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Abstract 

Research carried out in this paper focused on changes of genes, E-cadherin (CDH1), 

adenomatous polyposis coli (APC) and beta-catenin (CTNNB1) in a palette of 50 central 

nervous system tumors. All gene products are components of adherens junctions, but are also 

involved in Wnt signalling. The results of our analysis showed LOH of CDH1 gene in 31% of 

meningiomas examined (correlation significant at 0.002 level). One LOH was found in a 

single case of germinoma, while other tumor types did not demonstrate changes of the CDH1. 

Fourteen samples (29.2%) with changes of APC gene were observed. The changes were 

distributed to: 33.3% of glioblastomas, 27% of meningiomas, 1 LOH in five informative 

astocytomas (20%), and 1 in six informative neurinomas (17%). One oligoastrocytoma 

showed LOH at exon 11 and one medulloblastoma had allelic imbalance at both exons. Five 

samples (10%) showed heteroduplexes in β-catenin’s exon 3. Potential mutations were 

confined to two meningiomas, an astrocytoma, a glioblastoma, and a germinoma. 

Our results suggest that genetic changes of wnt components are involved in brain tumor 

genesis. Changes of E-cadherin are involved in meningiomas, while changes of APC gene are 

distributed among different tumor types, with glioblastomas showing the highest percentage.      

 
Key words: adenomatous polyposis coli gene (APC), beta-catenin gene (CTNNB1), E-

cadherin gene (CDH1), tumors of the CNS, wnt signaling pathway 
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Introduction 

In our study, we tried to analyze genetic changes in a palette of central nervous system 

(CNS) tumors regarding the roles of three genes, E-cadherin (CDH1), adenomatous polyposis 

coli (APC) and beta-catenin (CTNNB1). All gene products are components of the adherens 

junction, where E-cadherin is bound to β-catenin, which in turn binds to the central part of the 

APC protein (15, 22). Besides roles in cellular architecture all molecules have roles in wnt 

signaling, where beta-catenin is the main signaling molecule, and E-cadherin, as currently 

understood, is indirectly involved in the modulation of the signal (17). APC protein acts as a 

negative regulator of the wnt pathway and is a critical component of the beta-catenin 

destruction machinery heading to the proteasome (6, 19). In response to wnt signaling, or 

under the circumstances of mutated APC, beta-catenin is stabilized, accumulates in the 

cytoplasm and enters the nucleus, where it finds a partner, a member of the DNA binding 

protein family LEF/TCF (16). Together they activate new gene expression programs, among 

others, c-myc and cyclin D1 (9).  

It has been well documented that wnt genes, together with other components of wnt 

signaling pathway, are implicated in tumorigenesis and lately also in brain tumorigenesis (5, 

10). Our interest in genes of the wnt pathway stemmed principally from several findings. 

First, classical cadherins such as E-type and N-type are involved in forming both adherens 

and synaptic junctions in the nervous system. Moreover, Shimamura and Takeichi (24) found 

that E-cadherin is transiently expressed in restricted regions of the mouse embryonic and adult 

brain. New knowledge on wnt signaling shows that wnt proteins regulate critical 

developmental processes of normal brain development (7, 14) Mutations of beta-catenin gene 

have been reported in sporadic medulloblastoma (28) and in 2003. beta-catenin was identified 

as a critical factor for dendritic morphogenesis (29). 

APC has been thought of primarily as a colon-specific tumor suppressor gene, but its 

critical involvement in particular syndromes, like the Tourcot syndrome, which includes the 

development of primary brain tumors (8), and APC’s high expression in the CNS suggests 

that it performs important functions in these tissues also (1). 

Genetic background of specific histopathological type of brain tumor still needs to be 

elucidated. In this paper we offer three new candidates to fill in the puzzle of genetic basis of 

human brain tumors.  
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Materials and methods  

Tumor specimen  

Samples of 50 central nervous system tumors together with 50 autologous blood 

tissues were collected from the Department of Neurosurgery, University Hospital “Sisters of 

Charity”, Zagreb, Croatia. Using the magnetic resonance imaging (MRI) tumor lesions were 

found in different cerebral regions (predominantly temporal and parietal region), with the 

surrounding zone of perifocal oedema (table 1). During the operative procedure the tumor was 

removed using a microneurosurgical technique. The patients had no family history of brain 

tumors and did not undergo chemotherapy or radiotherapy prior to surgery. Collected tumor 

tissues were frozen in liquid nitrogen and transported to the laboratory, where they were 

immediately transferred at -75°C. The peripheral blood samples were collected in EDTA and 

processed immediately. All tumors were studied by pathologists and classified according to 

the WHO criteria. There were 36% of glioblastomas (18/50); 30% meningiomas (16/50); 12% 

astrocytomas (6/50); 12% neurinomas (Schwannomas) (6/50); one germinoma (2%), one  

oligoastrocytoma, one ganglioma and one medulloblastoma. The glioblastomas we considered 

primary because the diagnosis of glioblastoma was made at the first biopsy, without clinical 

or histopathologic evidence of a less malignant precursor lesion.  

Thirty patients were female (60%), and twenty male (40%). The age of patients varied 

from 13 to 77 (mean age=51.8). The mean ages at diagnosis for both sexes were similar (M = 

52.6; F = 51.3). 

The local Ethical Committee approved our study and patients gave their informed 

consent. 

DNA extraction.  

Tumor sample for DNA isolation was the part of obvious tumor mass evaluated by the 

neurosurgeon and based on macroscopic appearance and tissue color, density, and consistency 

on gross section. The sample was also evaluated for the percentage of tumor cells by 

pathologist and consisted of more than 85% of tumor cells. Genomic DNA was isolated from 

unfixed frozen tumor samples and peripheral blood leucocytes by standard methods using 

proteinase K and phenol chloroform. 

Polymerase chain reaction 

The D16 S752 (GATA51G03) polymorphic region linked to the E-cadherin gene was 

amplified in a total volume of 25 µl, (each primer 5'-

AATTGACGGTATATCTATCTGTCTG-3'; and 5'-GATTGGAGGAGGGTGATTCT-3') 5 
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pmol, 200 ng DNA, 2.5 µl 10X buffer II, 1.5 mM MgCl2, 2.5 mM of each dNTP, 0.5 U Taq 

polymerase (Eppendorf, Germany). PCR conditions: initial denaturation, 3 min/96°C; 

denaturation, 30 sec/96°C; annealing, 35 sec/55°C; extension, 30+1 sec/72°C; final extension, 

72°C/10 min; 35 cycles.  

The optimal reaction mixture (25 µl) for APC's exon 11 and 15 amplification as well 

as PCR conditions were described previously (18).  

The reaction mixture (25 µl) for CTNNB1’s exon 3 amplification was: 10 pmol of 

each primer (5´- CCA ATC TAC TAA TGC TAA TAC TG-3´ and 5´- CTG CAT TCT GAC 

TTT CAG TAA GG -3´), 200–400 ng template DNA, 2.5 µl PCR buffer, 2.5 mM MgCl2 , 2.5 

mM of each dNTP, 0.5 U Taq polymerase (Eppendorf, Germany). PCR conditions were the 

same as already described for CDH1 gene. 

All PCR products were analyzed on 2% agarose gels. 

Loss of heterozygosity 

To discover LOH of the E-cadherin gene, a polymorphic marker D16S752, was 

chosen from the Genome DataBase. Heterozygous samples were visualized on 15% 

polyacrylamide gels, stained with silver and on Spreadex EL 300 gels (Elchrom scientific, 

Switzerland), stained with SyberGold (Molecular Probes, Netherlands). Absence or 

significant decrease in the intensity of one of D16S752 alleles in tumor compared to the 

autologous blood sample was considered as LOH of CDH1 gene. 

LOH of the APC gene was detected on the basis of restriction fragment length 

polymorphism (RFLP) of the PCR products. Two different polymorphisms were investigated. 

One is an Rsa I polymorphic site in exon 11, and the other is an Msp I polymorphic site in 

exon 15. PCR amplification of exon 11 generated a 133- bp fragment that is cleaved to 85- 

and 48- bp fragments by Rsa I restriction if the polymorphic site is present, and remains 

uncleaved if the site is absent. The amplified fragment of exon 15 is 550 bp long and is 

cleaved with the Msp I endonuclease to two 250 bp fragments if the restriction site is present. 

LOH/Rsa I was demonstrated when the tumor DNA showed loss of either the single uncut 

band (133 bp) or of the two cut bands (85+48 bp) compared to autologous blood. For Msp I 

polymorphism heterozygous patients demonstrated two bands (550+250 bp), while LOH was 

shown when either band was missing in comparison to the autologous blood. Samples that 

demonstrated quantitatively weaker allelic band in tumor tissue than in normal blood DNA 

were described as samples with allelic imbalance (AI). 
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PCR aliquots (10-15 µl) were digested with 6 U Rsa I (Gibco, USA; 12 h at 37°C) and 

with 6 U Msp I (Gibco, USA, overnight at 37°C) and were electrophoresed on Spreadex gels 

EL 300 in the SEA 2000 submarine electrophoresis apparatus (Elchrom scientific, 

Switzerland) at 120V. Temperature of the running buffer was kept constant at 55°C. The 

samples with LOHs were additionally electrophoresed on 15% polyacrylamide gels stained 

with silver.  

Heteroduplex analysis 

Exon 3 of the CTNNB1 gene was screened for mutations. Heteroduplexes were 

formed by heating 3 µl of PCR products (tumor mixed with normal DNA) at 95 oC for 3 min, 

followed by incubation on ice for 20 min. About 3 µl of each sample was mixed with 7 µl of 

mixture of formamide and 10 mM NaOH (1:100) prior to loading to a gel. The electrophoresis 

was performed on the GMA gels in the SEA 2000 submarine electrophoresis apparatus 

(Elchrom scientific, Switzerland). The temperature of the running buffer was kept constant at 

9o C. 

Statistical Analysis 

All statistical evaluations were performed according to the SPSS statistical package (SPSS 

Inc., Chicago, IL, USA).  

 

Results 

The pathohistological diagnosis of the analyzed sample, tumor localization and the 

duration of symptoms are shown in table 1. 

The polymorphic marker for E-cadherin gene, D16S752, was highly informative 42/50 (84%), 

which means that high percent of patients were heterozygous for this polymorphism. 

D16S752 is a polymorphic GATA tetranucleotide repeat that could show 7 different allelic 

variants in Croatian population. 

 The results of our analysis showed 6 samples with LOH of the CDH1 gene out of 42 

heterozygous patients (14.3%) when tumor DNA was compared to autologous constitutive 

DNA. LOHs of the CDH1 gene were confined to meningiomas. Thirty one % (5/16) of total 

meningioma sample examined showed LOH of the CDH1 gene, which is shown in Figure 1. 

The correlation between meningiomas and changes of the CDH1 was according to 

Spearman’s test significant at the 0.002 level.  

One LOH was also found in a single case of germinoma, while other tumor types did 

not demonstrate changes of the CDH1 gene.  
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From 50 brain tumor samples analysed 48 were heterozygous when analyzed with 

both APC gene markers (96%). The total number of changes that both markers revealed is 14 

samples with changes of the APC gene (9 LOHs and 5 allelic imbalances) out of 48 

heterozygous patients (29.2%).  

When specifying changes to distinct gene regions there were 12 alterations in exon 11 

(28.6%) and 7 in exon 15 (17.5%). Five brain tumor samples had both LOHs at exon 11 and 

15. 

LOHs of the APC gene that both markers revealed are shown in Figure 2 A (exon 11) 

and B (exon 15). When distributing APC’s genetic changes to a specific tumor type, we 

observed 6 allelic changes in 18 informative glioblastomas (33.3%), 4 LOHs in 15 

informative meningiomas (27%), 1 allelic imbalance in five informative astocytomas (20%), 

and 1 LOH in six informative neurinomas (17%). One oligoastrocytoma showed LOH at exon 

11 and one medulloblastoma had allelic imbalance at both exons.  

In heteroduplex analysis, the conformational properties of the double stranded 

molecules are used to distinguish different base pairing (i.e. mutations). Annealing of mutant 

DNA to wild type probe gives duplexes with one or more mismatched bases (heteroduplexes). 

Mismatching causes the double helix to take on a conformation which retards its mobility 

during electrophoresis. The results of heteroduplex analysis of beta-catenin’s exon 3 showed 5 

tumor samples with additional bands (10%, 5/50), when the tumor and normal DNA samples 

were mixed, suggesting that those brain tumors harbor mutations of the CTNN1 gene. Two 

meningiomas, one astrocytoma, one glioblastoma and one germinoma demonstrated 

heteroduplexes, which is shown in Figure 3.  

In samples with E-cadherin or APC’S LOHs we did not detect genetic changes of the 

CTNNB1 gene, except in the case of germinoma whose analysis demonstrated both LOH of 

the E-cadherin gene and heteroduplex of the CTNNB1 gene. Only two meningiomas 

demonstrated gross deletions of both CDH1 and APC gene. 

In all the samples analyzed genetic changes were not correlated with the age or sex of 

patients (Spearman’s test). 

The result of this study demonstrates that changes of E-cadherin are involved in 

fibrous and angiomatous meningioma formation, while changes of APC gene are more 

commonly distributed among different tumor types, with glioblastomas showing the highest 

percentage of changes. Genomic changes of all three genes investigated and the polymorphic 

status for all markers used are summarized in table 1.  
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Discussion 

 The formation of brain tumors is the result of multiple consecutive genetic changes 

that represent a critical factor in tumor evolution (2). The etiology and pathogenesis of tumors 

of the central nervous system are still inadequately explained. Therefore, identification of new 

genes that will improve understanding of the basis of tumor development and progression is 

very important. With this in mind, we investigated new candidate genes, CDH1, APC and 

CTNNB1, in different brain tumor types. 

Changes of CDH1 gene were found almost exclusively in meningiomas with 

correlation significant at 0.002 level. Thirty one percent of total meningiomas examined 

showed LOH of CDH1gene. Other tumor types did not demonstrate genetic alterations of E-

cadherin gene, except for a single germinoma sample. CDH1 allelic losses were observed in 

fibrous and angiomatous meningiomas. This finding is intriguing since fibrous and 

angiomatous meningiomas are usually considered benign lesions with low metastatic 

potential. However, novel revisions of meningioma classification (12) recommend caution on 

benign meningioma prognosis, proposing their proliferative activity and brain invasion as the 

hallmarks that should be considered. The loss of E-cadherin is a well known prerequisite for 

tumor cell invasion and metastasis formation. Our observations are in agreement with other 

authors working with E-cadherin’s expression patterns in meningiomas. Schwechheimer and 

co-workers (23) found that E-cadherin’s expression was absent from the majority of 

morphologically malignant meningiomas and that the loss of its expression was correlated 

with tumor dedifferentiation. Utsuki et al. (26) also reported on negative E-cadherin 

immunostaining in all of the fibrous meningiomas they examined.  

It is long known that meningiomas exhibit desmosomes (23), the epithelial type of cell 

contact, so the presence of E-cadherin in meningiomas is not unusual. We may speculate that 

meningiomas, in which we identified E-cadherin losses, would later on exhibit aggressive 

behavior due to reduction or loss of protein product of this suppressor gene. Meningiomas 

need not exhibit morphological signs of malignancy, and loss of E-cadherin gene may change 

the situation at the tumor-brain interface and thus initiate the mechanisms of future expansion.  

One of the most important characteristics of malignant gliomas is their invasive 

behavior. The culprit of the highly invasive phenotype of human gliomas is thought to be 

associated to the cadherin group of adhesion molecules. Although E-cadherin is a well-known 

and almost universal suppressor of invasion, little is known on the role of cell-cell adhesion in 

astrocytes and its alteration in migrating and invasive glioblastomas. In our study the glial 

branch of brain tumors never showed a single LOH of E-cadherin gene even though some of 
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the tumors showed aggressive characteristics. This result is interesting and in accordance to 

Perego et al. (20). In 2002. they demonstrated that instability and disorganization of cadherin 

mediated junctions rather than reduced expression of cadherin-catenin system components are 

required to promote migration and invasiveness in glioblastoma cell lines.  

Our next finding on APC tumor suppressor gene allelic losses in 29.2% of total brain 

tumor sample, should be discussed when APC changes are distributed to a specific 

histopathological type. Thirty-three percent of glioblastomas demonstrated allelic changes of 

the APC gene which indicated that gross deletions of APC are part of genetic profile of these 

tumors. One oligoastrocytoma demonstrated LOH and one astrocytoma diffusum allelic 

imbalance of the APC gene.  

Somatic mutations of the APC gene were reported predominantly in sporadic 

medulloblastoma (13), and are much less frequent in glioblastoma. Nevertheless, Steigerwald 

and co-workers (25) found base change mutations in APC gene in two of 23 sporadic 

glioblastomas examined and a heterozygous G to A transition in exon 0.3 in cell line SW 

1088 from a human astrocytoma. Microarray technology has been applied to the genome of 

glioblastoma by Roversi et al. (21). In this extensive study the authors have found among 

many other candidate chromosomal regions, recurrent losses of 5q22.2-q23.3 region in 10 

glioblastoma cell lines (IV WHO grade) they analysed, which is in accordance to our results 

on glioblastoma. 

Behaviorally, gliomas can be viewed as consisting of two discreet subpopulations of 

cells, the proliferative cells at the tumor core, and cells invading the brain parenchyma. Thus, 

the gene expression profile of the tumor core may not necessarily depict the profile of genes 

active in the invading rim. Demuth and Berens (3) identified genes differentially expressed in 

invasive glioma cells and illustrated the differing biology of the invasive cells in contrast to 

the tumor cells at the core. Findings on different glioblastoma cellular components could also 

explain for the portion of glial tumors that did not show instabilities of APC gene. The 

considerable number of allelic losses of the APC gene in our glioma branch may be attributed 

to random variation in tumors, but the observed frequency led us to conclude that gross 

deletion of the APC gene are an important event in the mechanisms of glial tumorigenesis. 

Since they are more frequent in glioblastomas, and scarcer in astrocytomas, it seems that 

those changes do not represent an initiation event but rather come along the path of astrocytic 

progression.  

A considerable number of changes (27%) of the APC gene was also found in 

meningiomas, showing that yet another wnt component is involved in their genesis. Wrobel 
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and co-workers (27) reported on increased expression of beta-catenin and cyclin D1 in 

meningiomas they examined by microarray, but unfortunately did not study APC expression 

profile.  

One LOH of APC gene was found in six informative neurinomas (17%). This is to our 

knowledge the first report on changes of this gene in neurinoma, but it is difficult to assess the 

biologic impact of this change. 

The observed genetic changes of the APC gene are dispersed among different tumor 

types, indicating once again that APC is not the first event in the formation of specific brain 

tumor. 

The results of heteroduplex analysis of beta-catenin’s exon 3 showed 10% of tumor 

samples with additional bands suggesting that those brain tumors harbour mutations of the 

CTNN1 gene. We targeted exon 3 of CTNNB1 gene since it has been reported as mutational 

hot spot. As for beta-catenins changes, they were not very frequent nor were they exclusive to 

specific tumor type probably due to a small number of tumors in some of the subsets we 

investigated. Although beta-catenin is frequently mutated in medulloblastoma and was 

recently proposed a prognostic factor for medulloblastoma (4), our medulloblastoma sample 

did not demonstrate mutations of beta-catenin, but showed allelic imbalance at both APC’s 

exons. This finding is not unusual since many investigations (11, 13, 28) collectively 

demonstrated that approximately 15% of medulloblastomas harbor mutations in APC, beta-

catenin or Axin. These mutations are mutually exclusive which is supported with our result.  

The results reported in this paper indicated that changes of E-cadherin are involved in 

meningiomas, while changes of APC gene are more commonly distributed among different 

tumor types, with glioblastomas showing the highest percentage of changes. The functional 

consequences of the changes we found at the genetic level, would need to be confirmed in 

future studies at the protein level.  

Our findings may contribute to better understanding of brain tumors genetic profile 

and could be used as prognostic marker of disease evolution and progression. 
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Table 1. Pathohistological diagnosis, genomic changes of all genes and the polymorphic 

status for markers used, localization of the tumor and the duration of symptoms.  

No. Diagnosis CDH1 

 
APC 

11 

 
APC 

15 
CTNNB1 Localization Symptoms  

1 Meningothelial 
meningioma 

 
HETERO 

 
HETERO 

 
HETERO 

 
- 

 
FP left 

 
15 

2 
Meningothelial 
meningioma 

 
HETERO 

 
HETERO 

 
HETERO 

 
HD 

 
Spinal 
ThIV-ThV 

 
8 

3 Meningothelial 
meningioma 

 
HOMO 

 
HETERO 

 
HETERO 

 
HD 

 
PCC 

 
14 

4 Meningothelial 
meningioma 

 
HETERO 

 
HETERO 

 
HETERO 

 
- 

 
P right 

 
9 

5 Meningothelial 
meningioma 

 
HETERO 

 
HETERO 

 
HETERO 

 
- 

 
T left 

 
4 

6 Meningothelial 
meningioma 

 
HOMO 

 
HETERO 

 
HETERO 

 
- 

 
PO left 

 
84 

7 Meningothelial 
meningioma 

 
HETERO 

 
LOH 

 
HETERO 

-  
P right 

 
16 

8 Meningothelial 
meningioma 

 
HETERO 

 
HETERO 

 
HETERO 

 
- 

 
T right 

 
36 

9 Meningothelial 
meningioma 

 
HETERO 

 
HOMO  

 
HOMO  

 
- 

 
P left 

 
72 

10 Angiomatous 
meningioma LOH 

 
HETERO 

 
HETERO - 

 
PCA 12 

11 Angiomatous 
meningioma LOH LOH LOH - 

PCA  
5 

12 Angiomatous 
meningioma LOH 

 
HETERO 

 
HOMO  - Spinal CI, 

CII 

 
12 

13 Fibrous 
meningioma LOH 

 
HOMO  

 
HETERO - P left 16 

14 Fibrous 
meningioma LOH LOH 

 
HOMO  - FT right 48 

15 Fibrous 
meningioma 

 
HETERO 

 
HETERO LOH 

 
- 

 
PCA 

 
18 

16 Fibrous 
meningioma 

 
HETERO 

 
HETERO 

 
HOMO  

 
- 

 
PCC 

 
12 

17 Pilocytic 
astrocytoma 

 
HETERO 

 
HETERO 

 
HETERO 

-  
Cerebellum 

 
5 

18 Pilocytic 
astrocytoma 

 
HOMO 

 
HETERO 

 
HOMO  

-  
FP right 

 
10 

19 Pilocytic 
astrocytoma 

 
HETERO 

 
HOMO  

 
HOMO  

-  
T left 

 
3 

20 Diffuse 
astrocytoma 

 
HETERO 

 
HETERO 

 
AI 

-  
FTP left 

 
6 

21 Anaplastic 
astrocytoma 

 
HOMO 

 
HOMO  

 
HETERO 

 
HD 

 
T right 

 
4 

22 Anaplastic 
astrocytoma 

HETERO HETERO HETERO - F right 0,5 

23 Oligoastrocytoma HETERO LOH HETERO - FP left 14 

24 Glioblastoma HETERO HOMO HETERO - P right 2 
25 Glioblastoma HETERO HETERO HETERO - FTP right 0,5 
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26 Glioblastoma HETERO HOMO  HETERO - TO right 2 
27 Glioblastoma HETERO HOMO  HETERO - FPO right 3 
28 Glioblastoma HETERO AI HETERO - TP right 7 
29 Glioblastoma HETERO HOMO  HETERO - FTP left 2 
30 Glioblastoma HETERO HETERO HETERO - F right 5 

31 Glioblastoma HETERO LOH LOH - T left 3 

32 Glioblastoma HETERO HETERO HETERO HD FTP left 0,5 
33 Glioblastoma HETERO AI HETERO - P left 1 
34 Glioblastoma HETERO LOH LOH - FT left 2 
35 Glioblastoma HOMO HETERO HOMO  - T right 18 
36 Glioblastoma HETERO HETERO HETERO - FT left 0,5 
37 Glioblastoma HETERO LOH HETERO - O right 1 
38 Glioblastoma HETERO HETERO HOMO  - P right 9 
39 Glioblastoma HETERO HETERO HETERO - FT left 0,5 
40 Glioblastoma HOMO HETERO HETERO - F right 1 
41 Glioblastoma HETERO AI HETERO - T right 0,5 

42 Neurinoma HETERO LOH LOH - PCA 72 

43 Neurinoma   HETERO HETERO HETERO - Spinal LI 3 
44 Neurinoma HETERO HETERO HETERO - PCA 42 

45 Neurinoma  HOMO HETERO HOMO  - PCA 5 
46 Neurinoma  HETERO HETERO HETERO - PCA 48 
47 Neurinoma  HETERO HETERO HETERO - PCA 36 
48 Ganglioglioma HETERO HETERO HETERO - T right 4 

49 Germinoma LOH HETERO HOMO HD Pineal  3 

50 Medulloblastoma HOMO AI  AI - PCC 1 

LOH=loss of heterozygosity; AI=allelic imbalance ;HD=heteroduplex; *Symptoms duration/ 
months; FP=frontoparietal region; PCC=posterior cranial cavity; P=parietal region; T=temporal 
region; PO=parietooccipital region; PCA=ponto-cerebral angle; FT=frontotemporal region; 
FTP=frontotemporoparietal region; TO=temporooccipital region; FPO=frontoparietooccipital 
region; TP=temporoparietal region.  
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Figure captions 

 

Figure 1. Loss of heterozygosity of the E-cadherin gene in three meningioma samples on 

Spreadex gels (Elchrom Scientific) stained with Sybergold (Molecular Probes). Polymorphic 

marker D16S752 is shown. Lane 1- M3 standard; lanes 3, 4, 6, 8,–corresponding blood 

samples; lanes 2, 5, 7, 9, - LOHs of the E-cadherin gene. 
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Figure 2. A. Loss of heterozygosity of APC gene in two glioblastoma samples. Exon 

11/RsaI/RFLP is demonstrated. Lanes 1, 2- heterozygous sample (tumor and blood); lane 3- 

LOH in glioblastoma patient (the digested/cut allele is missing); lane 4- informative blood 

sample of the same patient; lanes 5, 10 - standard M3 (Elchrom scientific); lane 6- 

informative blood sample; lane 7- LOH in the corresponding glioblastoma (uncut allele is 

missing); lanes 8 –informative blood sample; lane 9- allelic imbalance in the corresponding 

glioblastoma (uncut allele is weaker, 48 bp fragments are not shown). B. Lane 1- standard 

M3 (Elchrom scientific); 2- LOH in a meningioma sample (uncut allele is missing); 3- 

corresponding blood sample; lane 4- informative blood sample of the neurinoma patient; lane 

5 - LOH in the corresponding neurinoma (uncut allele is missing); lanes 6, 7 - heterozygous 

samples. C. Loss of heterozygosity of APC gene in 2 patients with glioblastoma. Exon 

15/MspI/RFLP is demonstrated. Lanes 1, 5 - LOHs in glioblastoma samples; lanes 2, 6 – 

corresponding heterozygous blood samples; lanes 3, 4 - heterozygous samples, both alleles, 

cut and uncut, are visible. 

 A 
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Figure 3. Heteroduplex analysis of the CNS tumor samples. Exon 3 of the CTNNB1 gene 

was screened for mutations on GMA gels (Elchrom Scientific). Lane 1 - M3 standard; lanes 3, 

5, 8, 9, 12 -additional bands showing heteroduplexes when tumor and normal samples are 

mixed; lanes 2, 4, 7, 10, 11- corresponding blood DNA samples; lane 6 -tumor DNA sample. 

 

 

  
 


