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N E U R O S C I E N C E

Upper cortical layer–driven network impairment 
in schizophrenia
Mykhailo Y. Batiuk1†‡, Teadora Tyler2†, Katarina Dragicevic1, Shenglin Mei3, Rasmus Rydbirk1, 
Viktor Petukhov1, Ruslan Deviatiiarov4,5, Dora Sedmak6, Erzsebet Frank2, Virginia Feher2, 
Nikola Habek6, Qiwen Hu3§, Anna Igolkina3,7, Lilla Roszik2, Ulrich Pfisterer1, Diego Garcia-Gonzalez1, 
Zdravko Petanjek6, Istvan Adorjan2*, Peter V. Kharchenko3*, Konstantin Khodosevich1*||

Schizophrenia is one of the most widespread and complex mental disorders. To characterize the impact of schizo-
phrenia, we performed single-nucleus RNA sequencing (snRNA-seq) of >220,000 neurons from the dorsolateral 
prefrontal cortex of patients with schizophrenia and matched controls. In addition, >115,000 neurons were analyzed 
topographically by immunohistochemistry. Compositional analysis of snRNA-seq data revealed a reduction in 
abundance of GABAergic neurons and a concomitant increase in principal neurons, most pronounced for upper 
cortical layer subtypes, which was substantiated by histological analysis. Many neuronal subtypes showed extensive 
transcriptomic changes, the most marked in upper-layer GABAergic neurons, including down-regulation in energy 
metabolism and up-regulation in neurotransmission. Transcription factor network analysis demonstrated a 
developmental origin of transcriptomic changes. Last, Visium spatial transcriptomics further corroborated upper-
layer neuron vulnerability in schizophrenia. Overall, our results point toward general network impairment within 
upper cortical layers as a core substrate associated with schizophrenia symptomatology.

INTRODUCTION
Schizophrenia is a severe mental brain disorder, which affects around 
20 million people worldwide (1). Because of the high complexity of 
neuronal circuits that underlie cognitive abnormalities in schizo-
phrenia, the etiology of schizophrenia is still poorly understood (2, 3). 
It has been proposed that schizophrenia may arise because of the 
susceptibility of the developing brain to adverse genetic and envi-
ronmental factors that perturb embryonic brain development and 
postnatal maturation of brain circuits (2–4). However, the impact 
of these adverse factors will vary from cell to cell, and some cell 
types should be more susceptible and have a stronger contribution to 
schizophrenia (5, 6).

Animal models provided an initial insight into cell types that 
could be affected by schizophrenia-inducing adverse factors. A 
number of animal models have been generated so far to mimic 
genetic and environmental perturbations associated with schizo-
phrenia in humans (7–12). Several brain cell types were found to 
contribute to the phenotypic impairments of these model animals, 
of which cortical -aminobutyric acid–expressing (GABAergic) inter-
neurons have received the most attention. In particular, parvalbumin 

(PV)–expressing interneurons were shown to be morphologically 
and functionally impaired in both genetic and environmental models 
of schizophrenia (7, 9–11, 13). Besides function and morphology, 
their distribution across cortical layers and overall density in the 
cortex were also found altered (9, 10).

Despite the admittedly crucial role of PV interneurons in schizo-
phrenia pathogenesis, there are more and more indications that 
other neuronal subtypes might have an equal, if not larger, impact on 
circuit function in schizophrenia. Another large family of GABAergic 
interneurons that express somatostatin (SST) has a key role in the 
circuitry controlling sensory information processing that is impaired 
in schizophrenia (14), and a growing body of evidence suggests the 
involvement of SST interneurons in schizophrenia-related impair-
ments in animal models (9, 15, 16). Furthermore, animal model work 
shows that cortical principal neurons might have a primary role in 
the alteration of neuronal circuitry in schizophrenia (8).

A number of recent studies in postmortem human brain tissue 
from patients with schizophrenia also support the idea that the com-
plexity of neuronal circuit impairment in schizophrenia goes beyond 
PV interneurons. The morphology and gene expression of human 
cortical PV interneurons are changed in schizophrenia (17–19). How-
ever, these changes occur in other subtypes of GABAergic interneurons 
as well, such as SST interneurons that show signs of impairment in 
the cortex of patients with schizophrenia (19, 20). Moreover, changes 
in non-PV interneurons in the brains of patients with schizophrenia 
extend to other brain regions—the large cholinergic and calretinin 
(CR)–expressing GABAergic interneurons and small CR GABAergic 
interneurons showed reduced densities in the striatum (21, 22), and 
the density of SST-expressing GABAergic interneurons was found 
to be reduced in the amygdala (23) of patients with schizophrenia. 
Thus, it seems obvious that the changes in schizophrenia circuits 
are highly complex and involve a number of neuronal subtypes.

While studies in both animal models and human brains provided 
us with immense knowledge of structural and functional impact 
of schizophrenia on neuronal circuits, most of these studies were 
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focused on one or a few specific neuronal subtypes. A more un-
biased approach that analyzes changes in all cells in a brain region 
affected by schizophrenia will help to identify a complete picture of 
molecular and cellular changes and further understand the etiology 
of schizophrenia. Some effort has been made for less biased character-
ization of schizophrenia-associated changes in brain cells using bulk 
transcriptomics on postmortem human brain tissue (24–26). These 
studies identified a number of genes that are involved in develop-
mental processes, such as cell proliferation, differentiation, migra-
tion, and maturation, that changed their expression in the brains of 
patients with schizophrenia. Nevertheless, while these studies iden-
tified important generalized effects of schizophrenia on cortical tissue, 
they lacked resolution to pinpoint the cell types most affected in 
schizophrenia and reveal schizophrenia-associated gene expression in-
volved in abnormal neuronal circuitry possibly underlying symptoms.

To reveal in an unbiased way the impact of schizophrenia on the 
whole diversity of neuronal subtypes in the cortex, we carried out 
single-nucleus RNA sequencing (snRNA-seq) on postmortem brain 
tissue from well-characterized patients with schizophrenia and age/
sex-matched control cases with no history of mental illness. Using 
several computational approaches to assess how schizophrenia 
affects the composition of neuronal subtypes in the cortex, we iden-
tify schizophrenia-associated changes across all cortical layers with 
the highest perturbations for neuronal subtypes in the upper layers. 
Our analysis reveals a reduction in proportion of neurons across all 
families of GABAergic neurons and an increase in specific subtypes 
of principal neurons with the strongest changes in upper layers. We 
have further substantiated these findings by histological analysis 
showing density reduction in upper-layer subtypes of GABAergic 
interneurons. At the transcriptomic level, most changes are related 
to up-regulation of neurotransmission and developmental processes 
and down-regulation of metabolism genes, indicating active changes 
in information processing and transfer through schizophrenia-
associated circuits along with impairment in energy production in 
neurons, a common finding across neuronal subtypes. Last, using 
spatial transcriptomics, we validate gene expression and neuronal 
composition changes in circuits affected by schizophrenia.

RESULTS
Neuronal subtypes from the upper cortical layers show 
the largest compositional and gene expression alterations 
in schizophrenia
The dorsolateral prefrontal cortex (DLPFC) from Brodmann area 9 
(BA9) of patients with schizophrenia and matched controls (9 and 
14 individuals, respectively) was analyzed by snRNA-seq through-
out this study. BA9 was chosen on the basis of the functional and 
anatomical data from schizophrenia patients showing abnormal 
brain activity, neuronal morphology, and gene expression in this 
area relative to matched control brains (27–29). Importantly, our sample 
cohort was formed balancing the potential confounders, including 
the age of sample donors (the vast majority of samples were from 
55- to 70-year-old subjects), their postmortem intervals (PMIs; 
1 to 23 hours), and other confounders (tables S1 and S2) (fig. S1, A 
and B). Moreover, multidimensional scaling plots that visualize 
samples based on the similarity of their transcriptome showed lack 
of effects for tissue source, age, first-symptoms age, and duration 
of disease on transcriptomic distance between control and schizo-
phrenia samples (fig. S1C).

For each sample, microdissected cortical columns containing all 
layers were sorted for neuronal nuclei based on the expression of 
the neuronal marker NeuN (Fig. 1A and fig. S2A). NeuN+ sorting 
strategy was designed such that there is only a minor number of 
neuronal nuclei in discarded NeuN− fraction, and >95% of neurons 
are sorted out in NeuN+ fraction as validated by us before (30), and 
snRNA-seq was performed using 10x Chromium v3 assay. In total, 
we sequenced 225,012 nuclei (with 54,230 reads per nucleus), of which 
209,053 (81,817 from schizophrenia and 127,236 control nuclei) 
passed quality control analysis and doublet filtering and were of high 
quality (with ~12,000 median Unique molecular identifiers (UMIs) and 
~4400 median genes detected per nucleus; fig. S2, B to E, and table S1).

To annotate the neuronal populations in a consistent manner, 
different samples were first aligned in a way that minimized the 
impact of the interindividual variation, and clusters of nuclei were 
determined uniformly across the entire sample collection (31). The 
clusters were annotated on the basis of known layer-specific genes 
for principal neurons, subtype-specific genes for GABAergic inter-
neurons from previous studies (30, 32), as well as cluster-specific 
markers (table S3; see also correspondence of subtypes in our dataset 
with those in Allen Brain Institute datasets in fig. S3). The subpop-
ulations were annotated in a hierarchical manner, similar as before 
(30), with the medium resolution denoting neuronal subfamilies 
and high resolution representing specific subtypes (table S3). At 
the highest resolution, we distinguished a total of 15 principal 
neuron and 20 GABAergic interneuron transcriptomic subtypes 
(Fig. 1, B to D; fig. S4, A to D; and table S3). Each subtype incorpo-
rated cells from multiple control and schizophrenia samples (except 
glial nuclei mostly derived from MB19, MB53, and MB51, explained 
further), and every subtype was present in at least 70% of the sam-
ples (fig. S4, D to G). Age, PMI, sex, disease conditions, and other 
sample characteristics were evenly distributed across uniform manifold 
approximation and projections (UMAPs) (fig. S5; only the glia batch 
originating from MB19, MB51, and MB53 was apparent). Fluorescence-
activated nucleus sorting (FANS) separation of neuronal nuclei was 
very efficient, with 94% of nuclei in the dataset being neuronal and 
only 6% derived from glia (Fig. 1C), where glial nuclei are smaller 
and express less genes [fig. S4A and as reported previously (32)]. 
Because our study was focused on neurons, glial nuclei were ex-
cluded from the subsequent analyses. The subtype “Other” represented 
nuclei of lower quality (fig. S4, A to C) that lacked distinct subtype identity 
and thus were also excluded from further analysis. To predict layer-
specific distributions of different neuronal types in our dataset, we 
aligned the analyzed nuclei with recent datasets (32, 33), in which 
layer positions were determined experimentally by cortical layer 
microdissections before nucleus isolations and sequencing (Fig. 1E).

To characterize schizophrenia-related differences in the DLPFC, 
we first examined whether the composition of the cortex was altered 
in schizophrenia patients. Analysis of normalized cell density on 
the joint UMAP embedding (Fig. 2A) and direct comparison of cell 
proportions (fig. S6, A and B; for exact numbers of fraction of nuclei 
for each neuronal family/subtype, see table S4) showed a general 
decrease in GABAergic interneurons in schizophrenia, affecting 
subtypes from all families, in particular those belonging to PVALB, 
SST, and VIP. This was countered by an increase in the fraction of 
principal neurons belonging to L2_3_CUX2 family and to L4_5_
FEZF2_LRRK1 subtype (Fig. 2A and fig. S6, A and B). As changes in 
proportion of one subtype could potentially skew the representation 
of other subtypes, we applied compositional data analysis techniques 
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Fig. 1. snRNA-seq analysis of the DLPFC from patients with schizophrenia and matched controls. (A) Experimental design of the snRNA-seq measurements. FACS, 
fluorescence-activated cell sorting. (B) UMAP representation of the measured nuclei, colored by subtypes. (C) Expression of marker genes for major cortical cell types, 
visualized on the UMAP embedding: GABAergic interneurons, principal neurons, and glia; additional markers distinguish families of GABAergic interneurons and principal 
neurons. (D) Heatmap showing expression of markers for specific neuronal subtypes. (E) Estimated cortical layer positions of the neuronal subtypes. These are predictions 
based on Allen Institute data (32, 33) with manual cortical layer microdissections before nuclei isolation and sequencing. Because of manual layer dissections, small 
degree of mispositioning of subtypes (e.g., principal neurons in layer 1) is expected.
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Fig. 2. Compositional and transcriptomic changes in the cortex of patients with schizophrenia. (A) Cell density differences between schizophrenia and control groups 
analyzed using UMAP embedding. Left: Visualization of control and schizophrenia cells. Middle: Cell density visualized from the control and schizophrenia samples, using 
UMAP embedding. Right: Statistical assessment of the cell density differences. Student’s t test was used, visualized as a z score. (B) Change in neuronal composition evaluated 
by compositional data analysis. Top cell types distinguishing composition of control and schizophrenia samples are shown. The x axis indicates the separating coefficient 
for each cell type, with the positive values corresponding to neurons with increased abundance in schizophrenia and negative values to decreased abundance. The boxplots 
and individual data points show uncertainty based on bootstrap resampling of samples and cells (for full plot, see fig. S6C). Red line represents cutoff for significance of 
adjusted (by the Benjamini-Hochberg method) P values (significant cell types are above the line). ***P = 0.0001 to 0.001. (C and D) Boxplots showing the magnitude of 
transcriptional change between control and schizophrenia states for medium-resolution (C) and high-resolution (D) annotations. The magnitude is assessed on the basis 
of a Pearson linear correlation coefficient, normalized by the medium variation within control and schizophrenia groups (see Materials and Methods). The cell types are 
ordered on the basis of the mean distance, with the most affected cell types shown on the right. The distribution here arises as a result of comparisons of different pairs of 
patients/controls. The lower panels show the predicted cortical layer positions. Multiple correction was done by Benjamini-Hochberg. *P = 0.01 to 0.05. ns, not significant. 
(E) Boxplots showing interindividual gene expression distances (based on Pearson correlation) within control and schizophrenia samples, averaged across all neuronal cell 
types. ****P = 0.00001 to 0.0001. (F) Multidimensional scaling visualization of the similarity of gene expression between all samples, based on the distances shown in (E).
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(34, 35) to calculate robust estimates of compositional changes 
(see Materials and Methods). This analysis confirmed that schizo-
phrenia was linked to a general increase in most subtypes of L2_3_
CUX2 and L5_6_FEZF2 (that includes L4_5_FEZF2_LRRK1) families 
of principal neurons, and a decrease in several interneuron subtypes, 
most notable for those in SST and PVALB families (Fig. 2B and 
fig. S6C), which included subtypes localized in L2-L3 (such as 
SST_CALB1; fig. S6C). Last, to validate compositional changes in 
principal neurons by an independent dataset, we reanalyzed the 
largest bulk transcriptomic dataset of schizophrenia brains in the 
same region—the DLPFC (CommonMind: 353 schizophrenia and 
501 control individuals) (24, 36)—and performed deconvolution of 
neuronal subtypes based on their signatures from our dataset. 
Because of the complexity and the overlapping nature of transcrip-
tomic signatures characterizing fine neuronal subtypes, such ap-
proach could be implemented only for families of principal neurons. 
Deconvolution confirmed that L2_3_CUX2 and L5_6_FEZF2 families 
have increased proportion in the DLPFC of schizophrenia patients 
(fig. S6D). Markers that were used for deconvolution were expressed 
similarly between control and schizophrenia conditions (fig. S6E).

Overall, several approaches led to consistent results for compo-
sitional changes of neuronal subtypes in the DLPFC of schizophrenia 
patients. Compositional data analysis, normalized cell density on 
UMAP, and the fraction of nuclei showed a decrease in SST and 
PVALB families of GABAergic neurons, with the most notable 
change in the upper-layer subtype of SST—SST_CALB1. In addition, 
an increase in abundance of upper-layer principal neurons was shown 
by compositional data analysis and normalized cell density on UMAP, 
and such increase was confirmed by an independent sample set 
from CommonMind using deconvolution.

We then examined the extent to which the transcriptional state 
of different neurons may be altered in schizophrenia. Using an ex-
pression distance measure based on the Pearson linear correlation, 
for each annotated type, we compared the distances between schizo-
phrenia and control samples with the average distance observed 
within schizophrenia and controls. At medium resolution, L2_CUX2_
LAMP5 subfamily of principal neurons and PVALB family of 
GABAergic interneurons showed the largest difference between con-
trol and schizophrenia transcriptomes, based on normalized distance 
in gene expression between conditions for each subtype (Fig. 2C). 
When zooming in further, five individual subtypes with the largest 
expression shifts belonged to neuronal subtypes from the upper 
layers—PVALB_CRH, PVALB_SST, L2_CUX2_LAMP5_PDGFD, 
SST_CALB1, and L2_CUX2_LAMP5_MARCH1 (Fig. 2D).

Schizophrenia is a spectrum disorder with expected high inter-
patient variability (37). Thus, we examined the magnitude of tran-
scriptional differences observed within the control and schizophrenia 
groups. We found that schizophrenia patients showed significantly 
greater interindividual expression variability (Fig. 2E), a trend that 
was pronounced across all neuronal subtypes (fig. S7A). Consistently, 
when visualizing the distances between samples using multidimen-
sional scaling, we found that while controls were grouped closer 
together, the schizophrenia samples were scattered in different 
directions (Fig. 2F). Because large within-group distances may 
occlude the extent to which different neuronal types are affected 
by schizophrenia, we repeated the analysis of transcriptional shift 
magnitudes using a more complex distance measure that quantifies 
changes occurring only along the direction of the overall difference be-
tween schizophrenia and control states (see Materials and Methods). 

Specifically, for each cell type, we first determined a consensus pattern 
of expression differences between schizophrenia and controls. The 
distances between any pair of schizophrenia and control samples 
were then quantified by projecting the samples onto that consensus 
axis and normalized by the distances expected from randomized 
assignment of samples to the control and schizophrenia groups. 
Such analysis revealed lack of significant expression shifts along 
the “common” direction for any neuronal subtype in schizophrenia 
(fig. S7, B and C). Thus, lack of common expression shifts and ex-
tension of schizophrenia samples in multiple directions on multi
dimensional scaling plots suggest that the diversity of schizophrenia 
phenotypes might be grounded in the diversity of transcriptomic 
changes in neuronal subtypes.

Overall, the strongest effect of schizophrenia on compositional 
and transcriptomic changes was attributed to subtypes of principal 
neurons and GABAergic interneurons in L2-L3 of the DLPFC. There 
is a large body of evidence showing extensive evolution of L2-L3 
along the rodent-primate-human axis, mainly for principal neurons 
(38–40). As evolutionary divergence of interneurons is not well 
understood, we quantified the interspecies expression distances based 
on a recent alignment of human, marmoset, and mouse motor cortex 
(41). The analysis showed that ID2 and PVALB subtypes in the 
L2-L3 region have the highest expression divergence in humans 
(fig. S7, D and E). Thus, the hotspot of changes in L2-L3 subtypes 
correlates with the position of the evolutionarily most diverged 
human neuronal subtypes.

Histological analysis revealed density decrease of interneuron 
subtypes in the upper cortical layers in schizophrenia
The largest compositional and transcriptomic changes in schizo-
phrenia were attributed to subtypes of GABAergic interneurons and 
principal neurons in upper layers 2 and 3 of the DLPFC. To further 
investigate this and attempt to bridge previous neurohistological 
studies with our transcriptomic findings, we performed immuno-
histochemical (IHC) characterization of different families of 
GABAergic interneurons across all cortical layers in paraffin-
embedded brain samples, including cases analyzed by snRNA-seq 
(Fig. 3A and table S5). We labeled calretinin-expressing (CR+; en-
coded by the gene CALB2) GABAergic interneurons, the most en-
riched interneuron marker in upper cortical layers in human brain 
(42), and PV-expressing GABA interneurons (PV+; encoded by 
the gene PVALB) and applied the general principal cell marker SMI 
31.1 (the protein product of NEFH and NEFM genes) in 10 schizo-
phrenia and 10 control samples. Calbindin (CB+; encoded by the 
gene CALB1) and neuropeptide Y (NPY+; encoded by the gene NPY) 
GABAergic interneurons were analyzed in a subset of six schizo-
phrenia and six control samples. We applied Nissl staining to this 
subset of samples and calculated total neuronal density in the layers 
of the DLPFC.

On the basis of our transcriptomic data, cells expressing CR mRNA 
represent all VIP subtypes and two ID2 subtypes: ID2_NCKAP5 
and ID2_PAX6 (Fig. 1D). While the density of CR+ interneurons in 
L1 and L3-L6 was similar between the conditions, we found a significant 
decrease explicitly in L2 in schizophrenia (P = 0.0028, Bonferroni-
corrected; Fig. 3, B and C, and table S5F). A conspicuous “L2 low CR 
phenotype” was found in 50% of cases with schizophrenia. The lower 
density of CR+ neurons measured in sections from patients with 
schizophrenia was most probably not due to any volumetric differ-
ences as cortical widths were highly similar in the diagnostic groups 
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Fig. 3. Changes in density and distribution of CR+, PV+, VIP, and ID2 interneuron subtypes in the cortex of patients with schizophrenia. (A) Experimental scheme 
for immunohistochemical (IHC) analysis. (B and C) Representative images and layer-wise IHC quantification of CR+ neurons in the DLPFC in patients with schizophrenia 
(SCZ) and control individuals (CTR); linear mixed model analysis with Bonferroni multiple comparison correction. Scale bars, 100 m. (D) Heatmap showing expression of 
major markers for subgrouping of ID2 and VIP subtypes of GABAergic interneurons. (E and F) Overview of simultaneous CR IHC and smFISH of VIP and CRH mRNAs, and 
representative confocal images for three subgroups of ID2 and VIP subtypes that could be distinguished on the basis of triple CR/VIP/CRH labeling in L2 DLPFC. Scale bars, 
100 mm. (G to I) Quantification of density for CR+/VIP+/CRH+ (VIP_CRH, VIP_ABI3BP, and VIP_TYR), CR+/VIP−/CRH+ (ID2_PAX6), and CR+/VIP−/CRH− (ID2_NCKAP5 and VIP_SSTR1) 
subgroups of ID2 and VIP subtypes; linear mixed model analysis with Bonferroni multiple comparison correction. (J and K) Representative images and layer-wise quanti-
fication of PV+ neurons in the DLPFC in patients with schizophrenia and control subjects; linear mixed model analysis with Bonferroni multiple comparison correction. 
Scale bars, 100 m. Diamonds on all plots represent means; error bars, ±SD.
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(control: 2611 ± 308 m, schizophrenia: 2613 ± 274 m; table S5C). 
No statistically significant interaction between CR+ density and PMI, 
age, or gender was detected. Diameters of CR+ cells did not differ 
significantly in the diagnostic groups (table S5C). Furthermore, there 
was no indication for CR protein-content changes in CR+ neurons 
in schizophrenia based on the labeling intensity of CR+ neurons or 
subtype-specific gene expression data (fig. S7F).

To distinguish VIP and ID2 subtypes and potentially identify 
which of these might account for the observed CR+ density reduc-
tion in the schizophrenic DLPFC, we used single-molecule fluores-
cence in situ hybridization (smFISH) and implemented a set of the 
following markers based on transcriptomic data: CR, VIP, and 
corticotropin-releasing hormone (CRH). We measured the density 
of CR+/VIP+/CRH+ cells, which represent VIP_CRH, VIP_ABI3BP, 
and VIP_TYR subtypes; CR+/VIP−/CRH+ cells, which represent 
the ID2_PAX6 subtype; and CR+/VIP−/CRH− cells, which represent 
ID2_NCKAP5 and VIP_SSTR1 subtypes (Fig. 3, D to F). We con-
firmed that all of these subpopulations were most abundant in 
L2-L3. The triple-positive CR+/VIP+/CRH+ subtype showed reduced 
density in L2 and in L3, suggesting this subtype of CR interneurons 
being the most affected (Fig. 3G). However, these changes were 
not statistically significant when applying Bonferroni correction for 
multiple comparisons (table S5F).

PV+ and CB+ GABAergic interneurons also had subtypes with 
large compositional and transcriptomic changes in the snRNA-seq 
analysis. Although our histological analysis showed a marked re-
duction in the density of PV+ interneurons in L2 in schizophrenia 
(Fig. 3, J and K) and a visible decrease in CB+ interneuron density in 
L2 in schizophrenia (Fig. 4, A and B), the PMI showed a significant 
confounding effect in both cases (P = 8.3 × 10−7 and 4.6 × 10−3, re-
spectively; table S5F). This might be due to inclusion of some high 
PMI samples in histological analyses, due to the lack of low PMI 
samples, whereas snRNA-seq analysis was done exclusively on low 
PMI samples. The histological analysis of NPY+ neurons (repre-
senting mainly the SST_NPY transcriptomic subtype) revealed 
no significant layer-specific differences between diagnostic groups 
(Fig. 4, C and D, and table S5G). Labeling for Nissl and SMI31.1 
showed no statistically significant density reduction in total neuro-
nal or principal neuronal densities, respectively, in any cortical 
layer (Fig. 4, E to H).

Major transcriptomic changes across cortical layers are 
associated with neurotransmission, energy metabolism, 
and protein homeostasis
To gain further insights into the transcriptomic changes in schizo-
phrenia, we calculated differentially expressed genes (DEGs) for each 
subtype between schizophrenia and control samples (figs. S8 and S9; 
complete data on DE for each subtype with all statistical informa-
tion are in Supplementary Dataset Table 1, https://doi.org/10.5281/
zenodo.5810785). Concordant with the snRNA-seq results above, 
higher fraction of DEGs (estimated while controlling for the differ-
ences in the number of the measured nuclei) was dysregulated in 
the upper cortical layer subtypes (Fig. 5A).

To validate neuronal subtype-specific DEGs from snRNA-seq 
data, we selected a gene coding for neurotransmission protein, 
CHRFAM7A, that was prominently expressed across CR+ neuronal 
subtypes and exhibited robust down-regulation in schizophrenia 
(Fig. 5B). CHRFAM7A is a human-specific fusion protein that has 
acetylcholine receptor properties and was proposed to have a unique 

role in schizophrenia (43). Using smFISH, we examined a subset of 
schizophrenia and control DLPFC sections (n = 3 versus 3) to validate 
the changes in expression of CHRFAM7A in CR+ cells in patients 
with schizophrenia. The ratio of L2 CR+CHRFAM7+ to all L2 CR+ 
neurons was decreased by 18% in patients with schizophrenia. Fur-
thermore, expression levels of CHRFAM7 in L2 CR+ neurons were 
reduced in patients with schizophrenia by 77% (Fig. 5, C and D). 
Thus, smFISH analysis further supports our snRNA-seq identification 
of transcriptomic changes in the cortex of patients with schizophrenia.

Although our samples were well balanced with regard of potential 
confounders (figs. S1 and S4), imbalance of medication in the form 
of neuroleptic drugs could not be avoided, as the use of antipsychotics 
is standard among the schizophrenia patients and is not encountered 
in control individuals. To make sure that the patterns of DE are not 
associated with this medication regiment, we analyzed two bulk RNA 
datasets of the DLPFC: one large dataset consisting of ~150 human 
postmortem samples from antipsychotic-positive and antipsychotic-
negative patients (44), and another consisting of ~35 rhesus macaque 
samples that were treated with the antipsychotic clozapine or halo-
peridol or with placebo (36). We overlapped human antipsychotic-
associated or macaque drug treatment–associated DEGs with DEGs 
between control and schizophrenia samples either for all excitatory 
or inhibitory neurons or for each neuronal subtype in our dataset. 
We found that the resulting overlap was negligible (Fig. 5, E to G), 
indicating that the DEGs distinguishing schizophrenia patients from 
controls were likely associated with schizophrenia and not with the 
antipsychotic treatment.

To explore pathways that might underlie schizophrenia-related 
changes in neuronal function, we extracted top up/down-regulated 
genes for each subtype and calculated enrichment for Gene Ontology 
(GO) terms (Supplementary Dataset Table 2, https://doi.org/10.5281/
zenodo.5810785). The most significant GO terms down-regulated 
were related to energy metabolism and protein biogenesis and local-
ization [see top 3 GO terms per subtype (or fewer if there are <3 
significant GO terms) in Fig. 5H and the complete list in fig. S10]. 
In contrast, up-regulated genes were enriched for functionally rele-
vant pathways, which were related to neurotransmission, plasticity, 
and developmental processes [see top 3 GO terms per subtype 
(or fewer if there are <3 significant GO terms) in Fig. 5I and the 
complete list in fig. S11]. Schizophrenia-induced down-regulation 
of energy metabolism and protein biogenesis pathways and up-
regulation of neurotransmission and plasticity pathways point to 
the impairment of energy supply and protein synthesis in affected 
neuronal subtypes and aberrant activity of neuronal networks in 
schizophrenia. We noted that the up-regulation of neurotransmission 
and plasticity GO terms and down-regulation of energy metabolism 
and protein synthesis GO terms similarly affected a large group of 
neuronal subtypes, mainly upper-layer GABAergic interneurons and 
L2_3_CUX2 and L5_6_FEZF2 families of principal neurons (fig. S12, 
A and B, for families and fig. S12, C and D, for subtypes). Clustering 
of GO terms by their enrichment level in each of the subtypes re-
vealed groups of subtypes with similar enrichment patterns, which 
suggest them being in the same neuronal network. Thus, there were 
some upper layer–specific networks, for instance, upper-layer VIP_
ABI3BP GABAergic interneurons clustered with L2_3_CUX2_
LAMP5_PDGFD (fig. S12E) and upper-layer SST_CALB1 clustered 
with L2_3_CUX2_LAMP5_PDGFD, upper-layer PVALB_SST with 
L2_3_CUX2_FREM3_SV2C and L2_3_CUX2_FREM3_UNC5D, 
and upper-layer PVALB_CRH with ID2_LAMP5_NOS1 (fig. S12F). 

https://doi.org/10.5281/zenodo.5810785
https://doi.org/10.5281/zenodo.5810785
https://doi.org/10.5281/zenodo.5810785
https://doi.org/10.5281/zenodo.5810785
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Fig. 4. Changes in density and distribution of CB+and NPY+ interneurons and excitatory neurons in the DLPFC in schizophrenia. (A and B) Representative immuno-
histochemical (IHC) images and layer-wise quantification of GABAergic interneurons that express CB in the DLPFC in patients with schizophrenia and control subjects. 
(C and D) Representative IHC images and layer-wise quantification of GABAergic interneurons that express NPY neurons in the DLPFC in patients with schizophrenia and 
control subjects. (E and F) Representative IHC images and layer-wise quantification of Nissl-labeled neurons in the DLPFC in patients with schizophrenia and control 
subjects. (G and H) Representative IHC images and layer-wise quantification of principal neurons labeled by SMI31.1 in the DLPFC in patients with schizophrenia and 
control subjects. Diamonds on all plots represent means; error bars, ±SD. Analysis of cell densities on (B), (D), (F), and (H) was done using linear mixed model analysis with 
Bonferroni multiple comparison correction.
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Fig. 5. Schizophrenia-associated changes in the DEGs and pathways. (A) Fraction of all DEGs with predicted cortical layer positions below. Line inside the box rep-
resents median, and lower and upper hinges of the box correspond to the first and third quartiles. Upper and lower whiskers correspond to the smallest and the largest 
values. (B) Expression levels of CHRFAM7A across neuronal subtypes in the DLPFC identified by snRNA-seq. CR+ subtypes are highlighted in blue; P values were estimated 
by Wald test in DESeq2, multiple comparison correction by the Benjamini-Hochberg method. Diamond represents median. (C) Representative images for detection of 
CHRFAM7A mRNA in L2 CR+ neurons of schizophrenia and control subjects. Scale bars, 20 m. (D) Quantification of proportion of L2 CR+ neurons that colocalize with 
CHRFAM7A mRNA in schizophrenia and control DLPFC (n = 3 control + 3 schizophrenia, means ± SD) and CHRFAM7A mRNA levels in L2 CR+ neurons. (E) DEGs were 
determined for antipsychotic-positive (100) and antipsychotic-negative (47) bulk RNA-seq samples for the DLPFC of schizophrenia patients. Overlap between antipsychotic-
associated DEGs and DEGs for control versus schizophrenia in our snRNA-seq dataset was identified by hypergeometric test. Benjamini-Hochberg–adjusted P values. 
(F and G) DEGs were determined for placebo versus haloperidol/clozapine bulk RNA-seq samples for the DLPFC of rhesus macaque (n = 34). Overlap between drug treatment 
DEGs and DEGs for control versus schizophrenia in our snRNA-seq dataset was identified by hypergeometric test. Benjamini-Hochberg–adjusted P values. (H and I) List of 
GO terms significantly enriched in the set of top down- and up-regulated genes in the neuronal subtypes from schizophrenia DLPFC, compared to controls. Top 3 GO 
terms by adjusted P value per each cell type are shown. Colored by neuronal subtype. UL, upper layers. UL GO terms are in bold. Bonferroni-adjusted P values are shown. 
Dotted line represents P value significance cutoff. The full list of significant GO terms is in figs. S10 and S11.
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In addition, cross-layer networks were also detected, such as a large 
cluster of PVALB, ID2, and VIP GABAergic neurons with L4_5 
principal neuron subtypes (fig. S12E). These results highlight tran-
scriptional disturbances across different neuronal subtypes that are 
potentially organized in local upper-layer networks or longer-range 
networks spanning upper and lower layers in the human DLPFC.  
These cortical network disturbances most probably contribute to 
neuropsychiatric symptoms of schizophrenia.

In addition, we checked the expression of neurotransmitter re-
ceptors that have been proposed to contribute to schizophrenia-
associated phenotypes or to be targets of frontline antipsychotic drugs 
(45, 46)—dopamine receptor DRD2, GABA receptor GABRA1, 
kainate-type glutamate receptor GRIK3, N-methyl-d-aspartate 
(NMDA)–type glutamate receptors GRIN2A and GRIN2C, and 
oxytocin receptor OXTR (fig. S12G). Among these, GABRA1 expres-
sion was decreased in SST_TAC3, SST_STK32A, and PVALB_CRH; 
GRIN2A expression was down-regulated in PVALB_CRH, while de-
creased OXTR expression was detected in SST_NPY (adjusted for 
multiple hypotheses) (fig. S12G). We also noted that these receptor 
genes were expressed from few to several neuronal subtypes. Modu-
lation of these target receptors has a beneficial effect on target 
neuronal subtypes misexpressing these receptors in schizophrenia. 
However, undirected delivery of modulators can potentially influ-
ence other nonaffected neuronal subtypes, further increasing the 
complexity of neuronal perturbations in schizophrenia.

Footprint-based analysis of transcription factor enrichment 
identified schizophrenia-related transcriptional regulators
To infer transcription factor activity from snRNA-seq data, we used 
the DEGs between schizophrenia and control samples as the potential 
transcription factor targets and the regulon database obtained from 
DoRothEA (47). We performed enriched regulon analysis using the 
aREA algorithm, which is implemented within the VIPER package 
(48) using the z scores from DEGs. We estimated the expression 
of 267 unique transcription factors across all cell types, which were 
further analyzed with hierarchical clustering to identify differentially 
enriched regulators associated with schizophrenia (Fig. 6, A and B; 
see fig. S13 for the complete heatmap). Our analysis revealed a 
number of transcription factors that had been already linked to 
schizophrenia by genome-wide association study (GWAS) analyses, 
including TCF4, PRDM14, ASCL1, POU5F1, TEAD1, ZEB2, and 
FOXP1 (49–52). Some of the identified factors with the highest and 
lowest enrichment scores (TCF4, ASCL1, ZEB2, HIF1A, and LHX2) 
were highlighted in the study of another area of the prefrontal cortex, 
BA10, of patients with schizophrenia by snRNA-seq (53), thus 
validating our data. The basic helix-loop-helix transcription factors 
TCF4 and ASCL1 are considered to be important susceptibility factors 
in schizophrenia involved in cortical neurogenesis, maturation, and 
neuronal migration (54, 55), and both of them were positively en-
riched in a cluster of upper and lower cortical layer subtypes (Fig. 6B). 
In addition, clusters of SST interneuron subtypes and upper-layer 
L2_3_CUX2 principal neuron subtypes showed negative enrichment 
in HIF1A, a hypoxia factor connected to impairments in brain mor-
phology and abnormal nervous system development (54), and two 
factors important for lipid biosynthesis and antipsychotic response, 
SREBF1 and SREBF2 (56) (Fig. 6A). Moreover, SST neurons showed 
an increase in ZEB2 and FOXP1, both transcription factors identified 
by GWASs associated with structural brain abnormalities (57–59). 
Overall, the analysis of transcription factor networks confirms 

the relevance of the identified pathways to neurodevelopmental 
impairments and schizophrenia. Misexpression of transcriptional 
regulators could contribute to the perturbations of neuronal circuits 
in schizophrenia.

Integration of single-nucleus transcriptomics and genetics 
data supports relevance of transcriptomic changes 
to schizophrenia
To provide further support for relevance of transcriptomic changes 
identified in our study to schizophrenia, we integrated snRNA-seq 
data with several datasets containing genes previously associated 
with schizophrenia and other mental disorders. We first preformed 
hypergeometric testing to identify significant overlaps between DEGs 
in our dataset with genes relevant for schizophrenia from the Dis-
GeNET database (60). This analysis identified SST GABAergic neu-
rons, upper-layer subtypes of PVALB and VIP GABAergic neurons, 
and principal neurons belonging mainly to L2_3_CUX and L5_6_
FEZF2 families as the subtypes with the most significant enrichment 
of DEGs in schizophrenia-linked genes (Fig. 6C). We also performed 
such analysis for autism spectrum disorder genes from the Simons 
Foundation Autism Research Initiative (SFARI) database, which 
showed similar results (Fig. 6D), emphasizing commonalities in 
neuronal network impairments between schizophrenia and autism 
spectrum disorder. Integration of our snRNA-seq data with the 
largest schizophrenia GWAS dataset (61) selectively identified the 
L2_CUX2_LAMP5_PDGFD subtype in the upper cortical layers as 
having enrichment in schizophrenia GWAS genes (Fig. 6E). Overall, 
the genetic data strongly correlate with the snRNA-seq analysis 
results, thus further indicating the relevance of the changes identi-
fied in our study to impairments in brain function associated with 
mental disorders.

Spatial transcriptomics confirmed perturbations in the 
upper cortical layers
To enhance the spatial resolution and further validate schizophrenia-
related transcriptomic and compositional alterations in the DLPFC, 
we used the Visium spatial transcriptomics assay (Fig. 7A). We 
analyzed seven schizophrenia and seven control donors previously 
included in our snRNA-seq and histology cohorts (tables S1, S2, 
and S6). Changes in gene expression identified by spatial transcrip-
tomics overlapped with previously detected gene expression changes 
in snRNA-seq data, in particular, in the upper layers (Fig. 7B; fig. S12, 
H and I; and Supplementary Dataset Tables 3 and 4, https://doi.
org/10.5281/zenodo.5810785). The overlapping GO terms fall within 
important groups of neurotransmission, synapse organization, and 
metabolism, thus highlighting physiologically relevant commonalities 
of the spatial and single-nucleus transcriptomic readouts. We further 
analyzed DEGs identified by spatial transcriptomics and noticed a 
hotspot of transcriptomic changes in the upper layers of the cortex, 
showing GO terms related to cognition, neurodevelopment, and neuro-
transmission, whereas differential pathways in the lower layers were 
much less prominent (Fig. 7, C and D; fig. S12, J and K; and Supple-
mentary Dataset Table 4, https://doi.org/10.5281/zenodo.5810785), 
which was consistent with our snRNA-seq results. We also noted 
possible perturbations of glia, because in the spatial analysis all cell 
types of the DLPFC are present (Supplementary Dataset Table 4, 
https://doi.org/10.5281/zenodo.5810785), giving us even further 
insights into the high complexity of schizophrenia at the spatial 
tissue level.

https://doi.org/10.5281/zenodo.5810785
https://doi.org/10.5281/zenodo.5810785
https://doi.org/10.5281/zenodo.5810785
https://doi.org/10.5281/zenodo.5810785
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Spatial analysis confirmed our earlier estimates of layer-specific 
distribution of principal neurons and preferential localization of 
GABAergic interneurons (Fig. 7E and fig. S14). We validated com-
positional changes of a subset of principal and GABAergic neurons 
with a larger effect on the upper cortical layers compared to the lower 
layers (Fig. 7F). These findings further substantiate our previous 
snRNA-seq and histological observations of the perturbation of 
upper cortical layer neurons in schizophrenia. The overview of our 
findings summarizing the major transcriptomic and compositional 
changes in the DLPFC in schizophrenia is shown in Table 1.

DISCUSSION
We present a comprehensive study identifying cortical neuronal 
subtypes affected in schizophrenia. We detected differential changes 
in neuronal subtypes deriving mainly from the upper cortical layers. 
Combining all of the assessments of neuronal subtypes performed 

in this study, we conclude that subtypes of GABAergic interneurons 
and principal neurons in the upper cortical layers have the largest 
changes in schizophrenia, and thus are likely to have the strongest 
contribution to schizophrenia phenotype. Such hotspot of changes 
in layer 2 and 3 subtypes may underlie the human nature of schizo-
phrenia, because upper layers are the most expanded cortical layers 
in the human cortex (38) and have increased morphological, tran-
scriptomic, and functional complexity along the rodent-primate-
human axis (39, 40). Accordingly, our data and earlier studies (62) 
show that layers 2 and 3 of the human cortex exhibit the highest 
complexity of GABAergic interneurons, which also have the largest 
divergence from their rodent and monkey counterparts.

Such a hotspot of schizophrenia-associated changes in the upper 
cortical layers might arise during cortical development. Upper cortical 
layer principal neurons in the DLPFC start intensive differentiation 
during the third trimester (63). At the same developmental period, 
GABAergic interneurons that are destined for the upper cortical 

Fig. 6. Transcription factor networks in schizophrenia and enrichment of DEGs in genetic association with schizophrenia. (A and B) Transcription factor (TF) enrichment 
in DEG genes was estimated based on the z score of the DEGs and was normalized for the purpose of hierarchical clustering. Overall, expression of 267 unique transcription 
factors across all cell types was estimated, which were further analyzed with hierarchical clustering to identify differentially enriched regulators associated with schizo-
phrenia (see fig. S13 for the complete heatmap). NES, Normalized enrichment score. (C and D) Hypergeometric testing to identify significant overlap between DEGs in our 
dataset with genes relevant for schizophrenia from the DisGeNET database (60) and from the SFARI database. Black dotted line indicates P value cutoff. P values were adjusted 
using Bonferroni correction. (E) Linkage disequilibrium score regression analysis to estimate correlation between DEGs and with the largest schizophrenia GWAS dataset 
(61). L2_CUX2_LAMP5_PDGFD subtype (marked in red) showed significant correlation after adjusting P value by Bonferroni correction. Dotted line, significance cutoff.
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Fig. 7. Spatial transcriptomics analysis identified local transcriptional and compositional perturbations. (A) Experimental scheme for spatial transcriptomics. 
(B) Individual GO terms in neuronal subtypes in the DLPFC of patients with schizophrenia that were enriched in up-regulated genes in both snRNA-seq and spatial tran-
scriptomics data. GO term P values were Benjamini-Hochberg–corrected. (C and D) Clusters of GO terms in neuronal subtypes in the DLPFC of patients with schizophrenia 
that were enriched in up/down-regulated genes in spatial transcriptomics data. Visium spots were aggregated by cortical layer (L1-L6) for DE analysis. P values represent 
Bonferroni-corrected values of 0.05 or lower. (E) Spatial location of a selected set of neuronal cell types in Visium data. The location was estimated using Stereoscope cell 
subtype deconvolution from Visium mini-bulk data. Subtype location largely recapitulates expected spatial distribution demonstrated in Fig. 1E. Fractions of deconvoluted 
cell subtypes per Visium spot are shown on top of the representative tissue slice. Neuronal subtypes correspond to subtypes identified using snRNA-seq in Fig. 1B. Non-neuronal 
cell types were predicted using Allen Institute Cell Types Database: RNA-Seq Data Human M1 - 10x Genomics reference dataset (84). The detailed location of all subtypes 
across all samples is demonstrated in fig. S14. (F) Changes in neuronal composition in the DLPFC of patients with schizophrenia that were identified in the spatial tran-
scriptomics data. Normality was tested using Shapiro-Wilk test, and equality of variances was tested using Levene’s test. As part of the data was not normally distributed, 
independent two-group Mann-Whitney U test was used to test significance of differences for all group pairs. Multiple comparison correction was done using the 
Benjamini-Hochberg method. Line inside the box represents median, and lower and upper hinges of the box correspond to the first and third quartiles. Upper and lower 
whiskers correspond to the smallest and the largest values, and not more than 1.5× interquartile range.
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layers arrive and spread (64). Human cortical development at late 
gestation period is characterized by large-scale transcriptomic transition 
from embryonic to mature neuron transcriptome (65), which includes 
reshaping of the transcriptome involved in neuronal differentiation 
and maturation (65, 66). Thus, any sort of dysfunction that may arise 
from genetic variance or environmental perturbation could have 
long-lasting and severe consequences, which might manifest at the 
cortical network level. It is important to note that upper cortical 
layer neurons have a highly protracted synaptic spine overproduc-
tion within cortico-cortical circuitries, where final synaptic removal 

coincides with the appearance of schizophrenia symptoms (67). There-
fore, our data support the theory that schizophrenia-associated devel-
opmental events occur in the DLPFC during late gestation due to the 
disturbed arrival and integration of GABAergic interneurons into 
the cortical circuitry and differentiation of principal neurons.

Our work also highlights the possible role of a hitherto less well-
characterized interneuron family, the CR+ neurons, in the etiology 
of schizophrenia. Our study is the first to demonstrate the “layer 2 
low CR cellular phenotype” in schizophrenia. The involvement of 
this interneuron family in schizophrenia is particularly intriguing, 

Table 1. The summary of major compositional and transcriptomic changes in the DLPFC of schizophrenia patients. For major compositional changes: 
decrease (↓) or increase (↑) [from low change (one arrow) to high change (three arrows)] of neuronal subtypes; based on compositional data analysis (Fig. 2B 
and fig. S6C), fraction of nuclei (fig. S6, A and B)—snRNA-seq column, immunohistochemistry (IHC) (Figs. 3 and 4), bulk deconvolution analysis (fig. S6D), and 
Visium (Fig. 7 and fig. S14). For major transcriptomics changes: from low (+) to high change (+++); based on expression distance (Fig. 2, C and D), pathways 
(Fig. 5, H and I, and figs. S8 to S12), transcription factor networks (Fig. 6, A and B, and fig. S13)—snRNA-seq column, and Visium (Fig. 7). n.a., not available; n.s., 
not significant. 

Type of 
measurement Subtypes

snRNA-seq
IHC Bulk 

deconvolution VisiumCompositional 
data analysis Fraction of nuclei

Major compositional 
changes

SST interneurons ↓↓↓ ↓↓

n.a. n.a.

n.s.

  SST_CALB1 
(L2-L3) ↓↓↓ ↓↓ n.s.

  SST_STK32A 
(L3-L4) ↓↓ ↓↓ n.s.

  SST_NOS1 (L3) ↓↓ ↓ n.s.

PV interneurons ↓ ↓ n.s. n.a. n.s.

VIP interneurons ↓ n.s. ↓* n.a. n.s.

L2_3_CUX2_FREM3 
principal neurons ↑↑ n.s.

n.a. ↑†

n.s.

  L2_3_CUX2_
FREM3_SV2C ↑↑ n.s. n.s.

  L2_3_CUX2_
FREM3_UNC5D ↑↑ n.s. n.s.

L4_5_FEZF2_LRRK1 
principal neurons ↑↑ n.s. n.a. ↑† n.s.

Major transcriptomic 
changes

Subtypes
snRNA-seq

VisiumExpression 
distance Pathways TF networks Genetics

SST interneurons ++ ++ ++ +++
n.a.  SST_CALB1 

(L2-L3) +++ ++ +++ ++

PV interneurons +++ +++ +++ ++

n.a.
  PVALB_CRH 

(L2-L3) +++ +++ +++ ++

  PVALB_SST 
(L2-L3) +++ + ++ +

L2_CUX2_LAMP5 
principal neurons +++ ++ +++ +++ +++‡

  L2_CUX2_
LAMP5_PDGFD +++ +++ +++ +++ +++‡

  L2_CUX2_
LAMP5_MARCH1 +++ + +++ ++ +++‡

*Labeled as CR-positive GABAergic neurons; for correspondence of CR expression (gene CALB2) with Vip expression (gene VIP), see Fig. 3D.     †Analyzed at 
family level, L2_3_CUX2 and L5_6_FEZF2.     ‡Based on layer-wise analysis.
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because there are data showing that this neuron class became the 
dominant GABAergic population in the primate prefrontal cortex 
(42). In rodents, CR+ neurons represent 2 to 3% of the total neuronal 
pool, whereas in the monkey and human prefrontal cortex their 
proportion can extend to 15% of total neurons. The fact that only 
50% of schizophrenia cases manifested this low CR pattern offers the 
possibility of distinct cellular and molecular phenotypes existing in 
different types and stages of schizophrenia. High interindividual 
variability of gene expression found in patients with schizophrenia 
in our study also confirms the heterogeneity of schizophrenia present 
at the transcriptomic level.

Upper cortical layer neurons were reported to be the most affected 
in an snRNA-seq study of another psychiatric disorder: autism spec-
trum disorder (68). Our genetic integration analysis also showed an 
enrichment of autism spectrum disorder–associated gene expression 
in DEGs of upper-layer neuronal subtypes, in particular GABAergic 
interneurons. Thus, the resemblance of the effect of schizophrenia 
and autism on upper-layer cortical layers may indicate a particular 
vulnerability of upper-layer neuronal circuits to psychiatric disorders.

Our work also shows that schizophrenia-associated changes do 
not affect only a selected family of neurons but involve multiple 
neuronal subtypes, indicating a general network impairment. This 
widespread impact is manifested by the orchestrated down-regulation 
of energy metabolism and up-regulation of neurotransmission genes 
across multiple subtypes of principal neurons and GABAergic inter-
neurons spanning mainly upper cortical layers with involvement of 
FEZF2 principal neurons from lower layers. Similar changes have 
been previously noted in association with mental disorders based 
on genetics and bulk transcriptomics studies (5, 65, 69). These 
general impairments during schizophrenia could arise from dysreg-
ulation of transcription factor expression affecting many neuronal 
subtypes, and we identified potential regulons that could contribute 
to such dysregulation.

Our study also points toward challenges in the current and pro-
spective schizophrenia treatments. We show that instead of a few 
single neuronal subtypes or genes, schizophrenia-associated changes 
include a complex circuitry with multiple neuronal subtypes and 
intracellular signaling networks. Thus, therapies directed at a single 
specific protein or cell subtype might be ineffective. We also show a 
number of transcription factors being misexpressed in schizophrenia. 
Regulons that are associated with these transcription factors could 
underlie the phenotype in schizophrenia, which could be established 
during brain development and circuit maturation. Future strategies 
to identify previously unknown targets for schizophrenia therapy 
might focus on identifying central hubs in transcriptomic networks 
across the overarching schizophrenia-associated circuit and design-
ing ways to specifically affect these hubs during circuit maturation.

Throughout our analysis, we observed a prevailing impairment 
of neuronal subtypes residing in the upper layers of the cortex, which 
involves subtypes of GABAergic neurons from all four families—
PVALB, SST, VIP, and ID2—and L2_3_CUX2 subtypes of principal 
neurons; additionally, several subtypes of L4_6_FEZF2 principal 
neurons (most of them—L4_5_FEZF2_LRRK1) showed significant 
compositional and transcriptomic changes. It is known that upper 
layers receive information from other cortical and subcortical areas 
(70) and are critical for human cognition (71), while lower layer 
principal neurons are known to transmit information projecting to 
other regions of the brain. Overall, schizophrenia-associated brain 
circuits might include a large assembly of neuronal circuitry that sends 

information into the cortex, where it is received, transformed, and 
forwarded to other cortical and subcortical regions. Connectivity 
studies certainly show the central position of the prefrontal cortex 
within the schizophrenia-associated circuitry, showing impaired con-
nectivity between the prefrontal cortex and, for instance, the amygdala 
(72) and striatum (73, 74). Therefore, the upper-layer neuronal net-
work in the prefrontal cortex might be the central player that under-
lies impairment of information transfer in schizophrenia. While 
involvement of both cortical GABAergic and principal neurons in 
schizophrenia has been known for decades, our work pinpoints 
specific upper cortical layer GABAergic and principal neuron sub-
populations manifesting the most marked transcriptomic changes. 
The DE reported at subtype-specific resolution provides targets in 
case of receptor signaling, metabolic, and other pathways for future 
mechanistic approaches that will aim to dissect the developmental 
mechanisms of schizophrenia. Last, because current single-cell data-
sets to study human disorders are relatively small (because of scarcity 
of good quality material required for snRNA-seq, lack of detailed 
patient history, high costs, etc.), some of the changes in cell type 
abundance and transcriptomics may derive from biological covariates, 
such as medication, comorbidities, lifestyle, and environmental fac-
tors. Thus, future studies with larger sets of samples with extensive 
patient history information that are stratified on the basis of known 
covariates should be established to provide more definite answers 
on the impact of each biological covariate on cell type abundance 
and transcriptomics.

MATERIALS AND METHODS
Summary for software and tools implemented in the study
See Table 2 for the details.

Human subjects
Postmortem human brain tissue was provided by the Netherlands 
Brain Bank (NBB) Netherlands Institute for Neuroscience, Amsterdam 
(open access: www.brainbank.nl), the Oxford Brain Bank (OBB), the 
Human Brain Tissue Bank (HBTB; Semmelweis University, Hungary), 
and the Newcastle Brain Bank, UK (Newcastle). The experiments 
were approved by the Ethical Committee in the Capital Region of 
Denmark, the Committee of Science and Research Ethics of the 
Ministry of Health, Hungary, and the Regional Committee of 
Science and Research Ethics of Semmelweis University. Clinical diag-
nosis of schizophrenia was based on  The Diagnostic and Statistical 
Manual of Mental Disorders (DSM), Third and Fourth Editions. 
Cases without history of psychiatric disorders were included as con-
trols. All material was collected from donors from whom written in-
formed consent had been obtained by the NBB, OBB, HBTB, or 
Newcastle for brain autopsy and use of material and clinical infor-
mation for research purposes. To form the sample set for our study, 
we aimed to select samples to avoid variability in age, PMI, and other 
major confounders, which could increase the noise and mask bio-
logically relevant data. The demographic characteristics of the cohort 
are shown in tables S1, S2, and S6. Sampling was done by assistants 
of the NBB, OBB, HBTB, and Newcastle supervised by trained neu-
ropathologists. Both paraffin-embedded sections and fresh-frozen tis-
sue blocks were provided from the DLPFC (BA9).

The samples that were used for each type of the analysis are indi-
cated in table S2. Although most samples were used for both 
snRNA-seq and IHC, few samples were studied only by one of these 

http://www.brainbank.nl
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methods, because of the limited availability of tissue in brain banks 
or the availability of only fresh-frozen or only formalin-fixed tissue. 
Some samples had too high PMI to study them for transcriptomics 
and thus were studied only by histology. All samples for spatial 
transcriptomics were also analyzed by snRNA-seq.

The schizophrenia and control groups were balanced with respect 
to multiple other characteristics, including sex, medication, and 
smoking (fig. S1). Nevertheless, some covariates cannot be completely 
separated in observational data, for instance, due to the current 
standards of treatment, and patient lifestyle or medication can 
potentially influence gene expression in neuronal cell types.

Nucleus isolation
Whenever possible, schizophrenia and control samples were pro-
cessed in parallel, two samples per experiment. Tissue was removed 
from −80°C and placed in a 1-ml Dounce homogenizer with 1 ml of 
chilled homogenization buffer [250 mM sucrose, 25 mM KCl, 5 mM 
MgCl2, 10 mM tris (pH 8.0), 1 mM dithiothreitol (DTT), 1× protease 
inhibitor (Roche, 11873580001), ribonuclease (RNase) inhibitor 
(0.4 U/l; Takara, 2313B), SUPERase·In (0.2 U/l; Invitrogen, AM2696), 
and 0.1% Triton X-100] on ice. Tissue was homogenized with 
5 strokes of loose pestle and 15 strokes of tight pestle. Homogenate 
was filtered through a 40-m cell strainer and spun down at 1000g 
for 8 min at 4°C. The pellet was gently resuspended in a homogeni-
zation buffer with the final volume of 250 l on ice. Suspension was 
mixed with 250 l of 50% iodixanol solution [25 mM KCl, 5 mM 
MgCl2, 10 mM tris (pH 8.0), 50% iodixanol (60% stock from 
STEMCELL Technologies, 7820), 1× protease inhibitor (Roche, 
11873580001), RNase inhibitor (0.4 U/l; Takara, 2313B), SUPERase·In 
(0.2 U/l; Invitrogen, AM2696), and 1 mM DTT] and overlaid on 
top of 29% iodixanol solution [25 mM KCl, 5 mM MgCl2, 10 mM tris 
(pH 8.0), 29% iodixanol, 1× protease inhibitor (Roche, 11873580001), 
RNase inhibitor (0.4 U/l; Takara, 2313B), SUPERase·In (0.2 U/l; 
Invitrogen, AM2696), and 1 mM DTT] in the ultracentrifuge tube 
(Beckman Coulter, 343778) on ice. Gradients were spun down in 
the ultracentrifuge (Beckman Coulter, MAX-XP) using a swing 
bucket rotor (Beckman Coulter, TLS 55) at 14,000gmax for 22 min at 
4°C with slow acceleration and deceleration. Following, supernatant 
was carefully removed, and pellets were resuspended in ice-cold bo-
vine serum albumin (BSA) solution [1× phosphate-buffered saline 
(PBS) (AM9625, Ambion), 0.5% BSA (VWR, 0332-25G), 1 mM DTT, 
2.4 mM MgCl2, and RNase inhibitor (0.2 U/l; Takara, 2313B)] 
and incubated on ice for 15 min for blocking. Suspension was split 
into experimental and fluorescence-activated cell sorting (FACS) 
control (isotype control, negative control, 7-Aminoactinomycin D 
(7AAD) only control, and NeuN-only control) samples. Experi-
mental sample and NeuN-only control were stained with antibody 
against the neuronal marker NeuN (Merck Millipore, MAB3777x, 
1 g/l) at 1:1890 dilution for 10 min at 4°C protected from light. 
Isotype control was stained using control antibody (STEMCELL 
Technologies, 60070AD.1, 0.2 g/l) at 1:378 dilution for 10 min 
at 4°C protected from light. Following, 1 ml of BSA solution was 
added, and suspensions were mixed and centrifuged for 10 min at 
1000g at 4°C using a swing bucket rotor. Pellets were resuspended 
and filtered through 35-m strainers. Experimental sample, iso-
type control, and 7AAD-only control were supplemented with 
0.75 l of 7AAD (1 mg/ml) per 0.5 ml of suspension. FACS was 
done using a BD FACSAria III sorter using a 75-m nozzle and con-
trolled by BD FACSDiva 8.0.1 software. Compensations were done 
on the basis of single-color controls. Gates were set on the basis of 
FACS controls. Nuclei were selected on the basis of FSC-A/SSC-A 
gate, doublets were removed using FSC-W/FSC-H and SSC-W/
SSC-H gates, nuclei were further selected on the basis of 7AAD 
staining, and neuronal nuclei were sorted on the basis of NeuN 

Table 2. Summary for software and tools implemented in the study.  

Software and tools Source Identifier

BD FACSDiva BD 8.0.1

FCS Express 7 Plus De Novo Software v7.04.0014

Cellranger 10x Genomics v3.1.0

Interop Illumina v1.1.10

bcl2fastq Illumina 2.20.0

pagoda2
https://github.com/

kharchenkolab/
pagoda2

v0.1.1

Conos https://github.com/
kharchenkolab/conos v1.2.1, dev

R www.r-project.org/ 3.5.3, 4.0.2

RStudio https://rstudio.com/ 1.2.1335

Zen Zeiss 2.3

FIJI https://imagej.net/Fiji 1.52p

Loupe Browser 10x Genomics v4.1.0

spaceranger 10x Genomics v1.1.0

Seurat https://satijalab.org/
seurat/ v3.1.4, v3.2.012

DoRothEA https://github.com/
saezlab/dorothea v1.5

VIPER https://bioconductor.
org/packages/viper/ v1.26.0

CELLEX https://github.com/
perslab/CELLEX v1.2.1.

CELLECT https://github.com/
perslab/CELLECT v1.3.0

MuSiC https://xuranw.
github.io/MuSiC v0.1.1

ggplot2

www.
rdocumentation.org/

packages/ggplot2/
versions/3.3.2

v3.3.2

ggthemes

www.
rdocumentation.org/
packages/ggthemes/

versions/3.5.0

v3.5.0

nlme

www.
rdocumentation.org/

packages/nlme/
versions/3.1-150

v3.1-150

multcomp

www.
rdocumentation.org/
packages/multcomp/

versions/1.4-14

v1.4-14

emmean
https://cran.r-project.
org/web/packages/

emmeans/index.html
v1.7.3

https://github.com/kharchenkolab/pagoda2
https://github.com/kharchenkolab/pagoda2
https://github.com/kharchenkolab/pagoda2
https://github.com/kharchenkolab/conos
https://github.com/kharchenkolab/conos
http://www.r-project.org/
https://rstudio.com/
https://imagej.net/Fiji
https://satijalab.org/seurat/
https://satijalab.org/seurat/
https://github.com/saezlab/dorothea
https://github.com/saezlab/dorothea
https://bioconductor.org/packages/viper/
https://bioconductor.org/packages/viper/
https://github.com/perslab/CELLEX
https://github.com/perslab/CELLEX
https://github.com/perslab/CELLECT
https://github.com/perslab/CELLECT
https://xuranw.github.io/MuSiC
https://xuranw.github.io/MuSiC
http://www.rdocumentation.org/packages/ggplot2/versions/3.3.2
http://www.rdocumentation.org/packages/ggplot2/versions/3.3.2
http://www.rdocumentation.org/packages/ggplot2/versions/3.3.2
http://www.rdocumentation.org/packages/ggplot2/versions/3.3.2
http://www.rdocumentation.org/packages/ggthemes/versions/3.5.0
http://www.rdocumentation.org/packages/ggthemes/versions/3.5.0
http://www.rdocumentation.org/packages/ggthemes/versions/3.5.0
http://www.rdocumentation.org/packages/ggthemes/versions/3.5.0
http://www.rdocumentation.org/packages/nlme/versions/3.1-150
http://www.rdocumentation.org/packages/nlme/versions/3.1-150
http://www.rdocumentation.org/packages/nlme/versions/3.1-150
http://www.rdocumentation.org/packages/nlme/versions/3.1-150
http://www.rdocumentation.org/packages/multcomp/versions/1.4-14
http://www.rdocumentation.org/packages/multcomp/versions/1.4-14
http://www.rdocumentation.org/packages/multcomp/versions/1.4-14
http://www.rdocumentation.org/packages/multcomp/versions/1.4-14
https://cran.r-project.org/web/packages/emmeans/index.html
https://cran.r-project.org/web/packages/emmeans/index.html
https://cran.r-project.org/web/packages/emmeans/index.html
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staining. Nuclei were kept at 4°C during FACS and sorted into 5 l 
of BSA solution at 4°C. Nuclei were processed directly for 10x 
library preparation. A complete detailed protocol is available at 
https://singlecell.ku.dk/protocols/.

Representative FANS plots in fig. S2A were prepared using FCS 
Express 7 Plus v7.04.0014 (De Novo Software). For confirmation of 
negligible amount of neuronal nuclei in NeuN− fraction, see our 
previous report (30).

Samples MB8 and MB8-2 derive from the same patient. Nuclei 
isolation from separate pieces of cortex and 10x Genomics library 
preparation were done twice for this patient.

10x library preparation and sequencing
Chromium Single Cell 3′ Reagent Kits v3 (10x Genomics, PN-1000075) 
were used for library preparation according to a standard protocol. 
In brief, nuclei were counted under microscope, mixed with reverse 
transcription mix, and partitioned together with v3 Gel Beads on 
Chromium Chip B (10x Genomics, PN-1000073) into Gel Beads-
in-emulsion (GEMs) using Chromium Controller (10x Genomics, 
PN-120223). Following reverse transcription, samples were frozen 
at −20°C. Within a week, samples from several 10x runs were pro-
cessed together for complementary DNA (cDNA) cleanup and pre-
amplification [12 polymerase chain reaction (PCR) cycles]. After 
SPRIselect cleanup, cDNA was quantified and frozen at −20°C. In 
general, the same quantity of cDNA was used during fragmenta-
tion, end-repair, and A-tailing for most samples. Following, fragments 
were cleaned up using SPRIselect reagent and processed through 
steps of adapter ligation, SPRIselect cleanup, and sample index PCR 
[using Chromium i7 Sample Indices (10x Genomics, PN-120262) 
for 11 PCR cycles]. Following, libraries were cleaned up with 
SPRIselect reagent and quantified using the Qubit HS dsDNA Assay 
Kit (Thermo Fisher Scientific, Q32854) and Qubit Fluorometer and 
also using the High Sensitivity DNA Kit (Agilent, 5067-4626) and 
Agilent 2100 Bioanalyzer. Libraries were pooled according to the 
expected amount of nuclei per sample; pool was quantified and 
sequenced using either 100 or 200 cycles of NovaSeq 6000 S2 
(Illumina, 20012861 and 20012862) runs on Illumina NovaSeq 6000 
System (Illumina 20012850) controlled by NovaSeq Control Software. 
Libraries were sequenced using 28 cycles for read 1, 8 cycles for 
i7 index, and 94 cycles for read 2. On average, there were 54,230 reads 
and 4413 genes per nucleus.

Single-nucleus sequencing data analysis
Quality of sequencing data was checked using Illumina’s interop v1.1.10 
tool. Primary data analysis was performed using cellranger v3.1.0 (10x 
Genomics). Release 97 of human genome from Ensembl was used:

http://ftp.ensembl.org/pub/release-97/fasta/homo_sapiens/dna/
Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz

http://ftp.ensembl.org/pub/release-97/gtf/homo_sapiens/
Homo_sapiens.GRCh38.97.gtf.gz

GTF file was modified to create pre-mRNA reference (“transcript” 
was renamed to “exon” and retained in the final gtf: awk ‘BEGIN{FS = 
“\t”; OFS = “\t”} $3 == “transcript”{$3 = “exon”; print}’ Homo_
sapiens.GRCh38.97.gtf > Homo_sapiens.GRCh38.97.PREmRNA.
gtf). Then, the reference genome was created using cellranger mkref. 
Illumina .bcl files were demultiplexed using cellranger mkfastq pipe-
line; reads were mapped against reference genome, and UMIs were 
counted using cellranger count pipeline. Filtered feature barcode 
matrices were used for further secondary analysis.

Secondary analysis was performed using pagoda2 (https://github.
com/kharchenkolab/pagoda2) and Conos (https://github.com/
kharchenkolab/conos). To eliminate potential doublets, scrublet 
scores were determined for each dataset, and only cells with the 
score below 0.3 were considered for downstream analysis. Each 
dataset was normalized using pagoda2 with default parameters, 
requiring at least 500 molecules per cell. Different samples were 
then aligned using Conos with default parameter settings [principal 
components analysis (PCA) space with 30 components, angular 
distance, mNN matching, k = 15, k.self = 5], and UMAP embedding 
was estimated using default parameter settings.

Normality of the distribution of fractions of nuclei derived from 
different neuronal subtypes (Fig. 2B and fig. S6, A and B) was tested 
using Shapiro-Wilk test (shapiro.test), and equality of variances was 
tested using Levene’s test (leveneTest). As part of the data was not 
normally distributed, independent two-group Mann-Whitney U test 
(wilcox.test) was used to test significance of differences for all 
group pairs. Multiple comparison correction was done using the 
Benjamini-Hochberg method.

Gene expression plots (Figs. 5B and 7F and fig. S12G) were based 
on normalized pseudo-bulk gene expression levels. UMI counts 
were summed up separately for each gene across all cells derived 
from a specific subtype-sample combination. Subtype-sample com-
binations with less than 10 cells were filtered out. Pseudo-bulk counts 
were then normalized: divided by the sum of all counts across all 
genes in any particular subtype-sample combination and multiplied 
by 106. P values were estimated using differential gene expression 
Wald test in DESeq2. Multiple comparison correction was done 
using the Benjamini-Hochberg method.

Compositional data analysis
We performed compositional analyses as described elsewhere 
(34, 35, 75) using the Cacoa function estimateCellLoadings() (coda.
test = “significance”). In short, isometric log-ratio transformations 
were applied to cell type fractions followed by canonical discriminant 
analyses using the candisc package to obtain weighted contrasts 
between cell types in schizophrenia and control samples. Random 
cell subsamplings were applied to evaluate robustness and statistical 
significance of the separating coefficients. In total, 1000 subsam-
plings were performed each time evaluating 1000 randomly sampled 
cells from both groups to evaluate test robustness. The separating 
coefficients are plotted. Multiple comparison correction was done 
using the Benjamini-Hochberg method.

Estimation of differential cell density
Differential cell density was performed through the estimate-
CellDensity() function from Cacoa (75). To estimate differential cell 
density between sample groups, we first compute kernel density in 
joint embedding space for each sample using the ks R package (bin = 
400). Then, quantile normalization was used to normalize the density 
matrix across samples. The average density of each sample group 
was shown in Fig. 2A. To impute the differential cell density between 
sample groups, we performed t test between sample groups in each 
girded bin. To avoid noise from the background, we filtered bins 
with at least one cell and the z score is shown as heatmap. Sample 
labels were randomly permuted 200 times to evaluate test robustness. 
We have implemented a correction procedure for the density tests 
as described in (76), which is based on the distribution of the maximal 
statistic under permutations of condition labels.

https://singlecell.ku.dk/protocols/
http://ftp.ensembl.org/pub/release-97/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz
http://ftp.ensembl.org/pub/release-97/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz
http://ftp.ensembl.org/pub/release-97/gtf/homo_sapiens/Homo_sapiens.GRCh38.97.gtf.gz
http://ftp.ensembl.org/pub/release-97/gtf/homo_sapiens/Homo_sapiens.GRCh38.97.gtf.gz
https://github.com/kharchenkolab/pagoda2
https://github.com/kharchenkolab/pagoda2
https://github.com/kharchenkolab/conos
https://github.com/kharchenkolab/conos
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Validation of compositional changes using deconvolution 
on bulk samples
Allen Institute dataset (H18.30.001 and H18.30.002 samples) and 
samples mapped to Allen Institute reference genome (MB14, MB15, 
and MB17) were merged with mergeCountMatrices function 
(Conos v1.4.2) and processed through Pagoda2 v1.0.4 log scale nor-
malization, variance adjustment (gam.k = 10), and PCA reduction 
(nPcs = 50, n.odgenes = 3000). DEGs were obtained by applying 
getDifferentialGenes function “one vs. all” for families of excitatory 
neurons (L2_3_CUX2, L4_6_FEZF2, L4_RORB, and L5_6_THEMIS). 
In addition, DEGs were filtered to be specific for one cell type only. 
Normalized counts, the list of differential genes, and the bulk DLPFC 
dataset (CommonMind: 501 control individuals and 353 with schizo-
phrenia) (24, 36) were submitted to MuSiC v0.1.1 (77) deconvolution 
pipeline - music_prop, music_basis, music_prop.cluster functions 
using default parameters. We used only bulk counts of DEGs for cell 
type proportion calculation. Proportions for L2_3_CUX2, L4_6_
FEZF2, L4_RORB, and L5_6_THEMIS families of excitatory neurons 
in bulk DLPFC dataset were calculated on the basis of specific DEGs 
calculated with Conos and Pagoda2 using MB14, MB15, and MB17 
samples only, as described for the merged set. Independent two-group 
Mann-Whitney U test with multiple comparison Benjamini-Hochberg 
adjustment was used to determine significant changes in cell type 
proportions between control and schizophrenia.

Expression distance analysis
Expression differences between matching subpopulations were 
determined by first estimating “mini-bulk” (or meta-cell) RNA-seq 
measurements for each subpopulation in each sample using the 
estimateExpressionShiftMagnitudes() function from Cacoa. Briefly, 
in each dataset, the molecules from all cells belonging to a given 
subpopulation were summed for each gene (i.e., forgetting cellular 
barcodes). The resulting high-coverage RNA-seq vectors were 
normalized by total counts and log-transformed. Then, the distances 
were calculated using Pearson’s linear correlation on these vectors 
(dist = “cor”). To obtain normalized distance estimates dn, the ex-
pression distances of sample pairs between the conditions (control 
and schizophrenia) were normalized by subtracting the median ex-
pression distance across all sample pairs within the control condi-
tion. Last, to adjust for other possible random effects and to estimate 
statistical significance of the results, we performed 2500 random 
permutations of the condition labels for samples within each cell 
type and estimated the null distribution of dn. Median of this 
distribution was subtracted from the distances dn to obtain final 
values (Fig. 2, C and D). P values were estimated as proportion of 
permutations, resulting in distances of the same or greater magni-
tude as dn and were adjusted for multiple comparisons using the 
Benjamini-Hochberg correction.

Overall, expression distances between samples were determined 
as a normalized weighted sum of correlation distances across all cell 
subpopulations contained in both samples, with the weight equal to the 
subpopulation proportion (measured as a minimal proportion that 
the given cell subpopulation represents among the two samples being 
compared). Expression distances between samples are projected to 
two-dimensional (2D) space using multidimensional scaling (Fig. 2F). 
To illustrate interindividual expression distance within each sample 
group, intersample expression distance is shown as a boxplot (Fig. 2E).

To determine expression distance along a consensus direction (fig. 
S7, B and C), we used the estimateCommonExpressionShiftMagnitudes() 

function from Cacoa. For each cell type, a consensus expression shift 
between control and schizophrenia conditions was determined by 
calculating a trimmed mean log2 fold expression change for each 
gene. The resulting shift vector was normalized by its Frobenius 
norm to obtain the consensus shift vector v. For each pair of sam-
ples, the normalized distance was determined as a dot product 
between the log2 fold expression change vector for a given pair and 
the normalized consensus shift vector v. As in the previous case, 
null distribution of these distances was estimated using permuta-
tion of condition labels and was used to obtain the final magnitudes 
and P values.

Differentially expressed genes
DE was performed on normalized pseudobulk gene counts using the 
Wald test in DESeq2 (78) through the estimatePerCellTypeDE() 
function in (75). In short, gene counts per cell type were collapsed 
per sample to create pseudobulk gene counts. Benchmarking has 
proved this to be an effective approach for DEG discovery in single-
cell studies, and DESeq2 was one of the best-performing methods 
(79). Then, DEGs are determined using a grouping factor as a model 
for expression (schizophrenia versus control). A fixed number of 
80 cells was used for DE estimation as well as group randomization 
to evaluate robustness of our results. DE results were used as input 
for GO estimations. Multiple comparison correction of DEGs was 
done using the Benjamini-Hochberg method.

Gene ontology
GO enrichment was investigated using the clusterProfiler (80) 
package. Enrichment was evaluated per cell type for GO biological 
pathways (BP) categories on sets of top 500 up- and down-regulated 
genes separately based on z score. To calculate GO terms, we used as 
background only genes expressed within a cell type. Resulting BP 
categories were filtered by P value <0.001 and corrected for multiple 
comparison as every GO term * every cell type using the Bonferroni 
method. GO terms with an adjusted P value <0.05 were clustered 
into 20 clusters based on the similarity of the genes involved in the 
categories using binary distance measures. The clusters were named 
on the basis of the most significantly enriched category.

Estimation of transcription factor networks based on gene 
expression from snRNA-seq data
Transcription factor enrichment was calculated using the VIPER 
(48) and DoRothEA packages (47). DoRothEA regulons A, B, and C 
were selected by their confidence score and were used together with 
DEGs as input for VIPER. The estimated enrichment score was cal-
culated on the basis of the z score of the DEGs and was normalized 
for the purpose of hierarchical clustering. Hierarchical clustering of 
selected transcription factors was done using the ComplexHeatmap 
package (method = “ward.D2”).

Integration of snRNA-seq and genetics data
To integrate with datasets of genes previously associated with 
schizophrenia, from the DisGeNET database (60), and autism spec-
trum disorder, from the SFARI database, we performed hypergeo-
metric testing to identify significant overlaps between DEGs in our 
dataset with genes from each of the abovementioned datasets. We 
took the 500 most DEGs per cell subtype as the sample input, and 
we used all expressed genes in our dataset as the background. The 
resulting Bonferroni-corrected P values are shown.
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To integrate our snRNA-seq data with the largest schizophrenia 
GWAS dataset (61), we used CELLECT (81) and GWAS data on 
40,675 schizophrenia patients and 64,643 controls (61). First, we 
computed cell type expression specificity profiles using CELLEX.  
Then, we munged the GWAS summary statistics according to the 
CELLECT tutorial. Last, we identified disease-relevant cell types using 
the linkage disequilibrium score regression algorithm incorporated 
in CELLECT, using a 100-kb genomic window. The resulting 
Bonferroni-corrected P values are shown.

Assessment of potential contribution of antipsychotic drugs 
on gene expression in schizophrenia samples
Two approaches have been implemented—comparison to anti-
psychotic signatures from the DLPFC of rhesus macaque treated 
with haloperidol or clozapine and comparison to antipsychotic 
signatures from the DLPFC of human schizophrenia patients that 
were treated with antipsychotics (compared to those that were 
not treated).

DE analysis of placebo-, haloperidol-, and clozapine-treated rhesus 
macaque DLPFC bulk samples (CommonMind: clozapine, 9; halo-
peridol, 17; placebo, 8) (24, 36) was done in edgeR v3.32.1 (glmFit 
and glmLRT). Raw counts were  trimmed mean of M values (TMM) 
normalized following trended and tagwise dispersions estimation. 
DEGs were obtained through glmFit and glmLRT functions (P < 
0.05). Gene list was reduced to one-to-one gene orthologs with 
biomaRt v2.46.3.

In addition, a list of DEGs was obtained from a human DLPFC 
antipsychotic dataset (44). DEGs were selected the same way as for 
the rhesus macaque dataset (P < 0.05). Overlaps of rhesus macaque 
DEGs and the human antipsychotic DEGs with DEGs from our 
snRNA-seq dataset were tested by hypergeometric test, and P values 
were adjusted with Benjamini-Hochberg correction.

Estimation of cortical layer positions of neural cell subtypes
Locations of neural cell subtypes were estimated from the Allen 
Institute human motor cortex (M1C), temporal cortex (MTG), and an-
terior cingulate cortex (CgG) datasets (32, 33): https://transcriptomic-
viewer-downloads.s3-us-west-2.amazonaws.com/human/
transcriptome.zip and https://transcriptomic-viewer-downloads.
s3-us-west-2.amazonaws.com/human/sample-annotations.zip.

To minimize differences between our (KU) and Allen Institute 
single-nucleus datasets, we remapped KU samples against Allen 
Institute genome reference: RefSeq Genomic FASTA (www.ncbi.
nlm.nih.gov/assembly/GCF_000001405.28/) and GTF (http://celltypes.
brain-map.org/api/v2/well_known_file_download/502175284).

Allen Institute GTF file was modified using gffread (82) as 
follows: gffread rsem_GRCh38.p2.gtf -T -v -F --keep-genes --keep-
exon-attrs -o rsem_GRCh38.p2_2.gtf.

Then, gene_symbol was renamed into gene_name: sed ‘s/gene_
symbol/gene_name/g’ rsem_GRCh38.p2_2.gtf > rsem_GRCh38.
p2_3.GTF.

pre-mRNA GTF was created as follows: awk ‘BEGIN{FS = “\t”; 
OFS = “\t”} $3 == “transcript” {$3 = “exon”; print}’ rsem_GRCh38.
p2_3.GTF > rsem_GRCh38.p2_3_premRNA.GTF.

Following, an Allen Institute genome reference was created using 
cellranger mkref. KU MB14, MB15, and MB17 sample reads were 
remapped against the Allen Institute reference genome, and UMIs 
were counted using the cellranger count pipeline. Pagoda2 v0.1.1 run 
under R version 3.5.3 in RStudio version 1.2.1335 was used to create 

pagoda objects from feature barcode matrices using basicP2proc 
with n.odgenes = 3000, min.cells.per.gene = 0, min.transcripts.per.
cell = 0 parameters. Conos v1.2.1 was used to create conos objects 
with Conos$new. KU single-nucleus and Allen Institute datasets 
(either MTG, M1C, or CgG) were integrated using con$buildGraph 
with parameters k = 30, k.self = 5, space = “PCA,” ncomps = 30, 
n.odgenes = 3000, matching.method = “mNN,” metric = “angular”; 
parameters alignment.strength and same.factor.downweight were 
individually tweaked to optimize integration between datasets.

Following, high- or medium-resolution (not shown) subtype 
annotations were transferred from KU single-nucleus to Allen 
Institute datasets using conos$propagateLabels. Subtype labels were 
given on the basis of the highest probability of a nucleus to belong 
to a certain subtype. Then, cortical layer positions of Allen Institute 
nuclei (derived from microdissections of cortical layers before 
FANS of nuclei) were used for plotting cortical positions of KU neural 
cell subtypes (Fig. 1). Location estimation from all three regions 
(M1C, MTG, and CgG) produced similar results, with MTG esti-
mates being demonstrated on Fig. 1E. Because layer annotation of 
cell type positions is based on manual dissection of cortical layers 
before nucleus isolation, small discrepancies between predicted and 
actual positions of cell types are expected, such as the presence of 
excitatory neurons in layer 1.

Human cortex slice preparation for Visium analysis
Tissue slices were prepared according to the standard Visium tissue 
preparation guide (10x Genomics, CG000240). Slices were mounted 
on Visium Gene Expression Slides (10x Genomics, 2000233) from 
the Visium Spatial Gene Expression Slide Kit (10x Genomics, 
PN-1000185), two from patients with schizophrenia, and two from 
controls on the same slide.

Tissue staining, imaging, and Visium library preparation
Tissue slices were processed according to the standard Visium 
Methanol Fixation and H&E Staining guide (10x Genomics, CG000160). 
In brief, slices were fixed in methanol and stained with hematoxylin, 
followed by bluing and eosin staining. Slices were covered with 
mounting medium [85% glycerol, RNase inhibitor (4.4 U/l; Takara, 
2313B), and 1 mM DTT] and coverslips before imaging. Slides were 
imaged using an Axio Observer.Z1/7 confocal microscope (Zeiss) 
controlled by Zen 2.3 software. Images were preprocessed using 
FIJI 1.52p (83).

Straight after imaging, coverslips were removed using 3× SSC 
buffer and samples were directly processed according to the standard 
Visium Spatial Gene Expression protocol (10x Genomics, CG000239) 
using the Visium Spatial Gene Expression Slide & Reagent Kit (10x 
Genomics, PN-1000184). Tissue was permeabilized during 12 min, 
and mRNA was reverse-transcribed, followed by second-strand 
synthesis and denaturation. cDNA was quantified using KAPA SYBR 
FAST qPCR Master Mix (Roche, KK4600) on LightCycler 480 
Real-Time PCR System (Roche) to determine an optimal amount of 
PCR cycles required for cDNA preamplification. Seventeen to 
19 cycles were used for cDNA preamplification, followed by cDNA 
cleanup with SPRIselect reagent (B23318, Beckman Coulter) and 
cDNA quantification. Same amount of cDNA was used for frag-
mentation, end repair, and A-tailing step. Following, SPRIselect 
cleanup, adaptor ligation, another SPRIselect cleanup, and sample 
index PCR [13 cycles, using Dual Index Kit TT (10x Genomics, 
1000215)] steps were performed. Libraries were cleaned up using 
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SPRIselect reagent and quantified using the High Sensitivity DNA 
Kit run on Agilent 2100 Bioanalyzer and also KAPA Illumina library 
quantification kit (Roche, 7960140001) run on LightCycler 480. 
Tissue-covered spots were quantified using Loupe Browser v4.1.0 
(10x Genomics), and libraries were pooled according to their con-
centration and spot occupation on slides. Library pool was quantified 
on Bioanalyzer and with quantitative PCR and sequenced using the 
NextSeq 500/550 High Output Kit v2.5 (Illumina, 20024907) on 
Illumina NextSeq 500 using these parameters: read 1, 28 cycles; i7 
index, 10 cycles; i5 index, 10 cycles; read 2, 90 cycles.

Visium spatial transcriptomics data analysis
Primary data analysis was performed using spaceranger v1.1.0 (10x 
Genomics). Visium metadata are listed in table S6. Two reference 
genomes were used. Release 97 of human genome from Ensembl 
was used to generate feature barcode matrices for differential gene 
expression and GO analyses: http://ftp.ensembl.org/pub/release-97/
fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_
assembly.fa.gz and http://ftp.ensembl.org/pub/release-97/gtf/homo_
sapiens/Homo_sapiens.GRCh38.97.gtf.gz.

While the Allen Institute reference was used to prepare feature 
barcode matrices for Stereoscope (83) cell type deconvolution: 
RefSeq Genomic FASTA (www.ncbi.nlm.nih.gov/assembly/
GCF_000001405.28/) and GTF file (http://celltypes.brain-map.org/
api/v2/well_known_file_download/502175284).

Allen Institute GTF file was modified to rename gene_symbol 
into gene_name: sed ‘s/gene_symbol/gene_name/g’ rsem_GRCh38.
p2.gtf > rsem_GRCh38.p2_GENE_NAME.GTF.

Following, reference genomes were created using spaceranger 
mkref. Illumina .bcl files were demultiplexed using spaceranger 
mkfastq pipeline; reads were mapped against reference genomes, 
and UMIs were counted using spaceranger count pipeline. For sam-
ples where tissue section covered fiducial frame on Visium slide, 
manual fiducial alignment and tissue outlining were performed 
in Loupe Browser; .json file with coordinates was then submitted 
during spaceranger run with the “-- loupe-alignment=” parameter. 
Filtered feature barcode matrices were used for further analysis. 
In addition, low-quality tissue areas were excluded manually and 
cortical layers were annotated by an experienced histologist using 
Loupe Browser v4.1.0 (10x Genomics). White matter was excluded 
from analysis based on manual cortical layer annotation.

To investigate cell type composition of the spatial transcriptomic 
samples, we performed deconvolution using Stereoscope. Because 
the 10x snRNA-seq samples, produced for this study, were depleted 
from non-neural cells during FACS, we added non-neural cells from 
Allen Institute Cell Types Database: RNA-Seq Data Human M1 - 10x 
Genomics (84) to our neuronal nuclei: https://idk-etl-prod-download-
bucket.s3.amazonaws.com/aibs_human_m1_10x/matrix.csv and 
https://idk-etl-prod-download-bucket.s3.amazonaws.com/aibs_
human_m1_10x/metadata.csv.

Non-neural nuclei were selected on the basis of class_label “Non-
neural” in the metadata. Medium-resolution annotation of Allen 
Institute non-neural nuclei was derived from subclass_label in 
the metadata, and high-resolution annotation was derived from 
cell_type_alias_label in the metadata.

We used Seurat v3.1.4 on the MB11 spatial sample to find 3000 
highly variable genes, which were later used for the deconvolution. 
For the deconvolution, we applied Stereoscope using the merged 
single-cell RNA-seq (scRNA-seq) count matrix to all spatial samples 

for a different resolution of annotation. For medium resolution, 
we used 10,000 epochs (“-sce” parameter) and a batch size of 1000 
(“-scb”) for fitting scRNA-seq data and 20,000 epochs (“-ste”) with 
a batch size of 1000 (“-stb”) for fitting spatial data. For high res-
olution, we used sce  =  20000, scb  =  1000, ste  =  30000, and 
stb = 1000.

Fractions of deconvoluted cell subtypes per Visium spot were 
plotted on top of histological images (Fig. 7E) using Seurat v3.2.0 
(85) run in R. Seurat objects were created using Load10X_Spatial. 
Manual layer annotation metadata were added to the objects; Stereo-
scope deconvolution predictions were added to the Seurat objects 
using CreateAssayObject. Plotting was performed using SpatialPlot, 
and high-resolution subtypes are shown for the MB11 sample.

Stereoscope predicted fractions of subtypes were averaged per 
sample per layer per subtype (Fig. 7). Normality of distribution was 
tested using Shapiro-Wilk test (shapiro.test), and equality of vari-
ances was tested using Levene’s test (leveneTest). As part of the data 
was not normally distributed, independent two-group Mann-Whitney 
U test (wilcox.test) was used to test significance of differences for all 
group pairs. Multiple comparison correction was done using the 
Benjamini-Hochberg method.

DEGs were estimated using esimatePerCellTypeDE function from 
Cacoa repository. Then, GO terms were estimated for each layer 
using 500 genes with the highest/lowest z score for up- or down-
regulated GOs correspondingly using the clusterProfiler package 
(80). P values from DEGs were corrected for multiple comparison 
using the Benjamini-Hochberg method. GO terms were filtered and 
corrected for multiple comparison as described in the “Gene ontology” 
section. To group GO terms that were enriched on the basis of the 
same genes, we clustered them using Jaccard similarity of the gene 
sets. For that, pairwise Jaccard distances were estimated on the sets 
of enriched genes for all GO terms for each layer separately with 
adjusted P values below 0.05. Then, hierarchical clustering was per-
formed on these distances (hclust function with method = “ward.
D2”), and the hierarchy was trimmed to 20 clusters. The P value of 
the resulting cluster for a layer was estimated as minimum across all 
P values of the cluster’s GO terms. The name of a cluster was set to 
the name of its term with the lowest geometric mean of P values 
across all layers. To compare results of GO analysis on spatial data 
to the GO terms discovered on snRNA-seq data, we used only 
spatial GO that were significantly enriched in snRNA-seq data, 
adjusted P values only on those with a P value of <0.05 using the 
Benjamini-Hochberg correction (which allowed to increase power 
of the test), and visualized the filtered spatial GO terms with adjusted 
P values below 0.05.

Immunohistochemistry
Consecutive paraffin-embedded brain sections were stained for the 
five antigens investigated and for Nissl. One section per individual 
was used per immunostaining (table S5). IHC analysis was done as 
described in earlier studies (86). Briefly, the sections were dewaxed 
through a graded alcohol series and treated with 3% H2O2 solution 
(in PBS, pH 7.4) for 30 min. Antigen retrieval was applied by 
autoclaving the slides in citrate buffer (0.01 M, pH 6.0) at 121°C for 
10 min. The following primary antibodies were used: anti-CR (rabbit, 
1:300, Chemicon, AB5054), anti-NPY (rabbit, 1:250, Abcam, 
ab30914), anti-CB (mouse, 1:300, Swant, D28k-300), anti-PV 
(rabbit, 1:500, Abcam, ab11427), and anti-SMI31.1 (mouse, 1:500, 
BioLegend, 837801) in tris-buffered saline/Triton TMX-100 (pH 7.4) 
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for 1 hour (100 l per section). Sections were then incubated with 
horseradish peroxidase–linked secondary antibody from the Envision 
Kit (Dako, K-5007) for 1 hour (100 l per section), and labeling 
was visualized by DAB from the same Envision Kit applied for 90 s 
(100 l per section). During incubation with primary and secondary 
antibodies, slides were put into Sequenza System coverplates and 
rack (Thermo Fisher Scientific, 72110017 and 73310017). Two rinses 
with tris-buffered saline/Triton TMX-100 (pH 7.4) were applied be-
tween the above-described steps of IHC (1000 l each). Hematoxylin 
nuclear counterstain was applied for 20 s. Sections were dehydrated 
through a graded alcohol series and coverslipped with DePeX. No 
labeling was observed when primary antibodies were omitted from 
the protocol.

Image analysis and quantification
Sections were digitized using a slidescanner (3D Histech) at ×40 
magnification. The regions of interest (2 mm × 1 mm columns with 
all cortical layers present) were outlined using the ImageScope soft-
ware (Aperio, v11.2.0.780). Designation of cortical layers (BA9) was 
outlined on the basis of Nissl and SMI31.1 stainings in good agree-
ment with (87). Cross-sectional areas analyzed in this study are shown 
in table S5. The longest diameters of immunopositive cell bodies in 
the region of interests were manually measured as described in (86). 
Three investigators (V.F., L.R., and E.F.) measured cell diameters 
on separate sections, and all were blinded to the diagnoses of the 
subjects through random coding of the subject identifiers. Neuronal 
cell bodies with a diameter of >4 m and a width of >2 m were 
included in further statistical analysis. Their work was supervised 
by I.A. checking the annotations. At this stage, minimal (<1%) false 
positives were detected and less than 5% were false negative. These 
were corrected by I.A.

Single-molecule fluorescence in situ hybridization
Sections from schizophrenia and control cases were processed for 
simultaneous detection of target mRNAs (CHRFAM7A, CRH, and 
VIP) in combination with CR IHC as previously described (88, 89). 
Paraffin-embedded sections were first deparaffinized and treated 
with 3% H2O2 for 10 min and rinsed in 0.01 M PBS (pH 7.4). 
Sections were then processed for fluorescence in situ hybridization 
(RNAscope) using the RNAscope Multiplex Fluorescent Kit V2 
(Advanced Cell Diagnostics Inc., Newark, CA, USA; catalog no. 
323110) according to the manufacturer’s protocol. Briefly, sections 
were treated with 100% ethanol, incubated in antigen retrieval buffer 
maintained at a boiling temperature for 10 min, rinsed in PBS, and 
immediately treated with Protease Plus for 30 min at 40°C. RNAscope 
Probe – Hs (homo sapiens)-CHRFAM7A-C1 (catalog no. 833991) 
or CRH-C1 (catalog no. 475211) for detection of target mRNAs and 
RNAscope Probe Hs-VIP-C2 (catalog no. 452751-C2) for the detec-
tion of VIP mRNA were hybridized for 2 hours at 40°C. After 
hybridization, sections were processed to amplification of target 
probes and then visualized using the Tyramide Signal Amplification 
(PerkinElmer, Waltham, MA, USA), fluorescein for CHRFAM7A 
or CRH mRNA, and Cy3 for VIP mRNA. Following the RNAscope 
assay, sections were rinsed in PBS and processed for IHC detection 
of CR. Sections were incubated for 1 hour at room temperature in 3% 
normal donkey serum (NDS; Vector Laboratories Inc., Burlingame, 
CA, USA) and overnight at 4°C in the rabbit polyclonal antibody 
directed against CR (1:300, Millipore, Burlington, MA, USA; AB5054) 
diluted in PBS containing 0.3% Triton X-100 and 1% NDS. After 

three washes in PBS, the sections were incubated for 2 hours in 
Alexa Fluor 647–conjugated donkey anti-rabbit (1:2000; Thermo 
Fisher Scientific), three times washed in PBS, and mounted by 
Vectashield (Vector Laboratories Inc., Burlingame, CA, USA).

Statistical analysis of IHC and smFISH data
Results are presented as means ± SD. Density values per case are 
listed in table S5G. Student’s t test (unpaired, two-tailed) was used 
to assess whether the means of cortical width and neuronal diameters 
of CR- and PV-expressing cells between the two diagnostic groups 
were significantly different (table S5C). A rigorous  = 0.01 was used 
when reporting statistically significant differences between diagnostic 
groups. Significance level for normality tests (Shapiro-Wilk test) and 
correlation tests (Pearson’s, applied in case of normal distribution; 
Spearman’s, applied when data did not follow normal distribution) 
was set to the conventional 5% ( = 0.05). The statistical analyses of 
IHC and smFISH (RNAscope) density data were carried out in R 
environment. We used the “ggplot2” and “ggthemes” packages for 
descriptive analysis, and “nlme,” “multcomp,” and “emmeans” 
packages for statistical analysis (see links and version in the table 
“Summary for software and tools implemented in the study” ). To 
incorporate the unique effect of each donor on which multiple mea-
surements were taken, we applied linear mixed models with random 
effect using the “lme” function of “nlme” package (90). Cell types 
were investigated in separate models. Cell densities were set as 
dependent variables. Identifiers of individual samples were included 
as random effect. Layer-wise localization (cortical layers 1 to 6) was 
set as a six-level within-subject factor, while diagnosis was set as a 
two-level between-subject factor (schizophrenia or control).

PMI, age, and gender were included as potential confounder 
variables. Initially, “full” models were constructed including diag-
nosis, PMI, age, gender, and their interactions with the layer factor. 
This revealed which variables have significant effects on the depen-
dent variable. Nonsignificant interactions and variables were dropped 
to achieve the “final” model (table S5F). P values were not corrected 
during model construction. Multiple comparison tests were applied 
to the final models using the “lsmeans” function to directly com-
pare all layers with each other across the diagnostic groups. P values 
were corrected for multiple testing with the Bonferroni method. 
Because this approach results in numerous comparison pairs, we 
only reported the P values of comparison pairs relevant to our study 
(namely, control versus schizophrenia comparisons in layers 1, 2, 3, 
4, 5, and 6; table S5F).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn8367

View/request a protocol for this paper from Bio-protocol.
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