hemisfere te ga postfiksirali već opisanom otopinom fiksativa na 4°C kroz 24 sata. Fiksativ koji smo koristili je bio isti za sve razvojne stadije, da bismo izbjegli eventualnu razliku u stupnju skupljanja tkiva primjenom fiksativa različitih koncentracija.

Nakon postfiksacije, tkivo izabranih razvojnih stadija (P0, P7 i P12) je išlo u postupak uklapanja u plastiku za elektronsku mikroskopiju (EM), prema protokolu koji se koristi na Odjelu za psihologiju, Sveučilišta u Illinoisu^{15,16}. Izolirani CC je stavljen u 6,14%-tnu otopinu saharoze kroz 2,5 sata. Nakon toga je ispran u PB-u kroz 15 minuta, a potom proveden kroz rastuće koncentracije acetona, do završne koncentracije od 100%. Potom su uzorci stavljeni na sat vremena u otopinu acetona i Durcupanske smole, u omjeru 1:1. Nakon toga su uzorci stavljeni u čistu smolu kroz sat vremena na temperaturi od 25°C te 72 sata na temperaturi od 63°C. Tako pripremljeni blokovi su tada spremni za rezanje mikrotomom na polutanke (1 µm debljine) i ultratanke (90 nm debljine) rezove. Prilikom pripreme tkiva za EM koristili smo saharozu, radi boljeg očuvanja unutarstaničnih vezikula i izbjegavanja njihove fuzije⁹.

Kvalitetu fiksacije smo smatrali primjerenom za analizu broja i ultrastrukture aksonalnih elemenata ako su na elektronskoj mikroskopiji bile održane i jasno vidljive sljedeće strukture: stanična membrana, mikrotubuli, neurofilamenti (ako su prisutni u istraživanoj dobnoj skupini), mitohondriji i endoplazmatski retikulum. Uzorci kod kojih navedene stukture nisu bile očuvane i jasno prepoznatljive nisu ulazili u analizu elektronskom mikroskopijom.

IV.2. Analiza promjene površine korpusa kalozuma

IV.2.A. Površina korpusa kalozuma čovjeka

Analiza se vršila na mediosagitalnom rezu CC-a fetalnih i dječjih mozgova, koji su dio Zagrebačke neuroembriološke zbirke. Koristili smo dvije skupine podataka: digitalne fotografije mediosagitalne površine velikog mozga s jediničnom mjerkom i mediosagitalne rezove snimaka magnetske rezonancije. Koristeći softverski paket Analyze 6.0⁶⁵ opertali smo CC. Pri korištenju digitalnih fotografija morali smo prije opertavanja kalibrirati sustav prema jediničnoj mjerci, što za slike magnetske rezonancije nije bilo potrebno.

Prilikom odabira uzoraka za opertavanje površine posebnu pozornost smo obratili da su prisutne sve značajke mediosagitalnog reza, koje uključuju jasno vidljiv CC u cijeloj dužini, prednju i stražnju komisuru te kod slika magnetske rezonancije vidljiv *aqueductus Sylvii* i trokutaski izgled četvrte komore. Da bismo izbjegli pogreške u mjerenju površine, CC-ovi koji su bili bilo parasagitalno, bilo koso presječeni, nisu ulazili u analizirani uzorak.

IV.2.B. Površina korpusa kalozuma štakora

Jednostavno fotografiranje mediosagitalne površine velikog mozga štakora nije davalo jasnu sliku CC-a. Stoga smo polutku velikog mozga uklopili u 10%-tni agar te pomoću vibratoma narezali mediosagitalni rez debljine 1 mm. Važno je napomenuti da uklapanje u agar ne dovodi do skupljanja tkiva, jer se ovdje nije riječ o klasičnom uklapanju, te ne dolazi do prožimanja tkiva uklapajućim sredstvom, već je ovdje riječ o jednostavnoj strukturnoj potpori tkiva za vibratomsko rezanje.
Dobiveni rez je potom stavljen na predmetno stakalce i pregledan mikroskopom na najmanjem povećanju. Dobivenu sliku smo analizirali Neurolucida programom, koji nam je omogućio opcrtananje CC-a i mjerenje njegove površine.

IV.2.C. Segmentacija korpusa kalozuma i mjerenje njegove debljine

Segmentacija je obavljena na isti način i na ljudskim i štakorskim uzorcima tkiva.

Za segmentaciju smo koristili modifikaciju metode po Petersu⁵⁸. Na opcrtanim slikama CC-a smo odredili vrh rostruma i vrh splenijuma, čime smo podijelili opcrtani CC na dorzalni i ventralni dio. Potom smo dorzalni dio podjelili u 100 dijelova, tako dobivajući 99 jednako udaljenih točaka duž dorzalnog dijela CC-a. Da bismo dobili debljine CC-a u cijelom njegovom rostro-kaudalnom rasponu, spustili smo okomice sa dorzalnog na ventralni dio CC-a. Postupak smo ponovili tri puta, postavljajući vrh splenijuma na drugačije pozicije, te smo uzeli onu segmentaciju kojoj je zbroj debljina bio najmanji (Slika IV.1.). Određivanje vrhova, spuštanje okomica i mjerenje debljine CC-a je izvršeno koristeći AutoCAD 2007⁸⁰ softverski paket.

Vrijednosti dobivenih debljina smo prikazali grafički radi zornog prikaza CC-a i jednostavnije usporedbe među uzorcima. To nam je također olakšalo određivanje najšireg dijela *genu* i *spleniuma* CC-a te najužeg dijela *isthmusa*.

SLIKA IV.1. Postupak segmentacije CC-a čovjeka korišten u našem istraživanju.

Istovjetni postupak je izvršen na CC-u štakora.

A – opcrtavanje CC-a; B – određivanje položaja vrha *rostruma* i vrha *spleniuma*, i dijeljenje dorzalne granice CC-a sa 99 jednako udaljenih točaka; C – spuštanje okomica na ventralnu granicu, u svrhu dobivanja debljine CC-a duž cijele rostro-kaudalne osi; D – grafički prikaz debljina CC-a (1 – *rostrum*, 99 – *splenium*). Okomice označavaju najširi dio *genua*, najuži dio *isthmusa* i najširi dio *spleniuma*.

Za detalje vidjeti tekst. CC – korpus kalozum.

IV.3. Analiza promjene broja aksonalnih elemenata

IV.3.A. Elektronska mikroskopija i osmificirani polutanki rezovi

Uzorci velikog mozga štakora su nakon uklapanja u plastiku (Dusrcupansku smolu) rezani na polutanke rezove, debljine 1µm, te su obojani toluidinom. Obojeni polutanki rez, je provjeren pod svjetlosnim mikroskopom, da se potvrdi da je rezna ploha u sagitalnoj ravnini, tj. da su aksoni poprečno presječeni. Ako je rezna ploha bila dobra, ostatak ukljopljenog tkiva se rezao na ultratanke rezove, debljine 90 nm. Rezovi su postavljeni na bakrenu mrežicu,

kontrastirani uranil acetatom i olovo citratom. Nakon kontrastiranja rezovi su odmah bili spremni za analizu EM-om.

Polutanki rez je korišten za opctavanje CC-a, koje je izvršeno ručno upotrebom *camere lucide* pričvršćene na mikroskop. Tako dobiveni crteži su digitalizirani i upotrebljeni za određivanje položaja regija brojanja (Slika IV.2.).

Nakon opcrtavanja, CC štakora je podjeljen u više rostro-kaudalno smještenih stupaca, ovisno o dobi. P0 grupi smo CC podjelili u 9 stupaca, P7 grupi u 18 stupaca, P12 grupi u 27 stupaca (Slika IV.3.). Zbog pretpostavke postojanja dorzo-ventralnog gradijenta gustoće aksona^{18,19}, svaki od stupaca je podjeljen u tri reda. Time je za P0 grupu dobiveno 27, za P7 grupu 54, a za P12 grupu 81 regija brojanja, u kojoj su brojani aksoni i čunjići rasta.

SLIKA IV.3.

Određivanje položaja regija brojanja, za objašnjenje vidjeti tekst.

Na primjeru petog stupca u stadiju P0 se vidi položaj regija brojanja. Radi preglednosti u stadijima P7 i P12 je ucrtano po devet stupaca, umjesto 18 za P7 i 27 za P12.

Mjerka predstavlja 1 mm.

Ultratanki rezovi su pregledani elektronskom mikroskopijom. Bilo je potrebno odrediti točan položaj regije brojanja. Zbog toga je CC ponovno opertan, ovaj put koristeći elektronski mikroskop, i uertan u koordinatni sustav elektronskog mikroskopa. Koristeći digitalizirane slike i koordinatni sustav elektronskog mikroskopa, određene su točne koordinate regija brojanja (Slika IV.3.). Unutar svake regije brojanja su određena tri područja (slika brojanja), svako veličine 22 μ m². Na taj način je dobiveno 81 (9*3*3) slika elektronske mikroskopije za P0, 162 (18*3*3) za P7 i 243 (27*3*3) za P12, na kojima je izbrojan broj aksonalnih elemenata (tj. aksona i čunjića rasta).

Preparati su pregledani elektronskim mikroskopom na povećanju 6000x. Analiza je obavljena na digitalnim slikama na istom povećanju. Linije isključenja za brojanje aksonalnih elemenata su bile gornja i desna te aksonalni elementi koji su bili s njima u kontaktu nisu bili brojani. Za statističku analizu stupci su grupirani na način da svaka od ispitivanih dobi ima devet stupaca, koji su komplementarni između dobi (Tablica IV.5.)

TABLICA IV.5. Komplementarni stupci korpusa kalozuma štakora.

														Odn	os stu	ipaca											
P0		1			2			3			4			5			6			7			8			9	
P7		12			34			56			78			9 10			11 12	2		13 14	ł		15 16	5		17 18	;
P12	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

Broj aksona, čunjića rasta i ukupnih aksonalnih elemenata je podijeljen sa površinom u kojoj su izbrojani, da bi dobili njihovu gustoću u pojedinoj slici brojanja. Izračunali smo srednju gustoću po regiji brojanja. Pomnoživši izračunatu gustoću sa površinom cijelog segmenta, dobili smo broj aksona u tom segmentu. Zbrajajući broj aksona segmenata, dobili smo broj aksona u pojedinoj kalozalnoj regiji. Zbrajajući broj aksona svih regija, dobili smo ukupan broj aksona u CC-u u ispitivanom stadiju.

Ukupni broj prebrojanih aksonalnih elemenata po CC-u u razdoblju P0 je bio oko 6000, oko 12000 u P7 i oko 23000 u P12. Tijekom brojanja smo koristili i fotografije na kojima su bile prikazane i krvne žile i stanična tijela. Iako su neki istraživači na sličnim studijama isključivali takve fotografije iz svojih analiza⁹, smatrali smo smo da bi izbacivanjem dobili lažno visoku gustoću i broj aksona u CC-u, što je u skladu sa istraživačkim postupkom ostalih autora^{10,12}.

Pri identifikaciji pojedinačnih staničnih elemenata koristili smo se već prihvaćenim kriterijima^{9,10,12,30}. Gliju smo identificirali prisutnošću endoplazmatskog retikuluma, granulama glikogena, kapljicama lipida te slobodnim ribosomima. Čunjiće rasta smo definirali "praznom" citoplazmom, tj. odsutnošću gore navedenih glijalnih elemenata, sa ili bez prisutnim vakuolama i mitohondrijima. Aksone smo definirali kao strukture s mikrotubulima sa ili bez prisutnim neurofilamentima. Strukture koje se bile ispunjene mikrotubulima, a sadržavali se jednu ili više vakuola, također smo brojali kao aksone. Takvu odluku smo donjeli zbog činjenice da pojedini

aksoni imaju varikozitete, koji se mogu nalaziti u bilo kojem dijelu duž pojedinog aksona (Slika IV.4.). Nismo ulazili u identifikaciju različitih tipova stanica.

SLIKA IV.4. Poprečni presjek čunjića rasta i aksonalnog cilindra prikazanih elektronskom mikroskopijom.

Primjer aksonskog cilindra (vrhovi strelica), koji završava čunjićem rasta (cr). U jednom segmentu aksonskog cilindra prisutan je varikozitet (av), koji uz mikrotubule sadržava i jedan mitohondrij i vakuolu.

Slika je iz područja indusium griseuma štakora sedmog postnatalnog dana. Mjerka predstavlja 800 nm.

Važno je za istaknuti da su polutanki rezovi, korišteni za mjerenje površine CC-a i položaja regije brojanja, i ultratanki rezovi, na kojima smo brojali aksonalne elemente, ne samo dio istog plastičnog bloka, već su susjedni rezovi. Time smo sigurni da su površine tih dvaju rezova u potpunosti jednake te smo izbjegli problem, kojeg je imao Innocenti⁹, u razlici površine tih dvaju skupina rezova.

Za određivanje veličine aksona smo koristili digitalne slike EM-a te smo izbrojali 30 aksona po slici. Da bismo izbjegli nehotično biranje većih aksona, brojanje smo započeli u desnom donjem kutu slike i radijalno se kretali po slici, mjereći svaki akson na koji smo naišli (Slika IV.5.) Ukupni broj aksona, kojima je izmjerena površina, po uzorku u P0 je iznosio oko 2000, oko 4000 u P7 i oko 5000 u P12.

Za mjerenje površine CC-a, brojanje aksona i mjerenje površine aksona koristili smo ImageJ program. Pri određivanju promjera aksona koristili smo metodu idealnog kruga¹², kojom se izračuna promjer kruga koji ima površinu jednaku izmjerenoj površini aksona. Smatramo da je metoda najprimjerenija za određivanje promjera aksona na sagitalnim rezovima CC-a, zbog toga što su oni poprečno presječeni. Eliptičan izgled pojednih aksona nije posljedica njihovog kosog tijeka već posljedica pritiska okolnih struktura, što je najbolje vidljivo na aksonima smještenim neposredno uz čunjiće rasta.

Kao dio dodatne obrade smo izbrojali broj mikrotubula po aksonu u ispitivanim razvojnim stadijima. Pregledali smo ukupno 162 aksona po dobi.

IV.3.B. Metoda srebrne impregnacije po Holmesu

Holmesova metoda pripada klasičnim histokemijskim metodama srebrne impregnacije, koja ovisno o pH i temperaturama korištenih otopina u različitom opsegu prikazuju aksone, jezgre i citoplazmu. Koristili smo vlastitu modifikaciju metode, napravljenu prema referenci⁸¹, radi prikaza staničnih elemenata i na parafinskim i na plastičnim rezovima. Prije početka Holmesove metode parafinski rezovi su deparafinizirani, dok su plastični rezovi ostavljeni da se osuše na stakalcu. Nakon navedene pripreme daljnji postupak je isti za obje skupine preparata.

Holmes metoda je izvedena na sljedeći način. Preparati su stavljeni u 20%-tnu otopinu srebrnog nitrata kroz 2 sata u mraku. Nakon toga su isprani u tri promjene destilirane vode kroz 10 minuta. Potom se stavljaju u impregnirajuću otopinu, u kojoj su ostavljeni 17 sati, na temperaturi od 37°C. Potrebno je da otopina ima pH 8,0, radi optimalnog prikazivanja aksonskih cilindara. Sljedeći dan se rezovi vade iz impregnirajuće otopine, višak otopine se obriše filter papirom te se rezovi stavljaju u reducirajuću otopinu. U reducirajućoj otopini rezovi ostaju 5 minuta na temperaturi od 20°C. Potom se ispiru 5 minuta u destiliranoj vodi te se stavljaju u 0,2%-tnu otopinu zlatnog klorida kroz 3 minute. Slijedi kratko ispiranje u destiliranoj vodi i premještanje u 2%-tnu otopinu oksalne kiseline kroz 5 minuta. Ponovno se ispire u destiliranoj vodi, nakon čega se stavlja 5 minuta u natrijev tiosulfat. Za završetak se ispire prvo u tekućoj vodi, pa u destiliranoj vodi kroz 5 minuta. Rezovi potom idu u standardni postupak pokrivanja preparata (Tablica IV.6.).

Modifikacije klasične Holmes metode, opisane u priručnicima^{13,81} su nužne radi optimalnog prikaza aksonalnih cilindara, a uključuju: održavanje pH impregnirajuće otopine na 8.0 i održavanje temperature reducirajuće otopine na 20°C.

Otopina	Sastav otopine
20%-tni srebro nitrat	1 g srebrnog nitrata 5 mL dH20
Impregnirajuća otopina	1 mL 1% srebrnog nitrata 20 mL borat/boraks pufera 180 mL dH2O
Reducirajuća otopina	1 g hidrokinon 10 g natrijev sulfit 100 mL dH2O
0,2%-tni zlatni klorid	2 mL 1%-tnog zlatnog klorida 100 mL dH2O
2%-tna oksalna kiselina	1 g oksalne kiseline 50 mL dH2O
5%-tni tiosulfat	2,5 g tiosulfata 50 mL dH2O

TABLICA IV.6. Otopine korištene u Holmesovoj metodi srebrne impregnacije

IV.4. Određivanje nastupa mijelinizacije metodom po Loyezu

Da bismo utvrdili vrijeme nastupa mijelinizacije na uzorcima CC-a kod čovjeka i štakora, koristili smo bojanje po Loyezu⁸¹.

Metoda se provodi na sljedeći način. Defarafinizirani uzorci tkiva se stavljaju 12 sati u 4%-tnu otopinu feri-amonijevog sulfata. Nakon ispiranja u destiliranoj vodi, ostavljaju se u otopini hematoksilina kroz 4 sata na temperaturi od 56°C. Nakon ispiranja u tekućoj vodi diferenciraju se u 4%-tnoj otopini feri-amonijevog sulfata. Ponovno slijedi ispiranje u tekućoj vodi te diferencijacija u Loyezovom diferencijatoru kroz 2 minute. Rezovi se isperu, dehidriraju i pokriju (Tablica IV.7.).

Otopina	Sastav otopine
4%-tni feri-amonijev sulfat	4 g feri-amonijevog sulfata 100 mL dH ₂ O
Otopina hematoksilina	10 mL 10%-tni hematoksilin u apsolutnom alkoholu 2mL zasićene vodene otopine litijevog karbonata 90 mL dH ₂ O
Loyezov diferencijator	2 g boraxa 2,5 g kalijevog fericijanida 200 mL dH ₂ O

TABLICA IV.7. Otopine korištene u Loyezovoj metodi

Na povećanju od 1800x smo pregledali preparate te utvrdili u kojem stadiju dolazi do prikaza mijelinizacije.

IV.5. Analiza glijalne arhitektonike korpusa kalozuma čovjeka

Imunohistokemija je napravljena prema ustaljenim protokolima⁶⁶. GFAP preparati su pregledani mikroskopom uz pomoć softverskog paketa Neurolucida, pomoću kojeg smo opertali cijeli CC i GFAP pozitivne dijelove. Odredili smo površinu oba dijela i izračunali udio GFAP pozitivnog dijela CC-a u cijelom CC-u. Pri odabiru preparata za analizu udjela, posebnu pozornost smo obratili na prisutnost *sulcus supracallosusa*, koji je upućivao da se nalazimo neposredno uz mediosagitalnu ravninu. Rezovi na kojima nije bio vidljiv cijeli rub CC-a ili nije bio vidljiv *sulcus supracallosus*, nisu bili uzeti u obzir.

Osim "makroskopskog" pregleda preparata obojenih za GFAP, prebrojali smo GFAPpozitivne stanice u CC-u. Da bismo uhvatili eventualnu razliku u gustoći GFAP pozitivnih stanica, podjelili smo CC na 5 stupaca, i svaki stupac u 5 redova. Stupac S1 je stavljen u najšire područje genua, S5 na najšire područje spleniuma, dok su ostala tri postavljena na jednakoj udaljenosti među sobom. Pet redova kojima smo podjelili stupce su postavljeni na sljedeći način: red a u područje indusium griseuma, red e u područje supkalozalne supventrikularne zone, red c u središnji dio CC-a, dok su redovi b i d postavljeni u dorzalni, odnosno ventralni dio CC-a (Slika IV.6.).

Imunohistokemijski preparati S100β i vimentin su također pregledani Neurolucida

softverskim paketom, u svrhu određivanja prisustnosti radijalne glije.

Protutijelo	Što prikazuje					
Anti CEAD	Astrocite (tijela i					
Allu-GFAF	stanične nastavke)					
	Razvojne stadije i					
	zrele astrocite,					
Anti-S100β	tanicite,					
	oligodendrocite;					
	radijalnu gliju					
	Razvojne stadije i					
	zrele astrocite,					
Anti-vimentin	tanicite,					
	oligodendrocite;					
	radijalnu gliju					

TABLICA IV.8. Protutijela korištena u studiji

V. REZULTATI

V.1. Površina, duljina i segmentacija korpusa kalozuma čovjeka

Površina CC-a se postepeno povećava od 20. gestacijskog tjedna (GT), što je najraniji ispitivani stadij, do 28. GT. Potom dolazi do postepenog pada te se doseže minimum površine u 35. GT, nakon čega površina CC-a opet raste. Rast se odvija istom stopom do kraja prve godine života, što je najstariji stadij kojem smo mjerili površinu CC-a (Slika V.1.).

SLIKA V.1. Površina korpusa kalozuma čovjeka u fetalnom i dojenačkom razdoblju.

Svaka točka predstavlja jedan uzorak korpusa kalozuma. Prikazani podaci su dobiveni koristeći i fotografije postmortalnog tkiva i slike magnetske rezonancije (za pojedinosti vidjeti tekst).

U 28. GT dolazi do jasno vidljivog maksimuma površine korpusa kalozuma, kojeg slijedi jasno vidljiv minimum u 35. GT. Nakon toga dolazi do konstantnog povećanja površine korpusa kalozuma.

GT - gestacijski tjedan, PM - postnatalni mjesec.

Da bismo mogli statistički ispitati da li je primjećena promjena površine značajna, podjelili smo vrijednosti površine CC-a u sljedeće dobne skupine: 20 - 26 GT, 27 - 30 GT, 32 - 37 GT i 38 - 41 GT. Podjela na navedene dobne skupine je opravdana, jer odgovara razvojnim razdobljima ključnim za razvoj kortiko-kortikalnih veza, što uključuje i CC ^{79,83,84}. Pomoću ANOVA-e smo utvrdili da postoji statistički značajna razlika među skupinama. *Posthoc* analiza je pokazala da razlika značajna između dobnih skupina 20-26 GT i 27-30 GT te 32-37 GT i 38-41 GT (p=0.01). Razlika u površini između skupina 27-30 GT i 32-37 GT nije dosegla statističku značajnost, ali je pokazala trend smanjenja površine između dvije navedene dobne skupine (p=0.06) (Slika V.2.).

Kao dodatnu analizu morfologije CC-a izmjerili smo njegovu duljinu, uzimajući u obzir zakrivljenost CC-a. ANOVA s pratećom *post-hoc* analizom je pokazala da postoji statistički značajan rast duljine CC-a između dobnih skupina 20-26 GT i 27-30 GT (p=0.049). Zanimljivo je da između dobnih skupina 27-30 GT i 32-37 GT nema statistički značajnog

porasta duljine CC-a (p=0.575), nakon čega dolazi do nastavka produljenja CC-a do dobne skupine 38-41 GT (p<0.001) (Slika V.3.).

Uzorke ljudskog CC-a smo segmentirali u 99 debljina, raspoređenih duž rostrokaudalne granice, prateći zakrivljenost CC-a. Potom smo dobivenih 99 debljina grafički prikazali da bismo dobili zorniji prikaz obrasca debljine CC-a i njegove promjene u prenatalnom razvitku. To nam je i olakšalo određivanje najdebljeg dijela *genua* i *spleniuma* te najužeg dijela isthmusa kod svakog ispitanika (Slika V.4.).

SLIKA V.4. Segmentacija korpusa kalozuma čovjeka.

Grafički prikazi debljina korpusa kalozuma čovjeka u četiri dobne skupine. Plave krivulje prikazuju pojedine uzorke korpusa kalozuma, dok crvene krivulje prikazuju srednju vrijednost debljina po dobi. 1 – *rostrum*, 99 – *splenium*.

Iako su *genu* i *splenium* zadebljani već u dobnoj skupini 20-26 GT, oni postaju jasno vidljivi u dobnoj skupini 27-30 GT. *Isthmus* se počinje formirati u dobi 32-37 GT. Do zadebljanja *genua* i *spleniuma* dolazi tek u dobi 38-41 GT, pri čemu zadebljanje *genua* doseže statističku značajnost.

GT - gestacijski tjedan.

Genu i rostrum su prisutni već u dobnoj skupini 20-26 GT, iako su slabo izraženi. U

tom se razdoblju isthmus tek nazire.

U dobnoj skupini 27-30 GT i genu i splenijum postaju jasno formirani. U tom stadiju

se još ne primjećuje jasno definirani isthmus.

U dobnoj skupini 32-37 GT se javlja isthmus uz prednji rub spleniuma. Važno je za

primjetiti da se isthmus javlja u vrijeme kada dolazi do smanjenja površine mediosagitalnig

presjeka CC-a.

U dobroj skupini 38-41 GT dolazi do zadebljanja u području genu i spleniuma. Područje *isthmusa* ostaje debljine jednake onoj u ranijem stadiju.

Analizom odnosa *genu, isthmusa* i *spleniuma* između četiriju dobnih skupina, ANOVA je pokazala da jedino *genu* u dobnoj skupini 38-41 GT statistički značajno veći (p<0,001). Ostale mjere između dobnih skupina nisu pokazale statistički značajnu razliku (Slika V.5.).

V.2. Površina, duljina i segmentacija korpusa kalozuma štakora

Površina i duljina CC-a je izmjerena na 35 Wistar albino štakora, u sljedećim dobnim skupinama: P0 – 5 životinja, P3 – 5 životinja, P7 – 8 životinja, P12 – 7 životinja, P21 – 5 životinja, odrasle jedinke (P75) – 5 životinja.

Usporedbu srednjih vrijednosti ovih šest skupina smo izvšili statističkim testom ANOVA, za obje skupine podataka, koja vraća vrijednost p<0,001. *Post-hoc* analizom odnosa srednje vrijednosti površina, pokazali smo da između stadija P3, P7, P12 i P21 nema statistički značajne razlike u površini. Drugim riječima, postoji plato površine od P3 do P21 (Slika V.6.).

Post-hoc analizom smo utvrdili da su duljine CC-a značajno različite između svih stadija, osim između stadija P12 i P21. Drugim riječima, kada promatramo povećanje duljine CC-a primjećujemo da dolazi do stanke u njegovom produljenju između 12. i 21. postnatalnog dana (Slika V.7.).

Segmentacija CC-a štakora je obavljena na istovjetan način kao kod ljudi. Već kod P0 su primjetni *genu* i *splenium*. Za razliku od ljudi, u ovom komplementarnom stadiju je *isthmus* jasno vidljiv te iznosi 0.33 mm (Slika V.8.).

SLIKA V.8. Segmentacija korpusa kalozuma štakora.

Grafički prikazi debljina korpusa kalozuma štakora, podjeljeni po starostima (P0, P3, P7, P12, P21 i odrasla jedinka). Plave krivulje prikazuju pojedine uzorke korpusa kalozuma, dok crvene krivulje prikazuju srednju vrijednost debljina po dobi. 1 – *rostrum*, 99 – *splenium*.

Uočite da se *genu* i *splenium* počinju biti jasnije vidljivi tijekom P3. Područje *isthmusa* je najtanje tijekom P12. Presplenijalno područje čak ni kod odrasle jedinke neće doseći debljinu koju je imalo tijekom P0 (330 μm).

ANOVA je pokazala da dolazi do značajnog porasta u debljini *genu* između dobi P0 i P3 (p=0.02) te između dobi P21 i odrasle jedinke (p<0.001), dok između ostalih susjednih stadija nema statistički značajne promjene.

ANOVA-om smo pokazali da ne postoji statistički značajne razlike u debljini *isthmusa* između P0 i P3 (p=0.06) te između P12 i P21 (p=0.24), dok dolazi do značajnog smanjenja između P3 i P7 (p<0.001) te P7 i P12 (p<0.001). Između P21 i odrasle jedinke dolazi do porasta u debljini *isthmusa* (p=0.02).

Iako su razlike u debljini *spleniuma* između dobi P0 i P3 te P3 i P7 pokazivale trend, nismo našli statističku značajnu razliku u debljini spleniuma između ispitivanih dobi (Slika V.9.).

V.3. Određivanje vremena nastupa mijelinizacije

Za određivanje vremena nastupa mijelinizacije odabrali smo Loyez metodu, klasičnu histološku metodu za prikaz mijelinskih ovojnica.

Kao kontrolu uspješnosti metode koristili smo uzorke CC-a odraslih jedinki štakora i čovjeka, na kojima smo potvrdili da Loyez metoda uspješno prikazuje mijelinizaciju. Potom smo analizirali različite dobne skupine štakora i čovjeka za dokaz početka mijelinizacije. Kod štakora prvi dokaz mijelinizacije CC-a smo našli u dobnoj skupini P21, kada je vidljiva pojačana obojenost tkiva u prednjoj polovici CC-a. S obzirom da smo imali i uzorke štakorskog tkiva i za elektronsku mikroskopiju, iste smo iskoristili za provjeru da li i u ranijim dobnim skupinama postoji mijelinizacija, iako ona nije vidljiva histološkom metodom. Na uzorcima CC-a štakora u dobnoj skupini P12 smo dokazali postojanje mijelinizacije, koja je tek u svojem početku te iznosi 0,1%. Ranije dobne skupine (P0 i P7) niti u jednom dijelu bilo kojeg od uzoraka nisu imale mijelinizirane aksone. Naš nalaz vremena nastupa mijelinizacije je u skladu s ranijim studijama ³⁴. Stoga smo izabrali P12, a ne P21, kao vrijeme nastupa mijelinizacije i daljnju analizu broja i gustoće aksonalnih elemenata smo usmjerili od P0 do P12.

Analizom fetalnih CC-a čovjeka od dobi 20. do 41. GT, obojenih Loyezovom metodom nismo našli jasnog dokaza mijelinizacije. To je u skladu s ranijim studijama ⁸⁵, koje pokazuju da mijelinizacija počinje u terminskom razdoblju, tj. oko 40. GT. Stoga smo kao vrijeme nastupa mijelinizacije odlučili uzeti 40.GT i daljnju analizu usmjeriti prije te dobi.

V.4. Broj aksonalnih elemenata u korpusu kalozumu štakora i analiza aksonalne ultrasturkure pomoću elektronske mikroskopije

V.4.A. Analiza broja i promjera aksonalnih elemenata

Analiza broja aksonalnih elemenata u CC-u štakora je uključivala analizu broja aksonalnih elemenata (što smo definirali kao zbroj aksona i čunjića rasta), apsolutnog broja čunjića rasta i udjela čunjića rasta u ukupnom broju aksonalnih elemenata te promjera aksona. Broj aksona, njegov odnos između kolumni i među dobima je pokazala potpuno isti obrazac statističke značajnosti kao i broj aksonalnih elemenata te je stoga nećemo prikazati.

Za sve analize smo koristili ANOVA-u uz odgovarajuću *post-hoc* analizu (Turkey). Grafovi koje koristimo prikazuju srednju vrijednost varijabli uz 95%-tni CI (*confidence* *interval*). Shema boja koju smo koristili u grafovima na kojima prikazujemo sve ispitivane stadije je sljedeća: P0 - , P7 - , P12 - . Uz svaki graf je pridružena i tablica statističke značajnostima s pripadajućim p vrijednostima.

Radi preglednosti cjelokupnu analizu prikazujemo u nekoliko odvojenih dijelova: analizu među stupcima unutar dobne skupine, analizu među stupcima između dobnih skupina te analizu među redovima.

V.4.A.1. Ukupan broj aksonalnih elemenata u tri razvojna stadija

Da bismo što točnije odredili ukupan broj aksonalnih elemenata u CC-u, odlučili smo odrediti udio koji svaki stupac ima u ukupnoj površini CC-a. Time smo odredili površinu svakog stupca, koju smo pomnožili sa gustoćom aksonalnih elemenata odgovarajućeg stupca, čime smo dobili ukupni broj aksona po ispitivanom uzorku CC-a štakora (Tablica V.1., Slika V.10.).

TABLICA V.1.	Ukupan broj	aksonalnih	elemenata u	ı korpusu	kalozumu šta	ikora.

	Uzorak 1 (x 10 ⁶)	Uzorak 2 (x 10 ⁶)	Uzorak 3 (x 10 ⁶)	Uzorak 4 (x 10 ⁶)	Srednja vrijednost za dob (x 10 ⁶)
PO	7,14	5,58	2,58	4,52	4,94
P7	8,22	7,86	9,45	6,09	7,91
P12	12,19	8,78	11,10	10,93	10,75

V.4.A.2. Analiza gustoće i udjela aksonalnih elemenata duž rostro-kaudalne osi unutar dobne skupine

U P0 stadiju gustoća **aksonalnih elemenata** (Tablica V.2.) u stupcu 9 je statistički značajno viša od stupaca 2, 3 i 5 (p≤0,05) uz postojanje blagog trenda između stupca 9 i 4 (p=0.11) (Slika V.11.).

U stadiju P7 nismo našli statističku značajnu razliku između bilo kojih od stupaca (Slika V.12.).

U stadiju P12 smo pokazali da je gustoća aksonalnih elemenata u stupcu 9 statistički značajno veća u odnosu na sve ostale stupce, uz razinu statističke značajnosti p<=0.01. Razlike između ostalih stupaca nema (Slika V.13.).

TABLICA V.2. Broj aksonalnih elemenata/100 μ m² po stupcima po dobi (srednja vrijednost ± SD)

	1	2	3	4	5	6	7	8	9	Ukupno
PO	370±83	314±147	316±116	346±108	338±107	354±108	372±151	368±127	449±172	358±132
P7	325±78	331±60	361±92	392±75	372±76	408±108	378±87	365±116	439±109	374±94
P12	585±186	529±128	547±115	528±116	560±138	575±98	585±84	577±119	718±162	577±141

SLIKA V.11. **Gustoća aksonalnih elemenata u stadiju P0.** Graf prikazuje gustoću aksonalnih elemenata (broj/100μm²) uz prateću tablicu statističke značajnosti.

SLIKA V.13. Gustoća aksonalnih elemenata u stadiju P12. Graf prikazuje gustoću aksonalnih elemenata (broj/100μm²) uz prateću tablicu statističke značajnosti.

Gustoća čunjića rasta (Tablica V.3.) u stadiju P0 i P12 nije pokazivao statistički značajnu razliku između kolumni. No, u stadiju P7 je kolumna 9 pokazala značajno veći gustoću čunjića rasta u odnosu na kolumne 2, 6 i 7 (p=0.01) te blagi trend u onosu na kolumnu 3 (p=0.11) (Slike V.14 – V.16.).

TABLICA V.3. Broj čunjića rasta/100 μ m² po stupcima po dobi (srednja vrijednost ± SD)

	1	2	3	4	5	6	7	8	9	Ukupno
PO	24±11	27±13	25±11	26±10	31±14	24±11	25±10	27±12	23±10	26±12
P 7	34±13	31±12	33±10	36±15	36±12	31±11	31±10	39±11	45±10	35±12
P12	26±7	27±8	30±10	25±9	30±10	31±9	34±16	35±17	37±15	30±12

Graf prikazuje gustoću čunjića rasta (broj/100µm²) uz prateću tablicu statističke značajnosti.

SLIKA V.15. Gustoća čunjića rasta u stadiju P7. Graf prikazuje gustoću čunjića rasta (broj/100µm²) uz prateću tablicu statističke značajnosti.

Kada smo promatrali **udio čunjića rasta** (Tablica V.4.) u ukupnom broju aksonalnih elemenata, našli smo značajnu razliku između kolumni 2 i 9 u stadiju P0, s kolumnom 2 koja je imala veći udio čunjića rasta. Ne postoje značajne razlike između kolumni u stadijima P7 i P12 (Slike V.17. – V.19.).

TABLICA V.4. Udio čunjića rasta [%] po stupcima po dobi (srednja vrijednost ± SD)

	1	2	3	4	5	6	7	8	9	Ukupno
PO	6,7±3,3	10,4±6,3	9,3±6,3	7,9±3,5	9,3±3,7	7,2±3,7	8,6±5,7	8,2±3,8	6,7±4,6	8,3±4,8
P7	10,9±3,5	10,1±4,8	10,1±4,4	9,6±4,2	9,9±3,5	8,5±4,5	9,1±4,1	11,5±4,1	11,0±4,1	10,0±4,2
P12	4,9±1,6	5,4±1,9	5,7±1,7	5,0±1,9	5,8±2,2	5,7±2,3	5,8±2,9	6,2±3,2	5,5±2,8	5,5±2,3

	01	0 2	03	04	0 5	06	0 7	08	0 9
01		0,16	0,86	1,00	0,83	1,00	1,00	1,00	1,00
02			1,00	0,65	1,00	0,08	0,99	0,86	0,01
03				1,00	1,00	0,88	1,00	1,00	0,37
04					1,00	1,00	1,00	1,00	1,00
05						0,78	1,00	1,00	0,26
06							1,00	1,00	1,00
07								1,00	0,79
08									0,98
09									

SLIKA V.17. Udio čunjića rasta u stadiju P0. Graf prikazuje udio čunjića rasta uz prateću tablicu statističke značajnosti.

Graf prikazuje udio čunjića rasta uz prateću tablicu statističke značajnosti.

SLIKA V.19. Udio čunjića rasta u stadiju P12. Graf prikazuje udio čunjića rasta uz prateću tablicu statističke značajnosti.

V.4.A.3. Analiza gustoće i udjela aksonalnih elemenata duž rostro-kaudalne osi između dobnih skupina

Da bismo vidjeli da li postoji razvojna razlika pojedinih aksonalnih elemenata, usporedili smo komplementarne kolumne različitih dobi (pr. kolumna 3 u stadiju P0 sa kolumnom 3 u stadiju P7).

Analizom gustoće **aksonalnih elemenata**, našli smo da ne postoji statistički značajna razlika u gustoći aksonalnih elemenata između P0 i P7 između niti jedne komplementarne kolumne. Stadij P12 je pokazao statistički značajno veću gustoću u svim komplementarnim kolumnama u odnosu na P7 i P0 (p<0.001) (Tablica V.5. i Slika V.20.).

Α	71	7 2	73	74	7 5	76	77	78	79	B 12 1 12 2 12 3 12 4 12 5 12 6 12 7 12 8 12 9
01	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,96	71 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,
0 2	1,00	1,00	1,00	0,63	0,98	0,32	0,93	1,00	0,04	7 2 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0
03	1,00	1,00	1,00	0,76	0,99	0,39	0,97	1,00	0,05	7 3 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0
04	1,00	1,00	1,00	1,00	1,00	0,97	1,00	1,00	0,49	7 4 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0
0 5	1,00	1,00	1,00	0,99	1,00	0,89	1,00	1,00	0,31	75 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,
06	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,70	76 0,00 0,03 0,01 0,03 0,00 0,00 0,00 0,00 0,00
07	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,96	7 7 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0 8	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,93	78 0,00 0
0 9	0,04	0,02	0,38	0,98	0,66	1,00	0,81	0,70	1,00	7 9 0,00 0,56 0,19 0,57 0,05 0,01 0,00 0,01 0,00
С	12 1	12 2	123	12 4	12 5	12 6	12 7	12 8	12 9	TABLICA V.5.
01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	Tablice statističke značajnosti razlike gust
0 2	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	aksonalnih elemenata između stadija P0 i P7 (A).
03	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	i P12 (B) te P0 i P12 (C).
04	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
05	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	Relevantni podaci su prikazani podebljanim slovim
0 6	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	bijelim poljima.
0 7	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	Tablice prate Sliku V 20
0 8	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	rubice plate bliku ¥.20.

Primjetite statistički značajno povećanje gustoće aksonalnih elemenata u dobi P12 u odnosu na dvije ranije dobne skupine. Slika prati Tablicu V.5.

Analiza **gustoće čunjića rasta** je pokazala da postoji značajno veći broj čunjića rasta u kolumni 9 u stadiju P7 i P12 u odnosu na stadij P0 (p<0.001) (Tablica V.6. i Slika V.21.).

Α	71	7 2	73	74	75	76	77	78	79
01	0,27	0,87	0,45	0,07	0,09	0,87	0,87	0,00	0,00
0 2	0,85	1,00	0,87	0,28	0,34	1,00	1,00	0,05	0,00
03	0,59	0,97	0,65	0,13	0,17	0,98	0,97	0,01	0,00
04	0,67	0,98	0,67	0,13	0,16	0,99	0,98	0,02	0,00
05	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,79	0,01
06	0,15	0,52	0,12	0,01	0,01	0,63	0,52	0,00	0,00
07	0,64	0,97	0,63	0,11	0,14	0,98	0,97	0,02	0,00
08	0,96	1,00	0,97	0,50	0,58	1,00	1,00	0,12	0,00
09	0,05	0,22	0,03	0,00	0,00	0,31	0,22	0,00	0,00

С	12 1	12 2	12 3	12 4	12 5	12 6	12 7	12 8	12 9
0 1	1,00	1,00	0,98	1,00	0,98	0,95	0,40	0,20	0,03
0 2	1,00	1,00	1,00	1,00	1,00	1,00	0,91	0,71	0,22
03	1,00	1,00	1,00	1,00	1,00	1,00	0,67	0,41	0,07
04	1,00	1,00	1,00	1,00	1,00	1,00	0,74	0,48	0,10
0 5	1,00	1,00	1,00	0,98	1,00	1,00	1,00	1,00	0,99
06	1,00	1,00	0,92	1,00	0,80	0,80	0,18	0,07	0,01
0 7	1,00	1,00	1,00	1,00	1,00	1,00	0,71	0,45	0,09
0 8	1,00	1,00	1,00	1,00	1,00	1,00	0,98	0,89	0,41
09	1,00	1,00	0,69	1,00	0,49	0,48	0,05	0,02	0,00

В	12 1	12 2	12 3	12 4	12 5	12 6	12 7	12 8	12 9
71	0,75	0,90	1,00	0,54	1,00	1,00	1,00	1,00	1,00
7 2	0,99	1,00	1,00	0,94	1,00	1,00	1,00	1,00	1,00
73	0,75	0,92	1,00	0,53	1,00	1,00	1,00	1,00	1,00
74	0,17	0,35	1,00	0,08	0,99	1,00	1,00	1,00	1,00
75	0,22	0,42	1,00	0,10	0,99	1,00	1,00	1,00	1,00
76	1,00	1,00	1,00	0,97	1,00	1,00	1,00	1,00	1,00
77	0,99	1,00	1,00	0,94	1,00	1,00	1,00	1,00	1,00
78	0,03	0,07	0,66	0,01	0,68	0,78	1,00	1,00	1,00
79	0,00	0,00	0,00	0,00	0,00	0,01	0,13	0,29	0,75

TABLICA V.6.

Tablice statističke značajnosti razlike **gustoće čunjića rasta** između stadija P0 i P7 (A), P7 i P12 (B) te P0 i P12 (C).

Relevantni podaci su prikazani podebljanim slovima u bijelim poljima.

Pogledati Sliku V.21.

SLIKA V.21. Gustoća čunjića rasta u dobnim skupinama P0, P7, P12.

Primjetite statistički značajno manju gustoću čunjića rasta u stupcu 9 u dobi P0 u odnosu na dvije starije dobne skupine. Slika prati Tablicu V.6.

Analiza **udjela čunjića rasta** je pokazala da postoji značajno veći udio čunjića rasta u kolumnama 1 i 9 u stadiju P7, u odnosu na P0 (p<=0.05). Dok ostale komplementarne kolumne nisu pokazivale nikakvu razliku. Usporedbom stadija P7 i P12 našli smo da u svim

kolumnama, izuzev kolumni 6 i 7, postoji značajno manji udio čunjića rasta u stadiju P12 (p≤0.01) (Tablica V.7. i Slika V.22.).

A	71	7 2	73	74	75	76	77	78	79	B 12 1 12 2 12 3 12 4 12 5 12 6 12 7 12 8 12 9
01	0,03	0,32	0,29	0,69	0,46	1,00	0,95	0,00	0,03	71 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,
0 2	1,00	1,00	1,00	1,00	1,00	0,99	1,00	1,00	1,00	7 2 0,00 0,00 0,01 0,00 0,00 0,00 0,01 0,04 0,00
03	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,94	1,00	73 0,00 0,00 0,01 0,00 0,00 0,00 0,01 0,03 0,00
04	0,46	0,89	0,87	1,00	0,96	1,00	1,00	0,13	0,43	74 0,00 0,00 0,05 0,00 0,02 0,04 0,07 0,18 0,02
0 5	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,96	1,00	75 0,00 0,00 0,02 0,00 0,00 0,01 0,02 0,08 0,01
0 6	0,05	0,23	0,21	0,63	0,37	1,00	0,95	0,01	0,05	76 0,08 0,30 0,59 0,11 0,49 0,53 0,67 0,89 0,41
07	0,93	1,00	1,00	1,00	1,00	1,00	1,00	0,58	0,91	77 0,01 0,04 0,23 0,01 0,10 0,18 0,28 0,53 0,12
0 8	0,68	0,98	0,97	1,00	0,99	1,00	1,00	0,26	0,64	78 0,00 0
0 9	0,00	0,02	0,02	0,14	0,05	0,92	0,49	0,00	0,00	7 9 0,00
С	12 1	12 2	12 3	12 4	12 5	12 6	12 7	12 8	12 9	TABLICA V.7.
01	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	Tablice statističke značajnosti razlike udjela čunj
0 2	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	rasta između stadija P0 i P7 (A), P7 i P12 (B) te l
03	0,00	0,03	0,12	0,01	0,07	0,09	0,15	0,35	0,06	P12 (C).
04	0,23	0,63	0,94	0,31	0,83	0,92	0,96	1,00	0,85	Delaventui nedeci su milemoni nedeblionim elevim
0 5	0,00	0,01	0,10	0,00	0,03	0,07	0,13	0,31	0,05	kelevantni podaci su prikazani podeoljanim slovim
0 6	0,89	1,00	1,00	0,94	1,00	1,00	1,00	1,00	1,00	oijenni poijinia.
07	0,02	0,12	0,48	0,03	0,25	0,41	0,55	0,81	0,31	Tablice prate Sliku V.22.
0 8	0,10	0,38	0,81	0,15	0,61	0,77	0,87	0,98	0,65	
0 9	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1.00	

SLIKA V.22. Udio čunjića rasta u dobnim skupinama P0, P7, P12.

Primjetite statistički značajno smanjenje udjela čunjića rasta u dobi P12 u odnosu na ostale dvije dobne skupine u većini stupaca. Slika prati Tablicu V.7.

Premda postoji statistički značajna razlika u udjelu čunjića rasta samo između pojedinih kolumni, odlučili smo provjeriti da li će razlika u udjelu čunjića rasta biti prisutna

kada zanemarimo pojedine stupce i analiziramo CC kao cjelinu. ANOVA-om smo dokazali da postoji statistički značajna razlika između svih ispitivanih stadija, na način da dolazi do porasta udjela čunjića rasta između P0 i P7 te njegovog pada između P7 i P12. U stadiju P12 udio čunjića rasta je značajno manji od onog prisutnog u P0 (Slika V.23.).

V.4.A.4. Analiza gustoće i udjela aksonalnih elemenata duž dorzo-ventralne osi

Da bismo istražili postojanje eventualnog dorzo-ventralnog gradijenta **aksonalnih elemenata**, izvršili smo analizu među redovima CC-a. Za tu svrhu smo grupirali dorzalni red svih stupaca, centralni red svih stupaca i ventralni red svih stupaca, čime smo dobili srednje vrijednosti za svaki od tri reda. Koristeći ANOVA-u smo pokazali da postoji statistički značajna razlika među redovima CC-a unutar i između dobnih skupina (Tablica V.8.)

U stadijima P0 i P7 dorzalni red je pokazao značajno veći broj aksonalnih elemenata u odnosu na centralni (p=0.01) i ventralni red (p<0.01), dok među njima nije bilo statistički značajne razlike (p=0.854).

U stadiju P12, svaki red je pokazao statistički značajnu razliku u odnosu na ostala dva reda. Pokazali smo da postoji gradijent gustoće unutar CC-a u stadiju P12, na način da

dorzalni red ima najveću gustoću aksona, dok ventralni ima najmanju (p<=0.01) (Slika V.24.).

	Dorzalni red (Red 1)	Centralni red (Red 2)	Ventralni red (Red 3)	Ukupno
PO	399±122	343±145	333±119	358±132
P7	406±95	361±90	347±87	374±94
P12	650±127	571±124	509±135	577±141

TABLICA V.8. Broj aksonalnih elemenata/100 μ m² po redovima po dobi (srednja vrijednost ± SD)

SLIKA V.24. Gustoća aksonalnih elemenata duž dorzo-ventralne osi.

Promjena gustoće aksonalnih elemenata između redova unutar dobne skupine (lijevo) te između dobnih skupina po redu (desno).

Uočite postojanje dorzo-ventralnog smanjenja gustoće u svim dobnim skupinama, i statističko značajno povećanje gustoće u sva tri reda u dobi P12.

Rezultati **gustoće i udjela čunjića rasta** su pokazali da vrijednosti oba parametra pokazuju sličnu dinamiku među redovima. U P7 je red 1 pokazao najveću gustoću, ali red 2 najveći udio. U stadiju P12 najveća gustoća čunjića rasta je u redu 3, a najveći udio u redovima 2 i 3. Ukupno gledajući, smatramo da je od same razlike u gustoći i udjelu čunjića rasta važnija činjenica da su čunjići rasta raspoređeni duž cijele dorzo-ventralne osi i da se u

svakom dijelu CC-a odvija visoki stupanj urastanja aksona (Tablice V.9 i V.10. i Slike V.25. i V.26.).

	Dorzalni red (Red 1)	Centralni red (Red 2)	Ventralni red (Red 3)	Ukupno
<u>P0</u>	27±12	25±11	25±12	26±12
P7	38±12	35±12	32±11	35±12
<u>P12</u>	27±11	34±11	30±13	30±12

TABLICA V.9. Broj čunjića rasta/100 μ m² po redovima po dobi (srednja vrijednost ± SD)

Promjena gustoće čunjića rasta između redova unutar dobne skupine (lijevo) te između dobnih skupina po redu (desno).

TABLICA V.10. Udio čunjića rasta [%] po redovima po dobi (srednja vrijednost ± SD)

	Dorzalni red (Red 1)	Centralni red (Red 2)	Ventralni red (Red 3)	Ukupno
PO	7,6±4,0	8,6±5,1	8,7±5,2	8,3±4,8
P7	9,8±4,0	10,2±4,0	10,1±4,7	10,0±4,2
P12	4,2±1,5	6,2±2,0	6,2±2,7	5,5±2,3

SLIKA V.26. Udio čunjića rasta duž dorzo-ventralne osi.

Tijekom P0 i P7 ne nalazimo statističku značajnu razliku u udjelu čunjića rasta duž dorzo-ventralne osi. U P12 ventralni dio korpusa kalozuma pokazuje veći udio čunjića rasta.

Usporedbom između dobi vidimo da je udio čunjića rasta najveći tijekom P7 na svakom ispitivanom nivou dorzo-ventralne osi.

V.4.A.5. Promjer aksona

Analizirali smo i promjer aksona, njegovu promjenu s dobi i razliku među stupcima. Srednje vrijednosti sa SD su dane u Tablici. Grafovi sa pripadadajućim tablicama statističke značajnosti su dane u Slikama V27. do V.30. i Tablici V.12.

Analiza promjera aksona je pokazala konzistentne rezultate između stupaca u svim ispitivanim stadijima (Tablica V.11.). Prateći rostro-kaudalnu os vidimo da se promjer aksona smanjuje. Tako je područje za koje smatramo da najvjerojatnje spaja regije moždane kore frontalnog i prednjeg dijela parijetalnog režnja (stupci 1 do 3) ima značajno veće aksone od dijela CC-a za kojeg smatramo da spaja ostatak parijetalnog, temporalni i okcipitalnog režnja (stupci 5 do 9) (Slike V.27. – V.29.).

TABLICA V.11. Promjer aksona (nm²) po kolumnama po dobi.

	1	2	3	4	5	6	7	8	9	Ukupno
PO	291±72	290±78	285±87	286±85	280±81	270±75	263±75	256±76	247±71	278±79
P7	277±102	279±101	258±94	256±95	251±93	247±85	234±82	243±78	234±85	253±92
P12	297±110	266±100	248±189	243±92	238±93	250±98	247±187	228±94	218±74	248±123

SLIKA V.27. Promjer aksona u stadiju P0 s pratećom tablicom statističke značajnosti. Preglednosti radi u grafu nismo označili statistički značajne razlike. Jasno je smanjenje promjera aksona niz rostro-kaudalnu os.

SLIKA V.28. Promjer aksona u stadiju P7 s pratećom tablicom statističke značajnosti. Preglednosti radi u grafu nismo označili statistički značajne razlike. Jasno je smanjenje promjera aksona niz rostro-kaudalnu os.

Nadalje, analizirali smo razlike između komplementarnih stupaca sa dobi (Slika V.30.

i Tablica V.12.).

Srednja vrijednost promjera aksona cijelog CC-a veća u P0 nego u P7 i P12 stadijima (Tablica V.11.). Dodatno smo istražili udio velikih aksona (>400 nm) u ukupnom broju. Našli smo da je udio velikih aksona veći u kasnijim stadijima (P0 – 6,7%, P7 – 6,9%, P12 – 7,8%).

V.4.B. Analiza aksonalne ultrastrukture

S obzirom da smo uočili da je promjer aksona veći u stadiju P0, nego u ostala dva ispitivana stadija, htjeli smo vidjeti da li postoji i razlika u aksonskoj ultrastrukturi. Ultrastrukturalni elementi koji su prisutni u sva tri stadija i u svim aksonima su mikrotubuli. Odlučili smo istražiti da li je gustoća mikrotubula u aksonalnom cilindru jednaka, ili se mijenja s dobi.

Uporedili smo srednje vrijednosti površine izmjerenih aksona, broja mikrotubula i koliko citoplazmatske površine na poprečnom presjeku aksona dolazi na jedan mikrotubul. Koristili smo ANOVA-u, koja je vratila statističku značajnu razliku (p<0,001). *Post-hoc*

analizom smo utvrdili da je razlika prisutna u sve tri ispitivane ultrastrukturne značajke između P0 stadija s jedne strane te P7 i P12 stadija s druge (Tablica V.13.).

Utvrdili smo da je količina citoplazmatske površine po mikrotubulu u aksonu statistički značajno veća u stadiju P0, dok između stadija P7 i P12 ne postoji statistički značajna razlika na našem materijalu (Slika V.31.).

TABLICA V.13. Površina poprečnog presjeka citoplazme (μm^2)/mikrotubulu (srednja vrijednost \pm SD)

	μm² / mikrotubul
PO	13 383 ± 5 984
P7	6 989 ± 3 141
P12	7 215 ± 2 554

SLIKA V.31. Zorni prikaz razlike u gustoći mikrotubula u aksonu između P0 i P12.

Primjeri slika elektronske mikroskopije na uzorcima starosti P0 i P12. Aksoni opertani plavom bojom su otprilike iste površine, što je slučaj i sa aksonima opertanim ervenom bojom.

Lijevo (stadij P0) – akson opertan plavom bojom ima četiri mikrotubula, onaj opertan ervenom ima ih tri. **Desno** (stadij P12) – akson opertan plavom bojom ima deset mikrotubula, onaj opertan ervenom ima ih pet.

U stadiju P12 mali broj aksona još uvijek ima nižu gustoću mikrotubula (vrh strelice).

V.4.C. Sažetak rezultata elektronske mikroskopije na uzorcima korpusa kalozuma štakora

U ispitivanim stadijima (P0, P7 i P12) postoji porast **ukupnog broja** aksonalnih elemenata u CC-u (P0 – 4,9 milijuna, P7- 7,9 milijuna, P12 – 10,8 milijuna).

Unutar pojedinog stadija postoji razlika na rostro-kaudalnij osi, na način da splenijalni dio (stupac 9) ima veću gustoću aksonalnih elemenata. Na istoj osi smo našli veći broj čunjića rasta u stupcu 9 u stadiju P7, što nije slučaj sa stadijima P0 i P12. Udio čunjića rasta u ukupnom broju aksonalnih elemenata ne pokazuje statistički značajnu razliku između stupaca ni u jednom od stadija (izuzetak je razlika između stupaca 2 i 9 u stadiju P0).

Unutar pojedinog stadija postoji dorzo-ventralni gradijent gustoće aksonalnih elemenata. U stadijima P0 i P7 dorzalni red ima značajno veću gustoću aksonalnih elemenata u odnosu na centralni i ventralni red, koji među sobom ne pokazuju razliku gustoće. U stadiju P12 razlika je prisutna između sva tri reda, na način da dorzalni red ima najveću, a ventralni red najmanju gustoću. Broj čunjića rasta je u stadiju P0 jednaka na cijeloj dorzo-ventralnoj osi. Stadij P7 je pokazao najveću gustoću u dorzalnom redu, dok je u stadiju P12 najveća gustoća u centralnom redu. Udio čunjića rasta je pokazao statistički značajnu razliku jedino u stadiju P12, na način da centralni i ventralni red imaju veći udio nego dorzalni red.

Usporedbom razvojnih stadija smo pokazali sljedeće. Kroz cijelu rostro-kaudalnu os ne postoji razlika u gustoći aksonalnih elemenata između stadija P0 i P7, dok stadij P12 ima značajno gušći raspored aksonalnih elemenata. Usporedbom gustoće čunjića rasta po stupcima nismo našli statistički značajnu razliku (izuzev u stupcu 9 između stadija P7 i P12). Udio čunjića rasta je pokazao drugačiji obrazac – razlika između dobnih skupina je prisutna u skoro svim stupcima (izuzev 6. i 7.) na način da stadij P12 ima značajno manji udio čunjića rasta. Kada uspoređujemo udio čunjića rasta u cijelom CC-u nalazimo da stadij P7 ima najveći udio, dok stadij P12 ima najmanji udio. Analizom promjera aksona smo pokazali da u svim dobnim skupinama postoji smanjenje promjera od rostralno prema kaudalno. Kada smo analizirali promjer aksona u cjelokupnom CC-u dokazali smo da aksoni u stadiju P0 imaju najveći promjer. S obzirom da je takav nalaz bio neočekivan, dodatno smo istražili ultrastukturu aksona – točnije odnos količine citoplazme i mikrotubula na poprečnom presjeku aksona. Pokazali smo da su aksoni u stadiju P0 nezreliji i sadrže manje mikrotubula.

V.5. Broj aksonalnih elemenata u korpusu kalozumu čovjeka

Zbog nemogućnosti dobivanja ljudskog tkiva dovoljno visoke kvalitete za elektronsku mikroskopiju, odlučili smo posegnuti za histološkim metodama u određivanju broja aksonalnih elemenata. Zbog rezolucije svjetlosnog mikroskopa, bez obzira na histološku metodu koja se koristi, najmanji aksonalni element koji će biti vidljiv bit će promjera 400 nm¹³ (za detaljni komentar o ograničenjima histoloških metoda u određivanju broja aksonalnih elemenata, molim vidjeti Poglavlje VI. Rasprava).

Prvoj metodi kojoj smo odlučili ispitati uspješnost na fetalnom ljudskom tkivu je modifikacija Holmesove metode srebrne impregnacije, koja se pokazala uspješnom na uzorcima odraslog CC-a čovjeka ¹³. Vrlo rano u istraživanju štakorskog CC-a u stadijima koji odgovaraju prenatalnom periodu čovjeka, smo pokazali da neurofilamenti nisu prisutni u aksonima. S obzirom da su neurofilamenti onaj dio stanične ultrastrukture, koja se prema klasičnim autorima ⁸¹ prikazuje Holmesovom metodom, odustali smo od ove metode za prikaz aksona u razvoju.

Druga metoda kojoj smo se okrenuli za određivanje broja aksonalnih elemenata je toluidinsko bojanje osmificiranih uzoraka CC-a čovjeka. Obrada tkiva je jednaka kao i kod pripreme za elektronsku mikroskopiju. Potom se režu polutanki rezovi (1 µm debljine) te se bojaju toludinom. Rezovi se pokriju i analiziraju svjetlosnim mikroskopom.

Analizirali smo pet uzoraka CC-a, starosti od 24 do 40 GT. Po svakom uzorku smo izbrojali broj aksonalnih elemenata u 20 do 40 regija te smo izračunali srednju vrijednost gustoće za cijeli CC. Potom smo pomnožili dobivenu vrijednost gustoće sa površinom CC-a, korigiranom za stupanj skupljanja tkiva koji se dogodi prilikom obrade, a iznosi 2,65 (Tablica V.14.).

S obzirom na malen uzorak i visoku vjerojatnost velike varijabilnosti u broju aksonalnih elemenata između uzoraka (temeljem istraživanja na eksperimentalnim životinjama^{9,10,12}), nismo ulazili u statističku analizu rezultata.

TABLICA V.14. Površina, korigirana površina, gustoća aksonalnih elemenata i ukupni broj aksonalnih elemenata većih od 400 nm u korpusu kalozumu čovjeka u razdoblju od 24 do 40 gestacijskih tjedana.

Gestacijska dob (tjedni)	Površina CC-a (mm ²)	Korigirana površina CC-a (mm ²)	Broj aksonalnih elemenata > 400nm / 100μm ²	Ukupni broj aksonalnih elemenata >400 nm u CC-u (u milijunima)
24	191	72,10	22,62	16,30
26	138	52,10	30,89	16,09
28	175	66,03	17,98	11,87
33	177	66,79	14,70	9,82
40	190	71,70	17,10	12,26

V.6. Analiza glijalne arhitektonike korpusa kalozuma čovjeka

Preparati obojani za GFAP imunohistokemiju su korišteni za određivanje **udjela GFAP pozitivnog dijela** CC-a u njegovoj ukupnoj površini.

Pri odabiru rezova korištenih za određivanje udjela koristili smo se sljedećim kriterijima - vidljiv rub CC-a u cijelom njegovom opsegu i prisutan *sulcus corporis callosi*. Važnost korištenja reza najbližeg mediosagitalnoj ravnini smo potvrdili izradom serije rezova, koje smo obradili GFAP imunohistokemijom. One su pokazale da se udio kalozalnih septi i cjelokupnog GFAP pozitivnog dijela povećava kako idemo prema lateralno (Slika V.32.).

Stoga smo se za određivanje udjela GFAP pozitivnog dijela u našem radu ograničili na rez najbliže mediosagitalnoj ravnini.

Već je na prvi pogled mediosagitalnih rezova CC-a vidljivo da se struktura koju makroskopski nazivamo CC sastoji od dva dijela s obzirom na GFAP pozitivnost: intenzivno GFAP pozitivno područje na ventralnoj i dorzalnoj strani CC-a, u kojem osim velikog broja stanica GFAP pozitivnih stanica postoji i bogata GFAP pozitivna mreža, te slabije GFAP pozitivno područje u kojem su jasno vidljive GFAP pozitivne stanice u manjem broju i izrazito slabije izraženom GFAP pozitivnom mrežom.

Da bismo smo odredili udio intenzivno GFAP pozitivnog područja u ukupnoj mediosagitalnoj površini CC-a koristili smo Neurolucida program. Udjele površina smo analizirali ANOVA-om, koja nije pokazala statistički značajnu razliku među dobnim skupinama (p=0.373). Srednja vrijednost udjela intenzivno GFAP pozitivne površine u ukupnoj površini CC-a za sve četiri dobne skupine zajedno iznosi 13.4% (Tablica V.15.).

Dobna skupina	Udio GFAP pozitivne površine [%]
20 – 26 GT	15,04
27 – 30 GT	12,48
32 – 37 GT	10,63
38 – 40 GT	14,09
Sve dobne skupine	13,39

TABLICA V.15. Udio GFAP pozitivne površine u ukupnoj površini korpusa kalozuma čovjeka u četiri ispitivana razvojna stadija i srednja vrijednost udjela za sve četiri skupine.

Rezultate **gustoće GFAP pozitivnih stanica** smo također obradili AVOVA-om, koja nije pokazala statističku značajnu razliku niti između pojedinih regija brojanja koje se nalaze u istom redu, niti između pojedinih regija u različitim dobnim skupinama. Drugim riječima, gustoća GFAP pozitivnih stanica ostaje nepromijenjena tijekom proučavanog razvojnog perioda od 20 do 40 GT, u svim dijelovima CC-a. Stoga rezultate predstavljamo kao srednju vrijednost svih dobi (Slika V.33. i Tablica V.16.).

SLIKA V.33. Prikaz udjela GFAP pozitivnih područja korpusa kalozuma uz prateće reprezentativne mikroskopske fotografije.

Crno obojena područja odgovaraju indusium griseum na dorzalnoj plohi korpusa kalozuma i subventrikularnoj subkalozalnoj zoni na ventralnoj plohi. Primjetite pojedine kalozalne septe kako ulaze u samo tijelo korpusa kalozuma.

Svjetlo plavom bojom je prikazano samo tijelo korpusa kalozuma, koje sadrži aksonalne elemente.

Važno je za napomenuti da makroskopski, prije histološke obrade, oba dijela (i crno i plavo obojeni) se ne razlikuju i zajedno izgledaju kao jedinstvena struktura – korpus kalozum.

Slike GFAP imunohistokemije (doljnji red) prikazuju područje *indusium griseuma* (lijevo), tijela korpusa kalozuma (sredina) i subkalozalne subventrikularne zone (desno). Mjerka predstavlja 50 µm za sve slike.

TABLICA V.16. Gustoća GFAP pozitivnih stanica na pet ispitivanih razina duž dorzo-ventralne osi korpusa kalozuma.

Položaj na dorzo-ventralnoj osi	Broj stanica (na 10.000 μm ²) ± SD
Indusium griseum	$26,97 \pm 11,85$
Dorzalni CC	$3,20 \pm 1,65$
Centralni CC	$3,07 \pm 1,52$
Ventralni CC	$3,30 \pm 1,38$
Subventrikularna subkalozalna zona	24,71 ± 12,42

Između broja GFAP pozitivnih stanica u indusiumu griseumu i subventrikularnoj subkalozalnoj zoni nema statistički značajne razlike, kao niti između pojedinih dijelova CC-a.

Za prikaz razvojnih glijalnih elemenata odlučili smo izvršiti imunohistokemiju prvotno s dva protutijela – S100b i vimentin. Oba protutijela prikazuju na našem materijalu isti obrazac imunohistokemijskog bojanja. Zbog te činjenice i zbog toga što imunohistokemija vimentinom daje lošiji prikaz kod preparata s dužim postmortalnim vremenom, odlučili smo se ostatak analize provesti samo sa protutijelom protiv S100b.

Primarna zadaća koju smo dali ovom dijelu istraživanja je bila ispitati prisutnost radijalne glije na mediosagitalnim rezovima CC-a. Niti na jednom ispitivanom uzorku nismo našli dokaz za postojanje radijalne glije u mediosagitalnoj ravnini CC-a.

VI. RASPRAVA

VI.A. Osvrt na metodologiju korištenu u istraživanju

Jedini siguran način da se ustanovi stvaran **broj aksona** je elektronska mikroskopija. Iako smo pokušali, nismo uspjeli dobiti uzorke fetalnog ljudskog moždanog tkiva dovoljno visoke kvalitete za elektronsku mikroskopiju. U literaturi se navodi jedan slučaj analize ljudskog CC-a elektronskom mikroskopijom¹³. To je bio uzorak odraslog CC-a s postmortalnim vremenom manjim od jedan sat. Već je taj prvi korak (dobivanje uzoraka tkiva kratkog postmortalnog vremena) često nepremostiva zapreka za uzorke fetalnog tkiva zbog intrauterine smrti i početka degradacije moždanog tkiva.

Stoga, najbliže što možemo doći kvantifikaciji aksona čovjeka za sada je histologija. Prvo smo pokušali s Holmesovom metodom srebrne impregnacije, koja se pokazala uspješnom na uzorcima odraslog CC-a. Vrlo rano u istraživanju štakorskog CC-a u stadijima koji odgovaraju prenatalnom periodu čovjeka, smo pokazali da neurofilamenti nisu prisutni u aksonima. Upravo su neurofilamenti strukture koje se prikazuju Holmesovom metodom.

Alternativna metoda za koju smo se odlučili je toluidinsko bojanje osmificiranog tkiva CC-a. Ova je metoda manjkava u nekoliko aspekata i rezultati se mogu smatrati samo oglednima i ni u kojem slučaju definitivnima. Koji su nedostaci? Samom činjenicom da je ovo histološka metoda, ograničeni smo na prikaz struktura većima od 400 nm, što je rezolucija svjetlosnog mikroskopa. Drugo, toludinsko bojanje nije specifično. Prikazane će biti sve strukture, uz vrlo slabu obojenost citoplazmi. Stoga čunjići rasta, veći aksoni i glijalni nastavci se ne bi mogli jasno razlikovati.

Analizom slika elektronske mikroskopije i toludinom obojanih rezova CC-a štakora, utvrdili smo da toluidinsko bojanje ipak možemo iskoristiti uz određene ograde. Broj aksonalnih elemenata je daleko nadbrojniji od glijalnih nastavaka. Aksoni i čunjići rasta su na sagitalnim presjecima poprečno prerezani, dok glijalni nastavci mogu imati imati različitu morfologiju, ovisno o njihovom ulazu u razinu reza. Stoga se strukture na sagitalnim presjecima CC-a, a koje su ovalnog do okruglog oblika, mogu smatrati aksonalnim elementima većim od 400 nm u promjeru (bilo aksonima, bilo čunjičima rasta). No, uprava ta granica od 400 nm predstavlja najveći problem u korištenju toluidinom obojenih osmificiranih uzoraka CC-a za određivanje broja aksona. Problem je da je glavnina aksonalnih elemenata manja od 400 nm, i da se najveće razvojne promjene događaju upravo na toj populaciji aksonalnih elemenata. Udio zbroja aksona većih od 400 nm i čunjića rasta u CC-u štakora je 13,9% u stadiju P0, 16,0% u stadiju P7 i 12,4% u stadiju P12. Dakle, u prosjeku oko 85% aksonalne populacije CC-a štakora ne vidimo toludinskim bojanjem. Kod čovjeka je taj udio vjerojatno još i veći (vidjeti kasnije u Raspravi).

Broj dovoljno kvalitetnih uzoraka CC-a čovjeka, koje smo uspješno obradili za analizu broja aksonalnih elemenata na osmificiranim preparatima obojenim toluidinom nije dovoljan za statističku analizu.

Mjerenje **mediosagitalne površine CC-a** nije toliko jednostavno, koliko se na prvi pogled čini. Pomak parasagitalno dovodi do promjene njegovog oblika, što čini segmentaciju i analizu debljina CC-a neupotrebljivom. Rotacija oko dorzo-ventralne ili rostrokaudalne osi može uzrokoviti razliku u vrijednosti izmjerene površine i do 20%⁸⁶, što bi onemogućilo kvalitetnu usporedbu među uzorcima.

Stoga je bilo ključno da mjerenja CC-a poštuju stroge kriterije (vidjeti Poglavlje IV: Materijali i metode). U skladu s tim i rezovi na kojima smo mjerili udio GFAP pozitivnih struktura unutar CC-a je morao poštivati iste stroge kriterije. Kako smo pokazali na parasagitalnim serijama, ne dolazi samo do promjene oblika CC-a već i do velike promjene u broju kalozalnih septi. Zato smo posebnu pozornost obratili na izabiranje onih preparata, kojima je rezna ploha u mediosagitalnoj ravnini.

VI.B. Interpretacija rezultata istraživanja

Naša studija CC-a štakora je pokazala da broj aksonalnih elemenata i površina mediosagitalnog reza CC-a ne koreliraju među sobom kroz različite dobne skupine. Odlučili smo pregledom literature provjeriti da li je to slučaj i sa drugim životinjskim vrstama. LaMantia i Rakić¹² su na rezus majmunima izvršili analizu broja aksona u CC-u. U svom radu se nisu posebice osvrtali na površinu CC-a i njezin odnos s brojem aksona, iako su prikazali vrijednosti površine u radu. Kada smo usporedili dvije skupine podataka iz njihovog rada, primjetili smo da se plato površine javlja u razdoblju povećanja broja aksona, što je u skladu s našim podacima na štakorima. Za razliku od toga, kod mačaka je pokazano da vrijeme platoa površine odgovara vremenu smanjenja ukupnog broja aksona u CC-u⁹.

Jedan od mogućih razloga platoa u površini za vrijeme promjene ukupnog broja aksonalnih elemenata može biti povećanje njihove gustoće.

Na našem štakorskom materijalu smo potvrdili da dolazi do povećanja gustoće između P7 i P12, tj. u vrijeme platoa površine. Pregledom rada LaMantie i Rakića¹² smo primjetili da je u razdoblju platoa površine CC-a rezus majmuna gustoća aksona najveća (793/100µm²), dok u razdoblju od tri tjedna nakon platoa prosječna gustoća pada na 484/100μm². Čini se da je kod rezus majmuna, kao i kod štakora, povećanje gustoće aksonalnih elemenata odgovorno za plato površine CC-a. Berbel i Innocenti⁹ su pokazali da je to slučaj i sa gustoćom aksona u mačjem CC-u.

Kada promatramo promjene površine i duljine CC-a štakora važno je uočiti da plato površine traje duže i nastupa ranije od platoa duljine CC-a, dok u istom razdoblju dolazi do porasta ukupnog broja aksonalnih elemenata. Rezultati morfološke studije na mišjem CC-u⁸⁷ daje dojam da postnatalno kod miša također postoji plato površine koji nastupa oko P4 te plato duljine koji nastupa oko P11. Ali dinamike promjene dvaju parametara nisu toliko jasne koliko podaci na našem štakorskom materijalu, zbog činjenice da su u istraživanju koristili samo jedan uzorak po dobi, sa razlikom između dobi od 0,5 do 5 dana.

Kombinacija različitih dinamika promjene površine, duljine i ukupnog broja aksonalnih elemenata kod štakora nas je navelo na razmišljanje da odnos površine i duljine može govoriti o remodeliranju unutar CC-a. Što pod time mislimo? Između P7 i P12 nema razlike u površini mediosagitalnog reza CC-a, ali dolazi do porasta njegove duljine. Ranija objašnjenja o "rastezanju" CC-a pod utjecajem rasta polutki velikog mozga se čine prejednostavnima i čini se da ne uvažavaju prirodu CC-a u razvoju.

Pokazali smo da u stadijima P7 i P12 još uvijek postoji značajan udio čunjića rasta u ukupnom aksonalnom broju. Koristeći istraživanja brzine rasta kalozalnih aksona u miševa²³ koja navode da je prosječna brzina rasta oko 2,5 mm/dan, i naše podatke o udjelu čunjića rasta, broj aksona koji bi bio pridodan između stadija P7 i P12 bio bi nekoliko puta veći od broja koji je uistinu prisutan u P12. To znači da se u isto vrijeme mora odvijati proces povlačenja aksona,

prisutan već u prvim postnatalnim danima. Studije su pokazale^{12,30}, da povlačeći aksonalni elementi nemaju posebnu morfologiju, tj. ostaju nevidljivi i morfološki neprepoznati na slikama elektronske mikroskopije. Manji dio studija^{9,33} je navelo da određeni dio aksona imaju mitohondrije koji izgledaju edematozni, sadržavaju velike vakuole i elektronski gusta tjelešca, ali ti kriteriji nisu bili prihvaćeni kao kriteriji određivanja povlačećih aksonalnih elemenata. Niti mi u našoj studiji nismo primjetili razliku u ultrastrukturi aksona, koju bismo smatrali relevantnom u određivanju aksona u povlačenju.

Dakle, porast duljine uz istu površinu mediosagitalnog presjeka i uz porast broja aksonalnih elemenata manji od onog što bi se očekivalo na temelju udjela čunjića rasta, upućuje na visoki stupanj remodeliranja između stadija P7 i P12.

Studije na kortikalnim neuronima čiji aksoni prolaze kroz CC^{4,5,6} su pokazale da između P0-P4 i P15 postoji promjena distribucije tijela projicirajućih kalozalnih neurona unutar moždane kore. U prvim postnatalnim danima oni su smješteni u dubljim slojevima (Va i Vc-VII), dok su u stadiju P15 smješteni u sloju III i sloju Va. To znači da između navedena dva razdoblja samo dio aksona zadrži svoje kortikalno ishodište (sloj Va) dok ga drugi dio promjeni (sa sloja Vc-VII na sloj III). Ta promjena izvora kalozalnih aksona tijekom prva dva postnatalna tjedna savršeno odgovara našoj interpretaciji promjene površine i duljine CC-a, kao indikatora visokog stupnja remodeliranja.

Wise i Jones⁸⁹ su autoradiografskom studijom pokazali da između P5 i P9 dolazi do značajne promjene u distribuciji kalozalnih aksonskih zavšetaka u kontralateralnoj somatosenzoričkoj moždanoj kori, od nezrele distribucije do distribucije jednake onoj koja je prisutna kod odrasle jedinke. To znači da u tom razdoblju postoji i značajno urastanje i značajno povlačenje kalozalnih aksona, koje se očituje finim podešavanjem raspodjele aksonskih završetaka u kontralateralnoj moždanoj kori. Kada uzmemo u obzir dužinu puta od mediosagitalne linije do moždane kore^{90,91} i brzinu rasta aksona²³, jasno je da će aksonima trebati oko tri do četiri dana da prijeđu mediosagitalnu liniju natrag u svoju moždanu polutku. Što znači da će se posljedice modulacije kalozalnih završetaka u moždanoj kori vidjeti u CC-u (u smislu promjene broja i gustoće njegovih aksonalnih elemenata) u vrijeme koje smo definirali kao vrijeme intenzivnog remodeliranja.

S obzirom da je jedan od ciljeva naše studije bio odrediti odnos između broja aksonalnih elemenata i površine CC-a prije nastupa mijelinizacije, nismo istraživali broj aksonalnih elemenata nakon P12, a pokazali smo da je tada mijelinizacija tek počela u CC-u. Naš nalaz početka mijelinizacije je u skladu s ranijom studijom³⁴, koja početak mijelinizacije CC-a štakora stavlja između P10 i P13. Usprkos tome možemo donijeti određene zaključke o procesima koji se odvijaju u periodu od P12 do P21. Druge studije³⁴ su pokazale da je mijelinizacija prisutna duž cijele rostro-kaudalne osi CC-a štakora oko P22. Mi smo pokazali da taj proces počinje u prednjoj trećini u stadiju P12. Također smo pokazali da površina i duljina između P12 i P21 ostaju iste. Pokazali smo i da između P0 i P7 stadija s jedne strane i P12 s druge dolazi do porasta u gustoći aksonalnih elemenata. Moguće je da se to "zbijanje" aksona odvija i nakon P12 te da može činiti protutežu mijelinizaciji u njenom utjecaju na površinu mediosagitalnog reza CC-a. Druga mogućnost je da dolazi do pada broja aksonalnih elemenata između P12 i P21 uz prateću mijelinizaciju dijela preostalih aksona. U skladu s tim razmišljanjem, očekujemo da početak smanjenja broja aksonalnih elemenata počinje između P12 i P21. Naravno, navedenu hipotezu treba potvrditi studijom elektronskom mikroskopijom, koja bi uključivala analizu broja aksonalnih elemenata u dobi od P21. Djelomičnu potvrdu toj ideji daju rezultati Juraskinog

istraživanja¹⁶, koji govore o smanjenju broja aksona između P15 i P60 u području splenijuma štakora.

Na temelju naših podataka na štakorima te podataka istraživanja na rezus majmunu¹² i mački⁹ vidljivo je da površina CC-a i broj aksonalnih elemenata nisu jednoznačno povezani, već da je taj odnos ovisan o dobi.

Prvi korak u našoj analizi CC-a čovjeka u fetalnom razdoblju je bilo mjerenje njegove mediosagitalne površine. Površina prolazi specifičnu promjenu tijekom druge polovice trudnoće, koja nije uočena u drugih vrsta, čak ni u rezus majmuna. Površina raste do 28.GT, potom postoji trend pada do 35.GT nakon čega nastavlja rasti. Da bismo utvrdili statističku značajnost promjene površine, grupirali smo uzorke u četiri dobi: 20-26 GT, 27-30 GT, 32-37 GT i 38-41 GT. Grupiranje u ove dobne skupine je opravdano sa razvojno-morfološkog stajališta, jer su ranija istraživanja^{79,83,84} utvrdila da u tim razvojnim periodima dolazi do specifičnih promjena u strukturi hemisfera velikog mozga, kojemu je CC najveći komisuralni sustav bijele tvari.

Razlika između 27-30 GT i 32-37 GT nije pokazala statističku značajnost, već samo trend (p=0,06). Odlučili smo se uvažiti ovaj trend kao relevantan podatak zbog postojanja ranije studije³⁶, koja je također analizirala promjenu površine CC-a u čovjeka. Oni su pokazali promjenu površine sa njezinim maksimumom i minimumom u istim razdobljima kao i kod našeg uzorka.

Razlog takve promjene u površini može u svojoj podlozi imati nekoliko čimbenika. Promjena u glijalnoj arhitektonici, promjena u broju aksonalnih elemenata ili oboje. Promjena broja aksonalnih elemenata se može očitovati ili u smanjenju njihovog ukupnog broja (kao kod mačke) ili povećanjem gustoće (kao kod štakora i majmuna). Oba procesa bi vjerojano najveći utjecaj ispoljila na aksonima manjeg promjera, s obzirom da oni predstavljaju najveću populaciju aksonalnih elemenata¹².

Jovanov-Milošević i sur.²⁸ su opisali postojanje prolaznih struktura u CC-u čovjeka tijekom fetalnog razdoblja, koje su nazvali kalozalne septe. Septe nisu specifične za ljudski CC u razvoju, ali jesu najrazvijenije kod ljudi. Bogate su glijalnim i neuralnim staničnim elementima i izvanstaničnim matriksom. Zbog toga se vjeruje da imaju istu ulogu kao perikalozalne glijalne strukture opisane u glodavaca^{19,20,25,27}, a to je usmjeravanje i vođenje aksona u njihovom rastu preko mediosagitalne linije. Morfološki gledajući, kalozalne septe ulaze u samo tijelo CC-a, dijeleći CC u slabo ograničene snopove aksona.

S obzirom da je promjena površine CC-a specifična za ljude i da su kalozalne septe najrazvijenije kod čovjeka, razumno je bilo ispitati da li postoji odnos tih dviju struktura. Analizom preparata (način odabira preparata je opisan u VI.A.2.) utvrdili smo da su kalozalne septe vrlo slabo razvijene u samoj mediosagitalnoj ravnini te da glavnina GFAP pozitivnih struktura opada na indusium griseum i subkalozalnu subventikulanru zonu. Pokazali smo da GFAP pozitivni udio u CC-u čovjeka ostaje konstantan tijekom druge polovice gestacije. Drugim riječima, glijalna arhitektonika mediosagitalne ravnine CC-a nije odgovorna za promjenu površine tijekom prenatalnog razvitka CC-a čovjeka.

Drugi element koji može utjecati na površinu CC-a je broj i gustoća aksonalnih elemenata, kao što smo pokazali na CC-u štakora i kao što su pokazala istraživanja na mačkama^{9,35} i rezus majmunima^{10,12}. Kao što smo ranije opisali, u analizi aksonalnog broja u čovjeka smo bili ograničena na histološke metode. Kao posljedica toga, vidljivi su nam bili samo aksonalni elementi veći od 400 nm u promjeru. Postoje ranije studije, koje su istraživale broj i

gustoću aksona u odraslom CC-u ^{13,92}. Njihove vrijednosti gustoće su reda veličine naših vrijedosti.

Nažalost, mali uzorak (pet ispitanika) i velika intrinzična varijabilnost između jedinki nam onemogućuje interpretaciju podaka u kontekstu promjene s dobi. Dodatni čimbenik koji spriječava procjenu ukupnog broja aksona na temelju broja aksonalnih elemenata većih od 400 nm, je činjenica da je udio aksona velikog promjera tijekom razvoja različit između vrsta. Na našem štakorskom uzrorku smo pokazali da oko 15% aksonalnih elemenata pripada toj skupini. Radovi na mački i rezus majmunu nisu dali tablični prikaz distribucije aksonalnog promjera, ali se iz njihovih grafičkih prikaza može vidjeti da oko 10% aksona u CC-u mačke⁹ i oko 5% aksona u CC-u rezus majmuna¹² ima promjer veći od 400 nm. To znači da kako idemo od glodavaca, preko karnivora do primata, udio najvećih aksona smanjuje, tijekom razdoblja povećanja ukupnog broja aksona CC-a. Upravo zbog toga je nemoguće na temelju dosadašnjih saznanja i našeg istraživanja utvrditi ukupan broj aksonalnih elemenata u CC-u čovjeka na temelju broja aksonalnih elemenata većih od 400 nm.

Postoji još jedno moguće objašnjenje smanjenja, ili u najmanju ruku stagnacije, površine CC-a čovjeka između 28. i 35. GT. Kao što je ranije opisano na štakorima^{4,5,6} i miševima²³ postoje fronte rasta CC-a. Jedno od mogućih objašnjenja povećanog udjela čunjića rasta tijekom P7 na našem štakorskom materijalu bi moglo biti da smo uhvatili jednu od fronti urastajućih kalozalnih aksona, a ne nužno da je došlo do postupnog povećanja stope urastanja između P0 i P7, kako smo opisali ranije u raspravi. U skladu s ovim slijedom razmišljanja, moguće je da je specifična promjena površine CC-a čovjeka posljedica pomicanja fronte rastućih kalozalnih aksona od mediosagitalne linije u fetalnu bijelu tvar velikog mozga. S obzirom da su čunjići rasta

promjerom i do nekoliko puta veći od aksona, njihovo pomicanje bi moglo biti odgovorno za promjenu površine.

Koji točno razlog leži u pozadini promjene kalozalne površine moći ćemo najvjerojatnije razjasniti jedino studijom elektronske mikroskopije na ljudskim fetalnim uzorcima CC-a.

Na temelju naše detaljne analize glijalne arhitektonike mediosagitalne površine CC-a čovjeka i procjene broja aksonalnih elemenata histološkim pristupom, smatramo da je specifična promjena površine CC-a čovjeka posljedica promjene broja i gustoće aksonalnih elemenata.

VI.C. Značenje normativnih podataka za studije patoloških promjena i abnormalnog razvoja središnjeg živčanog sustava

Važnost CC-a u kliničkoj praksi se očituje u činjenici da su njegova površina i izgled promjenjeni u više od 90 kliničkih sindroma, dok je više od 50 sindroma povezano s njegovom agenezom^{93,94,95}. Kao patološka promjena od posebnog interesa se pokazalo hipoksičnoishemijsko oštećenje mozga u perinatalnom razvitku^{96,97}. Razlog leži u podudaranju vremena nastupa lezije s vremenom intenzivnih razvojnih promjena CC-a. Naime, kao što je slučaj s ostalim sustavima bijele tvari velikog mozga, tako i kod CC-a rast vlakana, razdoblje čekanja u *subplate* zoni te završno urastanje u kortikalnu ploču suprotne strane traje 1 do 2 mjeseca, s regionalnim razlikama i po 2 tjedna⁸⁴. Smatra se da u tom razdoblju dolazi do povećanja broja aksona u CC-u, uz povlačenje onih aksona koji nisu uspjeli uspostaviti trajnu funkcionalnu vezu s moždanom korom suprotne strane. Ti procesi se većinom odvijaju tijekom druge polovice gestacije čovjeka i u prvih nekoliko postnatalnih mjeseci. Druga polovica gestacije čovjeka je također vrijeme u kojemu je moguće preživljavanje ploda po porodu, često uz opsežno oštećenje središnjeg živčanog sustava. Područja koja su posebno osjetljiva na hipoksično-ishemijsko oštećenje su periventrikularna križanja putova, koja su prvi opisali Judaš i sur.⁷⁹. Jedna od značajki križanja putova je bogat izvanstanični matriks, što ukazuje da se odvija intenzivan rast aksona. Druga značajka je da u relativno malom prostoru sadržavaju vlakna svih triju sustava bijele tvari (komisuralna, asocijativna i projekcijska). To je najvjerojatniji razlog istovremenom postojanju motoričkih, somatosenzoričkih i kognitivnih ispada u djece s lezijama periventrikularne bijele tvari^{76,77}.

Osim periventrikularnih križanja putova i kalozalne septe su bogate izvanstaničnim matriksom i molekulama vodiljama. S obzirom da je sustav kalozalnih vlakana u neposrednom kontaktu s obje stukture, i da su obje strukture najrazvijenije u drugoj polovici gestacije čovjeka, vremenu kada se odvija najintenzivnija promjena CC-a, čini se da je upravo ovo razdoblje najveće plastičnosti kalozalnog sustava.

Sve veća stopa preživljavanja prerano rođene djece, je za posljedicu imalo potrebu njihovog kontinuiranog praćenja. Jedna od metoda kontrole evolucije lezija je MR mozga. Ona nam je pružila priliku da promatramo učinke hipoksično-ishemijskih lezija na morfologiju mozga⁹⁸ i razinu plastičnosti kojom središnji živčani sustav pokušava umanjiti negativne učinke lezije⁹⁹. Detaljnom analizom slika MR mozga prerano rođene djece u razdoblju od novorođenačke do adolescentne dobi^{61,98} ustanovilo se da su tri elementa konzistentno prisutna: smanjenje površine CC-a, povećanje ventrikularnog sustava i promjena intenziteta bijele tvari na MR slikama.

Dosadašnja istraživanja prerano rođene djece su potvrdila povezanost morfoloških promjena velikog mozga prikazom MR-om⁹⁸ ili ultrazvukom^{100,76} s promjenama u površini CC-a. Također je pokazana povezanost segmentalnog stanjenja CC-a s rezultatima psiholoških testiranja⁷⁷. Jedan od problema s kojima su se suočavali je nedostatak postojanja normativnih podataka za razvoj CC-a.

Tri značajke CC-a pokazuju potrebu za njegovim prepoznavanjem kao ključne strukture u kliničkim istraživanjima hipoksično-ishemijskih lezija: konzistentno stanjenje CC-a u ovoj populaciji pacijenata⁹⁸, korelacija smanjenja njegove ukupne površine i površine njegovih segmenata s morfološkim i psihološkim promjenama^{98,100,76,77} te kritični period njegova razvitka tijekom druge polovice gestacije čovjeka^{79,84}.

Stoga smatramo da rezultati naše studije predstavljaju čvrsti temelj za buduća istraživanja ne samo normalnog razvitka središnjeg živčanog sustava, već i za istraživanja njegovih patoloških promjena.

VII. ZAKLJUČCI

- Odnos broja aksona i površine korpusa kalozuma štakora nije jednoznačan, već je ovisan o dobi,
- Odnos duljine i površine korpusa kalozuma štakora je indikator nastupa vremena intenzivnog remodeliranja, koje se odvija između P7 i P12,
- Površina korpusa kalozuma čovjeka u drugoj polovici gestacije pokazuje specifičnu promjenu površine: rast do 28. tjedna gestacije, trend smanjenja do 35. tjedna gestacije nakon čega slijedi nastavak rasta,
- 4) Specifične promjene površine korpusa kalozuma čovjeka, navedene u točki 3, su najvjerojatnije izravna posljedica promjene broja i gustoće aksonalnih elemenata, koji u razdoblju od 28. do 35. GT ne moraju nužno značiti smanjenje broja aksona, već pomicanje fronte rastućih aksona (tj. čunjića rasta) preko mediosagitalne linije,
- Glijalni elementi korpusa kalozuma prisutni u mediosagitalnoj ravnini nisu značajan strukturni čimbenik koji doprinosi specifičnoj promjeni površine opisane u točki 3,
- Na mediosagitalnom rezu korpusa kalozuma čovjeka nismo mogli dokazati prisutnost staničnih elemenata, koji bi morfološki odgovarali radijalnoj gliji.

Rezultati ovog istraživanja su čvrst temelj za buduća istraživanja normalnog i abnormalnog korpusa kalozuma. Nova istraživanja će morati posvetiti pažnju:

1) Analizi broja i gustoće aksonalnih elemenata korpusa kalozuma štakora i njihovog odnosa s površinom korpusa kalozuma u razdoblju nakon nastupa mijelinizacije,

- Sustavnoj analizi promjene glijalne arhitektonike na parasagitalnim rezovima korpusa kalozuma čovjeka u fetalnom razdoblju, koja uključuje promjenu broja kalozalnih septi i analizu radijalne glije,
- Analizi broja aksonalnih elemenata i njihove gustoće u korpusu kalozumu čovjeka tijekom fetalnog razdoblja, metodom elektronske mikroskopije.

VIII. Sažetak na hrvatskom jeziku

Korpus kalozum je najveći komisuralni put bijele tvari velikog mozga, koji spaja glavninu neokortikalnih područja te je najrazvijeniji kod čovjeka. Njegova važnost u kliničkoj praksi leži u činjenici da se razdoblje njegovog intenzivnog razvitka poklapa s nastupom hipoksično-ishemijskih lezija prerano rođene djece.

Kod čovjeka mediosagitalna površina korpusa kalozuma prolazi specifičnu promjenu, koja se očituje stankom u njegovom rastu. Pokazali smo da glijalni elementi korpusa kalozuma ne predstavljaju značajan strukturni čimbenik koji bi doprinosio navedenoj promjeni površine. Smatramo da je promjena površine rezultat promjene broja i gustoće aksonalnih elemenata. U razdoblju od 28. do 35. gestacijskog tjedna vjerojatni je uzrok promjene površine pomak fronte rasta kalozalnih aksona preko medijalne linije. U razdoblju nakon 35. gestacijskog tjedna promjena površine je vjerojatno posljedica kombinacije smanjenja broja aksonalnih elemenata uz povećanje promjera aksona, a nakon rođena i mijelinizacije.

Na uzorcima korpusa kalozuma štakora smo pokazali da je odnos ukupnog broja aksona u korpusu kalozumu i njegove površine ovisna o dobi u razdoblju od nultog do dvanaestog postnatalnog dana. Visoki udio čunjića rasta upućuje da se u ovom razdoblju još uvijek odvija visoki stupanj urastanja aksona.

Smatramo da rezultati ove studije predstavljaju snažan temelj daljnjim istraživanjima normalnog razvitka i patologije korpusa kalozuma.

XI. Sažetak na engleskom jeziku

Developmental changes in the midsagittal area of the corpus callosum as indicators of perinatal growth of interhemispheric connections in humans

Corpus callosum is the biggest commissural pathway of the telencephalon, connecting the majority of neocortical areas, hence it is most complex in the human. Its importance in clinical research lies in the fact that the period of its most prominent development coincides with the occurrence of hypoxic-ischemic lesions in preterm-born infants.

The midsagittal area of the corpus callosum in humans goes through a specific change, which is manifested by a pause in its growth. We have shown that the glial elements do not represent a significant structural factor, which would contribute to the change in area of the corpus callosum. We are convinced that the area change is a result of the change in number and density of axonal elements. In the period between 28 and 35 gestational weeks, the most likely cause is the translocation of the growth front from the midline. After 35 gestational weeks the described change in area is most likely a result of a combination of axonal element number decrease and axonal diametar increase, and additionally myelination after birth.

On rat callosal samples we showed that the relationship between axonal number and axonal midsagittal area is age-dependant, in the period from postnatal day zero to twelve. High proportion of growth cones in this period indicates that there is still a substantial ingrowth of axons.

The results of this study represent a strong foundation for future research of normal development and pathological changes of the corpus callosum.

X. POPIS LITERATURE

- Judaš M, Kostović I. Temelji neuroznanosti. Prvo izdanje. Zagreb: Udržbenici Sveučilišta u Zagrebu; 1997
- Hochstetter F. Beitrage zur entwicklungsgeschichte des menschlichen gehirns. Wien: Deuticke; 1923
- Floeter MK, Jones EG. The morphology and phased outgrowth of callosal axons in the fetal rat. Dev Brain Res 1985; 22: 7-18
- Olavarria J, van Sluzters RC, Killackey HP. Evidence for the complementary organization of callosal and thalamic connections within rat somatosensory cortex. Brain Res 1984; 291: 364-368
- Ivy GO, Gould HJ, Killackey HP. Variability in the distribution of callosal projection neurons in the adult rat parietal cortex. Brain Res 1984; 306: 53-61
- Ivy GO, Killackey HP. The ontogeny of the distribution of callosal projection neurons in the rat parietal cortex. J Comp Neur 1981; 195: 367-389
- Crosby EC, Humphrey T, Lauer EW, ur. Correlative Anatomy of the Nervous System, New York, Macmillan Company, 1962
- Kandel E, Schwartz J, Jessell T. Principals of neural science, Fourth Edition, 2000, NewYork, McGraw-Hill Medical
- Berbel P, Innocenti GM. The development of the corpus callosum in cats: a light- and electron-microscope study. J Comp Neurol 1988; 276: 132-156
- 10) LaMantia AS, Rakic P. Cytological and quantitative characteristics of four cerebral commisures in the rhesus monkey. J Comp Neurol 1990; 291: 520-537
- 11) Aboitiz F, Montiel J. One hundred million years of interhemispheric communication: the history of the corpus callosum. 2003; 36: 409-420
- 12) LaMantia AS, Rakic P. Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. J Neurosci 1990; 10(7): 2156-2175
- 13) Aboitiz F, Scheibel AB, Fischer RS. Zaidel E. Fiber composition of the human corpus callosum, Brain Res 1992; 598: 143-153

- 14) Huang H, Zhang J, Jiang H, Wakana S, Poetscher L, Miller MI, van Zijl PCM, Hillis AE, Wytik R, Susumu M. DTI tractography based parcellation of white matter: Application to mid-sagittal morphology of corpus callosum, NeuroImage 2005; 26: 195-205
- 15) Kim JHY, Ellman A, Juraska JM. A re-examination of sex differences in axon density and number in the splenium of the rat corpus callosum, Brain Res 1996; 740: 47-56
- 16) Kim JHY, Juraska JM. Sex differences in the development of axon number in the splenium of the rat corpus callosum from postnatal day 15 through 60, Dev Brain Res 1997; 102: 77-85
- 17) Silver J, Lorenz SE, Wahlstein D, Coughlin J. Axonal guidance during development of the great cerebral commissures: Descriptive and experimental studies, in vivo, on the role of preformed glial pathways, J Comp Neurol 1982; 210: 10-29
- 18) Silver J, Edwards MA, Levitt P. Immunocytochemical demonstration of early appearing astroglial structures that form boundaries and pathways along axon tracts in the fetal brain. J Comp Neurol 1993; 328: 415-436
- 19) Shu T, Richards LJ. Cortical axon guidance by the glial wedge during the development of the corpus callosum. J Neurosci 2001; 21: 2749-2758
- 20) Shu T, Puche AC, Richards LJ. Development of midline glial populations at the corticoseptal boundary. J Neurobio 2003; 57: 81-94
- 21) Valentino KL, Jones EG. The early formation of the corpus callosum: a light and electron microscopic study in foetal and neonatal rats. J Neurocyto 1982; 11: 583-609
- 22) Koester SE, O'Leary DDM. Axons of early generated neurons in cingulate cortex pioneer the corpus callosum. J Neurosci 1994; 14: 6608-6620
- 23) Ozaki HS, Wahlsten, D. Timing and origin of the first cortical axons to project through the corpus callosum and the subsequent emergence of callosal projection cells in mouse. J Comp Neurol 1998; 400: 197-206
- 24) Rash BG, Richards LJ. A role for cingulate pioneering axons in the development of the corpus callosum. J Comp Neurol 2001; 434: 147-

157

- 25) Richard LJ. Axonal pathfinding mechanisms at the cortical midline and in the development of the corpus callosum. Braz J Med Biol Res 2002; 35: 1431-1439
- 26) Ozaki HS, Wahlstein D. Prenatal formation of the normal mouse corpus callosum: A quantitative study with carbocyanine dyes. J Comp Neurol 1992; 323: 81-90
- 27) Richards LJ, Plachez C, Ren T. Mechanisms regulating the development of the corpus callosum and its agenesis in mouse and human. Clin Gen 2004; 66: 276-289
- 28) Jovanov-Milošević N, Benjak V, Kostović I. Transient cellular structures in developing corpus callosum of the human brain. Coll Antropol 2006; 30: 375-381
- 29) Mack CM, Boehm GW, Berrebi AS, Denenberg VH. Sex differences in the distribution of axon types within the genu of the rat corpus callosum. Brain Res 1995; 697: 152-160
- 30) Joosten EAJ, Gribnau AAM, Dederen JWC. Postnatal development of the corticospinal tract in rat. Anat Embryol 1989; 179 (5): 449-456
- 31) Elberger AJ. Transitory corpus callosum axons projecting throughout developing rat visual cortex revealed by DiI. Cerebral Cortex 1994; 4: 279-299
- 32) Bullier J, Dehay C, Dreher B. Bihemispheric Axonal Bifurcation of the Afferents to the Visual Cortical Areas during Postnatal Development in the Rat. Europ J Neurosci 1990; 2: 332-343
- 33) Kadhim HJ, Ghide PG, Frost DO. Transient axonal branching in the developing corpus callosum. Cerebral Cortex 1993; 3: 551-566
- 34) Seggie J, Berry M. Ontogeny of interhemispheric evoked potentials in the rat: significance of myelination of the corpus callosum. Exp Neuro 1972; 35: 215-232
- 35) Fleischhauer K, Schlueter G. Ueber das postnatale wachstum des corpus callosum der katze (Felis domestica). Z Anat Entwick Gesch 1970; 132: 228-239
- 36) Clarke S, Kraftsik R, van der Loos H, Innocenti GM. Forms and measures of adult and developing corpus callosum: Is there sexual

dimorphism?. J Comp Neurol 1989; 280: 213-230

- 37) Rakic P, Yakovlev PI. Development of the corpus callosum and cavum septi in man. J Comp Neurol 1968; 132: 45-72
- 38) Jovanov-Milošević N. Histochemical characteristics of mediosagittal and parasagittal structures of human fetal brain, Doctoral thesis, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, 2005
- 39) Kostović I, Rasin MR, Petanjek Z, Judaš M. Morphological characteristics of the cells in the subcallosal zone (nucleus septohippocampalis) of the human fetus. Neuroembrio 2002; 1: 97-104
- 40) Bicknese AR, Sheppard AM, O'Leary DDM, Pearlman AL.
 Thalamocortical axons extendalong a chondroitin sulfate proteoglycanenriched pathway coincident with the neocortical subplate and distinct from the efferent path. J Neurosci 1994; 14: 3500-3510
- 41) Purves D, Lichtman JW. Elimination of synapses in the developing nervous system, Science 1980; 210: 153-157
- 42) Innocenti GM, Clarke S, Kraftsik R. Interchange of callosal and associational projections in the developing visual cortex. J Neurosci 1986; 6: 1384-1409
- 43) Killackey HP, Chalupa LM. Ontogenetic change in the distribution of callosal projection neurons in the post-central gyrus of the fetal rhesus monkey. J Comp Neuro 1986; 244: 331-348
- 44) Chun JJM, Nakamura MJ, Shatz CJ. Transient cells of the developing mammalian telencephalonare peptide immunoreactive neurons. J Comp Neurol 1987; 325: 617-620
- 45) Antonini A, Shatz CJ. Relation between putative transmitter phenotypes and connectivity of subplate neurons during cerebral cortical development. Europ J Neurosci 1990; 2: 744-761
- 46) Hasagewa M, Houdou S, Mito T, Takashima S, Asanuma K, Ohno T.
 Development of myelination in the human fetal and infant cerebrum: a myelin basic protein immunohistochemical study. Brain Dev 1992; 14: 1-6
- Luttenberg J. Contribution to the fetal ontogenesis of the corpus callosum in man – III. Myelinization in the corpus callosum. Folia

Morphologica 1966; 14: 192-199

- 48) Pujol J, Venderell P, Junque C, Marti-Vilalta JL, Capdevila A. When does human brain development end? Evidence of corpus callosum growth up to adulthood. Annals of Neurol 1993; 34: 71-75
- 49) Johnson SC, Farnworth T, Pinkston JB, Bigler ED, Blatter DD. Corpus callosum surface area across the human adult life span: Effect of age and gender. Brain Res Bull 1994; 35: 373-377
- 50) Nosarti C, Rushe TM, Woodruff PWR, Steward AL, Rifkin L, Murray RM. Corpus callosum size and very preterm birth: relationship to neuropsychological outcome. Brain 2004; 127: 2080-2089
- 51) Cowell PE, Allen LS, Zalatimo NS, Denenberg VH. A developmental study of sex and age interactions in human corpus callosum. Dev Brain Res 1992; 66: 187-192
- 52) Koshi R, Koshi T, Jeyaseelan L, Vettivel S. Morphology of the corpus callosum in human fetuses. Clin Anat 1997; 10: 22-26
- 53) Staudt M, Krageloh-Mann I, Grodd W. Die normale Myelinisierung des kindlichen Gehirns in der MRT – eine Metaanalyse. Neuroradiologie 2000; 172: 802-811
- 54) Pandya DN, Karol EA, Heilbronn D. The topographical distribution of interhemispheric projections in the corpus callosum of the rhesus monkey. Brain Res 1971; 32: 31-43
- 55) Karol EA, Pandya DM. The distribution of the corpus callosum in the Rhesus monkey. Brain 1971; 94: 471-486
- 56) de Lacoste MC, Kirkpatrick JB, Ross ED. Topography of the human corpus callosum. J Neuropath Exp Neurol 1985; 44: 578-591
- 57) Beaulieu C. The basis of anisotropic water diffusion in the nervous system – a technical review. NMR in Biomed 2002; 15: 435-455
- 58) Peters M, Jancke L, Zilles K. Comparison of overall brain volume and midsagittal corpus callosum surface area as obtained from NMR scans and direct anatomical measures: a within-subject study on autopsy brains. Neuropsychologia 2000; 38: 1375-1381
- 59) Clarke JM, Zaidel E. Anatomical-behavioral relationships: corpus callosum morphometry and hemispheric specialization. Behav Brain Res 1994; 64: 185-202

- 60) Jancke L, Staiger JF, Schlaug G, Huang Y, Steinmetz H. The relationship between corpus callosum size and forebrain volume. Cerebral Cortex 1997; 7: 48-56
- 61) Moses P, Courchesne E, Stiles, J, Trauner D, Egaas B, Edwards, E, Regional size reduction in the human corpus callosum following preand perinatal brain injury, Cerebral Cortex 2000; 10: 1200-1210
- 62) Narr, KL; Thompson, PM; Sharma, T; Moussai, J; Cannestra, AF; Toga, AW, Mapping morphology of the corpus callosum in schizophrenia, Cerebral Cortex 2000; 10: 40-49
- 63) Keshavan, MS, Diwadkar, VA; DeBellis, M; Dick, E; Kotwal, R; Rosenberg, DR; Sweeney, JA; Minshew, N; Pettegrew, JW, Development of the corpus callosum in childhood, adolescence and early adulthood, Life Sciences 2002; 70: 1909-1922
- 64) Witelson, SF, Hand and sex differences in the isthmus and genu of the human corpus callosum, Brain 1989; 112: 799-835
- 65) Analyze 6.0, Biomedical Imaging Resource, Mayo Clinic, Rochester, MN
- 66) Curent Protocols in Neuroscience. John Wiley and sons inc.; 2007
- 67) Culling CFA, Handbook of histopathological techniques. London: Butterworths; 1963
- 68) Seltzer, B; Pandya, DN, The distribution of posterior parietal fibers in the corpus callosum of the rhesus monkey, Experimental Brain Research 1983; 49: 147-150
- 69) Barbas, H; Pandya, DN, Topography of commissural fibers of the prefrontal cortex in the rhesus monkey, Experimental Brain Research 1984; 55: 187-191
- 70) Cipolloni, PB; Pandya, DN, Topography and trajectories of commissural fibers of the superior temporal region in the rhesus monkey, Experimental Brain Research 1985; 57: 381-389
- 71) Rockland, KS; Pandya, DN, Topography of occipital lobe commissural connections in the rhesus monkey, Brain Research 1986; 365: 174-178
- 72) Barkovich AJ. Pediatric neuroimaging. Fourth edition. New York: Lippincott Williams and Wilkins; 2005
- 73) Dougherty RF, Ben-Shachar M, Deutsch GK, Hernandez A, Fox GR,

Wandell BA. Temporal-callosal pathway diffusivity predicts phonological skills in children. Proc Natl Acad Sci USA 2007; 104 (20): 8556-8561

- 74) Tovar-Moll F, Moll J, Oliveira-Souza R, Bramati I, Andreiuolo PA, Lent R. Neuroplasticity in human callosal dysgenesis: A diffusion tensor imaging study. Cerebral Cortex 2007; 17: 531-541
- 75) Culjat M, Kostovic-Srzentic M. Segmental reduction of corpus callosum is correlated with cognitive performance in adolescents with perinatal white matter brain injury. Dev Med Child Neurol 2008; 50 Suppl 114: 31
- 76) Benjak V. Strukturne promjene korpusa kalozuma i periventrikularnih križanja putova u terminskoj dobi u nedonoščadi s abnormalnim kliničko-laboratorijskim nalazima u prvom postnatalnom tjednu. Zagreb, Hrvatska: Medicinski fakultet Sveučilišta u Zagrebu; 2011
- 77) Kostović Srzentić M. Strukturni korelati općih i specifičnih kognitivnih sposobnosti djece s perinatalnim oštećenjem mozga.
 Zagreb, Hrvatska: Filozofski fakultet Sveučilišta u Zagrebu; 2012
- 78) Judaš M, Šimić G, Petanjek Z, Jovanov-Milošević N, Pletikos M, Vasung L, Vukšić M, Kostović I. The Zagreb collection of human brains: a unique, versitile, but underexploited resource for the neuroscience community. Ann N Y Acad Sci 2011; 1225 Suppl 1: E105-130
- 79) Judas M, Rados M, Jovanov-Milosevic N, Hrabac P, Stern-Padovan R, Kostovic I. Structural, immunocytochemical, and MR imaging properties of periventricular crossroads of growing pathways in preterm infants. Am J Neuroradiol 2005; 26 (10): 2671-2684
- 80) AutoCAD 2007, Autodesk, San Rafael, California, USA
- 81) Luna LG. Manual of histologic staining methods of the armed force institute of pathology, Third edition. New York: McGraw-Hill Book Company; 1968
- 82) Jovanov-Milosevic N, Petanjek Z, Petrovic D, Judas M, Kostovic I. Morphology, molecular phenotypes and distribution of neurons in developing human corpus callosum. Eur J Neurosci 2010; 32 (9): 1423-1432

- 83) Kostovic I, Judas M. The development of the subplate and thalamocortical connections in the human foetal brain. Acta Paediatr 2010; 99 (8): 1119-1127
- 84) Kostovic I, Jovanov-Milosevic N. The development of cerebral connections during the first 20-45 weeks gestation. Semin Fetal Neonatal Med 2006; 11 (6): 415-422
- 85) Defelie J, Fields RD, Hof PR, Hoistad M, Kostovic I, Meyer G, Rockland KS. Cortical white matter: beyond the pale remarks, main conclusions and discussion. Front Neuroanat 2010. 24: 4
- 86) Laissy JP, Patrux B, Duchateau C, Hannequin D, Hugonet P, Ait-Yahia H, Thiebot J. Midsagittal MR measurements of the corpus callosum in healthy subjects and diseased patients: a prospective survey. Am J Neuroradiol 1993; 14 (1): 145-154
- 87) Wahlsten D. Growth of the mouse corpus callosum. Dev Brain Res 1984; 15: 59-67
- 88) Matsunami K, Kawashima T, Ueki S, Fujita M, Konishi T. topography of commissural fibers in the corpus callosum of the cat: a study using WGA-HRP method. Neurosci Res 1994; 20: 137-148
- 89) Wise SP, Jones EG. The organization and postnatal development of the commissural projection of the rat somatic sensory cortex. J Comp Neurol 1976; 168: 313-344
- 90) Altman J, Bayer SA. Atlas of prenatal rat brain development. London: CRC Press; 1995
- 91)Konig JF, Klippel RA, The rat brain, a stereotaxic atlas. New York: Robert E. Krieger Publishing co.inc.; 1967
- 92) Tomasch J. Size, distribution and number of fibers in the human corpus callosum. Anat Rec 1954; 119 (1): 119-135
- 93) Culjat M, Benjak V, Dasovic-Buljevic A, Ozretic D, Fumic K, Acquaviva C, Baric I. Magnetic resonance findings in a neonate with nonketotic hyperglycinemia: case report. J Comput Assist Tomogr 2010; 34 (5): 762-765
- 94) Richards LJ, Plachez C, Ren T. Mechanisms regulating the development of the corpus callosum and its agenesis in mouse and human. Clin Genet 2004; 66: 276-289

- 95) Raybaud C, Levrier O, Brunel H, Girard N, Farnarier P. MR imaging of fetal brain malformations. Childs Nerv Syst 2003; 19 (7-8): 455-470
- 96) Steward AL, Rifkin L, Amess PN, Kirkbride V, Townsend JP, Miller DH, Lewis SW, Kingsley DP, Moseley IF, Foster O, Murray RM. Brain structure and neurocognitive and behavioural function in adolescents who were born preterm. Lancet 1999; 353: 1653-1657
- 97) Kostovic I, Rados M, Mejaski-Bosnjak V, Besenski N, Gojmerac T, Judas M, Burja S, Kostovic M, Brozovic B. Magnetic resonance image correlates of cerebral palsy in adolescents with perinatal PVL-PVH lesion. Brain Develop 2001; 23 (3): 159
- 98) Inder TE, Warfield SK, Wang H, Hüppi PS, Volpe JJ. Abnormal cerebral structure is present at term in premature infants. Pediatrics 2005; 115 (2): 286-94
- 99) Staudt M. Brain Plasticity Following Early Life Brain Injury: Insights From Neuroimaging. Semin perinatol 2010; 34: 87-92
- 100) DeVries LS. Improved antenatal detection of hemorrhagic/ischemic intracranial lesions using transvaginal ultrasonography and fetal magnetic resonance imaging. Ultrasound Obstet Gynecol 2003; 22 (2): 108-109

XI. Biografija pristupnika

Marko Čuljat je rođen 11. lipnja 1980. u Zagrebu. Upisuje Medicinski fakultet Sveučilišta u Zagrebu 1998. te ga završava u roku 2004. Odrađuje pripravnički staž u KB Sestara milosrdnica, nakon čega se 2005. zapošljava na Hrvatskom institutu za istraživanje mozga na mjesto znanstvenog novaka – asistenta na projektu profesora Ivice Kostovića. Osim aktivnog sudjelovanja u znanstveno-istraživačkom radu u području razvojne neuroanatomije, uključuje se i u istraživanja u području kliničke neuroznanosti u suradnji sa Zavodom za neonatologiju i Zavodom za radiologiju KBC-a Zagreb.

Tijekom zaposlenja na Hrvatskom institutu za istraživanje mozga dr. Čuljat je išao na nekoliko edukacija u inozemstvo, od kojih se posebno ističe njegov boravak 2010./2011. na Sveučilištu u Illinoisu, SAD, u laboratoriju profesorice J.M. Juraske, radi edukacije u području elektronske mikroskopije središnjeg živčanog sustava u razvoju.

Od 2010. godine dr. Čuljat je specijalizant pedijatrije te izvršava svoje obveze na Klinici za pedijatriju, KBC Zagreb, pod mentorstvom profesora Ivana Malčića. Na temelju znanja i iskustva stečenih u području bazične neuroznanosti, dr. Čuljat je započeo uspješnu suradnju s pojedinim Zavodima Klinike za pedijatriju, koja je rezultirala znanstvenim publikacijama.