
Botulinum toxin type A reduces pain supersensitivity
in experimental diabetic neuropathy: bilateral effect
after unilateral injection

Bach-Rojecky, Lidija; Šalković-Petrišić, Melita; Lacković, Zdravko

Source / Izvornik: European Journal of Pharmacology, 2010, 633, 10 - 14

Journal article, Accepted version
Rad u časopisu, Završna verzija rukopisa prihvaćena za objavljivanje (postprint)

https://doi.org/10.1016/j.ejphar.2010.01.020

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:105:481823

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-07-10

Repository / Repozitorij:

Dr Med - University of Zagreb School of Medicine 
Digital Repository

https://doi.org/10.1016/j.ejphar.2010.01.020
https://urn.nsk.hr/urn:nbn:hr:105:481823
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.mef.unizg.hr
https://repozitorij.mef.unizg.hr
https://repozitorij.unizg.hr/islandora/object/mef:9173
https://dabar.srce.hr/islandora/object/mef:9173


 1

 
 

    
 

Središnja medicinska knjižnica 
 
 
 

 

Bach-Rojecky L., Šalković-Petrišić M., Lacković Z. (2010) Botulinum 

toxin type A reduces pain supersensitivity in experimental diabetic 

neuropathy: Bilateral effect after unilateral injection.  European 

Journal of Pharmacology, [Epub ahead of print]. ISSN 0014-2999 

 

 

http://www.elsevier.com/locate/issn/00142999 
 
http://www.sciencedirect.com/science/journal/00142999 
 
http://dx.doi.org/10.1016/j.ejphar.2010.01.020 
 
 
http://medlib.mef.hr/709 
 

 

University of Zagreb Medical School Repository 

http://medlib.mef.hr/ 
   

 

 
 
 

 



 2

Botulinum toxin type A reduces pain supersensitivity in experimental diabetic neuropathy: 

Bilateral effect after unilateral injection 

 

Lidija Bach-Rojecky a, Melita Šalković-Petrišić b, Zdravko Lacković b 

 

a Department of Pharmacology, University of Zagreb School of Pharmacy and Biochemistry, 

Zagreb, Croatia  

b Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian 

Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia 

 

Corresponding author: 

Professor Zdravko Lacković, MD, PhD 

Department of Pharmacology, University of Zagreb School of Medicine 

Šalata 11 

10 000 Zagreb 

Croatia  

Tel/fax: 385 1 45 66 843 

E-mail: lac@mef.hr 

 

 

 
The authors declare that they have no conflict of interest. 



 3

Abstract 

We investigated antinociceptive activity of botulinum toxin type A (BTX-A) in a model of 

diabetic neuropathic pain in rats.  

Male Wistar rats were made diabetic by a single intraperitoneal injection of streptozotocin (80 

mg/kg). Sensitivity to mechanical and thermal stimuli was measured with the paw-pressure 

and hot-plate test, respectively. The formalin test was used to measure sensitivity to chemical 

stimuli. Diabetic animals with pain thresholds lower for at least 25% compared to the non-

diabetic group were considered neuropathic and were injected with BTX-A either 

subcutaneously (3, 5 and 7 U/kg) or intrathecally (1 U/kg). Mechanical and thermal sensitivity 

was measured at several time-points.  

After peripheral application, BTX-A (5 and 7 U/kg) reduced mechanical and thermal 

hypersensitivity not only on ipsilateral, but on contralateral side, too. The antinociceptive 

effect started 5 days following BTX-A injection and lasted at least 15 days. Formalin induced 

hypersensitivity in diabetic animals was abolished as well. When applied intrathecally, BTX-

A (1 U/kg) reduced diabetic hyperalgesia within 24 h supporting the assumption of retrograde 

axonal transport of BTX-A from the peripheral site of injection to central nervous system. 

The results presented here demonstrate the long-lasting pain reduction after single BTX-A 

injection in the animals with diabetic neuropathy. The bilateral pain reduction after unilateral 

toxin application and the effectiveness of lower dose with the faster onset after the intrathecal 

injection suggest the involvement of the central nervous system in the antinociceptive action 

of BTX-A in painful diabetic neuropathy. 
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1. Introduction 

Chronic polyneuropathy is present in 8–26% of diabetic patients and represents a major health 

problem with substantial impact on the quality of life. It is the most common late diabetic 

complication and affects both type 1 and type 2 diabetic patients but it is more frequent and 

severe in the type 1 (Sima et al., 2006). Antidepressants, carbamazepine, gabapentin, opioids 

and, more recently, duloxetine and pregabalin are used in treatment of painful diabetic 

neuropathy (Ziegler, 2008). None of these drugs or their combinations provide complete or 

long-lasting pain relief. Side effects, poor tolerability and ineffectiveness for some percent of 

diabetic patients are major disadvantages of the current therapeutic options (Ziegler, 2008).  

Botulinum toxin type A (BTX-A) cleaves SNAP-25 (synaptosomal associated protein of 25 

kDa), one of the SNARE proteins essential for neurotransmitter release (Aoki, 2005; Grumelli 

et al., 2005) and it is nowadays widely used to treat muscular spasms (Truong and Jost, 2006). 

Additionally, it was observed that BTX-A reduced pain in conditions not associated with 

muscle hypercontraction, like migraine (Göbel, 2004), trigeminal neuralgia (Allam et al., 

2005), chronic focal neuropathies (Ranoux et al., 2008) and low-back pain (Jabbari, 2008). 

Several experiments on animals demonstrated the antinociceptive effect of BTX-A on 

inflammatory pain induced by formalin (Cui et al. 2004), carrageenan and capsaicin (Bach-

Rojecky and Lacković, 2005a). The pain reduction after single subcutaneous BTX-A injection 

was demonstrated in experimental models of peripheral neuropathic pain (Bach-Rojecky et 

al., 2005b; Luvisetto et al., 2006; Park et al., 2006; Favre-Guilmard et al., 2009). The 

antinociceptive action of BTX-A was independent of the effect on muscle relaxation.  Hence, 

there is a possibility that BTX-A might be a useful long-lasting treatment in painful diabetic 

neuropathy. Yuan et al. (2009) recently showed that single local injections of BTX-A reduced 

pain scores on visual analogue scale in 18 diabetic patients within 3 months after the 

injection.  
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The most commonly used model of diabetic neuropathy are rodents with type 1 diabetes 

induced by the pancreatic β-cell toxin streptozotocin (Calcutt, 2004). Diabetic animals display 

physiologic, neurochemical and behavioural changes suggestive of altered pain perception. 

Only behavioural methods can directly distinguish painful (hyperalgesia or allodynia) from 

non-painful sensation. The most common behavioural tests measure changes in sensitivity to 

mechanical, thermal and chemical noxious stimuli (Calcutt, 2004).  

In the present study we investigated antinociceptive activity of BTX-A in a model of diabetic 

neuropathic pain in rats.  

 

2. Materials and methods 

2.1. Animals 

Male Wistar rats (University of Zagreb, School of Medicine) weighing 250-300 g were used. 

Animals were housed in wire-bottomed cages (4-5 per cage) with free access to food and 

water. The experiments were carried out according to the Croatian Act on Animal Welfare 

and the National Institutes of Health Guide for Care and Use of Laboratory Animals 

(Publication No. 85-23, revised 1985). The experiments were approved by the Ethical 

Committee of the University of Zagreb, School of Medicine (permit No. 07-76/2005-43). 

2.2. Drugs 

The following drugs were used: chloral hydrate, streptozotocin and formalin (Sigma, St. 

Louis, MO, USA); BTX-A (BOTOX, Allergan, Irvine, CA, USA). Each vial of BOTOX 

contains 100 U (~4.8 ng) of purified Clostridium botulinum type A neurotoxin complex. To 

obtain respective doses, BTX-A was reconstituted in adequate volume of 0.9% saline.  

2.3. Induction of diabetes 

Rats were injected by a single intraperitoneal (i.p.) injection of freshly dissolved 

streptozotocin in citrate buffer (pH 4.5) at a dose of 80 mg/kg body weight. Control animals 
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were injected i.p. with the citrate buffer. Tail-vein blood-glucose concentration was 

determined by colorimetric PAP method 5 days following the induction of diabetes. Animals 

with the blood glucose concentration above 15 mmol/l were considered diabetic and were 

included in the study. Hyperglycaemia was re-confirmed before nociceptive measurement (3 

weeks after streptozotocin injection). 

2.4. Nociceptive tests 

2.4.1. Mechanical sensitivity measurement 

The sensitivity to mechanical stimuli was measured by the paw-pressure test as described by 

Randall and Selitto (1957). Mechanical nociceptive thresholds expressed in grams were 

measured 3 times in 10-min intervals by applying increased pressure to the dorsal surface of 

the hindpaw until paw-withdrawal or overt struggling were elicited. The measurements were 

performed bilaterally.  Measurements were done by an experimenter who was not aware of 

the treatment groups. 

2.4.2. Thermal sensitivity measurement 

Thermal sensitivity was tested using a slight modification of the unilateral hot-plate test 

originally described for mice (Mendez et al., 2002). The temperature of the hot-plate surface 

was 520.5 C and the cut off time was 20 s in order to prevent paw-tissue damage. Rats were 

gently restrained and the plantar side of the tested paw was placed on the hot-plate surface. 

The latency of paw withdrawal from the heated surface was recorded 3 times at 10-min 

intervals. The measurements were performed bilaterally.  Measurements were done by an 

experimenter who was not aware of the treatment groups. 

2.4.3. Chemical sensitivity measurement 

Formalin (5%), in a volume 50 μl was injected subcutaneously (s.c.) into the plantar region of 

the right hindpaw. Immediately after the injection, the number of flinches and shakes of the 

injected paw was counted in 2-min intervals for 1 h (Kang et al., 2007). In the present study, 
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the data collected between 0 and 15 min after the formalin injection represented phase 1 and 

the data collected between 15 and 60 min after the formalin injection represented phase 2. 

Behavioural studies were performed by an experimenter who was not aware of the treatment 

groups. Results are presented as the sum of the total number of flinches/shakes of the formalin 

injected paw during each phase. 

2.5. BTX-A injections 

BTX-A was injected by two different routes of administration: 1.) s.c. into the plantar surface 

of the hindpaw to conscious rat in a volume of 20 l with a 27 ½ gauge syringe; and 2.) 

intrathecally at L3-L4 level to anaesthetised rat (chloral hydrate 300 mg/kg, i.p.) in a volume 

of 10 µl using a Hamilton syringe. 

2.6. Experimental protocol 

Diabetic animals were subjected to bilateral measurements of sensitivity to mechanical and 

thermal stimulation 3 weeks following the induction of diabetes. Only those diabetic animals 

with nociceptive threshold at least 25% lower than the one found in control non-diabetic 

group were considered neuropathic (hyperalgesic) and were then subjected to the BTX-A or 

saline treatment.  

Dose-response experiment: BTX-A at doses 3, 5 and 7 U/kg was applied peripherally into the 

hindpaw pad. Sensitivity to thermal and mechanical stimuli was measured bilaterally 5 days 

following the toxin application. Formalin test was performed only once (10-12 days following 

the BTX-A peripheral injection). 

The time-course experiment: BTX-A in a dose of 7 U/kg was applied peripherally and 

mechanical sensitivity was measured ipsilaterally on day 1, 5, 15 and 28 following the BTX-

A peripheral injection.   



 8

Intrathecal application: BTX-A 1U/kg was applied into the lumbar spinal fluid (central 

application) and the effects on mechanical and thermal hyperalgesia were tested bilaterally on 

day 1, 5, 12, 20, 27, 33 and 37.  

2.7. Statistical analysis 

Results are presented as mean ± standard error (S.E.M.). Statistical analysis was performed by 

an analysis of variance (ANOVA). Intergroup differences were analyzed by the Newman-

Keuls post hoc test. A P<0.05 was considered significant. In the time-course experiment, 

ANOVA for repeated measurements followed by Tukey’s test was employed. 

 
3. Results 

Three weeks following a single i.p. streptozotocin injection (80 mg/kg), about 45% of rats 

with diabetes (blood glucose concentration >15 mmol/l) developed increased sensitivity to 

mechanical and thermal stimuli compared to the saline-treated non-diabetic control group. 

Those animals were included in further experiments as groups with neuropathic pain. In those 

animals a single unilateral BTX-A (5 and 7 U/kg) injection into the right hindpaw pad 

significantly decreased mechanical hypersensitivity not only on ipsilateral, but on the 

contralateral side, as well (Fig.1.).  

 

Fig. 1.  

 

In contrast to the mechanical hyperalgesia which was consistent throughout the whole 

experiment, changes in the thermal sensitivity were variable. Peripheral injection of BTX-A 

in a dose of 7 U/kg significantly reduced thermal hypersensitivity on ipsilateral side only. On 

the contralateral side, sensitivity to thermal stimulation in rats with diabetes seemed increased 

compared to non-diabetic animals, but this was not significant probably due to the large inter-
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group variability. Although BTX-A 7 U/kg appeared to have reversed the thermal latency on 

the contralateral side, this was not significant either (Fig. 2.).  

 

Fig. 2.  

 

Formalin injection into the ipsilateral hindpaw of diabetic rats induced significant increase in 

the number of flinches and shakes of the injected paw compared to non-diabetic control only 

in phase 2 of the test (Fig. 3A and 3B). All three tested doses of BTX-A significantly 

decreased formalin-induced pain in the second phase of the test (Fig. 3A).  

 

Fig. 3 

 

BTX-A decreased mechanical hypersensitivity 5 days following application into the hindpaw 

pad and the effect remained significant for 10 more days. When tested 1 day after the 

injection into the hindpaw, BTX-A was ineffective (Fig. 4.).  

 

Fig. 4.  

 
 
BTX-A injected intrathecally in the dose of 1 U/kg into the lumbar cerebrospinal fluid 

decreased bilateral thermal and mechanical hypersensitivity within 24 h after the application. 

The antinociceptive effect was significant even on day 27 for the thermal (Fig. 5A.) and on 

day 33 for the mechanical hyperalgesia (Fig. 5B.). 

 

 

Fig. 5.  
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4. Discussion 

In the present study we demonstrate the long-lasting reduction of hyperalgesia in 

experimental diabetic neuropathy after single BTX-A peripheral and central injection. In 

contrast to all other forms of existing short-lasting therapy, antinociceptive effect of BTX-A 

in the present experiments lasted up to four weeks. The bilateral pain reduction after unilateral 

toxin application and the effectiveness of lower dose with the faster onset after the intrathecal 

injection suggests the involvement of the CNS in the BTX-A antinociceptive action.  

The pathology of diabetic neuropathy is characterized by progressive nerve fibre loss and 

endoneurial microangiopathic changes (Calcutt et al., 2007). Pathogenesis, believed to be the 

most important, consists of an ischemic process secondary to microangiopathy, glycosylation 

of structural proteins consequent to chronic hyperglycemia, or injury by reactive oxygen 

species generated by altered glucose metabolism (Leinninger et al., 2006; Romanovsky et al., 

2004).  However, all recent knowledge is not sufficient to explain the appearance of hyper- 

and hyposensitivity to pain during the course of diabetic neuropathy.   

Streptozotocin is the most common substance used for the induction of diabetes in the 

rodents. The cytotoxic action of streptozotocin is mediated by reactive oxygen species, 

liberation of the toxic amounts of NO, alkylation and damage of DNA which result in rapid 

destruction of pancreatic -cells (Szkudelski, 2001). Diabetic polyneuropathy develops within 

weeks of diabetes induction and it is characterized by nerve conduction velocity 

abnormalities, increased activity of the polyol pathway, and decreased endoneurial blood 

flow. However, despite these early functional and metabolic abnormalities, animals do not 

develop structural deficits, such as progressive nerve fibre loss, even after prolonged duration 

of diabetes, which is the very hallmark of human diabetic polyneuropathy (Calcutt and 

Backonja, 2007).  
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Neuropathic pain after single i.p. streptozotocin injection in rodents is mostly characterized by 

mechanical allodynia and hyperalgesia which progressively develop within 2 weeks. 

Inconsistent changes in the thermal nociceptive thresholds have been reported in diabetic 

animals: thermal hyperalgesia (Courteix et al., 1993), thermal hypoalgesia (Apfel et al., 1994) 

to unchanged thermal sensitivity (Malcangio and Tomlinson, 1998). It has also been reported 

that diabetic rats exhibit transient thermal hyperalgesia during the first two weeks of diabetes, 

which progresses to thermal hypoalgesia within next 2-3 months, similarly to what has been 

found in diabetic patients (Calcutt, 2004). In our experiments, 3 weeks after the streptozotocin 

injection less than 50% of animals with diabetes developed mechanical and thermal 

hyperalgesia. Contrary to the mechanical hyperalgesia, we found that changes in the thermal 

sensitivity were less pronounced and inconsistent. In the present experiment, unilateral BTX-

A (5 and 7 U/kg) injection into the rat hindpaw pad reduced mechanical hyperalgesia on 

ipsilateral injected side but on the contralateral side as well. The bilateral effect was started to 

be evident on day 5 after the toxin peripheral injection. In this, as well as in our previous 

experiments, antinociceptive effect of BTX-A was achieved in doses several times lower than 

the doses required to produce any measurable effect on motor performance (Cui et al., 2004, 

Favre-Guimard et al., 2009) or any visible behavioral effect. In our previous experiments we 

repeatedly questioned the role of the peripheral sensory nerve endings and speculated about 

the involvement of the CNS in the antinociceptive effect of BTX-A (Bach-Rojecky and 

Lacković, 2005a; Bach-Rojecky et al., 2008). In our most recent report, unilateral injection of 

BTX-A bilaterally abolished “mirror pain” induced with repeated acidic saline injection thus 

indicating involvement of the CNS (Bach-Rojecky and Lacković, 2009). Moreover, the 

antinociceptive effect of BTX-A was completely prevented by colchicine pre-treatment, 

additionally suggesting that the central effect is mediated by retrograde axonal transport of 

BTX-A into the CNS (Bach-Rojecky and Lackovic, In Press). At the same time, the bilateral 
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effect of unilateral BTX-A injection was observed in the paclitaxel induced neuropathy in rats 

(Favre-Guilmard et al. 2009). The authors assumed that the antinociceptive action of BTX-A 

is not due to a local effect.  Measuring SNAP-25 cleavage at different brain regions 

Antonucci et al. (2008) recently demonstrated retrograde axonal transport of BTX-A via 

central neurons and motoneurons and thus offered novel pathways of BTX-A trafficking 

within neurons. Moreover, after tectal injections of the toxin, cleaved SNAP-25 appeared in 

cholinergic synapses in the retina. According to the authors, this data indicates retrograde 

transport to retinal ganglion cells, followed by transcytosis into starbust amacrine cells. In our 

experiments, BTX-A is most probably transported to the central terminal of the ipsilateral 

afferent fiber. However, how BTX.A exerts antinociceptive action on a contralateral side 

remains highly speculative. One of the possibilities might be that it is transynaptically 

transported to the central endings of the afferent neurons on the contralateral side. However, 

other possibilities cannot be ruled out, including other places of action with effect on 

contralateral side. While the significance of axonal transport in the peripheral motoneurons 

and central neurons is not clear (Antonucci et al. 2008), we suggested the existence of axonal 

transport of BTX-A most probably within sensory neurons mediating antinociceptive effect of 

BTX-A.  

In order to further investigate involvement of the central nervous system in the 

antinociceptive effect of BTX-A , we investigated it’s effect after intrathecal injection. 

Intrathecal injection of BTX-A abolished the mechanical and thermal hypersensitivity in 

diabetic rats in a dose as low as 1 U/kg (10 µl). The effect was bilateral and started within the 

first 24 h. The observed effectiveness of lower dose and its faster onset after the intrathecal 

application additionally support the central origin of the BTX-A antinociceptive action.  

In our experiments the effect lasted at least 15 days after single peripheral BTX-A injection 

and up to 33 days when BTX-A was applied intrathecally.  
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Chemical hypersensitivity was reported to develop in rats with streptozotocin-induced 

diabetes. The formalin test is used to investigate spinal sensitization in animals and allows 

investigation of sensory processing beyond peripheral nociceptive pathways (Calcutt and 

Backonja, 2007). Chemical hyperalgesia during phase 2 of the formalin test in diabetic rats is 

associated with increased cyclooxygenase-2 expression and prostaglandine E-2 release in the 

spinal cord (Freshwater et al., 2002; Ramos et al., 2007). Formalin also increased the 

expression of postsynaptic NMDA and AMPA receptors for glutamate (Li et al., 1999) and 

enhanced electrophysiologic activity in the dorsal horn neurons (Chen and Pan, 2002). Spinal 

amplification of pain signals with paradoxical reduction in ongoing signals from the periphery 

(Calcutt et al., 2000) and decreased spinal release of glutamate (Malmberg et al., 2006) 

suggest significant role of central sensitization in the formalin induced hypersensitivity in 

experimental diabetes. Although the investigation of neuropathic pain in diabetes has 

primarily focused on the peripheral nerves, growing body of evidence suggests spinal cord 

and higher CNS as generators and amplifiers of pain (Calcutt and Backonja, 2007).  

In the present experiment, BTX-A applied peripherally into the rat hindpaw pad 10-12 days 

before the injection of formalin completely reduced chemical hypersensitivity in diabetic rats 

for several weeks. Two previously mentioned experiments (Bach-Rojecky and Lacković, 

2009, Favre-Guilmard et al., 2009) and the experiments presented here cannot be explained in 

any other way but assuming the involvement of the CNS. Although the mechanism of the 

long-lasting antinociceptive effect of BTX-A is not clear, discovery of the axonal transport of 

BTX-A in motoneurons (Antonucci et al., 2008) and, possibly, in sensory neurons as well 

(Bach-Rojecky and Lacković, 2009) provide a necessary prerequisite for central action of 

BTX-A. We believe that the antinociceptive effect of BTX-A might be associated with 

processes of central sensitization. 

5. Conclusion 
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At the same time the results presented here, together with the observation of Yuan et al. 

(2009) on a small number of diabetic patients, demonstrate the potential of BTX-A as a 

therapeutic tool to combat neuropathic pain.  
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Fig. 1. Dose dependent effect of BTX-A on streptozotocin-induced mechanical hyperalgesia 

on ipsilateral and contralateral side of the rat hindpaw. Measurements were done 5 days 

following BTX-A s.c. injection into the hindpaw pad. Results are presented as meanS.E.M., 

n=5-7. *P<0.01, **P<0.001 (Newmann-Keuls post hoc test). Legend: Non-diabetic control 

stands for the animals without diabetes injected only with citrate buffer. Saline denotes 

animals with diabetic neuropathy injected with saline into the hindpaw pad; BTX-A 3, 5 and 7 

U/kg denote animals with diabetic neuropathy injected with BTX-A 3, 5 or 7 U/kg. 
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Fig. 2. Dose dependent influence of BTX-A on streptozotocin-induced thermal sensitivity on 

ipsilateral and contralateral side of the rat hindpaw. Measurements were done 5 days 

following BTX-A s.c. injection into the hindpaw pad. Results are presented as meanS.E.M., 

n=5-7. *P<0.01; **P<0.001 (Newmann-Keuls post hoc test). Legend: Non-diabetic control 

stands for the animals without diabetes injected only with citrate buffer. Saline denotes 

animals with diabetic neuropathy injected with saline into the hindpaw pad; BTX-A 3, 5 and 7 

U/kg denote animals with diabetic neuropathy injected with BTX-A 3, 5 or 7 U/kg. 
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Fig. 3. BTX-A peripheral injection reduces formalin-induced pain in streptozotocin diabetic 

rats. Measurements were done 10-12 days following BTX-A peripheral application into the 

hindpaw. Results are presented as mean±S.E.M. for the second phase of the formalin test 

(3A), n=5-6. *P<0.05, **P<0.001 (Newman-Keuls post hoc test).  Results are presented as 

mean±S.E.M. for every 4-min interval during 60 min of testing, n=5-6. *P<0.05; **P<0.01; 

***P<0.001 compared to non-diabetic control; +P<0.05; ++P<0.01 compared to diabetic 

neuropathy +saline (Newman-Keuls post hoc test). 

Legend: Non-diabetic control stands for the animals without diabetes injected only with 

citrate buffer. Saline denotes animals with diabetic neuropathy injected with saline into the 

hindpaw pad; BTX-A 3, 5 and 7 U/kg denote animals with diabetic neuropathy injected with 

BTX-A 3, 5 or 7 U/kg. 
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Fig. 4. The time-dependent influence of peripheral BTX-A 7 U/kg injection into the hindpaw 

on mechanical hyperalgesia in rats with streptozotocin-induced diabetes. Results are presented 

as mean±S.E.M., n=5-6. *P<0.001 compared to non-diabetic control; +P<0.05, ++P<0.01 

compared to saline-treated rats with diabetic neuropathy (ANOVA for repeated measurements 

and Tukey’s post hoc test). 
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Fig. 5. Time-dependent influence of intrathecal BTX-A 1 U/kg injection on thermal (A) and 

mechanical (B) hyperalgesia in rats with streptozotocin-induced diabetes. Results are 

presented as mean±S.E.M., n=5-6. *P<0.001 compared to non-diabetic control; +P<0.05, 

++P<0.01, +++P<0.001 compared to saline-treated rats with diabetic neuropathy (ANOVA for 

repeated measurements and Tukey’s post hoc test).  
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