Patofiziološko značenje autoantitijela u krvi bolesnika sa solidnim tumorima

Mihaljević, Marija

Master's thesis / Diplomski rad
2015

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, School of Medicine / Sveučilište u Zagrebu, Medicinski fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:105:306758

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-04-02

Repository / Repozitorij:

Dr Med - University of Zagreb School of Medicine
Digital Repository
Marija Mihaljević

Patofiziološko značenje autoantitijela u krv bolesnika sa solidnim tumorima

Diplomski rad

Zagreb, 2015.
Kratice

AMACR-(engl. α-methylacetyl CoA racemase) α-metilacil CoA racemaza
CEA-(engl.carcinoembryonic antigen) karcinoembrionalni antigen
cdk 2- (engl. cell division stimulating protein) protein koji potiče staničnu diobu
CT-(engl. cancer-testis) antijenovi- antijeni koje kodiraju geni izraženi u zametnim stanicama
EGRF-(engl. epidermal growth factor receptor) epidermalni čimbenik rasta
ELISA-(engl. enzyme-linked immunosorbent assay) imunoenzimski test
FAP-(engl. familial adenomatous polyposis) obiteljska adenomatozna polipoza
FDA-(engl. food and drug administration) američka agencija za hranu i lijekove
FOBT-(engl. faecal occult blood test) test na okultno krvarenje u stolici
GIPC-1 – protein uključen u regulaciju signala putem G-proteina
GRP78-(engl. glucose regulated proteins) proteini koji su regulirani glukozom
HIP1-(engl. huntingtin-interactin protein) protein koji reagira s huntingtinom
HNPCC-(engl. nonpolyposis colorectal cancer) nepolipozni kolorektalni karcinom
HSP-70- (engl. heat shock protein) stanična stresna bjelančevina-70
IAP-(engl. inhibitor of apoptosis proteins) inhibitori apoptoze
IGFBP- (engl. insulin-like growth factor binding-proteins) proteini koji vežu inzulinu sličan čimbenik rasta
MUC1-(engl. mucine 1) mucin 1
PEM-(engl. polymorflcal epitelian mucine) polimorfijski epitelijski mucin
PSA-(engl. prostate specific antigen) prostata specifični antigen
PTM- (engl. post translational modifications) posttranslacijske modifikacije
RPH3AL-(engl. rabblin 3A like protein) protein sličan rabblinu 3A
TAA- (engl. tumor associated antigen) tumorski antigen
XIAP-(engl. x-linked IAP) x vezani IAP
SADRŽAJ
1. SAŽETAK: .. 1
2. SUMMARY .. 2
3. ŠTO SU BIOMARKERI ... 3
4. AUTOANTITIJELA .. 4
5. IMUNOLOGIJA TUMORA ... 4
6. KARCINOM DOJKE .. 5
 6.1 BIOMARKERI KARCINOMA DOJKE I AUTOANTITIJELA ... 6
 6.2 AUTOANTITIJELA NA P53 .. 6
 6.3 AUTOANTITIJELA NA MUC1 PROTEIN ... 7
 6.4 AUTOANTITIJELA NA HER2/Neu/ cErbB2(p185) PROTEIN .. 9
 6.5 AUTOANTITIJELA NA STANIČNE STRESNE BJELANČEVINE 10
 6.6 AUTOANTITIJELA NA GIPC-1 PROTEIN ... 11
 6.7 AUTOANTITIJELA NA c-myc i c-myb PROTEIN .. 12
 6.8 AUTOANTITIJELA NA NY-ESO-1 PROTEIN ... 12
 6.9 AUTOANTITIJELA NA BRCA PROTEINE .. 13
 6.10 AUTOANTITIJELA NA ENDOSTATIN ... 13
 6.11 AUTOANTITIJELA NA LIPOFILIN B ... 14
 6.12 AUTOANTITIJELA NA CIKLINSKE PROTEINE .. 14
 6.13 AUTOANTITIJELA NA FIBULINSKI PROTEIN .. 15
 6.14 AUTOANTITIJELA NA PROTEINE KOJI VEŽU INZULINU SLIČNE FAKTORE RASTA (INSULIN- LIKE GROWTH FACTOR BINDING PROTEIN 2, IGFBP-2) 15
 6.15 AUTOANTITIJELA NA TOPO2α PROTEIN ... 16
 6.16 AUTOANTITIJELA NA KATEPSIN D ... 16
7. KARCINOM PROSTATE ... 17
 7.1 UVOD ... 17
 7.2 PSA AUTOANTITIJELA .. 18
 7.3 AUTOANTITIJELA NA HER2/NEU ... 18
 7.4 AUTOANTITIJELA NA HUNTINGTIN-INTERACTING PROTEIN 1 (HIP1) 19
 7.5 AUTOANTITIJELA NA GLUKOZOM REGULIRANI PROTEIN-78 (GRP78) 19
 7.6 AUTOANTITIJELA NA ALPHA-METHYLACYL CoA RACEMASE (AMACR) 20
 7.7 AUTOANTITIJELA NA PROTEIN KINAZU A (ECPKA) .. 21
 7.8 AUTOANTITIJELA NA PROSTASOME ... 21
 7.9 AUTOANTITIJELA NA MULTIPLE BIOMARKERE ... 22
7.10 AUTOANTITIJELA NA EPITELNI FAKTOR RASTA P75 (LEDGF P75) 22
8. KARCINOM KOLONA ... 22
 8.1 UVOD ... 22
 8.2 AUTOANTITIJELA NA MUCSAC .. 24
 8.3 AUTOANTITIJELA PROTIV IAPA I XIAPA ... 24
 8.4 AUTOANTITIJELA NA CA²⁺ VEŽUĆI PROTEIN „CALNUC“ 25
 8.5 AUTOANTITIJELA NA RABHILIN 3A LIKE PROTEIN (RPH3AL) 25
 8.6 AUTOANTITIJELA NA RAS PROTEINE .. 25
 8.7 AUTOANTITIJELA NA p21 .. 26
 8.8 AUTOANTITIJELA USMJERENA NA VILIN .. 26
9. ZAKLJUČAK ... 28
10. ZAHVALE ... 29
11. LITERATURA ... 30
12. ŽIVOTOPIS ... 34
1. SAŽETAK: PATOFIZIOLOŠKO ZNAČENJE AUTOANTITIJELA U KRVI BOLESNIKA SA SOLIDNIM TUMORIMA, Marija Mihaljević

Ključne riječi: autoantitijela, probir karcinoma, biomarkeri
A bimarker is any molecule that indicates an alteration of the physiological state of an individual relevant to disease state, treatment and toxins. In this field, autoantibodies are being considered as excellent candidates for cancer markers as they represent response of the immune system. The generation of these autoantibodies in response to autologous cellular antigens is not static and it is measurable by analyses. Autoantibodies are extremely stable in serum samples and are known to persist for extended times after removal of the antigenic factor. This is a distinct advantage for their use and are potential markers for detection of carcinoma in human fluids. Cancer antigens have limited half-life. Indeed, the stability of autoantibodies is important for development of laboratory tests. The main objective of autoantibodies discovery is to identify molecular markers capable of discriminating the „healthy“ state from the „disease“ state preferentially in the early asymptomatic stages. Biomarker screening test may enhance the diagnostic value of physical examination, medical tests or other procedures. Cancer screening procedures such as mammography or screening colonoscopy serve in finding initial signs of cancer. Different strategies have been developed in discovering biomarkers. The sensitivity and the sensitivity of screening test must be high for the detection of the autoantibodies. Developing strategies for autoantibodies are needed. That may contribute to early cancer detection and improvement of therapy results.

Key words: autoantibodies, cancer screening, biomarkers
3. ŠTO SU BIOMARKERI

Biomarkeri su pokazatelji biološkog stanja koji se mogu mjeriti te njihova povišena vrijednost može biti indikator normalnog biološkog procesa, patološkog procesa ili farmakološke reakcije na terapiju. Svaki biološki sustav ima svoj specifični biomarker. Mnogi biomarkeri su relativno jednostavni za uporabu.

Karakteristike idealnog biomarkera su:

1. Sigurnost i jednostavnost izvođenja
2. Povoljna cijena
3. Promjenjiva vrijednost tokom terapije
4. Dosljednost spolu i etničkim grupama

Biomarkeri se koriste za dijagnosticiranje bolesti kao što su tumori, endokrinološke bolesti, kardiovaskularne bolesti itd (Ananya Mandal, MD).

Tumorski biomarkeri su molekule koje proizvodi sam tumor ili reakcija imunološkog sustava. Tumorski biomarkeri mogu biti rezultat mutacije ili promjene u genskoj ekspresiji ili metilaciji promotora. Sami po sebi, biomarkeri mogu biti promijenjeni proteini ili autoantitijela. Tumorski biomarkeri se koriste u slijedećem:

1. Ranoj detekciji
2. Dijagnozi
3. Prognozi bolesti
4. Praćenju reakcije na terapiju
5. Praćenju preživljenja
4. AUTOANTITIJELA

5. IMUNOLOGIJA TUMORA
Imunološki sustav se dijeli na humoralni i stanični. Humoralnu imunost uključuju antitijela dok stanična uključuje stanice. Stanice kao što su makrofazi i prirodno ubilačke stanice imaju sposobnost detektiranja i uništenja antigena. T limfociti se dijele na citotoksične, pomagačke i regulatorne. Oni imaju receptore za prepoznavanje antigena. Pomagački T limfociti potiču B limfocite na proizvodnju antitijela, a citotoksični T limfociti služe za eliminaciju patogena. Regulacijski T limfociti nadziru T pomagačke i T citotoksične limfocite. Princip djelovanja antitijela je neutralizacija antigena, predočavanje makrofazima, djelovanje putem sustava komplementa. Funkcija imunološkog sustava je prepoznavanje i eliminiranje antigena. Prepoznavanje antigena može biti otežano ili onemogućeno budući da je puno tumorskih antigena (TAA) dio normalnih stanica te u nekim slučajevima nastaje

6. KARCINOM DOJKE
Karcinom dojke je najčešći karcinom u žena i drugi uzrok smrti kod žena. Potrebni su novi pristupi u skriningu, ranoj dijagnostici, prognozi i analizi rizika dobivanja bolesti da bi se smanjio mortalitet i povećalo preživljenje od karcinoma. Za sada je mamografija zlatni standard probira i ona je glavni test probira za smanjenje smrtnosti od karcinoma dojke. Osjetljivost mamografije pada s gustoćom tkiva dojki. Tako je zabilježena osjetljivost od 45% u osoba s jako gustim tkivom dojki. Također, mamografija može dovesti do pogrešnih rezultata (npr. dijagnostika promjena dojki koje ne treba dalje obrađivati) te dovodi do nepotrebne obrade pacijenata. Uloženi su brojni napor da se uvede metoda probira koja će detektirati rane stadije karcinoma.
Detektiranje karcinoma magnetskom rezonancijom (MR) je mnogo bolja metoda nego ultrazvuk i mamografija no ima nisku specifičnost (Lacombe i sur. 2014).

6.1 BIOMARKERI KARCINOMA DOJKE I AUTOANTITIJELA
Za ranu detekciju karcinoma, testovi probira bi trebali zadovoljavati slijedeće:

1. Moraju razlikovati zdrave osobe od osoba koje su bolesne.
2. Moraju imati visok stupanj osjetljivosti i specifičnosti.
3. Mora biti omogućeno razlikovanje benignih i malignih bolesti

6.2 AUTOANTITIJELA NA P53

Dok je u istraživanju Angelopoulou i sur. 9% pacijenata s karcinomom dojke imalo p53 autoantitijela, istraživanje koje su objavili A.Kulić i sur. 2009. godine, utvrdilo je postojanje anti-p53 antitijela u 35% bolesnika s karcinomom dojke te 5% u kontrolnoj

6.3 AUTOANTITIJELA NA MUC1 PROTEIN.
Polimorfni epitelijski mucin (PEM, MUC1) je ljudski mucinski protein koji ima veliku molekularnu masu. On je hiperglikoziliran te je u malim dozama prisutan u normalnim epithelnim stanicama. Hipoglikoziliran i u velikim dozama je prisutan u većini adenokarcinoma kao što je karcinom dojke te karcinom ovarija. Jedna trećina bolesnika s karcinomom dojke ima autoantitijela na MUC1. Ta autoantitijela su u slobodnoj formi ili su pridružena imunom kompleksu. Autoantitijela koja su pridružena...
Imunokompleks imaju značajnu ulogu u prognozi karcinoma, dok je prisutnost autoantitijela u slobodnoj formi manje jasna. Osobe koje imaju autoantitijela na MUC1 imaju povoljniju prognozu te se smatra da postojanje MUC specifične imunosti smanjuje rizik za dobivanje tumora dojke. Koter i sur. su 1994 utvrdili da je 8.3% osoba s karcinomom dojke, 16.7% osoba s karcinomom gušterače te 10% pacijenata s karcinomom kolona imalo autoantitijela na MUC1. Prisutnost ili odsutnost autoantitijela nije korelirala s razinom cirkulirajućeg mucina niti stadijem bolesti (Piura i Piura, 2010).

Von Mensdorff- Pouilly i sur. su 1996. godine utvrdili uz pomoću ELISA testa (prema engl. enzyme-linked immunoassay) postojanje autoantitijela na MUC1 u 2.1% zdravih kontrola, 37.5% osoba s benignim tumorom dojke, 25.7% osoba s ranim stadijem karcinoma dojke i 18% osoba s uznapredovalim stadijem karcinoma dojke. 20.3% bolesnika koji su imali pozitivne limfne čvorove i 32.4% koji su imali negativne čvorove su imali autoantitijela. Količina autoantitijela i stadij bolesti su bili obrnuto proporcionalni. Dok je 50% osoba koje su imale karcinom in situ imalo autoantitijela na MUC1, samo je 6,7% pacijenata s 5 zahvaćenih limfnih čvorova imalo povišenu razinu anti-MUC1 autoantitijela. Pacijenti s udaljenim metastazama su bili seronegativni na MUC1. Petogodišnje preživljenje 13 osoba koje su imale povišenu razinu CA-15-3 i bili anti-MUC1 seropozitivni je bilo bolje, nego petogodišnje preživljenje 41 osobe koji su imali povišenu razinu CA-15-3 ali su bili anti-MUC1 seronegativni. Autori su potvrdili da povezanost humoralne imunosti i MUC1 štiti od progresije bolesti. Tolerancija ili nedovoljan imunološki odgovor pridonosi nepovoljnom ishodu bolesti (Piura i Piura, 2010).
Champan i sur. su utvrdili postojanje autoantitijela na MUC1 u 20.2% osoba s rano
dijagnosticanom karcinomom dojke i 25% osoba s duktaalnim karcinomom in situ.
Osjetljivost i specifičnost za karcinom dojke u tom istraživanju su iznosile: 23% i 98%.

Lu i sur. su ispitivali porast autoantitijela na p53, HER2, MUC1, topoiomerazu II alfa,
IGFBP2 (od engl. insulin-like growth factor binding protein 2), Ciklin D1 i na Katepsin
D u pacijenata s karcinomom dojke. Odgovor autoantitijela na MUC1 je bio 20% u
carcinomu dojke, a 3% u zdravih osoba.

Autoantitijela na MUC1 imaju malu vrijednost u probiru, no predstavljaju dijagnostički
potencijal u istraživanju autoantitijela na TAA te njihovo detektiranje može biti
povezano s manjim rizikom razvoja karcinoma dojke. Postojanje autoantitijela na
MUC1 je povezano s povoljnim ishodom bolesti (Piura i Piura, 2010).

6.4 AUTOANTITIJELE NA HER2/Neu/ cErbB2(p185) PROTEIN
HER2/neu je dio obitelji receptora za epidermalni čimbenik rasta EGFR (od engl.
epidermal growth factor). HER2/neu receptor je izražen u 20-30% karcinoma dojke.
Osobe koje su HER2/neu pozitivne imaju lošiju prognozu i veliku incidenciju
metastaza te rezistenciju na hormonalnu i konvencionalnu kemoterapiju. Uvođenje u
terapiju anti-HER2/neu lijekova znatno je poboljšalo prognozu ovih bolesnica. U
istraživanju Chapmana i sur. anti-HER2/neu autoantitijela su detektirana u 17%
osa osa s novootkrivenim karcinomom dojke i u 12.5% osoba s duktaalnim karcinomom
in situ. Osjetljivost i specifičnost testova su bile 18% i 94% za karcinom dojke te 13%
and 94% za duktaalni karcinom in situ. Zaključeno je da autoantitijela na HER2/neu imaju
malu vrijednost u probiru i ranoj dijagnozi karcinoma dojke, no moguće je da imaju
ulogu u obrani domaćina (Piura i Piura, 2010).

6.5 AUTOANTITIJELE NA STANIČNE STRESNE BJELANČEVINE

Stanične stresne bjelančevine (HSP, od engl. heat shock proteins) su citoplazmatski proteini koji se ponašaju kao pratitelj-zaštitnici molekularnih proteina u unutarstaničnim procesima (Gamulin i sur. 2011). HSP imaju veliku ulogu u međusobnoj interakciji proteina uključujući slaganje i ustroj proteina. Prvi puta su otkriveni pri visokoj temperaturi, od tuda i dolazi podrijetlo imena. Osim povišene temperature, njihova je proizvodnja vezana i za upalu, infekciju, ishemiju, citotoksične lijekove i maligna stanja. HSP su raspoređeni u obitelji prema molekularnoj masi.

HSP-60 je protein koji se nalazi u mitohondrijskom matriksu. On kontrolira brojne stanične funkcije i pomaže u izgradnji, rastavljanju i degradaciji mitohondrijskih proteina. Također je uključen u proces apoptoze i reagira s proteinima koji su dio staničnog ciklusa. Desmetz i sur. su utvrdili autoantitijela na HSP-60 u 32.6% pacijenata s duktašnim karcinomom in situ i 31% u ranom stadiju bolesti te 4.3% u zdravih ispitanika. Frekвенциja autoantitijela je bila viša u osoba s visokim stupnjem DCIS (duktalni karcinom in situ) 47.8%, nego niskim stupnjem DCIS (19.2%). Autoantitijela na HSP-60 odlikuju se specifičnošću 95.7% i osjetljivošću 31.8%. Nije pronađena povezanost između autoantitijela na HSP-60 i estrogenskih, progesteronskih receptora te HER-2 statusa. HSP-60 autoantitijela imaju veliki potencijal u ranoj dijagnostici karcinoma dojke (Piura i Piura, 2010).

6.6 AUTOANTITIJELA NA GIPC-1 PROTEIN
GIPC protein je dio PDZ obitelji i uključen je u regulaciju G proteina te je prisutan u karcinomu dojke i jajnika. Yalevski i sur. su upotrebljavajući monoklonska protutijela 27.B1 i 27.F7, dokazali autoantitijela na GIPC-1 u 96% i 48% osoba s duktašnim karcinomom dojke te 90% i 53% lobularnog karcinoma dojke. GIPC-1, koji je bio detektiran putem 27.B1 i 27.F7 protutijela, je bio prisutan samo u invazivnim karcinomima dojke. Autori su potvrdili povezanost GIPC-1 s tumorom te smatraju da autoantitijela na GIPC-1 imaju veliki potencijal kao marker karcinoma dojke. Salma i sur. su testirali 22 seruma osoba s karcinomom dojke, 11 s epitelnim karcinomom jajnika te serum zdravih kontrola. Kemoluminiscentna metoda je potvrdila 77% i 54% autoantitijela na GIPC-1 u karcinomu dojke i jajnika. ELISA je pak potvrdila postojanje 27% i 18% autoantitijela na GIPC-1 u karcinomu dojke i jajnika (Piura i Piura, 2010).
6.7 AUTOANTITIJELE NA c-my c i c-my b PROTEIN
Myc gen kodira c-my c protein koji je bitan za rast stanica i proliferaciju te je uključen u tumorigenezu. Serumsk a anti-c-my c antitijela su detektirana u 12.7% pacijenata s novootkrivenim karcinomom dojke i 7.5 % pacijenata s karcinomom in situ. Osjetljivost i specifičnost su bile 13% i 97% za karcinom dojke i 8% i 97% za duk talni karcinom in situ. Zaključeno je da koncentracija autoantitijela na c-my c ima malu vrijednost u ranoj dijagnostici karcinoma dojke (Piura i Piura, 2010).

Myb gen kodira c-my b protein, koji je potreban u razvoju T limfocita u raznim stadijima staničnog ciklusa. Sorokine i sur. su utvrdili IgG autoantitijela na c-my b u 43% osoba s karcinomom dojki, usproređujući ih s prisutnosti u 24.5% zdravih kontrola. Nije pokazana povezanost cirkulirajućih autoantitijela na c-my b i ekspresije c-my b u karcinomima dojke (Piura i Piura, 2010).

6.8 AUTOANTITIJELE NA NY-ESO-1 PROTEIN
Geni koji su smješteni u humanim zametnim stanicama kodiraju Cancer-testis (CT) antigene. Somatska tkiva odraslih osoba reguliraju CT antigene, ali CT antigeni postaju jako izraženi u nekim tipovima karcinoma. CT antigeni pridruženi kromosomu X su nazvani CT-X antigeni i razlikuju se od non-X CT antigena koji su smješteni na autosomima. CT-X antigeni predstavljaju polovicu CT antigena i njihova ekspresija je povezana sa slabijim ishodom i višim stupnjem razvijenosti tumora. Nekoliko studija istražilo prisutnost CT antigena u karcinomu dojke. Zanimljivo je da su izražaji CT antigena, NY-ESO-1 i MAGE-A povišeni u tumorima dojke koji su hormonski negativni. Autoantitijela na NY-ESO-1 su prisutna u 26.6% pacijenata sa novodijagnostičiranim karcinomom dojke i kod 7.5% pacijenata s duk talnim karcinomom in situ. Osjetljivost i specifičnost analize su bile 26% i 94% za karcinom dojke, te 8% i 94% za duk talni karcinom in situ. Titar autoantitijela na NY-ESO-1 ima
malu vrijednost za skrining tumora dojke te su potrebna daljnja istraživanja (Piura i Piura, 2010).

6.9 AUTOANTITIJELA NA BRCA PROTEINE
BRCA 1 i BRCA 2 su tumor supresorski geni. BRCA 1 je smješten na 17. kromosomu a BRCA2 na 13. kromosomu. 185delAG i 538insC mutacije u BRCA 1 i 617delT mutacije u BRCA 2 su prisutne kod Aškenazi Židova. Aškenazi Židovi koji imaju mutacije na BRCA 1 i BRCA2, imaju veći rizik dobivanja karcinoma dojke i ovarija. Autoantitijela na BRCA1 i BRCA2 su prisutna u 8.5% i 34% invazivnih karcinoma in situ te 2.5% i 22.5% osoba s duktalnim karcinomom in situ. Osjetljivost i specifičnost anti-BRCA1 je 8% i 91% za invazivni karcinom in situ te 3% i 91% za duktalni karcinom in situ. Osjetljivost i specifičnost za autoantitijela za BRCA2 je 34% i 92% za invazivni karcinom dojke te 23% i 92% za duktalni karcinom in situ.

Zaključeno je slijedeće:

1. Autoantitijela na BRCA1 nemaju vrijednosti u skriningu i ranoj detekciji karcinoma dojke
2. Autoantitijela na BRCA1 nemaju dijagnostički potencijal
3. Autoantitijela na BRCA2 imaju malu vrijednost u skriningu i ranoj dijagnostici karcinoma dojke
4. Autoantitijela na BRCA2 imaju potencijal u dijagnostici karcinoma dojke (Piura i Piura, 2010).

6.10 AUTOANTITIJELA NA ENDOSTATIN
Endostatin je jedan od najpoznatijih prirodnih inhibitora angiogeneze koji se nalazi na ugljikovom fragmentu kolagena 18. Kolagen 18 je prisutan u perivaskularnim
membranama krvnih žila koje su povezane s tumorom. Povišene razine endostatina su povišene u osoba s metastazama.

Bachelot i sur. su 2006 ispitali prisutnost autoantitijela na endostatin u karcinomu dojke i zdravih ispitanica. Serumska antitijela na endostatin u zdravih ispitanica iznose 16%, u karcinomu dojke 66%, te 42.4% u pacijenata s metastazama. Autoantitijela na endostatin su veća u osoba s lokaliziranom bolešću te su povezana s boljom prognozom pacijenata koji imaju metastaze. Smatra se da autoantitijela na endostatin imaju ulogu u smanjenju progresije bolesti (Piura i Piura, 2010).

6.11 AUTOANTITIJELA NA LIPOFILIN B
Lipofilini i mamaglobini su dio uteroglobininske obitelji koji su prisutni u tkivu dojke. Također su prisutni i u drugim tkivima. Lipofilin B tvori kompleks s mamaglobinom te se otpušta u serum osoba.

Carter i sur. su pokazali da autoantitijela na lipofilin B nisu prisutna u 20 zdravih ispitanika, niti 30 osoba sa karcinomom pluća, ali su prisutna u 27% (20/74) ispitanica s karcinomom dojke. Ova autoantitijela također su utvrđena u 37,1% bolesnica u uznapredovalom stadiju bolesti. Autori sugeriraju da će autoantitijela na lipofilin B imati veliku ulogu u dijagnosticiranju karcinoma dojke u budućnosti (Piura i Piura, 2010).

6.12 AUTOANTITIJELA NA CIKLINSKE PROTEINE
Ciklini su molekule koje kontroliraju progresiju staničnog ciklusa iz G2 u M fazu i izraženi su u tumorima. Suzuki i sur. su ispitali prisutnost autoantitijela na ciklin u 120 pacijenata s karcinomima te su utvrdili najveću prisutnost autoantitijela na ciklin u osoba s karcinomom dojke (42,8%).
Leu i sur. su utvrdili postojanje autoantitijela na ciklin u 7.5% osoba s karcinomom dojke te u 5% kontrolne skupine. Prema dosadašnjim istraživanjima autoantitijela na ciklin nemaju dijagnostičku vrijednost kada se ispituju sama. Moguće je da će imati dijagnostički potencijal ako se ispituju zajedno s drugim molekulama (Piura i Piura, 2010).

6.13 AUTOANTITIJELA NA FIBULINSKI PROTEIN
Fibulin 1 (Fbln-1) je član novonastajuće obitelji glikoproteina koji se nalaze u ekstracelularnom matriksu i inhibiraju adheziju i motilitet in vitro. Postojanje autoantitijela na fibulin je prisutno u 75% osoba s karcinomom dojke i 25% zdravih kontrola. Fbln-1 potiče stanični i humoralni odgovor u osoba s karcinomom dojke. Saznanja da je ekspresija Fbln-1 povezana s poboljšanim preživljenjem u pacijenata s limfocitnim infiltratom, sugerira moguću uključenost Fbln-1 u imunološkom odgovoru osoba s karcinomom dojke. Autoantitijela na fibulin 1 mogu poslužiti kao dobar marker za ranu detekciju karcinoma dojke (Piura i Piura, 2010).

6.14 AUTOANTITIJELA NA PROTEINE KOJI VEŽU INZULINU SLIČNE FAKTORE RASTA (INSULIN-LIKE GROWTH FACTOR BINDING PROTEIN 2, IGFBP-2)
Inzulinu slični faktori rasta (IGF1 i IGF2), IGF receptori 1i 2, IGFBP-1-6 čine komplekse. Taj kompleks se sastoji od peptidnih hormona, staničnih receptora i cirkulirajućih faktora. Oni su uključeni u regulaciju rasta, preživljenje i diferencijaciju tkiva. IGFBP su sekretorni proteini i posjeduju 80% homolognih sekvenci. IGFBP sudjeluju u slijedećim procesima: 1. imaju ulogu transportnih nosača za IGF, 2. stabiliziraju i produžuju poluvrijeme raspada IGF, 3. osiguravaju tkivno i stanično specifičnu lokalizaciju, 4. izravno stimuliraju ili inhibiraju IGF s njihovim receptorima (Piura i Piura, 2010).
Lu i sur. su putem ELISA testa dokazali prisutnost autoantitijela na IGFBP-2 u 15% osoba s karcinomom dojke i u 2% zdravih kontrola.

Goodell i sur. su utvrdili postojanje autoantitijela na IGFBP-2 u 5% pacijenata s karcinomom dojke i 40% osoba s kolorektalnim karcinomom i u 1% zdravih kontrola. Autori su zaključili da autoantitijela na IGFBP-2 razlikuju pacijente s karcinomom od kontrola ali čini se da ipak imaju malu vrijednost u ranoj dijagnostici i probiru karcinoma dojke (Piura i Piura, 2010).

6.15 AUTOANTITIJELA NA TOPO2α PROTEIN

Topoizomeraza II je ubikvitarni enzim koji regulira DNA i ispravlja pogreške u genomu. Postoji u dva oblika: topoizomeraza 2α i topoizomeraza 2β. Topoizomeraza 2α je esencijalni enzim i njegova razina dramatično raste tijekom proliferacije stanica. Usko je povezana sa mitotičkim kromosomima i ima esencijalnu ulogu u DNA replikaciji i mitozi (Piura i Piura, 2010).

Lu i sur. su uz pomoć ELISA testa otkrili prisutnost autoantitijela u 7% osoba s karcinomom dojke i u 2% zdravih kontrola.

6.16 AUTOANTITIJELA NA KATEPSIN D

Katapsin D je enzim koji ima ulogu u degradaciji proteina. Promjena ove funkcije rezultira akumulacijom lipofuscina u stanicama. Karcinomske stanice proizvode prokatapsin D i on ima funkciju mitogena karcinomskih i stromalnih stanica, te stimulira njihovu proinvazivnu i prometastatsku funkciju.

Lu i sur. su detektirali prisutnost autoantitijela na katepsin D u 5% osoba s karcinomom dojke i u 3% zdravih pojedinaca. Čini se da autoantitijela na katepsin D nemaju dijagnostički potencijal u karcinomu dojke (Piura i Piura, 2010).
7. KARCINOM PROSTATE

7.1 UVOD
Karcinom prostate je najčešće dijagnosticiran karcinom u muškaraca te drugi uzrok smrti uzrokovane karcinomom u Sjedinjenim Američkim Državama. Rana dijagnoza i terapija mogu povećati mogućnost liječenja bolesti, naročito onih tumora koji su lokalizirani, izbjegavajući tako progresiju i razvoj mikrometastaza. Trenutačno je prostata-specifični antigen (PSA, od engl. prostate- specific antigen) široko zastupljen u detekciji karcinoma prostate. Zahvaljujući PSA probiru, incidencija bolesti se povećala, a smrtnost smanjila. Većina muškaraca nema simptoma bolesti kada se otkrije tumor. Međutim, vrijednosti PSA su još uvijek tema mnogih rasprava. Otkad je u kliničkoj uporabi, rana detekcija karcinoma je porasla na 16%, dok smrtnost iznosi 3,4%. Problem PSA skrinninga je manjak specifičnosti za karcinom prostate, naročito kad su PSA vrijednosti između 4 i 10 ng/ml. Specifičnost PSA skrinninga za detektiranje karcinoma je 20%, a osjetljivost 80%. Slaba specifičnost se povezuje s činjenicom da su povišene razine PSA prisutne u stanjima koja nisu nužno karcinom kao što su benigna hiperplazija prostate i prostatitis. U strahu od karcinoma, povišene vrijednosti PSA su rezultirale biopsijama prostate. Prihvaćena je vrijednost PSA 4.0 ng/mL kao gornja normalna vrijednost PSA. Budući da PSA ima malu specifičnost, potrebno je istražiti biomarkere s boljom specifičnošću kako bi se izbjegle nepotrebne biopsije prostate. Nerealno je očekivati da će se otkriti biomarker koji će imati idealnu specifičnost i osjetljivost, ali bi trebali težiti tome da se otkriju biomarkeri koje karakterizira visoka specifičnost i osjetljivost. Istraživanje novih biomarkera zahtjeva analizu koja je visoko osjetljiva i specifična. Mnogo biomarkera je prisutno u malim količinama te nisu mjerljivi u serumu. Jedan od način
detektiranja biomarkera za karcinom prostate je analiziranje imunološkog odgovora bolesnika. Detektiranje autoantitijela je dio takvog pristupa (Wang, 2008).

7.2 PSA AUTOANTITIJELA
PSA je serinska proteaza koju proizvodi epitel prostate. Od 1986, PSA je prihvaćen od strane FDA (Američka agencija za hranu i lijekove, engl. Food and Drug Administration) i jedini je biomarker kojeg preporučuje Američka udruga za rak. Titar anti-PSA autoantitijela je bio veći u osoba s hiperplazijom prostate; BHP (od engl. benign hiperplasia of prostate) nego u prostatitisu i kontrolnim skupinama. U studiji koja je obuhvaćala 200 pacijenata sa različitim stadijum karcinoma prostate i kontrolama, potvrđeno je postojanje anti-PSA autoantitijela u 11% seruma bolesnika s karcinomom prostate i 1.5% u kontrolnoj skupini. Navedeno upućuje na ulogu imunološkog odgovora u bolesnika s tumorima prostate. Razina anti-PSA autoantitijela je bila veća u osoba s androgen neovisnim karcinomom, ukazujući da povišena koncentracija autoantitijela na PSA može biti povećana u uznapredovalim stadijima karcinoma prostate (Wang, 2008).

U istraživanju autoantitijela Lokanta i sur. 3.4% osoba je imalo autoantitijela na PSA (Wang, 2008).

7.3 AUTOANTITIJELA NA HER2/NEU
U karcinomu prostate, HER2/neu je izražen u 25%-40% lokaliziranih tumora te u 60%-80% slučajeva metastaza. Imunoanaliza HER2/neu pokazuje razlike u osoba sa i bez metastaza. Povećana razina autoantitijela na HER2/ neu je prisutna u osoba s metastazama i povezana je s lošijom prognozom bolesnika. Autoantitijela na HER2/neu su bila povišena u svih pacijenata s karcinomom prostate (15%) i
kontrolnim skupinama (2%). Autoantitijela na HER2/neu su bila povišena u androgen-neovisnim karcinomima prostate (Wang, 2008).

7.4 AUTOANTITIJELA NA HUNTINGTIN-INTERACTING PROTEIN 1 (HIP1)
Huntingtín-interactin protein (HIP1) je opisan kao protein koji reagira sa huntingtinom, bjelančevinom koja je produkt gena mutiranog u Huntingtonovoj bolesti. To je klastrin vežući protein uključen u transport receptora za čimbenike rasta. HIP1 transformira fibroblaste i produžuje poluvrijeme raspada receptora za čimbenike rasta. HIP1 je jako izražen u karcinomu prostate i povezan s progresijom karcinoma i metastazama. Upotrebljavajući mišji model karcinoma prostate, Bradley i sur. su otkrili da HIP1 ima važnu ulogu u nastanku tumora kod miševa. Test je imao specifičnost od 97%. Ovo istraživanje upućuje da HIP1 ima važnu ulogu u tumorigenezi te da seropozitivnost HIP1 možda ima bitnu ulogu u otkrivanju karcinoma prostate (Wang, 2008).

7.5 AUTOANTITIJELA NA GLUKOZOM REGULIRANI PROTEIN-78 (GRP78)
Ovaj podatak ukazuje da imunoreaktivnost usmjerena na GRP78 ima značajnu ulogu kao biomarker u otkrivanju karcinoma prostate. GRP78 nije samo povezan samo s prognošćkim indikatorima već predstavlja i moguću „metu“ terapije.

7.6 AUTOANTITIJELA NA ALPHA-METHYLACYL CoA RACEMASE (AMACR)

Otkriće autoantitijela na α-metilacil CoA racemazu (AMACR) je dalo nadu da će citoplazmatski markeri u budućnosti moći biti markeri skrininga. AMACR je enzim uključen u pretvorbu R-steroizomeraze zasićenih masnih kiselina u S stereoisomerazu. To je protein koji je visoko osjetljiv i specifičan u karcinomu prostate. Monoklonska antitijela na AMACR se danas upotrebljavaju u mnogim ustanovama za dijagnozu karcinoma prostate. Studije koje su ispitivale 807 ispitanika s karcinomom prostate, su potvrdile osjetljivost i specifičnost od 97% i 92% za detekciju karcinoma. Iako je AMACR jako koristan za detekciju tumora kada se nađe u tkivima, bilo bi bolje da ga se detektira u serumu. Humoralni odgovor na AMACR bio je predmetom mnogih istraživanja. Mjereći razine autoantitijela na AMACR, Sreekumar i suradnici su mogli razlikovati osobe koje imaju karcinom prostate od kontrola. Imunoreaktivnost je bila viša u osoba koje su imale karcinom prostate, nego one koje su bile kontrolne skupine. Kada je nalaz PSA između 4 i 10 ng/mL, imunološki odgovor na AMACR je osjetljiviji nego PSA u razlikovanju osoba koje su oboljele od tumora i kontrolnih skupina (osjetljivost 77.8%, specifičnost 80.6%). U budućnosti, humoralni odgovor na AMACR ima potencijal nadopuniti detekciju karcinoma prostate. AMACR je povišen u epitelu karcinomskih stanica prostate. U istraživanju Sreekumar i sur. su pokazali uz pomoću ELISA testa da su 18 od 23 osoba s karcinomom kolona imala pozitivna autoantitijela na AMACR, za razliku od kontrola gdje su samo tri osobe bile imunološki pozitivne (Sreekumar i sur. 2004, Wang 2008).
7.7 AUTOANTIJELA NA PROTEIN KINAZU A (ECPKA)

U normalnim stanicama prostate protein kinaza (PKA) je smještena unutarstanično. Maligne stanice izlučuju PKA u medij u kojem rastu. Ta izvanstanična PKA se označava kao ECPKA (engl. extracellular PKA). ECPKA se nalazi u serumu osoba s karcinomom i kirurško odstranjenje tumora dovodi do smanjenja razine ECPKA u pacijenata. Autoantitijela na ECPKA su analizirana u 295 osoba s raznim karcinomima, 155 normalnih kontrola i 55 pacijenata bez karcinoma. Pokazana je prisutnost velike količine ECPKA u pacijenata s karcinomima. U podskupini pacijenata s karcinomom prostate (N=35) je nađen visok titar anti ECPKA (učestalost 86%, srednja vrijednost titra 2.95), dok je u kontrolnoj grupi titar bilo nizak ili negativan (učestalost 12%, srednja vrijednost titra 1.0) To ukazuje na vrijednost ECPKA kao biomarkera za karcinom prostate (Wang, 2008).

7.8 AUTOANTITIJELA NA PROSTASOME

Prostasomi su male sekretorne granule koje sintetiziraju normalne ili neoplastične prostatične stanicu čovjeka i oslobađaju se sa sadržajem prostate u duktuse žljezde. Stanice prostate i ekskretorni duktusi tvore zatvoren sistem. Visoko diferenciran karcinom prostate te veći tumori proizvode veću količinu prostatoma. Antigeni prostate su skriveni i ne pojavljuju se do puberteta. Kad prođu imunološku barijeru, imunološki sustav ih klasificira kao strane antigene i stvara protutijela. Autoantitijela na prostasome su potvrđena u 13 pacijenata čiji je PSA bio >50 i 39 pacijenata koji su bili zdravi i s niskim količinama PSA. Još jedna analiza uključuje prisutnost autoantitijela na prostasome u 88% osoba s karcinomom prostate. Ovaj titar autoantitijela ne korelira s vrijednostima PSA u serumu pacijenata. Antiprostasomski titar autoantijela nije povezan s metastazama. Ovo se može objasniti činjenicom da
visoko diferencirani karcinomi prostate proizvode više prostasoma a samim time i više autoantitijela (Wang, 2008).

7.9 AUTOANTITIJELA NA MULTIPLE BIOMARKERE
Postoji mnogo TAA kao što su c-myc, cyclin B1, IMP1, Koc, p53, p62 i survivin. Serum osoba s karcinomom sadrži antitijela koji reagiraju s jedinstvenom grupom TAA, ali sa malom frekvencijom i niskom pozitivnom reakcijom na antigene. Ispitujući autoantitijela na 7 TAA(c-myc, cyclin B1, IMP1, Koc, p53, p62 i survivin, u 527 osoba sa karcinomom i 346 kontrola utvrđeno je postojanje autoantitijela od 44-68% (Wang, 2008).

7.10 AUTOANTITIJELA NA EPITELNI FAKTOR RASTA P75 (LEDGF P75)
LEDGF p75 je autoantigen koji se nalazi u osoba koje boluju od tumora ili atopičnih bolesti. Anti-LEDGF/p75 autoantitijela pokazuju citotoksičnu aktivnost. LEDGF p75 štiti stanicu od apoptoze inducirane stresom kroz aktivaciju gena povezanih sa stresom. Daniels i sur. su detektirali autoantitijela na LEDGF u 18.4% osoba s karcinomom prostate te u 5.5% osoba koje su bile kontrole. Autoantitijela na LEDGF p75 nisu detektirana u osoba s benignom hiperplazijom prostate. Ekspresija LEDGF p75 je bila prisutna u 93% ispitanika s tumorom prostate ali nije bila prisutna u zdravim kontrolama (Daniels i sur. 2005).

8. KARCINOM KOLONA

8.1 UVOD
Karcinom kolona je treći najčešći karcinom u svijetu kod muškaraca i drugi u žena. On uzrokuje 500 000 smrti godišnje. Zbog spore progresije, detekcija kolorektalnog karcinoma u ranim stadijima je važna za terapiju. Bitno je reći da su simptomi
Karcinoma kolona nespecifični i mnogo pacijenata koji imaju karcinom kolona u ranom stadiju su asimptomatični. Stadij bolesti je najvažniji prognostički faktor. Petodišnje preživljenje karcinoma kolona u ranom stadiju (DUKES A i DUKES B) je 97%. Nažalost, inicijalna dijagnoza 60% kolorektalnog karcinoma je DUKES C i DUKES D s petogodišnjim preživljenjem od 5%. Tumorski markeri su bitni za detekciju i praćenje bolesti. Iako su biomarkeri dostupni u probiru karcinoma kolona, samo mali dio se koristi u kliničkoj uporabi. Testovi koji se upotrebljavaju za detekciju karcinoma kolona su CEA (karcinoembrijski antigen), testovi koji detektiraju familijarnu adenomatoznu polipozu (FAP, od engl. familiar adenomatous polyposis), testovi koji detektiraju nepolipozni kolorektalni karcinom (HNPCC, od engl. nonpolyposis colorectal cancer) i testovi za okutno krvarenje u stolici (FOBT, od engl. faecal occult blood test). Drugi potencijalni kolorektalni tumorski markeri su CA 242, CA 19-9, CA 50, tkivni aktivator plazminogena, tkivni polipeptidni specifični antigen te tkivni inhibitor metaloproteinaze 1. Nijedan od tih markera nema dovoljnu specifičnost i osjetljivost u detektiranju stupnja kolorektalnog karcinoma. Unatoč niskoj osjetljivosti za kolorektalni karcinom, CEA se još uvijek koristi za dijagnostiku i praćenje pacijenata sa kolorektalnim karcinomom. Potrebno je razviti dovoljno specifične i osjetljive markere koji mogu zamijeniti CAE u detekciji kolorektalnog karcinoma. Identifikacija autoantitijela koja će detektirati kolorektalni karcinom je još uvijek u fazi istraživanja. Imunološki odgovor na kolorektalni tumor je raznolik. U pacijenata s kolorektalnim karcinom je povećana razina autoantitijela na p53, p62, CEA, HER-2/neu, Ras, topoizomerazu II α, histon deacetilazu 3 i 5, ubikvitin C-terminalnu hidrolazu L3, tirosinazu, tropomiozin i ciklin B.

U istraživanju kojeg su proveli Chang-Chuang i sur. a uključivalo je 94 pacijenata s kolorektalnim karcinomom i 54 normalnih kontrola, pokazala se prisutnost
autoantitijela. Seropozitivnost je varirala od 18.1% do 35.1% Seropozitivnost na svaki od 5 antigena je bila 58.5% a seroreaktivnost na CEA je bila 77.6%. Seropozitivnost na kolorektalni karcinom u ranom stadiju na CEA je bila 21.9% te seropozitivnost na druge antigene je bila 53.7% (Chang-Chuang i sur. 2010).

8.2 AUTOANTITIJELA NA MUC5AC
MUC5A je promijenjeni mucin koji je izražen u kolorektalnim polipima i karcinomu. Njegova razina je povišena u pacijenata s kolorektalnim karcinomom. Uz pomoć ELISA testa detektirana su autoantitijela na MUC5AC u 27.3% zdravih kontrola, 45% ispitanika s polipima na crijevima te u 60% osoba s kolorektalnim karcinomom. Prisutnost slobodno cirkulirajućih MUC5A autoantitijela je bila povišena u ispitanika s polipima. Autoantitijela na MUC5A su bila povezana s prisutnošću polipa crijeva. Seroreaktivnost na MUC5AC je veća u osoba koji imaju kolorektalni tumor. Autoantitijela su bila povišena u osoba sa lošim ishodom bolesti. Lošiji ishod bolesti u osoba s MUC5AC autoantitijelima je u skladu s ranijim istraživanjem ovih autora koje je pokazalo smanjenje MUC5AC ekspresije u osoba s boljim preživljenjem (Kocer i sur. 2006).

8.3 AUTOANTITIJELA PROTIV IAPA I XIAPA
8.4 AUTOANTITIJELA NA CA$^{2+}$ VEŽUĆI PROTEIN „CALNUC“
„Calnuć“, još zvan i „Nukleobindin“ je kalcijski vežući protein koji se nalazi u Golgijevom tijelu i citoplazmi i možda ima ulogu u G i Ca$^{2+}$ - reguliranim transduksijskim elementima. Ima ulogu u DNA vezivanju. Istraživanje Chen i sur. je potvrdilo prisutnost autoantitijela na „Calnuć“ u 11.5% osoba s karcinomom kolona (Chen i sur. 2007).

8.5 AUTOANTITIJELA NA RABHILIN 3A LIKE PROTEIN (RPH3AL)
RPH3AL je protein koji se sastoji od 302 aminokiseline. On se nalazi u endokrinim stanicama i uključen je u egzocitozu kroz interakcije sa citoskeletom. Mutacije RPH3AL, koje se nalaze na 17p13.3 lokusu su povezane s razvojem kolorektalnog karcinoma. U istraživanju Chen i sur. frekvencija RPH3AL je 64.7%, 78.0%, 72.6%. Ove vrijednosti su veće nego frekvencija RPH3AL autoantitijela u zdravim kontrolama 15.9%. Iako prisutnost autoantitijela na RPH3AL ne korelira sa kliničkim parametrima, autoantitijela na RPH3AL su nađena u 69.4% osoba koje imaju kolorektalni karcinom a negativni su na karcinoembrijski antigen. Cirkulirajuća autoantitijela prevladavaju u pacijenata sa kolorektalnim karcinomom i detekcija ovih autoantitijela može pomoći u neinvazivnom pristupu (Chen i sur. 2011)

8.6 AUTONTITIJELA NA RAS PROTEINE
Ras onkogeni su geni povezani s karcinomom i njih aktiviraju brojne mutacije u karcinomima čovjeka. U obitelj ras gena spada H-ras-1, K-ras-2 i N-ras. Aktivacija ras onkogena se događa na 12 ili 61 kodonu. Rezultat mutacija je supstitucija aminokiselina unutar p21 ras proteina. Mutirana ras bjelančevina gubi GTP-aznu aktivnost i nekontrolirano aktivira signalne puteve. Mutirani ras proteini se nalaze u malignim tumorima i 45% ih se nalazi u adenokarcinomu kolona. Mutirani p 21 ras protein se ne nalazi u normalnim tkivima već u karcinomskim stanicama. Takahaski i
sur. su ispitivali 160 osoba s karcinomom kolona i 60 kontrola da bi utvrdili prisutnost autoantitijela na p21 ras protein. Potvrđeno je postojanje autoantitijela u 32% osoba s karcinomom kolona, dok je u normalnih osoba bilo 2.5%. Velika incidencija IgA autoantitijela na p21-K- ras -D12 u osoba sa karcinomom kolona je povezana s postojanjem karcinoma (Takahaski i sur. 1995).

8.7 AUTOANTITIJELA NA p21

8.8 AUTOANTITIJELA USMJERENA NA VILIN
Vilin je protein koji se nalazi u mikrovilima epitelnih stanica tankog crijeva, kolona i pankretobilijarnog trakta. Ima važnu ulogu podupiranja aktinske jezgre mikrovila. U karcinomu kolona vilin se nalazi difuzno u citoplazmi i smješten je blizu membrane. Struktura vilina slična je humanom serumskom proteinu gelozinu. Zbog toga imunološki sustav ne odstranjuje brzo vilin. Vilin je prisutan u 50% osoba s kolorektalnim karcinomom. Rimm i sur. su istraživali prisutnost protutijela usmjeren na vilin u pacijenata sa karcinom kolona, kolitisom, Crohnovom bolešću, ulcerativnim kolitisom i kontrolnoj skupini. Potvrđena je prisutnost autoantitijela na vilin u 80%
osoba s karcinomom kolona, 61% osoba s kolitisom, 42% osoba s Crohnovom bolešću, 44% osoba s ulcerativnim kolitisom i 33% kontrola. Prisutnost autoantitijela viša je u osoba s karcinomom. To je zbog toga jer karcinomske stanice proizvode vilin u izmijenjenim uvjetima što rezultira promjenom u staničnoj lokalizaciji i mogućom sekrecijom vilina. Određivanje autoantitijela na vilin predstavlja značajan potencijal u detektiranju karcinoma kolona (Rimm i sur. 1995).
9. ZAKLJUČAK
10. ZAHVALE
Zahvaljujem se mentorici, prof.dr.sc Maji Sirotković-Skerlev na nesebičnoj pomoći i stručnim savjetima prilikom izrade ovog diplomskog rada.
Zahvaljujem se svojim roditeljima što su me poticali da usvajam nova znanja i iskustva te postanem bolji čovjek.
11. LITERATURA

12. ŽIVOTOPIS