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Krüppel-like transcription factor 8 (KLF8) is a transcription factor suggested to be involved in various cellular
events, including malignant cell transformation, still its expression in the adult rodent brain remained unknown.
To analyze Klf8 in the mouse brain and to identify cell types expressing it, a specific transgenic Klf8Gt1Gaj mouse
was used. The resulting Klf8 gene-driven β-galactosidase activity was visualized by X-gal histochemical staining
of the brain sections. The obtained results were complemented by in situ RNA hybridization and immunohisto-
chemistry.Klf8washighly expressed throughout the adultmouse brain graymatter including the cerebral cortex,
hippocampus, olfactory bulb, hypothalamus, pallidum, and striatum, but not in the cerebellum. Immunofluores-
cent double-labeling revealed that KLF8-immunoreactive cells were neurons, and the staining was located in
their nucleus. This was the first study showing that Klf8 was highly expressed in various regions of the mouse
brain and in particular in the neurons, where it was localized in the cell nuclei.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The mammalian Krüppel-like factor (KLF) family includes 17 family
members, DNA binding transcriptional regulators involved in the control
of different cell processes including cell proliferation, differentiation,
apoptosis, angiogenesis, oncogenic transformation and development
(Dynan and Tjian, 1983; Miller and Bieker, 1993; van Vliet et al., 2006;
Kaczynski et al., 2003; Bieker, 2001). Their modular structure is based
on three characteristic domains preserved even in evolutionary distant
homologues (Oates et al., 2001; Huber et al., 2001; De Graeve et al.,
2003). Post-translational modifications of the highly variable N-
terminal activation domain are believed to underlie KLF ability to act as
either an activator or repressor of transcription. The DNA binding
domain is a C-terminal region with three highly conserved Cys2/His2
(C2/H2) zinc fingers (ZFs) and nuclear localization signal (NLS) is
adjacent to this domain.

Krüppel-like factor 8 (KLF8, also known as ZNF741 or BKLF3) was
initially isolated from K562 cells (human immortalized myelogenous
üppel-like factor; NLS, nuclear
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leukemia cell line) and described as ubiquitously expressed transcription
factor (van Vliet et al., 2006). KLF8 cellular function and expression can
be positively regulated by other transcription factors like KLF1 (Eaton
et al., 2008) or signaling molecules like Src and PI3K downstream of
FAK (Zhao et al., 2003; Wang et al., 2008; Cox et al., 2006; Ding et al.,
2005). Moreover it can be negatively regulated by KLF3 transcription
factor (Eaton et al., 2008) and post-translational sumoylation (Wei
et al., 2006). Molecular mechanisms underlying KLF8 physiological
function as transcription regulator are currently uncertain; it may exert
dual function on gene transcription dependent on the context of the
target genes. KLF8 can recruit the C-terminal binding protein (CtBP)
co-repressor to its N-terminal pro-val-asp-leu-ser (PVDLS) repression
motif to repress different genes such as KLF4 and E-cadherin (van Vliet
et al., 2006; De Graeve et al., 2003; Wei et al., 2006; Wang et al., 2007;
Hu et al., 2007; Zhang et al., 2005). It can also be a transcription activator
by binding to CACCCGT-box promoter sequence through highly
conserved C-terminal C2H2 zinc fingers (Zhao et al., 2003; Wang et al.,
2008; Wei et al., 2006).

As a Focal Adhesion Kinase (FAK) signaling effector KLF8 can
contribute to cell cycle progression by directly binding and activating cy-
clin D1 gene promoter (Zhao et al., 2003; Wang et al., 2008; Wei et al.,
2006; Urvalek et al., 2010). Recent findings support the involvement of
KLF8 in malignant cell transformation, epithelial-to-mesenchymal
transition, migration, and tumor cell invasion (Wang et al., 2007, 2008;
Wang and Zhao, 2007; Schnell et al., 2012). High expression of Klf8
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Regional distribution of Klf8 expression in the adult mouse brain assessed by X-gal stain-
ing (X-gal), in situ RNA hybridization (ISH) and immunohistochemistry (IHC).

Region X-gal ISH IHC

Telencephalon
Allocortex
Piriform cortex +++ +++ +++
Entorhinal cortex −/+ −/+ −/+

Isocortex
Temporal

Lamine II, III, IV +++ +++ +++
Lamine I, V, VI −/+ + +

Motor
Lamine II, III, IV +++ +++ +++
Lamine I, V, VI −/+ + +

Somatosensory
Lamine II, III, IV +++ +++ +++
Lamine I, V, VI −/+ + +

Parietal
Lamine II, III, IV +++ +++ +++
Lamine I, V, VI −/+ + +

Visual
Lamine II, III, IV +++ +++ +++
Lamine I, V, VI −/+ + +

Ectorhinal −/+ + +
Perirhinal −/+ + +
Hippocampal formation

CA1–CA4 +++ ++ +++
Dentate gyrus − ++ +

Stiatum
Dorsal region ++ ++ ++
Caudatoputamen ++ + ++
Ventral striatum ++ + ++
Nucleus accumbens ++ + ++

Pallidum
Medial septal complex ++ ++ ++
Substantia inominata + ++ ++
Globus pallidus + ++ ++

Diencephalon
Epithalamus
Medial habenula ++ ++ +++

Thalamus
Paraventricular nucleus ++ ++ +++
Intermediodorsal nucleus ++ ++ +++
Centrolateral nucleus ++ ++ +++
Mediodorsal nucleus ++ ++ +++
Laterodorsal nucleus ++ + +++
Lateroposterior nucleus ++ + ++

Hypothalamus +
Dorsomedial nucleus ++ ++ +++
Arcuate nucleus ++ +++ +++
Posterior nucleus ++ +++ +++
Tuberal nucleus ++ +++ +++

Mesencephalon ++
Superior colliculus ++ + +
Inferior colliculus ++ + +

Metencephalon − − −/+

“−” — no signal; “−/+”, “+”, “++” and “+++” — arbitrary estimated intensities of KLF8
signal strength.
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was shown in developing neural tube of mouse embryos (Ćurlin et al.,
2002).

While an evidence of KLF8 importance in oncology is emerging in
the last years, its function in both health and disease remains to be
resolved. In an attempt to contribute to this issue, we analyzed Klf8
expression in the central nervous system using a mouse model with
gene trap modification of Klf8 gene.

2. Materials and methods

2.1. Animals

Experiments were carried out on five wild type mice (C57Bl/6NCrl)
and on the four mice of the gene trap line Klf8Gt1Gaj. The age of the mice
included in the experiments was 4–8 months. All animal procedures
were approved by the University of Zagreb School of Medicine Ethics
Committee and are in accordance with the Ethical Codex of Croatian
Society for Laboratory Animal Science. All animals were allowed ad
libitum access to food and water.

2.1.1. Genetically modified mice
The transgenic mouse line Klf8Gt1Gaj mouse was produced using a

large-scale gene trap approach (Skibinski et al., 2005; Thomas et al.,
2000; Gajovic et al., 1998). The gene trap procedure and the character-
ization of the mouse model was done as previously described (Ćurlin
et al., 2002; Gajovic et al., 1998) and it will be shortly presented here.
The gene trap vector used was pKC199bgeo containing the splice accep-
tor sequence from the mouse Hoxc9 gene located upstream of the
promoterless βgeo (fused lacZ and neoR), which generated both β-
galactosidase reporter and neomycin resistance (Thomas et al., 2000).
The vectorwas introduced into themouse embryonic stem cells by elec-
troporation. After selection for 10 days by 250mg/ml G418 (GIBCO BRL,
Gaithersburg, MD, USA), resistant cloneswere isolated and stainedwith
X-gal for the presence of β-galactosidase. The positive clones were used
for morula aggregation and after the germ line transmission the
resulting mouse line was expanded by successive mating with C57Bl/
6Crl mice. The particular gene trap event was selected according to
the restricted expression pattern of lacZ reporter in the developing ner-
vous system at E11.5. The expression was visualized by histochemical
detection of β-galactosidase, due to the lacZ transcription driven by
promoter of the endogenous gene in which the gene trap vector was
inserted. The integration of gene trap vector into the mouse ES cell
genome was random, therefore the endogenous gene affected by the
gene trap mutation had to be identified. The known sequence of the
inserted gene trap vector enabled the amplification and identification
of the target gene by 5′ and 3′ RACE (rapid amplification of cDNA
ends) method (Skibinski et al., 2005). BLAST search showed that the
obtained cDNA sequence represented an already known gene, referred
as Klf8 (GenBank NM_173780; 21). The heterozygous mice were
genotyped by PCR of tail genomic DNA.

2.2. Detection of β-galactosidase activity

Mice were anesthetized with intraperitoneal injections of 2.5%
Avertin (Sigma Aldrich, St. Louis, MO, USA), transcardially perfused
with phosphate buffered saline (PBS), followed by PBS buffered 2%
formaldehyde (Sigma Aldrich, St. Louis, MO, USA) and 0.2% glutaralde-
hyde (Sigma Aldrich, St. Louis, MO, USA) (pH 7.4). Mouse brains were
carefully dissected and postfixed with the same fixative mixture for
1 h on ice. After rinsing in PBS, mouse brains were sliced into 100 μm
thick coronal and sagittal sections using a vibratome. Brain sections
were incubated in the staining solution, containing 0.5 mg/ml X-gal
(5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside), 10 mM potassi-
um ferricyanide, 10 mM potassium ferrocyanide, 2 mM magnesium
chloride, 0.01% sodium deoxycholate and 0.01% Igepal (Sigma Aldrich,
St. Louis, MO, USA) in 0.01 M PBS (pH 7.4) under light protection at
37 °C overnight. The specimens were rinsed with PBS and cleared in
ascending concentrations of glycerol in PBS at 4 °C, and visualized
under the stereo microscope (Olympus SZH10, Olympus Optical Co.
Ltd, Tokyo, Japan).

2.3. In situ RNA hybridization

The mice were sacrificed by cervical dislocation and the brains
dissected in sterile conditions and instantly frozen in isopentane (2-
methylbutane) for 60 s and stored at 80 °C till usage. The frozen brains
were cut on a cryostat (Leica CM3000, Leica Instruments GmbH,
Germany) into 20 μm thin sections and thaw-mounted on poly-L-
lysine coated slides (Menzel-Glaser GmbH, Germany). After fixation
by immersion in ice cold 2% PFA for 10 min, sections were rinsed
twice at room temperature in 0.1 M PBS (pH 7.4) and acetylated with

http://NM_173780
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0.25% acetic anhydride in triethanolamine (pH 8.2). The sections were
further dehydrated in ascending series of alcohol (70% EtOH 1 min,
80% EtOH 1 min, 95% EtOH 2 min, 100% EtOH 1 min), kept for 5 min in
chloroform, 1 min in 100% EtOH, and 1 min in 95% EtOH.

DNA oligonucleotide probes usedwere Klf8 sense: GCAGGGAGAAGA
GTC TCT TGA CTT AAA GAG AAG ACG GAT TCA TCA and Klf8 antisense:
CGT CCC TCT TCT CAG AGA ACT GAA TTT CTC TTC TGC CTA AGT AGT.
The probe 35S-dATP was labeled on ice. The labeling reaction mixture
(50 μl per slide)was incubated for 30min at 37 °C, and stopped by adding
Fig. 1. β-galactosidase activity as a marker of Klf8 expression in themouse brain. X-gal histoche
(A–E, G) and sagittal (F) heterozygous mouse brain cryosections. The stained structures includ
olfactory area—OA, cortex— CTX, striatum— ST, pallidum— PA, hypotalamus—HY, CA1, CA2,
regions — STR (striatal dorsal region, caudoputamen, striatal ventral region and nucleus accu
nucleus, substantia innominata and caudal region of the pallidum) and midbrain — MB. Non-
and IV (E). Absence of specific β-galactosidase activity signal of wild type mouse brain cryosec
180 μl Tris-base EDTA buffer (10 mM Tris, 1 mM EDTA, pH= 8) and 4 μl
tRNA (25 μg/μl). The labeled probe precipitated by adding 15 μl of 4 M
NaCl and 660 μl of 100% EtOH, after which it was incubated for 1 h on
dry ice and centrifuged for 30 min (13,000 g) at 4 °C. The sediment was
dissolved in 50 μl Tris-base EDTA buffer with 0.5 M dithiothreitol. The ra-
dioactivity was measured by adding 1 μl of probe to 500 μl of scintillation
liquid and 10 μl of supernatant to 500 μl of scintillation liquid and counted
by a beta-counter. The proportion of labeling success and the number of
conjugated 35S-dATP per oligo were calculated.
mical staining resulted in a blue precipitate shown in representative 100 μm thick coronal
e lateral part of the anterior olfactory nucleus — AON, the accessory olfactory bulb— AOB,
CA3 fields of the amons horn of the hippocampal formation—HPF, thalamus— TH, striatal
mbens), pallidum — PAL (pallidum medial region, medial septal complex, medial septal
stained structure cerebellum — CB (F). X-gal blue precipitate present in the laminae II, III
tions (G). Scale bar represents 1 mm (black), 0.1 mm (white).
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Hybridizationwas performed overnight at 40 °C in the hybridization
buffer supplemented with 100 mg/ml dextran sulfate, 10 μl/ml
dithiothreitol and 35S labeled oligonucleotide probe (600,000–
800,000 cpm/50 μl). The next day the sections were prewashed three
times with 5× saline sodium citrate buffer with 100 μl 1 M dithiothrei-
tol at 52 °C and washed four times with 5× saline sodium citrate buffer
for 15min at 58 °C after which theywere dipped twice in 70% EtOH and
air-dried.

The dried slides were positioned with a 14C-microscale into a labeled
autoradiogram cassette, covered in the dark under red save light with
Kodak BioMaxMR film and stored in a dark place for 15 days. The film
was developed under red save light: bathing for 90 s in developer, wash-
ing shortly inwater, bathing for 5min in fixation solution, rinsing for 5 to
10 min under a stream of water, and air-dried. The visible signal was
digitized using a Flatbed Epson perfection 4870 photo scanner (Epson
America, Inc., Long Beach, CA, USA), with a resolution of 4800 dpi.

2.4. Immunohistochemistry

The mice were anesthetized with intraperitoneal injection of 2.5%
Avertin (Sigma Aldrich, St. Louis, MO, USA) and transcardially perfused
with PBS, followed by PBS buffered 4% paraformaldehyde. Mouse brains
were carefully dissected and postfixed overnight in the same fixative at
4 °C, rinsed in PBS, and transferred to 10% sucrose followed by 30% su-
crose in PBS at 4 °C for cryoprotection. After the brains sunk in sucrose,
approximately 3 days at 4 °C, the brains were embedded in Tissue-Tek
(O.C.T. compound, Sakura, Torrance, CA, USA), cut into 35 μm-thick cor-
onal or sagittal sectionsusing cryostat (Leica CM3000, Leica Instruments
GmbH, Germany), and stored till use at−20 °C.

For brightfield immunohistochemistry, 35 μmmouse brain sliceswere
rinsed in PBS 4 times for 5 min. PBS buffered 18% H2O2 was put on slides
for 30 min at 4 °C. Slices were blocked with 5% goat serum and 1% Triton
X-100 in PBS for 1 h on 4 °C. Primary antibody against KLF8 (rabbit
polyclonal, Santa Cruz Biotechnology, Inc., Santa Cruz, USA) was diluted
1:50 in PBS containing 5% goat serum and 1% Triton X-100 and incubated
overnight at 4 °C. Control slices were incubated in a buffer not containing
primary antibody. Slices were rinsed with PBS containing 0.25% Triton
Fig. 2. Representative autoradiographic images depicting the distribution Klf8mRNA in the mu
cryosections confirms the expression pattern obtained by X-gal staining (right — antisense (
hybridized with the sense (control) probe (left — sense (S)). Abbreviations: CTX — cortex, HP
bar represents 1 mm.
X-100 4 times for 5 min. Secondary antibody was anti-mouse Fc specific
(Jackson ImmunoResearch Europe Ltd., Suffolk, UK) diluted 1:500 in PBS
containing 5% goat serum and 1% Triton X-100, incubated for 4 h at
4 °C. Slices were rinsed 2 times for 15 min with PBS. Tertiary complex
(VectaStain ABC anti-mouse kit Standard)was prepared in PBS contain-
ing 5% goat serum, incubated for 2 h at 4 °C, and then rinsed 2 times for
15 min with PBS. SIGMAFAST™ DAB (3,3′-diaminobenzidine tetrahy-
drochloride) was diluted in demineralized water and incubated for
20 s. Brain slices were rinsed twice with PBS and coverslipped with
HistoMount (Invitrogen). After drying, the slices were analyzed under
bright field using light microscope (Olympus Provis AX70, Tokyo,
Japan).

For immunofluorescence, 35 μmthick coronal cryostat sectionswere
rinsed in PBS 4 times for 5 min. The sections were blocked for 30min in
PBS containing 10% goat or donkey serum (depending on the secondary
antibody) and 0.25% Triton X-100. Primary antibodies used were
against KLF8 (rabbit polyclonal, diluted 1:50, Santa Cruz Biotechnology,
Inc., Santa Cruz, USA), β-gal (Chicken polyclonal, diluted 1:200, Abcam,
Cambridge, UK), NeuN (Mouse monoclonal, diluted 1:300, Millipore,
Billerica, MA, USA), GFAP (Chicken polyclonal, diluted 1:100, Abcam,
Cambridge, UK), Iba1 (Goat polyclonal, diluted 1:50, Abcam, Cambridge,
UK), Map2 (Chicken polyclonal, diluted 1:750, Abcam, Cambridge, UK),
and Olig4 (Mouse monoclonal, diluted 1:300, Millipore, Billerica, MA,
USA). Incubation with primary antibody was performed overnight at
room temperature in PBS containing 1% goat serum (or donkey serum
depending on the secondary antibody) and 0.25% Triton X-100 (both
Sigma Aldrich). Control slices were incubated in a buffer not containing
primary antibody. Slices were rinsed with PBS containing 0.25% Triton
X-100 4 times for 5 min. The secondary antibodies were Alexa Fluor
488 goat anti rabbit (Invitrogen), Alexa Fluor 488 donkey anti-rabbit
(Invitrogen, A11056), Alexa Fluor 546 goat anti-chicken (Invitrogen),
Alexa Fluor 546 goat anti-mouse (Invitrogen), and Alexa Fluor 546 don-
key anti-goat (Invitrogen). All secondary antibodies were diluted at a
concentration of 1:500, and incubation was performed for 2 h at room
temperature. After incubation, slides were washed with PBS containing
Triton X-100, mounted with Fluoromount Aqueous Mounting Medium
(Sigma Aldrich), coverslipped and left overnight to dry. Brain sections
rine brain by in situ hybridization. Klf8mRNA expression on coronal wild type mice brain
AS)). Note the absence of specific hybridization signal in all regions when sections were
F — hippocampal formation, MB — midbrain, TH — thalamus, HY — hypothalamus. Scale
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were examined under a confocal microscope (Zeiss LSM 510 Meta, Carl
Zeiss Microscopy GmbH).

3. Results

3.1. β-galactosidase activity was present in different regions of the gray
matter in the brain as analyzed by X-gal staining of Klf8Gt1Gaj transgenic
mouse

The present study used a specific transgenic Klf8Gt1Gaj mouse line
in which lacZ transcription was driven by endogenous promoter of
Klf8 gene. In order to visualize the expression pattern of Klf8 gene
histochemical detection of β-galactosidase activity via its substrate
X-gal was used. X-gal staining as a blue precipitate was present
throughout the gray matter of the brain, in the olfactory bulbs,
cerebral cortex, hippocampus, hypothalamus, pallidum and striatum
Fig. 3. Immunolocalization of KLF8 in coronal wild type mice brain cryosections. Immunohi
formation—HPF, thalamus— TH, midbrain—MB and hypothalamus— HY (A). Highmagnifica
(E), hypotalamus (F) and median habenula (G), versus negative control without primary antib
(Table 1, Fig. 1). β-galactosidase activity was not present in the
cerebellum (Fig. 1F).

3.1.1. Telencephalon
The highest density of X-gal staining was observed in the cerebral

cortex and hippocampus (Fig. 1D). Interestingly, the distribution of
the staining varied among layers of the cortex. The most intense X-gal
staining was in the pyramidal layer of the piriform area (Fig. 1D) and
in laminae II, III, and IV of the temporal, motor, somatosensory, parietal
and visual cortex (Fig. 1D, E). In contrast to these laminae, a weaker
staining was present in laminae I, V, and VI. The weakest staining was
in the ecthorhinal, perirhinal and entorhinal cortices (Fig. 1D). Strongly
labeled were also the CA1, CA2, and CA3 fields of the hippocampal
formation. The granular layer of dentate gyrus did not show a
β-galactosidase activity (Fig. 1D). In the striatum, the staining was also
seen scattered through the striatal dorsal region, caudate nucleus,
stochemical staining shows positive KLF8 expression in the cortex — CTX, hippocampal
tion of KLF8 immunolocalization in the cortex (C), CA1 field of the hippocampal formation
ody (D). Scale bar represents black 100 μm, white 10 μm.
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putamen, striatal ventral region and nucleus accumbens (Fig. 1C).
Similarly, the stainingwas present in themedial septal complex,medial
septal nucleus, substantia innominata, andmedial and caudal regions of
the pallidum (Fig. 1C).

3.1.2. Diencephalon
In the diencephalon, weak X-gal stainingwas observed inmany tha-

lamic regions (Fig. 1D) including the paraventricular, intermediodorsal,
centrolateral, mediodorsal, lateral dorsal and lateral posterior thalamic
nuclei. The staining was also visible in the medial habenula region of
the epithalamus. In the hypothalamus, most of the X-gal staining was
distributed in the dorsomedial, arcuate, posterior hypothalamic and
tuberal nuclei.

3.1.3. Mesencephalon
In the midbrain, most of the X-gal blue staining was detected

throughout the superior and inferior colliculus (Fig. 1F).

3.1.4. Metencephalon
In the cerebellum β-galactosidase activity was not present (Fig. 1F).

3.2. Klf8 expression determined by in situ RNA hybridization corresponded
to β-galactosidase activity in gene trap mutant

In order to confirm that the observed β-galactosidase activity
pattern indeed reflected endogenous Klf8 expression, the in situ hybrid-
ization was performed with 35S-labeled probe for Klf8 mRNA in the
adult mouse brain. Klf8 mRNA was shown throughout the rostral–
caudal extent of the brain, with labeled cells concentrated in the cere-
bral cortex, hippocampus, thalamus and hypothalamus (Fig. 2B). The
relative intensity of hybridization signal (grains over cells) and the
density of labeled cells in different regions of the brain were similar to
those of X-gal staining (Table 1).

3.3. Immunohistochemistry showed KLF8 presence in the brain and in
β-galactosidase positive cells

To visualize KLF8 protein the brain coronal cryosections were
labeled with anti-KLF8 antibody. Brightfield immunohistochemistry
evaluation demonstrated KLF8 protein distribution similar to the
observed β-galactosidase activity pattern. Evaluation of the stained
sections also showed the rostro-caudal distribution of KLF8 protein in
the brain (Table 1). The relative density of labeled perikarya was the
highest in the cerebral cortex, hippocampus, hypothalamus and
thalamus (Fig. 3A, C, E, F, G).
Fig. 4. Confocal photomicrographs showing colocalization of KLF8 (green, A) and β-galactosida
β-galactosidase confirmed the lacZ insertion in the Klf8 gene. Scale bar represents 10 μm.
In order to verify whether β-galactosidase distribution reflects those
of KLF8, representative coronal heterozygous mouse brain cryosections
were double labeled with anti-β-galactosidase and anti-KLF8 antibody.
Strong fluorescence signals of both β-galactosidase and KLF8 were
present in the same brain cells (Fig. 4). The overlap of the observed
fluorescent signals suggested that the X-gal staining reliably displayed
Klf8 expressing cells.

Still the overlap of the three methods used, X-gal staining, in situ
RNAhybridization, and immunohistochemistrywas not present overall.
The most differences include the intensity of the staining, but in some
instances the differences were more pronounced. The most prominent
example was dentate gyrus of the hypocampal formation (Table 1).

3.4. Double staining immunohistochemistry showed that KLF8was active in
the neuronal nuclei

To identify cells of the brain, which expressed KLF8, mouse brain
cryosectionswere double-labeledwith anti-KLF8 antibody and different
cell specific markers: neuron cytoskeletal-specific marker (Map2),
neuron nuclear-specific marker (NeuN), markers of astrocytes (GFAP),
microglia/macrophages (Iba1) and oligodendrocytes (Olig4). KLF8-
positive cells of three distinct regions of the brain (cortex, hippocampus
and hypothalamus) co-stained with the neuronal markers NeuN and
Map2, indicating that KLF8-expressing cells were neurons (Fig. 5A–D).
Fluorescent KLF8 signal was clearly present in the neuronal nuclei
marked with DAPI (Fig. 5A–C, H–J). Fluorescent double labeling of
KLF8/GFAP, KLF8/Iba1 and KLF8/Olig4 showed that KLF8-was not
present in the astrocytes, microglia or oligodendrocytes (Fig. 5E–G).

4. Discussion

The results of the present study were first to show Klf8 expression
pattern in the adult mouse brain. X-gal histochemistry of the
lacZ-tagged Klf8 gene overlapped with the signal observed by in situ
RNA hybridization and immunohistochemistry. The slight difference in
detection levels of the three methods used was expected, since it is
shown that X-gal histochemistry can underestimate the extent of gene
expression (Couegnas et al., 2007; Pereira et al., 2006). Klf8 expression
was detected in the gray matter, the most prominent regions
being cortex and hippocampus, but as well in the olfactory bulbs,
thalamus, hypothalamus, pallidum and striatum, although not in the
cerebellum.

Strong KLF8 signal was found in the nuclei of neurons, which
corresponded to KLF8 function as transcription factor. This finding
confirmed previously reported KLF8 nuclear localization in HEK293
and NIH3T3 cells (Eaton et al., 2008; Mehta et al., 2009). The
se (red, B) in the brain of heterozygous mice. Overlap in distribution of KLF8 protein and
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cooperation between two functional nuclear localization signals (NLSs)
together with the first two C2/H2 zinc fingers are considered to play an
essential role in both nuclear localization and DNA binding of KLF8
(Mehta et al., 2009).

The currently observed Klf8 expression in the adult brain
complemented the previously observed expression in the developing
central nervous system (Ćurlin et al., 2002). Klf8 is also well expressed
in different types of human cancer (Zhang et al., 2005; Lahiri and
Zhao, 2012) and in the brain affected by Alzheimer's disease (Yi et al.,
2014). Still the observed expression pattern in the mouse did not
completely match those in the zebra fish, where Klf8 is required for
maintenance of pft1a-expressing neuronal progenitors originating
from the ventricular zone, which are essential for the development of
Purkinje cells during normal cerebellar development (Tsai et al.,
2014). In relation to the nervous system, other KLF family members
are expressed as well in the developing and adult rodent and human
brain. Klf5 mRNA and the corresponding protein were shown in
neurons of human brain gray matter with suggested involvement in
glutamatergic neurotransmission modulation (Yanagi et al., 2008).
KLF6 protein was found in neurons and endothelial cells of rodent
forebrain with suggested involvement in the regulation of cell differen-
tiation or phenotypic neurons maintenance (Jeong et al., 2009).
Furthermore, loss of function of Klf7 showed deficient neurite growth
in the cerebral cortex and hippocampus (Laub et al., 2005).

Recent findings support the important roles of KLF8 playing in
malignant cell transformation and tumor growth of several different
non-CNS tumors including breast cancer, ovarian cancer, hepatocellular
carcinoma and renal carcinoma (Wang et al., 2007, 2008; Wei et al.,
2006). Klf8 also emerged as an oncogenic transcription factor with a
high expression and functional impact in primary brain tumors
(Schnell et al., 2012). Epithelial–mesenchymal transition is acquired
for invasive tumor phenotypes, which can be mediated through Focal
AdhesionKinase regulation of KLF8 expression and cyclin D1 expression
activation (Wang et al., 2008; Ding et al., 2005;Wei et al., 2006; Guarino
et al., 2007). Our study addressed healthy brain structures showing
KLF8 presence in neurons, but not in glia cells. The neurons are
postmitotic cells; hence we had not shown KLF8 in cells capable for
mitotic division. Whether the eventual ectopic expression of Klf8 in
mitotic cells in the brain could contribute to the tumorigenesis is to be
verified in the future. Moreover, in cells expressing Klf family members'
posttranslational modifications such as acetylation, sumoylation, and
phosphorylation can modify the activating or repressor functions of
KLF by changing their binding partners or altering affinities for specific
target promoters.

The KLF8 strong presence in the neurons as post-mitotic cells is
rather controversial due to its suggested involvement in the cell cycle
regulation. FAK regulates cell cycle progression in normal cells by
enhancing KLF8 binding activity and subsequent transcriptional control
of the cyclin D1 promoter in NIH3T3 cells (Zhao et al., 2001, 2003). At
the other hand several othermembers of the KLF family were suggested
to stimulate cell differentiation and inhibition of proliferation in differ-
ent cell types (Bieker, 2001; Perkins, 1999). For example, expression
of KLF4 and KLF8 are critical for the restrain of growth and differentia-
tion of epithelial cells by repression of cyclin D1 promoter (Dang et al.,
2000; Okano et al., 2000; Shie et al., 2000a,b; Shields et al., 1996; Laub
et al., 2001). Taken together, these data suggest that different members
Fig. 5. KLF8 was localized exclusively in the neuronal nuclei. Confocal photomicrographs
showing fluorescent signal overlap of KLF8 (green) and NeuN neuron-specific marker
(red) in the cortex (A), cornu ammonis 2 (CA2, B) and hypothalamus (C) of coronal wild
type mice brain cryosections. KLF8 (green) neuronal localization was confirmed by
costaining with Map2 (red) specific marker for neurons (D). KLF8 (green) fluorescence
signals did not overlap with fluorescence signals (red) specific for glial cells (GFAP, E),
microglia/macrophage (Iba1, F) or oligodendrocytes (Olig4, G). Specific neuronal subcellular
nuclear localization of Klf8 (green)was confirmedby costainingwithDAPI (blue), andNeuN,
Olig4, and Iba 1 (all red) showing clear green/blue overlap wherever Klf8 was expressed
(H, I, J). Scale bar represents 10 μm.
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of the KLF family may have antagonistic effects on cell cycle regulation.
In this context one of the possible functions of KLF8 in the brain could be
its involvement in the regulation of neuronal differentiation and pheno-
typicmaintenance. To address in the future whether KLF8 expression or
activity will change with aging can clarify its function and eventual
involvement in brain diseases.

In conclusion, the present study provided for the first time spatial
and cell type distribution of KLF8 in the adult mouse brain. Klf8 was
expressed in different gray matter regions, and its expression was
specific for the neurons. Given the involvement of KLF8 in malignant
cell transformation and progression (van Vliet et al., 2006; Wang et al.,
2007, 2008; Wang and Zhao, 2007; Schnell et al., 2012), non-
syndromic X linkedmental retardation (Lossi et al., 2002), development
of Alzheimer's disease (Tsai et al., 2014) and rodent central nervous
system development (Ćurlin et al., 2002), it seems that KLF8 could have
an important function in the control of neurons and brain homeostasis.
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