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Abstract

The subthalamic nucleus (STN) is a small, excitatory nucleus that regulates the output of basal ganglia motor cir-
cuits. The functions of the STN and its role in the pathophysiology of Parkinson’s disease are now well established.
However, some basic characteristics like the developmental origin and molecular phenotype of neuronal subpopu-
lations are still being debated. The classical model of forebrain development attributed the origin of STN within the
diencephalon. Recent studies of gene expression patterns exposed shortcomings of the classical model. To ac-
commodate these findings, the prosomeric model was developed. In this concept, STN develops within the hypo-
thalamic primordium, which is no longer a part of the diencephalic primordium. This concept is further supported
by the expression patterns of many transcription factors. It is interesting to note that many transcription factors in-
volved in the development of the STN are also involved in the pathogenesis of neurodevelopmental disorders.
Thus, the study of neurodevelopmental disorders could provide us with valuable information on the roles of these
transcription factors in the development and maintenance of STN phenotype. In this review, we summarize histori-
cal theories about the developmental origin of the STN and interpret the gene expression data within the prosomer-
ic conceptual framework. Finally, we discuss the importance of neurodevelopmental disorders for the development
of the STN and its potential role in the pathophysiology of neurodevelopmental disorders.
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Significance Statement

The subthalamic nucleus is functionally a part of the basal ganglia circuitry, but the accumulated evidence
from analyzing gene expression patterns and lineage-tracing experiments point to a hypothalamic develop-
mental origin. The expression of morphogens and transcription factors in the STN corroborates the hypo-
thalamic origin. Interestingly, some of the genes expressed in the STN are relevant for human brain
development as they are involved in the pathophysiology of neurodevelopmental disorders (NDDs). This re-
view could serve as a guidepost for future research on the neuronal phenotypes of human STN and their
roles in NDDs.

Introduction
The subthalamic nucleus (STN) is a small, lens-shaped

structure with excitatory efferents to the globus pallidus
pars interna (GPi) and globus pallidus pars externa (GPe)
and substantia nigra pars reticulata (SNr; Emmi et al.,
2020). In humans, the STN is located ventral to the zona
incerta (ZI) and the H2 field of Forel, dorsolateral to the SN
and dorsal to capsula interna. The anterior medial border

consists of lateral hypothalamic area, and the posterior
medial border is the red nucleus (Hamani et al., 2004; Mai
et al., 2004; Emmi et al., 2020). Currently, the STN has a
prominent role in the treatment of movement disorders
(Kumar et al., 1998; Hamani et al., 2005; Benabid et al.,
2009). Therefore, the role of the STN in the basal ganglia
circuitry and in the pathophysiology of Parkinson’s disease
(PD) is well researched (for review, see Parent and Hazrati,
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1995; Joel and Weiner, 1997; Hamani et al., 2004; Temel et
al., 2005; Bevan et al., 2006). Although the cellular composi-
tion of the STN and its neuronal morphology have been stud-
ied in different species [e.g., rat (Kita et al., 1983; Afsharpour,
1985); guinea pig (Robak et al., 2000); Göttingen minipig
(Larsen et al., 2004); cat (Iwahori, 1978; Romansky and
Usunoff, 1985, 1987); monkey (Rafols and Fox, 1976; Sato et
al., 2000); and human (Yelnik and Percheron, 1979; Hardman
et al., 2002; Lévesque and Parent, 2005)], the role of various
genes in generation, specification, and maintenance of STN
neuronal populations is still largely underexplored.
Transcription factors (TFs) regulate gene expression,

control developmental patterning, neuronal specification,
migration, and maturation. While the role of TFs has been
extensively studied in the developing cerebral cortex (for
review, see Molyneaux et al., 2007; Popovitchenko and
Rasin, 2017; Molnár et al., 2019), it has been poorly stud-
ied in subcortical structures. Structures like the thalamus
and hypothalamus have been particularly tough to study
because of their heterogeneous neuronal populations and
a lack of cell type-specific markers (Blackshaw et al.,
2010). However, studies of gene expression have slowly
begun to elucidate transcriptional codes that specify dis-
tinct cell types in these forebrain areas (Shimogori et al.,
2010; Suzuki-Hirano et al., 2011; Moffitt et al., 2018; Guo
and Li, 2019; Mickelsen et al., 2019, 2020; Romanov et
al., 2020; Wen et al., 2020; Zhang et al., 2021). In line with
these advancements, a combinatorial transcriptional
code defining the STN is emerging.
The developmental origin of STN is still highly debated,

and the lack of consensus on the definitions of hypothala-
mus and diencephalon has hindered the research on the
differentiation and specification of STNs. Historically, STN
has been described as a diencephalic structure and a part
of the subthalamus, which was considered a separate
part of the diencephalon (Kuhlenbeck, 1954; Reinoso-
Suarez, 1966; Richter, 1966; Müller and O’Rahilly, 1988).
New studies describing gene expression patterns in the
developing forebrain have challenged the historical division
of the forebrain, and with that, the place of the STN within
it. Therefore, the summary of transcriptional code defining
the STN could shed light on this debate. However, an ex-
tensive search of literature did not provide any study that
systematically summarizes the data on TF expression in
STN, with the exception of one review that was not focused
solely on TFs (Philips et al., 2005). The aim of this review is
to clarify the meaning of these new data for the position of
the STN, to provide an overview of transcription factors in-
volved in STN development, and to use them to discuss

the validity of some developmental theories. Finally, some
of the discussed TFs are implicated in the pathogenesis of
several neurodevelopmental disorders (NDDs), so we will
try to link the functional roles of the STN with the symptom-
atology present in these disorders.

Historical Perspectives—The Place of the
Subthalamic Nucleus within Columnar
and Prosomeric Models
Historically, the STN has been described as a dience-

phalic structure. In pioneering studies by Herrick (1910) of
the amphibian brain, he proposed the columnar model of
diencephalic development (based on anatomic landmarks),
dividing the diencephalic primordium into the four horizon-
tal/longitudinal subdivisions: epithalamus, dorsal thalamus,
ventral thalamus, and hypothalamus. This model was an
updated version of the original model of diencephalic de-
velopment by His (1893a), who divided the diencephalon
into epithalamus, thalamus, and hypothalamus. For years,
the columnar model has been widely used as a basis to de-
scribe the development of the diencephalon with some
modifications. Many authors interpreting the development
of STN within the columnar model have placed the STN in
the additional fifth diencephalic column, the subthalamus
(Kuhlenbeck, 1954; Reinoso-Suarez, 1966; Richter, 1966;
Müller and O’Rahilly, 1988). Besides the STN, the subthala-
mic column gave rise to the thalamic reticular nucleus, GP,
and ZI (Reinoso-Suarez, 1966; Richter, 1966; Müller and
O’Rahilly, 1988). However, the columnar model was chal-
lenged by neuroembryological studies of Bergquist and
Käll�en (1954, 1955), who found that the embryonic brain of
all major vertebrates has transverse and longitudinal zones
of intense proliferation that make up a grid-like pattern
(Nieuwenhuys, 2017). Interestingly, these transverse zones
of high mitotic activity have already been described in the
late 19th/early 20th century by Von Baer (1828), Orr (1887),
and Von Kupffer (1906), who acknowledged the segmental
nature of the embryonic brain. Orr (1887) called these
zones neuromeres or neural segments. Although the
neuromeric models were developed before the columnar
model was proposed, authors like Herrick (1910) and
Kuhlenbeck (1954) disregarded neuromeres as transient
structures that disappear during the course of embryonic
development (Puelles, 2021). Another discrepancy be-
tween the early neuroembryological observations and
the columnar model concerns the question of the forebrain
axis. Columnar authors neglected the cephalic flexure and
simply assumed that the straight forebrain axis ends in the
telencephalon (Herrick, 1910; Kuhlenbeck, 1954; Puelles et
al., 2012). Finally, the columnar model prevailed as the
neuromeric models had several problems that could not
be resolved without modern techniques of experimental
embryology. For example, the neuromeric pattern in the
embryonic rhombencephalon is easily distinguishable,
whereas segmental organization of the prosencephalon
is not so conspicuous. The proliferative zones (proneuro-
meres, neuromeres, and transverse bulges) of Bergquist
and Käll�en (1954, 1955) were thought to appear and disap-
pear sequentially, making it difficult to establish boundaries
between them (Nieuwenhuys, 2017; Puelles, 2021). Another
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problem was the number of forebrain neuromeres and the
position of sulcus limitans, which directly influences our
understanding of the position of motor and sensory nuclei in
the prosencephalon (Keyser, 1973; Gribnau and Geijsberts,
1985).
These problems were resolved with the advent of mo-

lecular neurobiology and the discovery of genes involved
in brain development and patterning. The experimental
data and expression patterns of possible regulatory
genes proved difficult to interpret within the columnar
model as the expression patterns did not follow previously
postulated borders of forebrain subdivisions. Thus, in an
attempt to unite morphologic and gene expression data,
Puelles and Rubenstein developed the prosomeric model
(Rubenstein et al. 1994; Puelles and Rubenstein 2003;
Puelles et al. 2013). The prosomeric model follows postu-
lates of the previous neuromeric model of Bergquist and
Käll�en (1954, 1955) and proposes that the forebrain can
be divided in transverse domains called prosomeres
(shortened from “prosencephalic neuromeres”). Each of
them may be further subdivided in longitudinal domains
(i.e., the roof, alar, basal, and floor plate), creating a grid-like
structure in which one “square” represents one basic
morphogenetic unit (Rubenstein et al., 1994; Puelles
and Rubenstein, 2003; Puelles et al., 2013; Fig. 1). This
model is based on embryological evidence about the

phylogenetically conserved segmental organization of
the CNS in all vertebrates. Additionally, fate-mapping
and transgenic animals resolved issues raised by older
neuromeric models, thus experimentally proving con-
cepts of prosomeric model. For instance, boundaries
between proneuromeres of Bergquist and Käll�en (1954,
1955) are retained in the adult brain as molecular boun-
daries between prosomeres (Puelles, 2021), and the sul-
cus limitans of His (1893a,b) is basically the molecularly
defined alar–basal boundary in the prosomeric model
(Puelles et al., 2012). However, there are opposing views
regarding the number of prosomeres. Figdor and Stern
(1993) analyzed the segmental organization of chick em-
bryo and came to the conclusion that the hypothalamus
and the ventral thalamus (now called the “prethalamus”;
“prosomere p3” in the prosomeric model) make up one
segment (neuromere D1), suggesting they have a com-
mon developmental origin. Furthermore, several recent
articles reported gene expression patterns in the devel-
oping diencephalon and hypothalamus, which were dif-
ficult to interpret within the prosomeric model. These
studies suggest that there is a set of genes with expres-
sion domains crossing proposed prosomeric bounda-
ries, especially the hypothalamo-prethalamic boundary
(Shimogori et al., 2010; Bedont et al., 2015; Newman et
al., 2018). These inconsistencies should be resolved in

Figure 1. The prosomeric model of forebrain subdivision is based on gene expression patterns. The embryonic mouse brain can be
divided in rhombencephalon–hindbrain (rhombomeres r1–r8), isthmus, mesencephalon, diencephalon (prosomeres p1–p3, from
caudal to rostral), and the secondary prosencephalon (prosomeres p4–p6). The analyzed genes (Dlx2, Gbx2, Nkx2-1, Nkx2-2, Otx-2,
and Shh) are expressed in restricted parts of the neuroepithelium. The hypothalamus is a part of two prosomeres, p4 and p5.
According to the updated prosomeric model (Puelles and Rubenstein, 2015), these prosomeres are now two hypothalamo-
telencephalic prosomeres (hp1 and hp2). The hp1 prosomere (former p4 prosomere) is called the peduncular hypothalamus
(PHy), and the hp2 prosomere (former p5 prosomere) is the terminal hypothalamus (THy), which occupies the rostralmost
part of the forebrain. H, rhombencephalon-hindbrain; I, isthmus; M, mesencephalon-midbrain; os, optic stalk; p, prosomere;
r, rhombomere; sc, spinal cord; SP. Figure from the article by Rubenstein et al. (1994). Reprinted with permission from the
American Association for the Advancement of Science.
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the future as our knowledge about early hypothalamic
patterning increases.
One of the biggest changes in the prosomeric model

is the interpretation of the diencephalic and hypothala-
mic development. The hypothalamus had classically
been perceived as a ventral longitudinal part of the di-
encephalon, as the authors assumed that the longitudi-
nal axis of the forebrain continues in the telencephalon
(Herrick, 1910; Kuhlenbeck, 1954; Reinoso-Suarez, 1966;
Richter, 1966; Swanson, 2012). In the prosomeric model,
the hypothalamus is separated from the diencephalon and
comprises the most rostral part of the neural tube, lying
rostrally to the diencephalon and ventrally to the telenceph-
alon (Fig. 1).

The Origin of STN Neurons and the
Concept of Subthalamus
The new model of hypothalamic development has di-

rect implications for our understanding of the origin of
STN neurons, so we will re-examine existing studies in the
context of the prosomeric model.
Part of the problem with studying the developmental ori-

gin of STN lies in the terminological confusion as terms
“hypothalamus” and “subthalamus” have historically been
used interchangeably or their anatomic borders were
not clearly defined (Puelles et al., 2012). When compar-
ing classical studies with the prosomeric model, the
term “subthalamus” refers to the peduncular hypothala-
mus [hypothalamic prosomere 1 (hp1)], and the term
“hypothalamus” refers just to the terminal hypothalamus
(hp2; Fig. 2A; Reinoso-Suarez, 1966; Richter, 1966). Upon
closer inspection of the literature, another problem we en-
countered is the lack of clear distinction between the sub-
thalamus and the “subthalamic nucleus.” Furthermore,
classic neuroanatomists had their own interpretations
of what the subthalamus encompasses. The ZI and
the GP have both been included in the subthalamus,
whereas modern fate-mapping and molecular studies
ascribed different developmental origins for these nu-
clei, the prethalamus for the former, and the medial
ganglionic eminence (MGE) for the latter (Reinoso-
Suarez, 1966; Richter, 1966; Nóbrega-Pereira et al.,
2010; Puelles et al., 2012). To avoid this confusion,
Puelles et al. (2012), Puelles and Rubenstein (2015),
and Puelles (2019) advocate that the term “subthala-
mus” should be abandoned as it has no developmen-
tal basis.
The STN was first described to arise from the mam-

millary region of the hypothalamus (Gilbert, 1935). In
the human brain, the first appearance of the “subthala-
mic area” within the hypothalamus is described at 33–
35 d of gestation, but the “subthalamic nucleus” is not
unambiguously defined (Müller and O’Rahilly, 1988).
At 44–51 d of gestation, the STN can be seen near the
mesencephalon and the mammillary body, with cellular
strands connecting the nucleus with the supramammil-
lary recess, its presumed place of origin (Müller and
O’Rahilly, 1990).
The question of the origin of STN neurons was explored in

the Chinese hamster using [3H]-thymidine autoradiography.

The study by Keyser (1973) described for the first time the
tangential rostrodorsal migration of STN neurons from the
supramammillary recess toward the tel-diencephalic border.
The Keyser’s term “regio subthalamica” can be discerned
from embryonic day 12 (E12) and refers to the area behind
the mammillary recess, whereas the STN is recognizable
from E15, with the majority of neurons born from E13 to
E18. Similar experiments in rats demonstrated that STN
originates from the germinative zone near the mammil-
lary recess from which neurons migrate radially, then
tangentially and dorsally along the marginal layer of the
ventral thalamus (Marchand, 1987). When analyzing the
results of these studies, it becomes apparent that
the change in forebrain axis proposed by the prosomeric
model added to terminological confusion. The “(supra)
mammillary recess” that Müller and O’Rahilly (1990),
Keyser (1973), and Marchand (1987) describe is ac-
tually the retromammillary area in the prosomeric
model. The retromammillary area is a part of a broad
mammillary region that can be divided in two rostrocau-
dal parts, with the mammillary area being the rostral
part from which the mammillary nuclei arise, and the
retromammillary area being the caudal part. In the ven-
trodorsal (V-D) direction, the retromammillary area
comprises the floor and basal plate of the hypothalamic
prosomere 1 (hp1; Fig. 2A).
The STN neurons in rats are generated between E12

and E15 with most neurons migrating between E14 and
E15 in an “outside–in” fashion, meaning that the early-
born neurons settle in the laterodorsal part of the STN,
and the late-born neurons settle in the ventromedial part
(Altman and Bayer, 1979a,b). Interestingly, these au-
thors placed the STN in the ventral thalamus (which
corresponds to the prosomere p3, now called the pre-
thalamus) instead of the hypothalamus, claiming the
nucleus originates from the ventrocaudal diencephalic
neuroepithelium and later migrates laterodorsally over
the fibers of the cerebral peduncle (Altman and Bayer,
1979b).
Based on everything discussed in previous paragraphs,

the main question is whether the STN has hypothalamic or
diencephalic origin. The confusion about the place of origin
of the STN arose from the differences in the interpretation
of the hypothalamus as a developmental unit. The colum-
nar model proposes that the hypothalamus is a ventral-
most diencephalic domain; whereas the prosomeric model
states that the hypothalamus is a separate developmental
unit (Puelles and Rubenstein, 2015). The STN was tradi-
tionally attributed to the diencephalon because of its ana-
tomic position in the adult brain and functional connectivity
with the basal ganglia circuitry. However, the dorsalward
tangential migration of STN from the retromammillary area
of the hypothalamus was noted in early descriptive works
and was corroborated using modern tracing experiments
(Gilbert, 1935; Keyser, 1973; Marchand, 1987; Müller and
O’Rahilly, 1990; Martin et al., 2004; Skidmore et al., 2008).
Contrary to that, authors like Altman and Bayer (1979b)
placed the origin of STN in the ventral thalamus (prethala-
mus), but the hypothalamic and prethalamic lineages
can now easily be distinguished by analyzing gene
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expression patterns. As we will discuss in the following
paragraphs, the STN clearly expresses several basal/
hypothalamic markers, which provides strong evidence
against a diencephalic–prethalamic origin of the STN

and supports retromammillary/hypothalamic origin (Vue
et al., 2007; Kee et al., 2017; Guo and Li, 2019; Kim et
al., 2020; Mickelsen et al., 2020; Wallén-Mackenzie et
al., 2020).

Figure 2. A schematic representation of forebrain subdivisions, expression patterns of TFs, and major hypothalamic and dience-
phalic nuclei originating from each prosomere. A, Forebrain subdivisions and expression patterns of TFs according to the prosomer-
ic model. The developing STN can be found in the basal plate of the hp1 prosomere. Notice how the STN shares a set of TFs with
other hypothalamic and diencephalic nuclei, as well as parts of the subpallium (i.e., basal ganglia). The telencephalon and the hypo-
thalamus comprise the secondary prosencephalon. The diencephalic and the hypothalamic prosomeres have alar, basal, and floor
plates. Also, in the prosomeric model, the hypothalamus is the rostralmost prosencephalic domain, and the STN is placed in the ret-
romammillary area of the hp1 prosomere, the ventralmost part of the hypothalamus. ZLI is a transverse border between p2 and p3
prosomere. B, major hypothalamic and diencephalic nuclei originating from each prosomere. Parts of the substantia nigra and ven-
tral tegmental area have diencephalic origin (Puelles, 2019), so they are parts of diencephalic prosomeres p1–p3. The dorsomedial
nucleus originates from both peduncular and terminal hypothalamic domains. AHN, Anterior hypothalamic nucleus; DM, dorsome-
dial nucleus; Hb, habenula; MMN, mammillary nuclei; POA, preoptic area; PVN, paraventricular nucleus; RNp, parvocellular part of
nucleus ruber; SN, substantia nigra; SON, supraoptic nucleus; Th, thalamus; TRN, thalamic reticular nucleus; VMH, ventromedial
nucleus; VPM, ventral premammillary nucleus; C, Caudal; D, dorsal; R, rostral; V, ventral.
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Induction and Early Patterning of
Hypothalamic Primordium
The induction of the neural plate and the patterning of

the forebrain are complex processes, so the in-depth dis-
cussion of these topics is beyond the scope of this review.
In the following paragraphs, we will summarize key
findings regarding the early forebrain development.
The hypothalamus, along with the rest of the forebrain,
arises from a part of the ectoderm that thickens under
the influence of the underlying mesoderm and forms
the neural plate (Bronner-Fraser and Fraser, 1997).
Ectodermal cells destined to become the forebrain
have to go through neural induction, specification of an
anterior character, and initial regionalization in antero-
posterior (A-P) axis (for review, see Stern, 2001, 2006;
Wilson and Houart, 2004). However, the exact se-
quence of events during the early forebrain develop-
ment (from gastrulation to late neural plate) is still a
controversial subject (Stern, 2002). As Stern (2001) ar-
gues, perhaps more complex mechanisms (e.g., pre-
patterning of the neural plate or timing of exposure to
inductive signals) govern these processes that remain
to be experimentally proven.
The first specification of mammalian neural tissue oc-

curs during gastrulation and is initiated through interac-
tions between a primary organizer (for the definition of an
organizer, see Anderson and Stern, 2016) called the
node and the surrounding ectoderm (Rubenstein et al.,
1998; Wilson and Houart, 2004). Accumulated evidence
point to neural induction beginning before the formation
of the node, so the neural fate is promoted by fibroblast
growth factor (FGF) signaling and later sustained by
bone morphogenetic protein (BMP) antagonism (Wilson
and Houart, 2004; Vieira et al., 2010). It is crucial for
proper forebrain development that the anterior neural tis-
sue retains its identity and repels caudalizing influences.
In chick and mouse embryo, the node and its derivative,
the prechordal mesendoderm, protect the anterior neural
plate against caudalizing influences of signaling mole-
cules like Wingless type proteins (WNTs), FGFs, BMPs,
and retinoic acid (Stern, 2001; Wilson and Houart, 2004;
Cajal et al., 2014). At this early stage of forebrain devel-
opment, these secreted factors create a basic A-P pattern,
which will later be refined by local signals from the neural
tissue. This A-P pattern creates transverse segments with
differential competence to respond to the same inductive
signal (Shimamura and Rubenstein, 1997; Rubenstein et
al., 1998). Moreover, the neural plate (and neural tube) is
patterned in mediolateral (M-L; or V-D in the neural
tube) direction under the influence of non-neural tissue
(Ruiz i Altaba, 1994; Rubenstein et al., 1998; Vieira et
al., 2010). The grid-like image of neural plate that de-
velops after A-P and M-L (V-D) patterning served as a
basis for the prosomeric model of brain development
(discussed in previous paragraphs). In the prospective
forebrain, the axial mesendoderm (the prechordal
plate) specifies medial/ventral cell fate, whereas lateral/
dorsal cell fate is imparted by the influence of non-neural
ectoderm (Shimamura and Rubenstein, 1997; Rubenstein
et al., 1998). The non-neural ectoderm specifies neural

crest cells through planar interactions with the neighbor-
ing neural plate (Barembaum and Bronner-Fraser, 2005;
Basch and Bronner-Fraser, 2006). Furthermore, non-neural
ectodermal cells precede the development of the anterior
neural ridge, a local organizer (“secondary” organizer)
that has a role in the regionalization of the telencephalon
(Shimamura and Rubenstein, 1997; Cajal et al., 2014).
Secondary organizers form as specialized parts of the

neuroepithelium that act as molecular boundaries, thus
preventing intermixing of cells of different lineages (Vieira
et al., 2010; Kiecker and Lumsden, 2012). By secreting
morphogenes, secondary organizers further influence brain
patterning, resulting in the development of brain vesicles
(Rubenstein et al., 1998; Vieira et al., 2010). Morphogens are
locally secreted molecules with the ability of organizing sur-
rounding cells into patterns (Gurdon and Bourillot, 2001;
Rogers and Schier, 2011). This is accomplished through
their concentration gradient, so cells change their fate in re-
sponse to the sensed level of morphogen (e.g., cells ex-
posed to high morphogen concentrations activate different
transcriptional programs than those exposed to low con-
centrations; Schmidt et al., 2008; Rogers and Schier, 2011).
Concentration gradient formation can be explained by a
synthesis, diffusion, and degradation model (Rogers and
Schier, 2011). The idea of the concentration gradient for a
morphogen is usually associated with positional information
(Wolpert, 1989; Cooke, 1995; Lawrence and Struhl, 1996;
Gurdon and Bourillot, 2001). However, the concentration
gradient might not be solely responsible for the effects of
morphogen activity: the time of exposure to a morphogen
and cellular context, the so-called “sequential cell context
model,” might also play a role (Pagès and Kerridge, 2000).
Another interesting theory is that morphogens act on groups
of cells that have gained collective properties through ho-
motypic interactions and have acquired a level of compe-
tence to respond to secreted signals (Chandebois and
Faber, 1983; Gass and Hall, 2007). According to this theory,
a group of cells is able to differentiate through periodic au-
tonomous developmental progressions that are intermit-
tently influenced by signals from other parts of the tissue, as
long as the cells are not dissociated. Also, this “collective
behavior” could function as to ensure that the information
(e.g., morphogenetic signal) is delivered to cells that are far
from the source signal (Chandebois and Faber, 1983; Gass
and Hall, 2007).
In relation to the forebrain patterning, the prevailing

theory is that the concentration gradients of secreted
morphogens [Sonic hedgehog (SHH), WNTs, BMPs] cre-
ate a positional map of the neural tube, thus creating sub-
divisions in the dorsoventral and anteroposterior axes
(Rubenstein et al., 1998; Vieira et al., 2010; Burbridge et
al., 2016; Xie and Dorsky, 2017). These subdivisions are
later compartmentalized into smaller progenitor domains
during the process of regionalization. The progenitor do-
mains are specified by cross-repressive interactions of
transcription factors in the neuroepithelium. A part of the
neuroepithelium with a shared set of TFs later generates
neuronal subpopulations with common traits like neuro-
transmitter phenotype or axonal connections (Alvarez-
Bolado, 2019; Diaz and Puelles, 2020). In the following
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paragraphs, we will discuss morphogens (SHH, FGFs,
WNTs/WNT antagonism) secreted by primary and second-
ary organizers, and comment on their role in the patterning
of the hypothalamic primordium. In addition, the reader can
find the detailed description of hypothalamic induction and
patterning in reviews by Bedont et al. (2015), Burbridge et al.
(2016), Xie and Dorsky (2017), Alvarez-Bolado (2019), Diaz
and Puelles (2020). However, these studies should be inter-
preted with a caveat. The authors used different models of
hypothalamic development (i.e., prosomeric or modified co-
lumnar model), so the reader should be aware of the differ-
ence in the brain axis when interpreting the direction of
morphogen activity.

Sonic hedgehog signaling
Shh is a morphogen secreted from the mesendoder-

mal tissue—the notochord and the prechordal plate,
which confers medial (ventral) identity to the neural plate and
consequently the neural tube (Shimamura and Rubenstein,
1997; Rubenstein et al., 1998; Wilson and Houart, 2004).
Experimental evidence points to a crucial role of Shh in medi-
al (ventral) patterning of the entire mouse CNS (Chiang et al.,
1996). Shh is expressed throughout the axial mesendoderm
(notochord and prechordal plate), yet it can induce different
transcriptional programs at different A-P positions along the
neural tube. For example, Shh from the notochord induces
the expression of Nkx6-1 posteriorly, whereas prechordal
Shh induces Nkx2-1 expression in the anterior neural tube
(Shimamura and Rubenstein, 1997; Rubenstein et al., 1998;
Vieira et al., 2010).
SHH plays an indispensable role in both the early induc-

tion and patterning of the hypothalamic primordium, and
its later differentiation and growth (Blaess et al., 2014;
Zhang and Alvarez-Bolado, 2016). However, there is still
dispute over the primary source of Shh and the induction
of the floor plate. Based on experiments in chick embryo,
two theories have been proposed. One theory proposes
that the floor plate differentiates under Shh signaling from
the notochord (Dodd et al., 1998; Placzek et al., 2000),
while the other theory proposes that the floor plate and
the notochord develop from common precursors originat-
ing from the organizer. The floor plate cells are later simply
added in the ventral midline as a consequence of the
elongation of the embryo in the A-P axis (Le Douarin and
Halpern, 2000; Kiecker and Lumsden, 2012). Another
issue is the question of induction of the hypothalamic
floor plate. Again, there are two possible explanations,
which are discussed at length in the studies by Puelles
and Rubenstein (2015), Fu et al. (2017), Fu et al. (2019),
and Diaz and Puelles (2020). Briefly, one explanation is that
the hypothalamic floor plate differentiates under SHH influ-
ence from the underlying prechordal mesoderm (Burbridge
et al., 2016; Fu et al., 2017, 2019), while the other theory
proposes that SHH secreted from the notochord induces
the hypothalamic floor plate. Hypothalamic floor plate
then acts as a secondary organizer and expresses Shh,
thus influencing the patterning of the basal plate (Diaz
and Puelles, 2020).
In summary, the basal plate is probably specified by

cooperative Shh signaling from non-neural (prechordal

mesoderm and notochord) and neural (floor plate) sources
(García-Calero et al., 2008; Fu et al., 2019; Diaz and
Puelles, 2020). On the other hand, the hypothalamic pri-
mordium acts as a neuroepithelial source of Shh and the
majority of hypothalamic cells belongs to the Shh lineage
(Xu et al., 2008; Szabó et al., 2009; Shimogori et al., 2010;
Alvarez-Bolado et al., 2012; Blaess et al., 2014; Zhang
and Alvarez-Bolado, 2016). In addition to these hypo-
thalamic progenitors, the Shh1 progenitors can also be
found in the mesencephalic floor plate. These cells will
constitute the dopaminergic neurons of the adult ventral
tegmental area (VTA) and SN (Joksimovic et al., 2009;
Blaess et al., 2011).
Another source of Shh signaling in the developing fore-

brain is the zona limitans intrathalamica (ZLI), also called
the mid-diencephalic organizer (Kiecker and Lumsden,
2004). This secondary organizer is located at the trans-
verse border between prosomere 2 (p2; thalamus) and p3
(prethalamus), thus influencing the A-P patterning and nu-
cleogenesis in the diencephalon (Scholpp and Lumsden,
2010; Martinez-Ferre and Martinez, 2012). The exact
mechanism by which ZLI forms is still being debated and
different mechanisms have been proposed for amniotes
and anamniotes (for review, see Vieira et al., 2005; Vieira
and Martinez, 2006; Scholpp and Lumsden, 2010). Both
hypothalamic and diencephalic (i.e., thalamic) primordia
are under Shh influence. However, there is a significant
difference between them, indicating their separate devel-
opmental origin. The hypothalamus is under the influence
of both non-neural Shh signals (from the notochord and
the prechordal mesoderm) and neural Shh (from the floor
and basal plate), whereas the thalamus is only under the
influence of non-neural Shh morphogenetic signals from
the ZLI, thus having no cells of Shh lineage (Zhang and
Alvarez-Bolado, 2016).
Shh expression can also be found in other parts of the

brain. The expression patterns of both mRNA and protein
products of Shh signaling cascade have been studied in
rodent models and human developing brain. In adult rat
brain, ShhmRNA has been found in the GP, whereas STN
and several hypothalamic nuclei express the SHH recep-
tor Ptch (Traiffort et al., 1999). Similar expression patterns
have been reported in the developing human brain (Memi
et al., 2018). In addition to influencing hypothalamic neu-
ronal lineages, Shh exerts influence on the development
of neurons in MGE and lateral ganglionic eminence (LGE)
destined for striatum, pallidum, and cortex (Kohtz et al.,
1998).
To summarize, early non-neural expression of SHH

is important for the patterning of the entire forebrain.
However, hypothalamic and telencephalic neuronal
expression of SHH, coupled with its absence from the
thalamus, supports the notion that hypothalamic pri-
mordium is a distinct developmental site and not a part
of diencephalon.

Wnt signaling
Wnts are important morphogens that posteriorize the

neural plate, thus influencing the initial A-P patterning
(Wilson and Houart, 2004; Vieira et al., 2010). Wnts and
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Wnt antagonists create a gradient of Wnt activity, which is
translated into positional information along the A-P axis of
the neural tube (Wilson and Houart, 2004; Xie and Dorsky,
2017). In later stages of forebrain development, Wnts act as
important regulators of anteroposterior patterning (Bedont
et al., 2015; Burbridge et al., 2016). Moreover, Wnts influ-
ence somitogenesis, and induction of neural crest cells,
and their delamination and migration (Schmidt et al.,
2008). Wnt signaling specifies hypothalamic and dience-
phalic fates, characterized by Foxd1 expression, while
Wnt antagonism specifies Foxg11 anterior telencephalic
fates (Blackshaw et al., 2010; Burbridge et al., 2016;
Newman et al., 2018). In zebrafish embryos, Wnt signaling
throughWnt8b plays a role in neurogenesis in the posterior
hypothalamus (Lee et al., 2006). Similar mechanism was
described in mouse embryo where gain-of-function and
loss-of-function studies of Wnt/b -catenin signaling path-
way revealed its role in posteriorizing the hypothalamic pri-
mordium. Specifically, loss-of-function mutants exhibited a
reduced size of the posterior hypothalamus (evidenced by
loss of supramammillary and mammillary markers; e.g.,
Foxa1, Irx5, Foxb1, Sim1), while gain-of-function mutants
had an expanded expression domain of posterior and pre-
mammillary markers (Pitx2, Lhx5), with reduced expression
domains of a subset of anterior markers (Newman et al.,
2018). Furthermore, Wnt8b has an evolutionary conserved
expression in caudal, mammillary hypothalamus (or ven-
tralmost hypothalamic region in the prosomeric model;
Xie and Dorsky, 2017). This mammillary and retromam-
millary expression domain was also described in human
embryos during early gestation (Lako et al., 1998). Diaz
and Puelles (2020) hypothesize that the Wnt8b expres-
sion could mark the cells of the hypothalamic ventricular
organ, a possible (yet still poorly understood) secondary
organizer involved in patterning of the basal hypothala-
mus, namely its tuberal and mammillary part. The experi-
ments in chick embryos provided evidence that Wnt8b is
also an important marker of ZLI, thus indicating its role in
diencephalic patterning and corroborating the proso-
meric organization of the forebrain (Garda et al., 2002;
Garcia-Lopez et al., 2004).
In summary, Wnts are important factors in patterning of

both hypothalamus and diencephalon, with Wnt8b serv-
ing as a marker of a possible secondary organizer in-
volved in the development of the hypothalamus.

Fibroblast growth factor signaling
FGF family member Fgf8 initiates neural induction and

later acts as an inductive signal capable of eliciting differ-
ent molecular responses at different levels of the A-P axis
of the neural tube (e.g., anterior expression of Foxg1/BF-
1, posterior expression of En2; Rubenstein et al., 1998;
Wilson and Houart, 2004; Vieira et al., 2010). For instance,
Fgf8 is implicated in the development of the isthmic orga-
nizer located at the mid-hindbrain boundary, a secondary
organizer important for the generation of dopaminergic
and serotonergic neurons (Hynes and Rosenthal, 1999).
Moreover, Fgf8 can be found in the anterior neural ridge,
a secondary organizer that influences telencephalic
patterning, which later transforms into the hypothalamo-

telencephalic roof plate (Rubenstein et al., 1998; Diaz and
Puelles, 2020). The anterior neural ridge had classically
been perceived as having a rostralizing effect on the pros-
encephalon, but, within the prosomeric model, this orga-
nizer has a dorsalizing effect on both the hypothalamic
regions and the telencephalon (Diaz and Puelles, 2020).
In the prosomeric model, the rostralmost part of the hypo-
thalamo-telencephalic complex is acknowledged as an-
other organizer domain with Fgf8 secretion, called the
acroterminal domain. The Fgf8 signal from this organizer
spans from the end of the mammillary floor plate to the
place of the future anterior commissure (Ferran et al.,
2015; Diaz and Puelles, 2020; López-González et al.,
2021). Together with Shh, Fgf8 plays a role in the morpho-
genesis of midline structures, and the splitting of the eye
primordium and the telencephalic vesicle (McCabe et al.,
2011; Dubourg et al., 2016).
Experiments with Fgf8 mutant mice elucidated the

role of Fgf8 in prosencephalic/telencephalic patterning.
It seems that Fgf8 promotes rostroventral telencephalic
fates, since Fgf8 hypomorphic mice have a caudalized
anterior telencephalon (as evidenced by the expanded
expression zones of Emx2, Otx2, COUP-TF1). Moreover,
the ventral telencephalon (i.e., the septum and the gan-
glionic eminences) is lost (Garel et al., 2003; Storm et al.,
2006), and hypothalamo-pituitary malformations are also
present (Brooks et al., 2010; McCabe et al., 2011; Diaz
and Puelles, 2020). Fgf8 secreted from the acroterminal
domain might influence the development of the retro-
mammillary area and its derivatives, mainly the STN and
the ventral premammillary nucleus, primarily by exerting
trophic influence on migrating neuronal populations of
these nuclei (López-González et al., 2021). This is sub-
stantiated by observations that mouse Fgf8 hypomorphs
exhibit no migration deficit, whereas cellular populations
of ventral premamillary nucleus and STN are severely de-
creased (López-González et al., 2021).
In conclusion, Fgf8 secreted from the anterior neural

ridge and the acroterminal domain has dorsalizing and
rostralizing effects (respectively) on the hypothalamic
primordium.

Transcription Factors in the Developing
and Adult Subthalamic Nucleus
Unique combinations of morphogens induce the ex-

pression of transcription factors, which regulate the fur-
ther development and specification of the STN area. The
concept of genomic regulatory networks (Beccari et al.,
2013) helps us to understand how the molecular complex-
ity of the forebrain emerges. The TFs higher up in the hier-
archy control the specification of the progenitors, and
hierarchically lower TFs are expressed in postmitotic cells
of restricted lineage (Beccari et al., 2013; Alvarez-Bolado,
2019). These postmitotic TFs also regulate the migration,
axon guidance, and acquisition of other phenotypic char-
acteristics (Alvarez-Bolado, 2019). The TFs presented
here have been selected based on the data available from
the literature, observed expressions in the Allen Brain
Atlas of mouse and human brain development, as well as
data on differentially expressed genes from human prenatal

Review 8 of 23

September/October 2022, 9(5) ENEURO.0193-22.2022 eNeuro.org



microarray studies. We organized TFs according to the
position within the genomic regulatory network (i.e., neural
progenitors, postmitotic neurons). All data presented here
pertain to the developing mouse brain, if not specified
otherwise.

Transcription factors expressed in neural progenitors
Developing brain homeobox protein 1
Developing brain homeobox protein 1 (Dbx1) belongs

to the homeobox family of transcription factors and can
be detected in the cephalic primordium around E8.5
(Causeret et al., 2011). In the hypothalamic and dience-
phalic primordium, Dbx1 expression was detected at ap-
proximately E9.5 (Lu et al., 1992; Shoji et al., 1996). From
E10.5 to E15.5, its signal can be detected in the ventricu-
lar zone of the basal hypothalamus, mammillary and retro-
mammillary area, ZLI, and the pretectum (p1; Figs. 2A, 3,
Table 1; Shoji et al., 1996). As progenitors differentiate
and migrate away from the ventricular zone, Dbx1 is
downregulated (Sokolowski et al., 2016). During the em-
bryonic period, Dbx1 knockouts exhibited a loss of Npy
expression in the arcuate nucleus, along with the loss of
Pmch and Hcrt expression in the lateral hypothalamus.
Therefore, Dbx1 is an important determinant of orexigenic
neurons in the arcuate nucleus and lateral hypothalamus,
constitutive parts of feeding and stress response circuits
(Sokolowski et al., 2015; Alvarez-Bolado, 2019).

Dbx1 is also identified as one of the TFs regulating floor
plate progenitors. Initial studies analyzing mesencephalic do-
paminergic progenitors in the floor plate could not establish a
clear-cut rostral border of the domain, thus prompting some
authors to term the entire area mesodiencephalic continuum
(Puelles and Rubenstein, 2015; Nouri and Awatramani, 2017;
Puelles, 2019). This raised a question of whether glutamater-
gic STN and dopaminergic neurons share a common origin,
as the rostral border could extend into hypothalamic territory.
Recent experiments in mouse embryos proposed that the
floor plate could be divided into at least two subdomains in
A-P axis. One of these domains is anterior, expresses Dbx1,
and gives rise to a glutamatergic population (STN included),
while the posterior domain, characterized by En1, gives rise
to dopaminergic neurons of SN pars compacta (SNc) and
VTA (Nouri and Awatramani, 2017). This finding was further
supported by the results of single-cell profiling that have iden-
tified Dbx1 in Lmx1a1 glutamatergic cells of the mesodience-
phalic continuum (Kee et al., 2017). Based on these results,
we can conclude that glutamatergic and dopaminergic neu-
rons, although generated in bordering domains, could be dis-
tinguished by their different transcriptional profiles.

Nk2 homeobox 1
Nk2 homeobox 1 [Nkx2-1 (also known as TTF-1)] is

another TF belonging to the homeobox gene family. In
the developing mouse brain, Nkx2-1 expression was
first detected at approximately E8.75 (Shimamura

Figure 3. Gene expression timelines during mouse embryonic development. Full lines represent mRNA expression detected by ISH
in the hypothalamic retromammillary area/developing STN. Dashed lines represent the expression detected in other parts of the de-
veloping forebrain. For Foxa2, dashed lines indicate there are no conclusive results about its expression pattern in the developing
STN (see text).
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et al., 1995, 1997). After E9, the expression can be
detected in two domains, one occupying the subpal-
lium—the MGE and preoptic area—and the other occu-
pying the hypothalamic basal plate (Figs. 2A, 3, Table
1; Sussel et al., 1999; Marín et al., 2000; Flames et al.,
2007; Xu et al., 2008).

The hypothalamic basal plate has been defined as a
Shh1/Nkx2-11 territory (Shimamura et al., 1997; Puelles
et al., 2012). Nkx2-11 progenitors can be found in the ter-
minal and peduncular hypothalamus, while Nkx2-11 neu-
rons contribute to adult arcuate nucleus, ventromedial
and dorsomedial nuclei, and the mammillary nucleus, as

Table 1: A Summary of the discussed transcription factors, their mRNA expression zones in the rodent and human brain,
and the list of papers in which this information can be found

Transcription
factor Species Expression zone in the brain Reference
Dbx1 Embryonic mouse

Adult mouse

Mesodiencephalic floor plate

Mammillary and retromammillary area, ZLI,
pretectum, ARC, LH

Nouri and Awatramani, 2017; Kee et al.,
2017

Lu et al., 1992; Shoji et al., 1996; Sokolowski
et al., 2015, 2016

Nkx2-1 Embryonic
mouse and rat

Fetal human
Adult mouse
and rat

MGE, preoptic area, basal hypothalamic
neuroepithelium

MGE, preoptic area
Cortical and striatal interneurons, prototypic
neurons in the GPe, ARC, VMH, and MMN

Kimura et al., 1996; Sussel et al., 1999;
Nakamura et al., 2001; Flames et al., 2007;
Xu et al., 2008; Puelles and Rubenstein,
2015; Murcia-Ramón et al., 2020

Pauly et al., 2013
Nakamura et al., 2001; Magno et al., 2009;
Flandin et al., 2010; Abdi et al., 2015;
Dodson et al., 2015

Foxa1 Embryonic mouse

Adult mouse

Mesodiencephalic floor plate, retromammil-
lary area

STN, SMN, VPM, VTA, and PH

Lin et al., 2009; Mavromatakis et al., 2011;
Díaz et al., 2014; López-González et al.,
2021

Gasser et al., 2016
Lmx1a Embryonic mouse

Embryonic and adult
mouse

Mesodiencephalic floor plate, roof plate and
derivatives

SMN, VPM, STN, VTA, SNc

Manzanares et al., 2000; Lin et al., 2009;
Doucet-Beaupré et al., 2015

Failli et al., 2002; Zou et al., 2009; Hoekstra
et al., 2013

Lmx1b Embryonic mouse
Embryonic and adult
mouse

Mesodiencephalic floor plate
STN, PSTN, VPM, PH, LH, SNc, raphe nuclei

Lin et al., 2009; Doucet-Beaupré et al., 2015
Asbreuk et al., 2002; Dai et al., 2008;
Skidmore et al., 2008

Pitx2 Embryonic mouse

Adult mouse

Ventral mesencephalon, basal plate
p1–p3, basal plate of hp1, ZLI, ZI;
alar plate of the mesencephalon
STN, ZI, SMN, MMN, pituitary gland, superi-
or colliculus

Muccielli et al., 1996; Martin et al., 2002,
2004; Kim et al., 2020

Martin et al., 2002, 2004; Skidmore et al.,
2008; Waite and Martin, 2015

Barhl1 Embryonic mouse

Fetal human

Basal plate p1–p3, retromammillary and
mammillary area, ZLI, pretectum, inferior
and superior colliculi, and rhombic lips

Basal plate p1–p3, retromammillary and
mammillary area, ZLI, pretectum, inferior
and superior colliculi, rhombic lips

Bulfone et al., 2000; Rachidi and Lopes,
2006

Lopes et al., 2006

Foxp1 Embryonic
mouse and rat

Adult mouse and rat

Fetal human

Cortical plate, LGE, striatal projections neu-
rons, hypothalamic basal plate, CA1 field
of the hippocampus, subiculum, cerebel-
lum

Cortical layers 3–5, striatum, CA1 field of the
hippocampus, subiculum, SMN, MMN,
STN, cerebellum

Striatum, thalamus, STN, SN

Ferland et al., 2003; Takahashi et al., 2003;
Tamura et al., 2004; Co et al., 2020; Kim et
al., 2020

Lai et al., 2003; Takahashi et al., 2003;
Tamura et al., 2004; Co et al., 2020

Teramitsu et al., 2004; Co et al., 2020
Foxp2 Embryonic mouse

and rat

Adult mouse and rat

Fetal human

Cortical plate, LGE, striatal projection neu-
rons, hypothalamic basal plate, thalamus,
amygdala, and cerebellum

Cortical layer 6, striatum, thalamus, amygda-
la, SMN, MMN, SN, STN, cerebellum, and
GP

Striatum, thalamus, STN, SN, and GPe

Ferland et al., 2003; Lai et al., 2003;
Takahashi et al., 2003; Co et al., 2020

Ferland et al., 2003; Takahashi et al., 2003;
Fong et al., 2018; Co et al., 2020

Lai et al., 2003; Teramitsu et al., 2004; Co
et al., 2020

ARC, Arcuate nucleus; LH, lateral hypothalamus; PH, posterior hypothalamus; PSTN, parasubthalamic nucleus; SMN, supramammillary nucleus; MMN, mammil-
lary nuclei; VPM, ventral premammillary nucleus. Other abbreviations are the same as the ones used in Figure 2.
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demonstrated in both mice and rats (Nakamura et al.,
2001: Puelles et al., 2012; Puelles and Rubenstein, 2015;
Alvarez-Bolado, 2019; Murcia-Ramón et al., 2020; Barbier
and Risold, 2021). The Nkx2-1-null mice have an abnor-
mal hypothalamic anatomy, with many hypothalamic nu-
clei missing or underdeveloped (Kimura et al., 1996).
Single-cell profiling of these mutants corroborated pre-
vious findings and established Nkx2-1 as a repressor of
prethalamic identity (Kim et al., 2020). Curiously, it ap-
pears that Nkx2-1 is absent from the retromammillary
area (Puelles et al., 2012; Puelles and Rubenstein, 2015).
Recent experiments with E18.5 Nkx2-1cre/1;tdTomatoflox/1

mouse embryos actually established that the STN remains
positive for red fluorescent protein, while NKX2-1 protein
was absent, suggesting that the cells migrating away from
the retromammillary area silence the Nkx2-1 expression,
similarly as tangentially migrating cortical interneurons
(Sussel et al., 1999; Marín et al., 2000; Murcia-Ramón et
al., 2020). The downregulation most likely occurs at ap-
proximately E12.5 as at that time point no Nkx2-1 can be
observed in the ventrocaudal hypothalamus (Murcia-
Ramón et al., 2020).
The subpallial expression zone was detected in both

mouse and human embryos. In human embryos, the
Nkx2-1 subpallial expression zone was detected in the
late embryonic period by Dlx2/Nkx2-1 colabeled cells in
the MGE and preoptic area (Pauly et al., 2013). The MGE
is the origin of striatal and cortical GABAergic and cho-
linergic interneurons. Striatal interneurons retain Nkx2-1
expression, while cortical interneurons downregulate
Nkx2-1 expression as they start their tangential migration
toward the cerebral cortex (Nóbrega-Pereira et al.,
2008). These interneurons can be identified and traced
by the expression of Lhx6 (downstream target of Nkx2-1)
and various markers (e.g., parvalbumin, somatostatin,
calbindin; Sussel et al., 1999; Marín et al., 2000; Flames
et al., 2007; Xu et al., 2008; Magno et al., 2009; Flandin
et al., 2010; Malt et al., 2016). Nkx2-1 expression was re-
tained in adult globus pallidus, a GABAergic nucleus
with neuronal populations originating from the ganglionic
eminences and preoptic area (Fig. 2B; Xu et al., 2008;
Magno et al., 2009; Flandin et al., 2010; Nóbrega-Pereira
et al., 2010). In mice, Nkx2-1 has now been acknowl-
edged as a marker of pallidal neurons originating from
the MGE, expressing parvalbumin, projecting to the
STN, and having a high-frequency firing rate (Abdi et al.,
2015; Dodson et al., 2015). Interestingly, a recent study
of the adult human STN described the expression of
NKX2-1 in the STN, along with parvalbumin and calretinin
(Bokuli�c et al., 2021). As mentioned before, postmitotic
neurons destined to populate the mouse STN downregu-
late Nkx2-1, so the observed difference between human
and mouse STN could indicate the existence of an addi-
tional neuronal subclass or a species-specific mechanism
regulating its expression.
In summary, Nkx2-1 is important for the specification of

many neuronal classes. However, not all postmitotic neu-
rons retain Nkx2-1 expression (e.g., cortical interneurons).
Evidence points to the conclusion that Nkx2-1 is neces-
sary for early specification of retromammillary progenitors

destined to become STN. However, there are differences
between mice and humans that remain to be explored, as
Nkx2-1 is downregulated after E12.5 in mouse postmitotic
STN neurons, while in humans some STN neurons remain
Nkx2-11.

Foxa1/Foxa2
Foxa1 [forkhead box A1 (hepatocyte nuclear factor 3a)]

and Foxa2 [forkhead box A2 (hepatocyte nuclear factor
3b )] belong to the vertebrate forkhead box family of TFs
and have partially overlapping functions during embryonic
development (Friedman and Kaestner, 2006; Kaestner,
2010). In the developing neural tube, Foxa1 and Foxa2
have been described in the notochord and in the floor
plate at approximately E8.0 to E8.5, with Foxa1 having
weaker expression than Foxa2 (Fig. 3; Ang et al., 1993;
Mavromatakis et al., 2011; Puelles et al., 2012; Díaz et al.,
2014). In the floor plate, they are a part of a transcription-
al network that guides the development of dopaminergic
mesodiencephalic progenitors. Both of these TFs have
complex interactions with Shh (Mavromatakis et al.,
2011). The best-studied role of Foxa1 is its role in prolif-
eration, specification, and maintenance of dopaminergic
neurons, which is exhibited through complex interac-
tions with other TFs like Lmx1a and Lmx1b (Ferri et al.,
2007; Lin et al., 2009; Pristerà et al., 2015).
Foxa1 expression was examined in the mouse hypo-

thalamus where it was observed in the STN, supramam-
millary nucleus, ventral premammillary nucleus, VTA,
and posterior hypothalamic area (Fig. 2, Table 1; Gasser
et al., 2016). In a series of elegant experiments, Gasser
et al. (2016) have proven the essential role of Foxa1 in
the development of STN. In wild-type mice, Foxa1 ex-
pression in the developing STN was detected at E12.5
(Fig. 3). In the absence of Foxa1, STN neurons were
born, but they did not differentiate and migrate dorsolat-
erally, a phenotype also observed in Pitx2-deficient
mice. Moreover, Foxa1-deficient mice at birth had no
PITX2, FOXP2, calretinin, and neurotensin expression at
the level of presumptive STN. Postmitotic loss of Foxa1
function did not affect the formation of STN, as evi-
denced by maintained FOXP2 and 5-HT2c receptor ex-
pression, but these mice displayed locomotion deficits,
neurodegeneration, and cell loss in the STN (Gasser et
al., 2016). Recent findings have described a specific
subtype of neurons, Foxa11/Nr4a2–, which originates in
the caudal part of retromammillary area and migrates
tangentially to become STN (López-González et al.,
2021). On the other hand, FOXA2 was not expressed at
any analyzed age [E14.5 and postnatal day 0 (P0)] in
mouse STN, so the authors assumed that their functions
in the developing STN are not overlapping (Gasser et al.,
2016). However, Nouri and Awatramani (2017) found a
specific subpopulation of Dbx11 cells in the anterior part
of the mesodiencephalic floor plate, which coexpresses
PITX2, LMX1A, and FOXA2 in the developing and adult
(P28) STN, supramammillary nucleus, and premammil-
lary nuclei.
To conclude, Foxa1 expression in progenitors is needed

to establish STN phenotype, while the conflicting reports
about the Foxa2 expression in the STN indicate that this is
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a topic that needs further clarification. Based on these
findings, Foxa1/2 probably do not have overlapping func-
tions in the STN.

LIM homeobox transcription factor 1a and LIM homeobox
transcription factor 1b (Lmx1a/Lmx1b)
Lmx1a/b are members of the LIM homeobox family of

transcription factors that are expressed during early em-
bryogenesis. Lmx1b expression starts at approximately
E7.5, whereas Lmx1a is expressed at approximately E8.5
to E9 (Doucet-Beaupré et al., 2015). In the CNS, its ex-
pression is necessary for the activity of the isthmic orga-
nizer, the differentiation of hindbrain serotonergic and
spinal dorsal horn neurons (Asbreuk et al., 2002; Dai et
al., 2008; Zou et al., 2009). The Lmx1a has been de-
scribed as a dorsalizing agent and controls the develop-
ment of the roof plate and its derivatives (Manzanares et
al., 2000; Millonig et al., 2000). Nevertheless, both TFs
are expressed in the ventral mesodiencephalic floor
plate where they specify dopaminergic progenitors (Fig.
2A, Table 1; Lin et al., 2009; Deng et al., 2011; Doucet-
Beaupré et al., 2015).
High levels of Lmx1a mRNA have been found in the

mouse posterior hypothalamus, supramammillary and
ventral premammillary nucleus, STN, VTA, and SNc from
the embryonic period (E12.5) to the early postnatal pe-
riod (P0–P7; Figs. 2B, 3; Failli et al., 2002; Zou et al.,
2009; Hoekstra et al., 2013). When analyzing the expres-
sion pattern of these TFs in adult brain, there are conflict-
ing reports. While some authors state there is no Lmx1a
mRNA after P14 in the aforementioned regions (Hoekstra
et al., 2013), other authors described sustained, yet
weaker expression in adult animals at 6months of age
(Zou et al., 2009). Interestingly, double-labeling experi-
ments revealed the almost overlapping expression pat-
tern of Lmx1a mRNA and LMX1B protein in the STN (Zou
et al., 2009).
Lmx1b expression was similarly analyzed in the post-

natal mouse brain. These experiments showed sustained
Lmx1b expression at all analyzed ages (from E12.5 to
P14) in the posterior and lateral hypothalamus, STN and
parasubthalamic nucleus (a small nucleus located at the
medial border of rodent STN), and ventral premammillary
nucleus (Fig. 2B, Table 1; Asbreuk et al., 2002; Dai et al.,
2008). Nevertheless, the in situ hybridization (ISH) signal
weakened after P14 (Dai et al., 2008). In these regions,
Lmx1b was expressed in excitatory neurons, while in the
SNc and raphe nuclei Lmx1b1 cells colocalized with do-
paminergic and serotonergic cells, respectively (Dai et al.,
2008). Another TF, PITX2, is necessary for the onset of
LMX1B expression in the STN, with both of these TFs co-
localizing in the embryonic and adult STN (Asbreuk et al.,
2002; Skidmore et al., 2008).
In addition, it is possible that joint cooperative inter-

actions between Foxa1 and Lmx1a/b are required for
the specification of STN neurons (Gasser et al., 2016).
Moreover, Lmx1a may have two expression domains—
one caudal, which gives rise to dopaminergic lineage,
and the other rostral, in which Lmx1a expression over-
laps with Pitx2 and BarH-like homeobox 1 (Barhl1),

giving rise to glutamatergic hypothalamic neurons and
the prospective STN (Kee et al., 2017; Kim et al., 2020).
Surprisingly, single-nucleus RNA-seq of Pitx2-Cre1 cells
derived from adult (P28) mouse STN detected hardly any
Lmx1b, yet Lmx1a, Foxa1, Foxp1, Foxp2, and Barhl1 were
abundantly expressed in all analyzed clusters (Wallén-
Mackenzie et al., 2020).
In summary, Lmx1a/b are important factors in the spec-

ification of glutamatergic, dopaminergic, and serotonergic
neurons in the hypothalamus, STN, and mesencephalon.
Reports indicate that both genes are also present in adult
neurons of the aforementioned structures. In the STN,
Lmx1a/b need additional genes (e.g., Pitx2 or Barhl1) to
specify neuronal progenitors to correct phenotype.

Transcription factors expressed in postmitotic
neurons
Paired-like homeodomain 2
Pitx2 belongs to the paired-like homeodomain family of

TFs that is important for brain development (Muccielli et
al., 1996; Smidt et al., 2000; Lamba et al., 2008; Waite et
al., 2013). During development, Pitx2mRNA becomes de-
tectable at E9.5 in postmitotic cells of the basal plate at
the level of mesencephalic flexure (Muccielli et al., 1996).
At later stages of development, from E10.5 to E13.5, Pitx2
mRNA respects prosomeric boundaries and can be de-
tected in two zones (Figs. 2A, 3). The first expression zone
spans across the mesencephalon to the mammillary re-
gion, including the ZLI, ZI, retromammillary and mammil-
lary areas, and basal plates of prosomeres p1–p3, with
the second zone of expression being the alar plate of the
mesencephalon (the primordium of the superior colliculi;
Fig. 2, Table 1; Muccielli et al., 1996; Martin et al., 2002,
2004). From E16.5 throughout adulthood, Pitx2 expres-
sion is prominent in the STN, ZI, the nuclei of mammillary
complex, deep gray layer of the superior colliculus, and
the anterior and intermediate lobes of the pituitary gland,
indicating it has a role in the maintenance of neuronal
identity (Martin et al., 2002, 2004; Waite and Martin, 2015;
Xie and Dorsky, 2017; Guo and Li, 2019; Kim et al., 2020;
Mickelsen et al., 2020).
The role of Pitx2 in the development of the rodent STN

has been thoroughly studied. Double-labeling immuno-
histochemical experiments demonstrated that PITX21

cells in the STN are neurons as they colocalize with NeuN
and calretinin (Martin et al., 2002, 2004). However, Pitx2
is not a determinant of a neurotransmitter phenotype, as
it is expressed in both GABAergic cells of ventral mesen-
cephalon (which will later become a part of the superior
colliculus), and glutamatergic cells in the STN, posterior
hypothalamus, and the mamillary region (Westmoreland
et al., 2001; Martin et al., 2002; Schweizer et al., 2014;
Waite and Martin, 2015). In wild-type mice, the migration
of Pitx21 cells is observed from E10.5 to E14.5, with the
majority of migration taking place from E12.5 to E14.5,
rostrally and laterodorsally from the retromammillary
area to their position in the adult STN (Martin et al., 2004;
Skidmore et al., 2008). In the Pitx2 knock-out mice, no
Pitx2 mRNA can be observed at the level of the pre-
sumptive STN at E14.5, but the signal can be observed
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more medially, suggesting an arrested migration of fu-
ture STN neurons (Martin et al., 2004; Skidmore et al.,
2008; 2012). The studies characterizing subtypes of STN
neurons showed that the expression of Pitx2 is neces-
sary for the expression of several key TFs in the STN. For
example, the expression of Pitx2 is necessary for the ex-
pression of Lmx1b in the STN, whereas the loss of
Lmx1b does not preclude Pitx2 expression (Asbreuk
et al., 2002; Skidmore et al., 2008). The colocalization
of Pitx2 with Lmx1b in the STN persists postnatally
(Asbreuk et al., 2002). On the other hand, the expression
of FOXP1 and FOXP2 was preserved, but reduced in the
murine embryonic STN lacking Pitx2 function (Skidmore
et al., 2008), suggesting that other neuronal lineages be-
side Pitx21 exist in the STN. It has been suggested that
Pitx2, along with Barhl1, could be used as markers of a
specific subset of Lmx1a1 progenitors adapting a ros-
tral, glutamatergic fate in the ventral mesodiencephalic
area, thus distinguishing developing STN neurons from
dopaminergic neurons (Kee et al., 2017).
Pitx2 is now an established marker of postmitotic STN

neurons; therefore, Pitx2 promotor is now widely used
in various experimental settings when precise labeling
of STN neurons is required, for example, single-cell/nu-
clei sequencing or creating conditional transgenic mice
(Schweizer et al., 2014, 2016; Wallén-Mackenzie et al.,
2020). However, one must be careful when interpreting
data from these studies as not all STN neurons are
Pitx21 (Skidmore et al., 2008).

BarH-like homeobox 1
Barhl1 is a member of the BarH gene family, which has

a restricted expression in the CNS during development
(Bulfone et al., 2000; Reig et al., 2007). Barhl1 expression
was first detected in the caudal diencephalon at E9.5. At
E10.5, the rostral expression domain encompasses the
basal plate of p1–p3 and hp1, the ZLI, and the pretectum
(p1), whereas the caudal expression domain is confined
to the midbrain–hindbrain boundary (Figs. 2A, 3; Bulfone
et al., 2000; Rachidi and Lopes, 2006). Interestingly, from
E12.5 to birth, Barhl1 is expressed in the mammillary re-
gion and in the alar plate forming the inferior and superior
colliculi, similar to the expression pattern reported for
Pitx2 (Fig. 2B, Table 1). In the hindbrain, Barhl1 may be
found in the rhombic lips, a transient structure giving rise
to cerebellar granular cells (Bulfone et al., 2000; Lopes et
al., 2006; Rachidi and Lopes, 2006). Importantly, these
expression patterns have also been observed in human
embryonic and fetal brain (Lopes et al., 2006). There are
indications that Barhl1 expression, at least in the basal
plate, is dependent on Shh signaling, while its alar expres-
sion is regulated by BMPs (Bulfone et al., 2000; Lopes et
al., 2006; Rachidi and Lopes, 2006; Martinez-Lopez et al.,
2015).
Barhl1 expression in STN was specifically described in

adult (P28) Pitx2-Cre and embryonic Lmx1aEGFP mice,
leading to a conclusion that there is a significant propor-
tion of Pitx2-Barhl1 or Lmx1a-Barhl1 colocalization in
STN cells, with high levels of expression and significant
overlap of all three TFs in the adult STN (Kee et al., 2017;
Wallén-Mackenzie et al., 2020).

Forkhead box 1 and Forkhead box 2
Forkhead box 1 (Foxp1) and Foxp2, members of the

forkhead box family of TFs, are best known for their role in
brain development and acquiring speech and language
functions (Enard et al., 2002). In the developing murine
brain, Foxp1 and Foxp2 are expressed after E12.5 and
their expression is sustained during adulthood, although
at lower levels (Ferland et al., 2003; Takahashi et al.,
2003; Co et al., 2020). Foxp1/2 hypothalamic expression
was limited to the basal plate of hp1 prosomere, specifi-
cally the supramammillary, ventral premammillary, and
mammillary nuclei (Fig. 2A, Table 1; Ferland et al., 2003;
Teramitsu et al., 2004; Kim et al., 2020; Mickelsen et al.,
2020).
In the developing mouse STN, Foxp1 mRNA was first

observed at E13.5 and persisted until P14 (Fig. 3).
Interestingly, adult mouse STN apparently has no Foxp1
mRNA signal (Tamura et al., 2004; Philips et al., 2005). In
the developing human brain, both FOXP1 and FOXP2
were expressed in the STN during midgestation (22 post-
conceptional weeks); however, FOXP2 expression was
stronger (Teramitsu et al., 2004), and the FOXP2 protein
can be detected in adult STN (Bokuli�c et al., 2021). These
postmitotic markers were found in human fetal striatum at
11 gestational weeks, so perhaps they are also expressed
in the STN earlier than previously reported (Pauly et al.,
2013). As was already discussed, there have been attempts
at profiling subtypes of subthalamic neurons. Despite Pitx2
being widely used as a marker of STN neurons, some re-
sults suggest there is a subtype of Pitx2-/Foxp11 or Foxp21

neurons (Skidmore et al., 2008). Single-cell RNA sequenc-
ing of mouse ventral mesodiencephalic area assigned
Foxp1 and Foxp2 to both developing glutamatergic and do-
paminergic populations (Kee et al., 2017).
Foxp1/2 are also important for the specification of vari-

ous neuronal populations in the basal ganglia. Foxp1 and
Foxp2 mRNA appears in the subventricular zone of the
LGE. Both TFs are expressed in postmigratory striatal
projection neurons, with Foxp2 mRNA in striosomes and
Foxp1 mRNA equally expressed in matrix and striosomes
(Takahashi et al., 2003; Tamura et al., 2004; Teramitsu et
al., 2004; Takahashi et al., 2010; Fong et al., 2018; Co et
al., 2020). Interestingly, Foxp1/2 expression patterns di-
verge in other basal ganglia structures. Foxp1 mRNA is
absent from both mouse and human GP, whereas Foxp2
is expressed at low levels (Ferland et al., 2003; Tamura et
al., 2004; Co et al., 2020). The SN has both Foxp1 and
Foxp2 expression, although Foxp2 is more prominent
(Fig. 2B, Table 1; Ferland et al., 2003). Foxp2 is now an
established marker of a specific, arkypallidal neuronal
population in the GPe, which originates from the LGE/
CGE (caudal ganglionic eminence) and projects to the
striatum (Abdi et al., 2015; Dodson et al., 2015).
In conclusion, Foxp1/2 are important determinants of

basal ganglia neuronal populations and hypothalamic nu-
clei derived from the basal plate of the prosomere hp1.
Both of these genes can be found in the STN where they
possibly determine a Pitx2-independent neuronal subpo-
pulation, but this remains to be further explored with dou-
ble-labeling experiments.
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The transcriptional profile of subthalamic nucleus
Studies using the classical model of diencephalic devel-

opment generated many important pieces of data about
the place of origin of STNs. However, the advent of mo-
lecular biology exposed all the shortcomings of classical
anatomic/morphologic concept. A conceptual framework
of the prosomeric model gave us a full appreciation of the
vast data on gene expression in the developing hypo-
thalamic and diencephalic primordium. Within this frame-
work, it became easier to trace the lineage of individual
neurons and nuclei. Analysis of transcription factors in-
volved in the development of the STN and surrounding
structures taught us many important lessons.
First, it appears that there is no single specific marker of

STN neurons. The diversity of TFs found in the STN sug-
gests that this nucleus harbors a more transcriptionally
heterogeneous neuronal population than was previously
thought. This finding is not surprising given that single-
cell sequencing experiments revealed a complex compo-
sition of other basal hypothalamic nuclei (i.e., mammillary
bodies, supramammillary, and ventral premammillary nu-
clei; Mickelsen et al., 2020; López-González et al., 2021).
Indeed, if we summarize our findings, we find that there is
a set of shared TFs among the STN, surrounding hypo-
thalamic glutamatergic neurons, and mesodiencephalic
dopaminergic neurons. The neuronal population of the
STN is probably specified by a combination of the dis-
cussed TFs and depends on their timing and level of ex-
pression. For instance, Foxa1 and Lmx1a/b can be found
in the mesodiencephalic dopaminergic neurons and in the
basal hypothalamus (Kee et al., 2017; Kim et al., 2020;
Mickelsen et al., 2020; Zhang et al., 2021). The expression
of these TFs points to a shared progenitor zone in the
floor/basal plate, which is probably influenced by Shh sig-
naling. However, as discussed by Nouri and Awatramani
(2017), Dbx1 could indicate an anterior floor plate region
that will eventually give rise to glutamatergic populations
like the STN. Taking into account everything discussed
thus far, one can hypothesize that the progenitors of the
glutamatergic STN could be defined by the expression of
Dbx1, Foxa1, and Lmx1a/b (Fig. 3). As these progenitors
exit cell cycle, they start to express postmitotic markers
Barhl1, Foxp1/2, and Pitx2 (Fig. 3; Kee et al., 2017; Kim et
al., 2020; Mickelsen et al., 2020; Zhang et al., 2021). The
exact spatiotemporal expression of these TFs in STN re-
mains to be fully elucidated. Also, Nkx2-1 is clearly indis-
pensable for the formation of the basal hypothalamus in
rodent models, yet it is absent from the STN from E12.5
onward (Kimura et al., 1996; Nakamura et al., 2001; Kim
et al., 2020; Murcia-Ramón et al., 2020). Nevertheless,
there have been reports of NKX2-1 expression in the adult
human STN (Bokuli�c et al., 2021), so these discrepancies
between model animals and humans remain to be further
investigated.
Contrary to molecular phenotype, connectivity and func-

tional properties of STN have been extensively studied in
animal models, human and primate neuroimaging, and elec-
trophysiological experiments (Mallet et al., 2007; Lambert et
al., 2012; Haynes and Haber, 2013; Alkemade et al., 2015).
According to the prevailing tripartite anatomofunctional

division of the STN, the dorsal part processes sensorimotor
information, while the ventral part processes cognitive and
affective information (Alexander et al., 1990; Parent and
Hazrati, 1995; Joel and Weiner, 1997; Temel et al., 2005).
The data about the molecular phenotype of neuronal sub-
populations in these functional regions is still lacking.
Progress has been made in this field with the work of
Parolari et al. (2021), who showed that a subpopulation of
STN neurons expressing GABAA receptor subunit Gabrr3
projects to the GP and SNr and modulates repetitive
grooming in mice. Further studies are needed to link mo-
lecularly distinct subpopulations with the observed pat-
terns of connectivity and functional properties.

Clinical Importance of STN
The involvement of STN in motor control has been dem-

onstrated first in patients with hemiballism, a neurologic
disorder that manifests with unilateral, involuntary spas-
modic movements of limbs (Postuma and Lang, 2003;
Marani et al., 2008). Nowadays, STN is clinically important
as a deep-brain stimulation (DBS) target for the treatment
of PD (Kumar et al., 1998; Hamani et al., 2005; Benabid et
al., 2009). However, the STN is not purely a motor nucleus.
Several studies in experimental animals demonstrated that
the STN modulates different aspects of behavior such as
repetitive and compulsive behavior (Winter et al., 2008;
Lewis et al., 2018; Parolari et al., 2021), motivational proc-
esses (Rouaud et al., 2010; Pelloux and Baunez, 2013),
and impulsivity and inhibition control (Baunez and Lardeux,
2011; Rossi et al., 2015). The quest to elucidate the func-
tional roles of STN in the human brain is limited to ob-
serving the side effects of DBS in parkinsonian patients
(Jahanshahi et al., 2000; Temel et al., 2005; Voon et al.,
2006; Saleh and Okun, 2008; Voon et al., 2017). Another
possible avenue of human STN research is the use of NDDs
as “naturally occurring experiments.” Because of the disrup-
tion of normal brain development in NDDs, one can link the
observed behavioral changes to the changes in gene ex-
pression, number, and morphology of neurons or neuronal
connectivity patterns. Currently, there is no evidence for the
involvement of STN in any NDD, primarily because of the
lack of studies investigating this question. However, there
are indirect evidence that STN might be involved in some
NDDs.
In a current model of NDDs, a genetic mutation or a

disruption of a developmental process leads to structural
changes in specific brain regions, which lead to functional
and behavioral changes (Mitchell, 2015). The genes involved
in the pathophysiology of NDDs code for a vast array of pro-
teins (Mitchell, 2011), but here we will describe morphogens
(e.g., SHH and FGF8; Dubourg et al., 2007; Roessler and
Muenke, 2010; Dubourg et al., 2016; Roessler et al., 2018)
and transcription factors (e.g., FOXP1 and FOXP2; Enard,
2011; Bacon and Rappold, 2012; Meerschaut et al., 2017;
Braden et al., 2021). Mutations in morphogenes can cause
vast developmental defects, whereas mutations in TFs lead
to more subtle phenotypes. Holoprosencephaly (HPE) is a
multietiological NDD that serves as an example of an NDD
where a disruption of a basic neurodevelopmental plan
leads to observable brain and craniofacial malformations
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(ten Donkelaar et al., 2014b). Mutations of the SHH signaling
pathway and FGF8 gene are commonly found in patients
with HPE (Dubourg et al., 2016; Roessler et al., 2018). In a
chapter about induction and patterning of the forebrain, we
discussed the complex spatiotemporal expression patterns
of these morphogens, which could account for the great
variability of the clinical phenotypes of HPE (ten Donkelaar
et al., 2014b; Diaz and Puelles, 2020). On the other hand,
cognitive impairments caused by mutations in FOXP1 and
FOXP2 genes are perceived as neurobehavioral disorders,
or NDDs in a “broader sense” (ten Donkelaar et al., 2014a).
Neurobehavioral disorders like autism spectrum disorder
(ASD), schizophrenia, intellectual disability, and attention
deficit-hyperactivity disorder (ADHD) are characterized by
the presence of various neuropsychiatric symptoms (ten
Donkelaar et al., 2014a; Mitchell, 2015). The etiology of such
disorders is complex, however much effort is put into eluci-
dating genetic causes (Mitchell, 2011). Although FOXP1 and
FOXP2 have a high degree of sequence similarity, their mu-
tations cause different NDDs. Mutations in FOXP1 gene re-
sult in a complex, global NDD with behavioral disorders,
brain malformations, specific facial features, and malforma-
tions of other organ systems (Co et al., 2020). This prompted
clinicians to define a separate NDD, FOXP1-related intellec-
tual disability syndrome (Meerschaut et al., 2017; Lozano et
al., 2021). Conversely, FOXP2 mutations lead to severe
speech and language impairments, but these can be attrib-
uted to impaired brain connectivity, not to overt structural
brain abnormalities (Lai et al., 2003; Co et al., 2020).
It is interesting to note that some of the genes linked to

NDDs are also essential for the development of the STN
(Table 2). When interpreting these findings, one has to be
careful to acknowledge that neurobehavioral disorders
have complex etiologies that cannot be limited to one
gene. Similarly, mutations in these genes probably affect
a wide repertoire of downstream targets, and their effect

depends on how they affect the final protein product
(Parenti et al., 2020). If we examine clinical manifestations
of several NDDs, some symptoms point to a dysfunction
of cortical-basal ganglia circuits (Riva et al., 2018; Kuo
and Liu, 2019; Vicente et al., 2020). In addition to locomo-
tor control, the basal ganglia have important roles in non-
motor functions like executive functions, procedural
learning, habit formation, and goal-directed behavior
(Graybiel, 2008; Leisman and Melillo, 2013; Haber, 2016).
These functions were mostly attributed to frontostriatal
connections, so striatal dysfunction is investigated in the
pathophysiology of NDDs like ASD, ADHD, and schizo-
phrenia (Leisman and Melillo, 2013; Kuo and Liu, 2019;
Vicente et al., 2020). The STN can be perceived as anoth-
er input nucleus of the cortical-basal ganglia circuits be-
cause it receives excitatory cortical input via the hyperdirect
pathway (Nambu et al., 2002; Baunez and Lardeux, 2011;
Tewari et al., 2016). The hyperdirect pathway has an impor-
tant role in nonmotor functions of STN, like decision-making,
attention, action control, and motivated behavior (Baunez
and Lardeux, 2011; Weintraub and Zaghloul, 2013; Aron et
al., 2016; Bonnevie and Zaghloul, 2019). Furthermore, the
recently proposed hypothalamic origin of STN corroborates
the complementary roles of hypothalamic and basal ganglia
circuitry in motivated behavior. In this model, the STN serves
as a “stop signal,” pausing initiated behavior (Barbier and
Risold, 2021). Based on the discussed motor and nonmotor
functions of the STN, especially its role in action inhibition,
we argue that it probably plays an important, yet underex-
plored role in NDDs. For example, ASD, ADHD, Tourette’s
syndrome, and schizophrenia are all characterized by re-
stricted and repetitive patterns of behavior (RRBs) like ster-
eotypies, perseveration, and tics, which are basically
disorders of behavioral control (Lewis et al., 2018; Vicente et
al., 2020; Tian et al., 2022). Additionally, RRBs could be just
behavioral manifestations of a broader cognitive inflexibility

Table 2: A summary of morphogens and transcription factors implicated in the development of STN that have previously
been linked to various neurodevelopmental disorders

Morphogen/ Transcription
factor Neurodevelopmental disorder Reference
SHH Holoprosencephaly Dubourg et al., 2007; Roessler and Muenke, 2010

Schizophrenia Betcheva et al., 2013; Boyd et al., 2015; Yao et al., 2016
Autism spectrum disorder Yao et al., 2016; Patel et al., 2017; Kumar et al., 2019; Upadhyay

et al., 2021
Attention deficit-hyperactivity disorder Heussler et al., 2002
Language impairment Santiago et al., 2006

FGF8 Holoprosencephaly Dubourg et al., 2016; Roessler et al., 2018
Autism spectrum disorder Clarke et al., 2012; Rubenstein, 2010

NKX2-1 Schizophrenia Malt et al., 2016
Autism spectrum disorder (in BHC) Milone et al., 2019
Attention deficit-hyperactivity disorder
(in BHC)

Gras et al., 2012

LMX1A/LMX1B Schizophrenia Bergman et al., 2010
Autism spectrum disorder (LMX1B) Thanseem et al., 2011

FOXP1/FOXP2 Autism spectrum disorder Bacon and Rappold, 2012; Cristino et al., 2014; Co et al., 2020
Schizophrenia (FOXP2) Tolosa et al., 2010
Speech and language disorder Enard et al., 2002; Lai et al., 2003
FOXP1-related intellectual disability
syndrome

Meerschaut et al., 2017; Lozano et al., 2021

BHC, Benign hereditary chorea.
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and an inability to stop unwanted actions or thoughts (Tian
et al., 2022). However, clinical and preclinical neuroimaging
studies have not studied intra-basal ganglia connectivity or
possible abnormalities of small nuclei like STN in RRBs (for
review, see Wilkes and Lewis, 2018), although animal mod-
els demonstrated clear involvement of STN in stereotyped
behavior (Chang et al., 2016; Lewis et al., 2018; Wilkes and
Lewis, 2018). Genes implicated in speech impairment
(FOXP1 and FOXP2) have widespread expression in the
basal ganglia, STN included (Enard, 2011; Bacon and
Rappold, 2012; Co et al., 2020; Bokuli�c et al., 2021). These
expression patterns, coupled with the role of basal ganglia
in language acquisition (Eigsti et al., 2011; Enard, 2011)
and speech impairment being recognized as a side effect
of DBS (Pützer et al., 2008; Silveri et al., 2012; Ehlen et al.,
2014), point to a possible involvement of STN in speech
production. Neuroimaging studies could give us valuable
insight into the role of STN in speech production by explor-
ing possible differences in STN connectivity and volumes
in healthy control subjects and people with language im-
pairments, whereas human postmortem studies could
analyze the transcriptional profile of STN in healthy and
language-impaired individuals.
In summary, a shared set of symptoms among NDDs

might suggest a common cortical-basal ganglia-thalamo-
cortical dysfunction. The exact role that the STN has in
the pathophysiology of RRBs and impaired verbal fluency
is still poorly understood, but we can hypothesize that the
imbalance between the direct and indirect pathways and
the loss of inhibitory control of STN are key components.
Before exploring the functional roles of STN in NDDs, we
should have an understanding of its cellular and molecular
properties. The analysis of STN in NDDs could provide us
with valuable information about the cellular composition
of STN.

Conclusion
In a quest to elucidate the developmental origin and

molecular profile of STN neurons, a powerful tool at our
disposal is genetically modified experimental animals.
These models provided us abundant data about rodent
STN. The analysis of gene expression patterns and line-
age tracing experiments have proven the hypothalamic
origin of STN. However, the origin and the transcriptional
profile of the human STN remain to be further investi-
gated, as there appear to be some interspecies differen-
ces. When analyzing the development of the human STN
such tools are not available, and the majority of studies
are descriptive studies using postmortem materials.
The literature search for studies of human STN revealed

there are hardly any studies that analyzed the molecular
phenotype or developmental origin of STN neurons. The
majority of studies dealing with human STN analyzed ex-
pression patterns of calcium-binding proteins and neuro-
transmitter receptors in STN (Lévesque and Parent, 2005;
Zwirner et al., 2017; Wu et al., 2018; Alkemade et al.,
2019), with only one study also analyzing TF expression
(Bokuli�c et al., 2021). However, all these studies analyzed
the adult STN, so the data about TFs in the developing
human STN is lacking. Future human postmortem studies

should focus on comparing the expression patterns of
TFs in rodent and human developing STNs, thus giving us
insight into possible species-specific differences in cellu-
lar composition or developmental origin. Moreover, thor-
ough profiling of the neuronal populations of STN with
TFs, calcium-binding proteins, and membrane receptors
would allow modifications of existing models of cytoarchi-
tectonic organization.
This comprehensive summary of TFs expressed in the

STN sets the ground for future human postmortem stud-
ies. These studies should comparatively analyze the devel-
opment and expression patterns of NDD-related genes
in the STN between neurotypical and neurodivergent indi-
viduals. The results of these studies would enhance our
understanding of the pathophysiology and symptomatol-
ogy of NDDs.
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