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Thy-1 is a small membrane glycoprotein and member of the immunoglobulin
superfamily of cell adhesion molecules. It is abundantly expressed in many cell types
including neurons and is anchored to the outer membrane leaflet via a glycosyl
phosphatidylinositol tail. Thy-1 displays a number of interesting properties such as fast
lateral diffusion, which allows it to get in and out of membrane nanodomains with
different lipid composition. Thy-1 displays a broad expression in different cell types
and plays confirmed roles in cell development, adhesion and differentiation. Here, we
explored the functions of Thy-1 in neuronal signaling, initiated by extracellular binding
of αVβ3 integrin, may strongly dependent on the lipid content of the cell membrane.
Also, we assort literature suggesting the association of Thy-1 with specific components
of lipid rafts such as sialic acid containing glycosphingolipids, called gangliosides.
Furthermore, we argue that Thy-1 positioning in nanodomains may be influenced by
gangliosides. We propose that the traditional conception of Thy-1 localization in rafts
should be reconsidered and evaluated in detail based on the potential diversity of
neuronal nanodomains.

Keywords: Thy-1, ganglioside, nanodomain, lipid rafts, neuronal signaling

INTRODUCTION

Thy-1 is a small (17–18 kDa), N-glycosylated glycosylphosphatidylinositol (GPI)-anchored protein
positioned in outer membrane leaflet domains enriched with cholesterol and gangliosides, called
lipid rafts [molecular features, expression patterns and cell functions of Thy-1 are reviewed
in Herrera-Molina et al. (2013) and in Leyton and Hagood (2014)]. Thy-1 is expressed in
several cell types including human thymocytes, hematopoietic stem cells, glioblastoma cells,
mesothelium precursor cells, neurons, and some subsets of fibroblasts among others. Depending
on the cell type, the functions of Thy-1 include cell development and differentiation as well
as regulation of adhesion and morphological changes in the context of cell-cell and cell-matrix
contact (Leyton and Hagood, 2014).

The functions of Thy-1 are proposed to be regulated by the binding of endogenous ligands
of which certain integrins are the most prominent ones (Herrera-Molina et al., 2013; Leyton
and Hagood, 2014). The first ever characterized Thy-1-Integrin interaction is the one involving
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extracellular binding of astroglial αVβ3 integrin and changes
in the lateral diffusion as well as the nanoclustering state
of Thy-1 in the neuronal membrane (Leyton et al., 2001;
Maldonado et al., 2017). Notably, the engagement of αVβ3
integrin not only results in profound morphological changes and
increased migration in the astrocytes (Avalos et al., 2004, 2009;
Hermosilla et al., 2008; Henriquez et al., 2011), but also triggers
Thy-1-depending intracellular signaling in neurons (Herrera-
Molina et al., 2012, 2013). The αVβ3 integrin-triggered Thy-
1 clustering has recently been shown to regulate inactivation
and exclusion of the non-receptor tyrosine kinase Src from a
Thy-1/C-terminal Src kinase (Csk)-binding protein (CBP)/Csk
complex, resulting in p190Rho GTPase activation, cofilin and
myosin light chain II phosphorylation, and consequently neurite
shortening (Maldonado et al., 2017). However, it remains
unknown whether these mechanisms initiated by αVβ3 integrin
binding to Thy-1 are occurring in lipid rafts. Interestingly, super-
resolution-suited fluorescent analogs of GPI-anchored proteins
and gangliosides have recently been developed, expanding the
toolbox to evaluate the interactions between these raft-associated
molecules (Komura et al., 2016; Suzuki et al., 2017). In particular,
these new studies have revealed gangliosides as highly dynamic
components of rafts able to interact and regulate positioning
of GPI-anchored proteins. Here, we briefly review literature
demonstrating that Thy-1 is present in lipid rafts and that, in
response to extracellular engagement, its mobility decreases in
particular subsets of them. Also, we explore evidence showing
that interactions between Thy-1 and raft-associated signaling
intermediates occur in a delicate equilibrium within a nanoscale
and millisecond time range. Finally, we hypothesize that correct
Thy-1 signaling depends on the presence of an adequate lipid
milieu and that, particular classes of gangliosides could be
important for correct positioning and/or signaling functions of
Thy-1 in rafts in the plasma membrane of neurons.

Thy-1-CONTAINING LIPID RAFTS: A
TECHNICAL AND CONCEPTUAL
OVERVIEW

Since Simons and Ikonen postulated the existence of functional
lipid rafts (Simons and Ikonen, 1997), this area has been
extensively studied in order to clarify the characteristics,
composition, and functional role of lipid rafts in living cell
systems. The original concept of how lipid rafts are organized,
which should be acknowledged, has been subjected to revision
and drastically changed over the years. Early experiments almost
exclusively used cold detergent to extract these membrane
domains and thus they were often accepted to be detergent-
insoluble plasma membrane domains (Brown and Rose, 1992).
Conceptually, they were thought to be patches of differently
organized lipids that house specific transmembrane proteins.
Later, additional research evolved the concept of lipid rafts from
being stable and long-lived membrane patches to fluid and
dynamic arrangements of clustered lipids and proteins (Owen
et al., 2012). Although many studies have dwelled on whether
lipid rafts even exist, it has become clear that lipid rafts exist and

they may occupy only a fractional area of the plasma membrane.
More recently, the use of super-resolution microscopy techniques
applied to live-cell imaging has revealed rafts as actively changing
and dynamically reorganizing nanodomains formed by different
lipid and protein composition (reviewed in Sezgin, 2017).

Commonly used procedures for the characterization
of lipid rafts are biochemical isolation methods based on
ultracentrifugation in sucrose gradients and classical immuno-
histochemical protocols (Pike, 2009; Williamson et al., 2010;
Aureli et al., 2016). The results derived from these studies vary
depending on used detergents, temperature, saline composition
of buffers, etc. The choice of detergents is the most critical issue
when the goal is to study native lipids, for example cholesterol
organization or presence of gangliosides in rafts (reviewed in
Klotzsch and Schutz, 2013). As today we know, biochemical
isolation of rafts using different non-ionic detergents, namely
Triton X-100, can produce a number of artifacts, including
non-physiological clustering of certain lipids and proteins.
Therefore, classically accepted results obtained using this
detergent should be reconsidered and critically subjected to
a new scrutiny. A possible way out of this problem could
be the introduction of other detergents found to be less
disruptive to the plasma membrane and more in tune with the
composition and solubility properties of lipid rafts (Chamberlain,
2004; Heffer-Lauc et al., 2005, 2007; Williamson et al., 2010;
Sonnino and Prinetti, 2013) (see later).

In contrast to the impossibility of fixing gangliosides, fixation
procedures typically with p-formaldehyde (PFA) keep proteins
in the membrane in immuno-histochemical studies. Clear-cut
immuno-histochemical experiments concluded that the inclusion
of 1% Triton X-100 (similar concentration is used in most raft
isolation protocols) in blocking and primary antibody solutions
caused a mild redistribution of Thy-1 from PFA-fixed wild-type
to Thy-1 KO brain sections slices when they were incubated
together in the same well. This is possibly due to extraction of
Thy-1 and incorporation of its lipophilic GPI-anchor in detergent
micelles as PFA does not completely fix GPI-anchored proteins
(Tanaka et al., 2010). Despite the extractive capacity of the
detergent, the immunoreactivity of remaining Thy-1 in different
wild-type brain areas was grossly preserved after detergent
exposure, indicating that most Thy-1 was fixed and resistant to
extraction (Heffer-Lauc et al., 2005, 2007). In PFA-fixed neuronal
cultures, Thy-1 staining on the cell surface is very well preserved
after the use of Triton X-100-enriched solutions (Herrera-Molina
et al., 2012, 2013; Maldonado et al., 2017). These studies showed
that Thy-1 (just as any other transmembrane protein) resists
detergent-mediated extraction most likely thanks to the fixative-
induced cross-linking with other membrane proteins in intimate
contact within the lipid raft. Nevertheless, PFA-promoted protein
crosslinking is by itself an inevitable pitfall which should
be controlled and/or complemented by alternative staining
procedures. In neuronal cultures for example, live cell staining
with monoclonal antibodies and super-resolution microscopy
have been used to confirm changes in Thy-1 clustering (Herrera-
Molina et al., 2013; Maldonado et al., 2017). Alternatively, new
fixatives have been characterized specially for the use of super-
resolution microscopy (Richter et al., 2018).
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For years, the inability to isolate rafts at physiological
temperature prolonged the debate on the existence of these
nanodomains in living cells (London and Brown, 2000; Lingwood
and Simons, 2007). Temperature and ion concentration have
been proven to influence lipid raft isolation. Chen X. et al. (2009),
a publication from Morris’s lab, proposed that the problem of
obtaining “physiological rafts” is a technical one caused by the
disruption of the inner layer of the plasma membrane when
in contact with detergents, such as Triton X-100 dissolved in
buffers with inappropriate cation composition (Pike et al., 2002;
Schuck et al., 2003; Koumanov et al., 2005). To solve this
problem, the authors introduced detergent–containing buffers to
mimic the intracellular ionic environment which prevented the
disruption of the inner layer of the plasma membrane obtained
from rodent brains. In addition to the provided biochemical
evidence, the stabilization of membrane domains during isolation
at 37◦C was demonstrated by obtaining small nano-meso scale
rafts of < 100 nm in size, as shown using immune-gold
labeled antibodies and electron microscopy (Chen X. et al.,
2009; Morris et al., 2011). Furthermore, they showed that the
use of the new buffer formulation in combination with the
detergents Brij98 or Brij96 further optimizes the isolation of
brain rafts at physiological temperature (Chen X. et al., 2009;
Morris et al., 2011).

Thy-1 is present in domains enriched with fully saturated
lipids, which are distinguishable from prion protein PrP-
containing rafts with significantly more unsaturated and longer
chain lipids (Brugger et al., 2004). Confirming these results, the
existence of independent Thy-1- or PrP-containing domains has
been observed in brain membrane preparations with preserved
inside-out orientation and isolated at physiological temperature
(Chen X. et al., 2009; Morris et al., 2011). These observations
strongly support the existence of different lipid raft populations,
which are easily distinguishable in their composition. Moreover,
it has been shown that Thy-1-containing, but not PrP-containing,
lipid nanodomains are associated with actin, strengthening the
idea of a tight interaction between Thy-1 and cytoskeletal/
cytoplasmic components (Chen X. et al., 2009; Morris et al.,
2011). Therefore, biochemical isolations of lipid rafts have
not only provided the basis for the gross understanding of
the differences in protein composition, but have also given
functional meaning to subclasses of lipidic nanodomains. From
this literature (and other), it is clear that GPI-anchored
proteins like Thy-1, transmembrane proteins, intracellular
signaling intermediates, and a variety of lipids may undergo
interdependent interactions to form an undetermined number of
different types of rafts.

Mobility and Nanoclustering of Thy-1 in
Lipid Rafts
Biochemical assessments to characterize the presence of Thy-1
in certain rafts have been complemented with high-resolution
imaging techniques aiming to observe the localization and
behavior of the molecule inside and outside of rafts. More than
25 years ago, classical biochemical experimentation and liquid-
phase chromatography revealed that Thy-1 forms multimers of

45–50 and 150 kDa in primary neurons and neuron-like PC12
cells (Mahanthappa and Patterson, 1992). Also, a number of
reports have used electron microscopy-associated immunogold
particles to describe the spontaneous formation of highly
compact nanoclusters as small as 20–100 nm, comprising 2–20
molecules of Thy-1 (Brugger et al., 2004; Chen X. et al., 2009;
Morris et al., 2011). More recently, it has been demonstrated
that cholesterol in the outer leaflet of the plasma membrane
allows tight contact between GPI-anchored proteins like Thy-
1, CD59, and even GPI-anchored Green Fluorescent Protein,
as these molecules have been observed as close as 4-nm apart
using homo-FRET or single molecule tracking (SMT) (Sharma
et al., 2004; Chen et al., 2006; Chen Y. et al., 2009; Komura
et al., 2016; Suzuki et al., 2017). Thus, it has been proposed
that cholesterol-associated nanoclusters of these GPI-anchored
proteins may be functional units linked to protein complex
formation to regulate signal transduction. This idea is supported
by accumulated evidence indicating that the miscibility of lipid
components in the plasma membrane may allow the coupling of
the outer leaflet with the inner leaflet of the bilayer, facilitating
the communication of two proteins on opposite sides of the
membrane (Kusumi et al., 2004, 2010; Chen et al., 2006; Chen Y.
et al., 2009; Suzuki et al., 2007a,b). Considering this scenario, the
coincidental clustering of a critical number of Thy-1 molecules
with an environment of saturated lipids in the external layer
would act as a trigger for the reorganization of inner leaflet rafts.

Rafts are formed by the lateral assembly of cholesterol,
phosphatidylcholine, and sphingolipids like gangliosides in the
outer layer of cell membranes (Simons and Ikonen, 1997;
Quest et al., 2004). Indeed, cholesterol – despite its rigid
and bulky tetracyclic structure - is an essential component
as it interacts with other lipids to form 5–200 nm patches
with limited stability in the time range of milliseconds to
minutes (Kusumi et al., 2004, 2010; Honigmann et al., 2014).
From this, it is believed that the proper organization and
lipid content in rafts can provide the correct environment for
the functioning of more than 250 identified transmembrane
and GPI-anchored raft-associated proteins in cell membranes
from different sources (Santos and Preta, 2018). The plethora
of lipid-protein interactions most likely defines the versatility,
stability and specific functionality of these microdomains
(Skibbens et al., 1989; Sargiacomo et al., 1993; Danielsen and
van Deurs, 1995; Dietrich et al., 2001; Silvius, 2003; Hanzal-
Bayer and Hancock, 2007). As an example, both assembly and
disassembly of lipid rafts facilitates the effective activation of
locally concentrated receptors by extracellular ligands as well
as the posterior interaction with downstream effectors, adding
speed and specificity to the ligand-receptor-encoded initiation
of cell signaling (Pereira and Chao, 2007; Suzuki et al., 2007a,b;
Lingwood and Simons, 2010; Pryor et al., 2012). Supporting
the dynamism of rafts in terms of heterogeneity and short
lifetimes, the use of stimulated emission depletion (STED),
SMT, foster resonance energy transfer (FRET), and other super-
resolution imaging techniques has helped to visualize protein–
protein, protein–lipid, and lipid–lipid interactions becoming
transiently stabilized and then disassembled in intact plasma
membranes (Honigmann et al., 2014).
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Changes in the aggregation state of Thy-1 and other
GPI-anchored proteins induced by extracellular engagement
have been observed using fast and super-resolution imaging
techniques. Additionally, both important technical and
conceptual advances have been made in the understanding
of the physical dimensions ruling the lateral mobility and
clustering of GPI-anchored proteins in cholesterol rafts (Kusumi
et al., 2004, 2010; Hell, 2007; Honigmann et al., 2014). Using SMT
with a 33-ms resolution, Kusumi’s lab has shown that incubation
with antibody-coated 40-nm gold particles clusters 3–9 CD59
molecules, which is enough to promote alternating periods of
actin dependent temporary immobilization of the molecules with
lifetimes of 200-ms up to 8-s (exponential lifetime = 100-ms) in
epithelial and fibroblastic cell lines. The arrested CD59 molecules
remained in a compartment of 110-nm in diameter (conventional
resolution of fluorescent microscopes 250–400-nm), indicating
that immobilization of CD59 is accompanied by limited diffusion
in nano-rafts (Suzuki et al., 2007a,b). Jakobson’s lab, also using
fibroblasts, SMT with a 33-ms resolution, and antibody-coated
40-nm gold particles, described that the clustering of Thy-1
induces immobilization of the molecule during a slightly broader
time rage of 300-ms up to 10-s (Chen et al., 2006). Moreover,
both labs demonstrated that the arrest and positioning of the
Thy-1 and CD59 clusters in lipid rafts strongly depend on
cholesterol integrity. Therefore, it is clear that ultra-fast, but also
slow transient arrests of GPI-anchored proteins are triggered
by extracellular engagement in cholesterol rafts. Nevertheless,
the results obtained using these artificial ligands to promote
clustering of the GPI-anchored proteins, like Thy-1, could not
fully describe the natural responses to endogenous ligands to a
necessary degree.

EXTRACELLULAR BINDING OF GLIAL
αVβ3 INTEGRIN CONFINES NEURONAL
Thy-1

For decades, an endogenous ligand for Thy-1 remained in
the dark. In 2001, αVβ3 integrin expressed by astrocytes was
identified as a receptor for Thy-1 (Leyton et al., 2001). Leyton’s
lab has characterized in detail the direct binding between αVβ3
integrin and the RGD-like sequence (RLD, positions 35–37
accession number AAA61180.1) of Thy-1 by surface plasmon
resonance (Choi et al., 2005; Hermosilla et al., 2008), confocal
microscopy (Herrera-Molina et al., 2012), and recently using
molecular force spectroscopy (optical tweezers) (Burgos-Bravo
et al., 2018). Importantly, the same lab has revealed crucial
αVβ3 integrin-dependent and Thy-1-induced signaling events,
promoting morphological changes in astroglial cells (Avalos et al.,
2004, 2009; Hermosilla et al., 2008; Henriquez et al., 2011;
Alvarez et al., 2016; Lagos-Cabré et al., 2017, 2018; Burgos-
Bravo et al., 2018). Supporting a paradigm of bidirectional
communication between neurons and astrocytes, the astroglial
αVβ3 integrin was found to also act as a ligand for neuronal
Thy-1 to trigger signaling events and retraction of axons
and dendrites in neurons (Herrera-Molina et al., 2012, 2013;
Maldonado et al., 2017).

The binding of αVβ3 integrin promotes Thy-1 clustering
on the neuronal cell surface (Herrera-Molina et al., 2012,
2013; Maldonado et al., 2017). Using super resolution STED
microscopy followed by image deconvolution procedures (lateral
resolution of 40 nm), single Thy-1 nanoclusters were found
as small as 90 nm in diameter (Herrera-Molina et al., 2013;
Maldonado et al., 2017). Upon extracellular binding of αVβ3
integrin, Thy-1 clusters with a diameter of 300–400 nm
were detected abundantly with extensive aggregation (Figure 1
and Maldonado et al., 2017). Although unitary lifetimes of
αVβ3 integrin-bound Thy-1 clusters have not been evaluated
yet, a highly dynamic process is expected. Indeed, a single
application of αVβ3 integrin was sufficient to reduce the average
velocity and displacement area of quantum dot (QD)-labeled
Thy-1 molecules, pointing to diminished lateral mobility of
αVβ3 integrin-bound Thy-1 clusters (Maldonado et al., 2017).
Interestingly, one fraction of Thy-1 molecules (∼60%) was fast
(≥5-µm/s), whereas the other one (40%) was comparatively
slow (≤5-µm/s) in control neurons. After binding of αVβ3
integrin, a smaller fraction of Thy-1 molecules remained fast
(40%) (Figure 1 and Maldonado et al., 2017). Additionally, as
αVβ3 integrin binding reduced the mean square displacement
(MSD) of Thy-1 molecules (Figure 1), it is possible to speculate
that a specific fraction of Thy-1 molecules (20%) is sensitive to the
interaction with αVβ3 integrin in neurons. Also, considering the
high degree of subcellular compartmentalization of neurons, it is
tempting to propose the existence of different subclasses of Thy-1
clusters in dendrites, axons, and/or synapses attending functional
specializations of each of these cell compartments.

The evidence points toward a mechanism whereby the
clustering of Thy-1 initiates intracellular downstream signals
through the single-pass transmembrane adaptor protein CBP
(C-terminal Src kinase binding protein). CBP is palmitoylated
allowing localization in rafts (Brdicka et al., 1998; Zhang et al.,
1998; Chen Y. et al., 2009). CBP plays an obligatory role
in the transient arrest of Thy-1 molecules in rafts (Chen Y.
et al., 2009) and contains intracellular tyrosine phosphorylation
residues that serve as docking sites for Src family kinase
(SFK) proteins, including Src and Csk (Wong et al., 2005;
Solheim et al., 2008). Both clustering and immobilization of
Thy-1 in rafts require SFK activity as demonstrated using QD-
associated SMT in fibroblasts (Chen Y. et al., 2009). Moreover,
antibody-induced Thy-1 clustering leads to recruitment of SFK
to the membrane and modulates the activity of these kinases
in a number of experimental settings (Barker et al., 2004;
Chen et al., 2006; Yang et al., 2008). In neurons treated
with αVβ3 integrin, about 15–20% of Thy-1 nanoclusters have
been found to co-localize with CBP as determined using two-
channel STED microscopy (Maldonado et al., 2017). Under
the same experimental conditions, more CBP co-localized with
Csk, which is known to phosphorylate Src at Tyr527 (Chen
Y. et al., 2009; Lindquist et al., 2011). Therefore, it was
concluded that the binding of αVβ3 integrin to Thy-1 increases
the co-localization of clusters of Thy-1, CBP, and Csk in the
cell membrane of neurons. Nevertheless, the lipidic nano-
environment in which clustering of Thy-1-CBP-Csk took place
remains unknown.
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FIGURE 1 | Changes in clustering and confinement of Thy-1 induced upon αvβ3 integrin binding in the neuronal membrane. (A) As shown in Maldonado et al.
(2017), cultured rat neurons were treated with a soluble form of the αvβ3 integrin, fixed with 4% PFA for 8 min, and stained with a mouse monoclonal anti-Thy-1
antibody (clone OX-7) followed by Atto647N-conjugated secondary antibodies. Then, Thy-1 nanoclusters were visualized using a super-resolution stimulated
emission depletion (STED) microscope. (B,C) Single molecule tracking (SMT) of Thy-1 molecules attached to quantum dots (QD) is described in Maldonado et al.
(2017). Further analysis of mean square displacement (MSD) (B) and the total fraction of molecules moving in areas with 2 µm2 or more (C) confirmed that binding of
αvβ3 integrin decreases the lateral mobility and increases the confinement of Thy-1.

BRIEF OVERVIEW ON NEURONAL
GANGLIOSIDES

Gangliosides are sialic acid containing glycosphingolipids,
abundantly present in the outer leaflet of the plasma membrane
of all cell types (for detailed review of gangliosides see Schnaar
et al., 2014). Gangliosides are synthesized in a stepwise manner
by sequential addition of monosaccharides on a lipid backbone of
ceramide via glycosyltransferase activities of different specificity
to form oligosaccharide chain. The addition of sialic acid on
specific positions in the oligosaccharide chain defines different
ganglioside series. Due to their large number and overpowering
complexity, gangliosides are still classified by Svennerholm’s
nomenclature into groups a, b, and c, depending on the number
of sialic acids bound to the internal galactose, and the asialo-
group if they have no sialic acid bound to the internal galactose
(Svennerholm, 1963, 1980).

Functions of gangliosides include signal transduction,
adhesion, cell recognition as well as positioning and function of
proteins inside the plasma membrane of neurons (reviewed in
detail in Schnaar et al., 2014). The importance of gangliosides
for neuronal function has been demonstrated using mutant
mice models with disrupted ganglioside synthesis and aberrant
ganglioside composition (for example, B4galnt1-null mice lack
GM2/GD2 synthase expression and thus the four most abundant
brain gangliosides (GM1, GD1a, GD1b, and GT1b) are no
longer produced). B4galnt1-null mice display normal total levels,
production, and degradation of cholesterol as well as they do
not present any difference in cholesterol turnover compared to
wild-type mice (Li et al., 2008). Their phenotype includes axon
degeneration, neuropathies, and deficits in reflexes, strength,
coordination and posture. Also, male B4galnt1-null mice
are infertile (Takamiya et al., 1996, 1998; Sheikh et al., 1999;

Chiavegatto et al., 2000). At the molecular level, lateral
interaction of gangliosides with proteins provides an additional
level of regulation of neuronal signaling (Lopez and Schnaar,
2009; Prinetti et al., 2009). Studies have shown that gangliosides
can modulate EGF and VEGF receptor sensitivity to their ligands
(Bremer et al., 1986; Liu et al., 2006; Mukherjee et al., 2008).
Furthermore, endogenous GM1 functions as a specific activator
of Trk receptors and is capable of enhancing their activation
in response to stimulation with NGF (Suzuki et al., 2004). This
effect is most likely due to the enhancement of Trk-associated
tyrosine kinase activity elicited by NGF (Mutoh et al., 1995).
Therefore, it has been stated that gangliosides are essential
regulators of normal neuronal function capable of tuning a
number of signaling mechanisms (further argumentation is
reviewed in Lopez and Schnaar, 2009; Schnaar et al., 2014).

Classical analyses of the expression and distribution of
gangliosides have been based on their high extractability with
different organic solvents (Svennerholm, 1963). After their
extraction, gangliosides have been separated and analyzed
using HPTLC (high performance thin layer chromatography)
(Figure 2). Additionally, both structural characterization and
quantification of the lipid content have been assessed using mass
spectrometry (29). These methods have been useful to define the
composition and abundance of gangliosides in different tissues
and cell types. In the human brain, and very similarly in the
rodent brain (Figure 2), GM1, GD1a, GD1b, and GT1b together
sum up to 97% of the total ganglioside content. Ganglioside
distribution has been studied in brain tissue using specific
primary antibodies followed by 3-3′-Diaminobenzidine-based
staining similarly as for Thy-1 (Heffer-Lauc et al., 2005, 2007)
or other CAMs like Neuroplastin (Mlinac et al., 2012; Herrera-
Molina et al., 2017; Ilic et al., 2019). However, special caution
is required regarding the detergent used during the procedures
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FIGURE 2 | Content of brain gangliosides and visualization of gangliosides in neuronal membrane. (A) Separation of the ganglioside types obtained from
homogenates of hippocampal cell membranes was performed using HPTLC as described (Svennerholm, 1963). Briefly, gangliosides were extracted from
homogenized tissue using a chloroform/methanol/water mix and then purified using a SPECTRA/POR 6 Dialysis Tubing membrane. After drying, samples were
spotted on HPTLC plate developed in chloroform/methanol/CaCl2 mix. Gangliosides were detected with a resorcinol-HCl reagent. The identity of each ganglioside
type is indicated. (B) Confocal microscopy and KO-controlled primary monoclonal antibodies (Schnaar et al., 2002) were used to evaluate independent presence of
each of the gangliosides GM1, GD1a, GD1b, and GT1b on the cell surface of living hippocampal neurons. Our procedure to stain living neurons in the absence of
fixative and detergents has been described (Herrera-Molina et al., 2012, 2014). Briefly, living rat neurons were directly treated with each of the KO-controlled
anti-ganglioside monoclonal antibody diluted in culture media (1:500) for 20 min at 37◦C, 5% CO2. Then, neurons were carefully washed with culture media, fixed
with PFA for 10 min at 37◦C, stained with Alexa 488-conjugated secondary antibodies for 1 h, and mounted with Mowiol. All four gangliosides displayed a specific
patched signal.

as inappropriate conditions produce artifacts as drastic as loss
and re-distribution of several ganglioside types. As described
by Ronald Schnaar’s lab, the use of some bench detergents,
including CHAPS, SDS, and Triton X-100 in PFA-fixed wild-
type brain sections, results in a major extraction of gangliosides
from their original location (Heffer-Lauc et al., 2005, 2007). The
latter effect of detergents was so dramatic that a clear transfer
of wild-type gangliosides to the white matter of brain slices
of B4galnt1-null mice was observed. Authors have optioned to
avoid any detergent in ganglioside staining of brain sections.
These studies have shown that GM1 is normally concentrated
in white matter tracts throughout the adult mice brain, whereas
GD1a staining displays a complementary distribution in gray
matter. GT1b and GD1b have been found in both gray and white
matter (Heffer-Lauc et al., 2005, 2007; Vajn et al., 2013; Schnaar
et al., 2014). Unfortunately, in these experimental conditions,
uneven antibody diffusion cannot be completely ruled out
limiting high-resolution imaging approaches. Lately, we have
assessed the visualization and subcellular distribution of the four
main brain gangliosides in neurons by combining KO-controlled
monoclonal antibodies (Schnaar et al., 2002; Supplementary
Figure S1) and high-resolution confocal microscopy. As
mentioned before, gangliosides cannot be directly fixed using
PFA and they are sensitive to detergent extraction. Therefore, as a
first approach, we have used these specific monoclonal antibodies

to perform live cell staining either at room temperature or
37◦C. Then, one-to-one ganglioside-antibody complexes are
fixed with PFA. No detergent is ever used throughout the
procedures. Surprisingly, we have obtained a good staining
of cell surface located gangliosides (Figure 2). Also, we have
visualized the distribution of patches of GM1, GD1a, GD1b,
and GT1b throughout soma, dendrites and axons (Figure 2).
This promising and simple procedure will be applied to further
study these distributions of gangliosides in combination with
super-resolution STED microscopy in living neurons. It would be
particularly interesting to study the distribution and composition
of, what could be, nanodomains differentially enriched with
particular gangliosides on the neuronal surface.

WHAT CAN GANGLIOSIDES TELL US
ABOUT RAFTS?

Visualization of the nano-landscape of randomly scattered
GM1 patches has been performed with near-field scanning
optical microscopy (NSOM). This technique takes advantage
of the evanescent field exiting a subwavelength excitation
source, therefore being particularly suited for nanoscale optical
imaging (≥80 nm of lateral resolution) on intact biological
membranes (van Zanten et al., 2010). In particular, organized
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FIGURE 3 | Thy-1 distribution in sucrose density gradients of wild-type and B4Galnt1-null brain membranes. (A) Representative Western blots of sucrose gradient
fractions obtained from total membrane homogenates of wild-type and B4Galnt1 KO brain cortices as indicated. Lipid rafts isolation is based on published protocols
(Persaud-Sawin et al., 2009; Hattersley et al., 2013) with some modifications. After homogenization, nuclear fraction was removed and cell membrane pellet was
obtained by centrifugation (30 min, 100,000 × g). This pellet was further homogenized in a lysis buffer containing BrijO20 and ultracentrifuged at 140,000 × g in a
discontinuous sucrose gradient (85% mixed with sample, 35 and 3%). Next day, all fractions were collected for analysis. B4galnt1-null mice lacking GM2/GD2
synthase have been previously characterized (Takamiya et al., 1996, 1998; Sheikh et al., 1999; Chiavegatto et al., 2000; Li et al., 2008) and they cannot synthesize
any of the four most abundant brain gangliosides GM1, GD1a, GD1b, and GT1b. We confirmed complete absence of GM1 (this Figure) and GT1b (Supplementary
Figure S1) in B4Galnt1 KO brain material using cholera toxin and specific primary antibodies, respectively. Isolation of lipid raft fractions (3 and 4 in red color) was
confirmed by detection of flotilin. (B) Quantification of accumulative distribution of Thy-1 in bulk membrane fractions (F10 + F11, no lipid rafts: No LR) and in lipid raft
fractions (F3 + F4, lipid rafts: LR) of each genotype. (C) Quantification of the distribution of Thy-1 in each of the two lipid raft fractions. Distribution of Thy-1 between
the raft fractions 3 and 4 seems modified due to the alteration of ganglioside content in B4Galnt1-null brain membranes (∗∗P < 0.01 for fraction 4 comparing
genotypes, Mann–Whitney test). (D) Quantification of accumulative distribution of flotilin was performed as for Thy-1 in (B). (E) Distribution of flotilin between the raft
fractions 3 and 4 was performed as for Thy-1 in (C). Data are expressed as mean ± SD of 5 independent gradients.

GM1 nanodomains with a size < 120-nm, separated by an
inter-nanodomain distance of approximately 300 nm, were
found in the plasma membrane of fibroblasts. Furthermore,
this nanodomain organization was not dependent on the
temperature, but on the presence of cholesterol and an intact
actin-based cytoskeleton (van Zanten et al., 2010). In other
studies using antibodies conjugated to gold particles and electron
microscopy, either ganglioside GM1 or GM3 were observed
forming patches separately and only co-localizing with each other
(GM1 and GM3 containing patches) in less than 15% of the cases
on the cell surface of fibroblasts (Fujita et al., 2007). Therefore,
although composition of lipid rafts can be very divers, their
formation and localization seems to be organized throughout the
plasma membrane.

Direct visualization of gangliosides and GPI-anchors in living
cell membranes has been achieved using chemically synthetized
fluorescent analogs and super-resolution STED microscopy
(Eggeling et al., 2009; Polyakova et al., 2009; Komura et al.,
2016; Suzuki et al., 2017). In 2009, Hell’s lab demonstrated that
both Atto647N-conjugated GPI-anchors and GM1 have similar
diffusion properties and confinements in rafts (called “trapping”;

Eggeling et al., 2009). Notably, the addition of cholesterol-
depleting agents similarly reduced the trapping of GPI-anchors
and GM1 (Eggeling et al., 2009). Despite recent criticism
pointing to insufficient characterization of the fluorescent analogs
(Komura et al., 2016; Suzuki et al., 2017), these studies suggest
that GPI-anchored proteins and GM1 may share similar lateral
diffusion properties in cholesterol rafts. Very recently, a new
generation of super-resolution-suited fluorescent analogs has
been developed to visualize the relationship between raft-
associated GPI-anchored proteins and gangliosides. The authors
claimed that the main strength of the new analogs is that
they partition in rafts just as the endogenous molecules do
(Komura et al., 2016; Suzuki et al., 2017). Furthermore, this
method allowed direct observation of positioning and movement
of ganglioside and GPI-anchored protein molecules as well as
their co-localization without effects of crosslinking. When the
raft structure was analyzed by single-molecule imaging, it was
determined that ganglioside fluorescent analogs dynamically
enter and leave rafts. Inside rafts, ganglioside analogs were
immobile for approximately 100 ms, while outside the raft
they were constantly moving. The arrest of the ganglioside
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FIGURE 4 | Hypothetical participation of gangliosides in the nanoclustering of neuronal Thy-1 induced by astroglial αvβ3 integrin. Soma, axon, and dendrites of one
neuron are contacted by end feet of one astrocyte (middle drawing). We propose gangliosides could be important for correct positioning and signaling functions of
Thy-1 in rafts in the plasma membrane of neurons. If this turns out to be true, then, gangliosides should influence the diffusion and clustering properties of Thy-1
along the neuronal surface (N, left circle) as well as the clustering of Thy-1 molecules induced by αvβ3 integrin expressed by astrocytes (A, right circle). αvβ3

integrin-bound Thy-1 might be integrated in nanodomains with particular ganglioside composition to initiate signaling which may differently impact the functioning of
each cell compartment.

analogs inside rafts was dependent on actin cytoskeleton and
cholesterol integrity (Komura et al., 2016). Additionally, the
authors have proposed that cholesterol rafts provide a nano-
environment for different proteins, and that gangliosides may
have regulatory effects on the recruitment of these proteins.
Furthermore, gangliosides could also strengthen interactions
between GPI-anchored proteins and other lipids in rafts (Komura
et al., 2016; Suzuki et al., 2017).

DO GANGLIOSIDES INFLUENCE
CLUSTERING/DISTRIBUTION OF Thy-1
IN NEURONS?

In eukaryotes, gangliosides assemble with other
glycosphingolipids and cholesterol to form lipid rafts (Sonnino
et al., 2007). It is known that depletion of cholesterol causes
deficient clustering of GPI-anchored proteins, including Thy-1
and CD59 (Simons et al., 1999; Sharma et al., 2004; Chen
et al., 2006; Chen Y. et al., 2009; Komura et al., 2016; Suzuki
et al., 2017), and impairs lipid raft structure (Kabouridis et al.,
2000; Buschiazzo et al., 2013). Although, gangliosides have
been found to be permissive with the formation of GPI-yellow
fluorescent protein clusters in living cell membranes (Crespo
et al., 2002), neither deficient nor altered ganglioside content
that leads to lipid raft disruption and/or impairs the clustering of
GPI-anchored proteins have been studied in detail.

As mentioned, studies have suggested that gangliosides are
important for positioning and clustering of GPI-anchored
proteins in cholesterol rafts, rather than being necessary for the
raw structuring of the raft itself (Eggeling et al., 2009; Komura
et al., 2016; Suzuki et al., 2017). Indeed, authors have reported
that positioning of Thy-1 within rafts depends on ganglioside
composition as concluded after experiments using cerebellum
membrane preparations from wild-type and double mutant mice
lacking GM2/GD2 and GD3 synthases (Ohmi et al., 2009).
In this study, most Thy-1 immunoreactivity drastically shifted
from one to another raft fraction obtained by sucrose gradient
centrifugation (Ohmi et al., 2009). Ohmi et al. (2009) concluded
that the precise positioning of Thy-1 inside rafts seems to depend
on gangliosides. In agreement with Ohmi et al. (2009) we have
observed that Thy-1 is present in B4galnt1-null lipid rafts (lacking
the four main brain gangliosides, see before and Figure 2), but
shifted from raft fraction 4 to the lighter fraction 3 (Figure 3).
Interestingly, the total content of Thy-1 in B4galnt1-null rafts
(fraction 3 + 4) was not different to wild-type rafts (also fraction
3 + 4) (Figure 3). Considering that the total content of both
cholesterol and sialic acid bound to simpler gangliosides do
not differ between B4galnt1-null and wild-type mice (Li et al.,
2008), our results suggest that altered ganglioside production
impaired fine distribution of Thy-1 within B4galnt1-null rafts.
Supporting this idea, incubation with exogenous GM1 directly
and acutely added to the kidney cell line MDCK cells diminished
the clustering of the GPI-anchored protein GH-DAF in rafts
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(Simons et al., 1999). In constructed monolayers of synthetic lipid
mixtures with defined lipid composition, the presence of Thy-1
in artificial rafts was found to be reduced when GM1 was added,
most likely because GM1 and Thy-1 competed for positioning
inside rafts (Dietrich et al., 2001). Thus, it is possible to speculate
that exogenously added GM1 formed aggregates reducing Thy-1
mobility in raft-like domains (Marushchak et al., 2007). Although
it will be also necessary to proof the potential influence of
other lipids as cholesterol, additional available evidence supports
the possibility that ganglioside milieu influences Thy-1 location
in rafts. Indeed, the literature shows that the distribution of
flotilin in raft fractions from neurons, brain tissue, myocites, and
erytrocytes is strongly sensitive to cholesterol alterations (Samuel
et al., 2001; Kokubo et al., 2003; Jia et al., 2006; Domingues et al.,
2010; Sones et al., 2010). These studies consistently show that
flotilin distribution reflects and/or reports cholesterol-dependent
raft integrity. We shown that the distribution of flotilin is
not changed in the B4galnt1-null raft fractions with altered
ganglioside composition pointing to a rather specific change in
raft composition rather than a general modification in the raft
integrity (Figure 3).

CONCLUSION

For decades, the small GPI-anchored molecule Thy-1 had
hidden its charms and remained an orphan in silence. For
years, the discovery of Thy-1 as a raft-associated protein served
to study these nanoscopic domains. Finally, the development
and popularization of super-resolution microscopy techniques
allowed to access Thy-1 properties such as lateral mobility,
cluster formation, and partition features within the lipidic
environment of the cell membrane. The characterization of
an endogenous ligand for Thy-1, the αVβ3 integrin, made
it possible to reveal detailed mechanisms involved in Thy-
1-dependent cis signaling in neurons. As experiments show,
intracellular signaling emanated from αVβ3 integrin-Thy-1
binding in neurons depends on the initial enrolling of the raft-
associated transmembrane transducer CBP and Src kinase to
regulate the stability of neuronal cytoskeleton. However, it is still
a mystery whether these molecular events are actually occurring
in neuronal rafts. The fine-tuning of protein-protein interactions
in the outer layer of the cell membrane may be influenced by the
lipid environment, in particular by cholesterol and gangliosides,
which are two key components of rafts.

We propose that the correct ganglioside composition is
necessary for distribution, clustering, and function of Thy-
1 in neurons (Figure 4). The potential significance of this
putative association could be reflected on the capacity of
Thy-1 to initiate signaling mechanisms in rafts. In particular,
this could be additionally tested by analyzing the αVβ3
integrin-Thy-1-dependent cis signaling events that occur at
the plasma membrane (Figure 4; Herrera-Molina et al., 2013;
Maldonado et al., 2017) in neuronal systems where ganglioside
composition is, ideally, acutely modified. Finally, the pieces of
the puzzle displayed are waiting to be gathered together into
correct assembly.
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FIGURE S1 | Specific detection of the ganglioside GT1b in dot blots and sucrose
density gradients using a KO-controlled antibody. (A) Representative Western blot
analysis of sucrose gradient fractions obtained from total membrane
homogenates of wild-type brain cortices as described in Figure 3. GT1b was
detected using a mouse monoclonal anti-GT1b previously characterized (Schnaar
et al., 2002). Incubation with the primary antibody (1:1000) was followed by a
HRP-conjugated anti-mouse secondary antibody (1:5000). The graphics display
the quantification of accumulative distribution of GT1b in bulk membrane fractions
(F10 + F11, no lipid rafts: No LR) and in lipid raft fractions (F3 + F4, lipid rafts: LR)
(left panel) and in each of the two lipid raft fractions (right panel). (B) Dot blot
analysis served to demonstrate that GT1b is specifically detected in the wild-type
but not detected in B4Galnt1 KO lipid raft fractions.
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