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Abstract: Semaphorins have recently been recognized as crucial modulators of immune responses.
In the pathogenesis of COVID-19, the activation of immune responses is the key factor in the
development of severe disease. This study aimed to determine the association of serum semaphorin
concentrations with COVID-19 severity and outcomes. Serum semaphorin concentrations (SEMA3A,
-3C, -3F, -4D, -7A) were measured in 80 hospitalized adult patients with COVID-19 (moderate
(n = 24), severe (n = 32), critical, (n = 24)) and 40 healthy controls. While SEMA3C, SEMA3F and
SEMA7A serum concentrations were significantly higher in patients with COVID-19, SEMA3A was
significantly lower. Furthermore, SEMA3A and SEMA3C decreased with COVID-19 severity, while
SEMA3F and SEMA7A increased. SEMA4D showed no correlation with disease severity. Serum
semaphorin levels show better predictive values than CRP, IL-6 and LDH for differentiating critical
from moderate/severe COVID-19. SEMA3F and SEMA7A serum concentrations were associated
with the time to recovery, requirement of invasive mechanical ventilation, development of pulmonary
thrombosis and nosocomial infections, as well as with in-hospital mortality. In conclusion, we
provide the first evidence that SEMA3A, SEMA3C, SEMA3F and SEMA7A can be considered as new
biomarkers of COVID-19 severity.

Keywords: COVID-19; SARS-CoV-2; semaphorins; SEMA3A; SEMA3F; SEMA3C; SEMA7A; ARDS;
biomarkers

1. Introduction

COVID-19 presents with a wide range of clinical manifestations, from asymptomatic
infection to pneumonia with acute respiratory distress syndrome (ARDS) and multiple-
organ failure [1]. The severity of disease appears to be primarily influenced by the host’s
immune response, which is extremely heterogeneous and complex, involving both innate
and adaptive immunity [2,3]. Understanding immunopathogenesis and finding new
biomarkers for the development of severe COVID-19 is necessary since they could serve as
target sites for immunomodulation, which is the current cornerstone of severe and critical
COVID-19 treatment, however, with modest clinical responses [4].

Semaphorins (SEMA) are a large family of secreted and membrane-bound signaling
proteins expressed in most tissues, and divided into eight subclasses based on their Sema
domain located on the N-terminal region [5]. They exhibit their effects through binding
to their receptors, plexins (PLXN) and neuropilins (NRP), which can be modified by a
variety of co-receptors (such as cell adhesion molecules, receptor tyrosine kinases), and
transmembrane semaphorins themselves [6]. Although the molecular mechanisms of
semaphorin signaling are still far from clear, the semaphorin’s interaction with its receptor
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complex alters the cell cytoskeleton’s structure and cell adhesion, which regulates cellular
morphology and motility, as reviewed in [6].

Semaphorins were initially discovered as axonal guidance molecules in the develop-
ment of the nervous system [7]. Subsequent research revealed their involvement in a variety
of other physiological and pathophysiological processes, such as vascular growth [8], gene
expression reprogramming of cancer cells [9], tumor progression [7], allergic diseases [10],
cardiovascular diseases [11], metabolic disorders [12] or liver diseases [13,14]. Recently,
increased focus has been placed on “immune semaphorins” and their roles in regulating im-
mune cell activation, differentiation, mobility and migration in autoimmune diseases [15].
Several studies have demonstrated the potential of semaphorins as diagnostic and thera-
peutic targets in immune-mediated diseases [8,10,16,17].

However, the role of semaphorins in the immunopathogenesis of infections remains
to be elucidated. Studies on mouse models of sepsis showed increased concentrations
of several semaphorins in serum and tissues, and a blockade of semaphorins or their
receptors led to a reduction in tissue damage and better survival rates [18,19]. In contrast,
an experimental study of LPS-induced ARDS revealed decreased SEMA3A concentrations
in lung tissue, while SEMA3A overexpression led to less severe lung impairment [20].
Depending on the secreting cells and receptors involved, each SEMA has different and
often opposite functions. Notably, there are no studies in humans.

Here, we hypothesize that semaphorin concentrations, due to their key function in
controlling immune responses, correlate with COVID-19 severity and outcomes.

2. Materials and Methods
2.1. Study Design and Patients

This study was part of a prospective, non-interventional cohort study that included
consecutively hospitalized adult patients with COVID-19 at the University Hospital for
Infectious Diseases Zagreb (UHID) in Croatia between April and December 2021 (part of the
COVID-FAT trail, NCT04982328). At that time, the Delta (B.1.617.2 and AY lineages) SARS-
CoV-2 variant predominated in Croatia (data were taken from the ECDC database on SARS-
CoV-2 variants) [21]. The delta SARS-CoV-2 variant was shown to cause more severe disease
and an excessive number of younger people dying despite receiving vaccinations [22,23].
Eighty patients with COVID-19 were included, and these patients have not been reported in
previous studies. The sample size was selected according to power analysis for the Kruskal–
Wallis test to achieve an 80% chance of detecting a difference in median semaphorin
concentrations at a 5% significance level.

All included patients had bilateral pulmonary infiltrates on chest images. Patients
who had a concomitant bacterial infection at the time of admission were excluded, as
were those who began corticosteroid or antiviral medication prior to enrollment. Active
malignant disease, pregnancy and immunosuppression (disease and/or current medical
therapy including corticosteroids) were other exclusion factors.

Forty healthy, SARS-CoV-2-RNA-negative, age- and sex-matched healthcare workers
were included as controls.

All participants provided written informed consent. The study followed the Decla-
ration of Helsinki’s ethical principles and was approved by the UHID Ethics Committee
(code 01-673-4-2021).

2.2. COVID-19 Disease Severity Classification

According to the National Institute of Health, COVID-19 severity was classified based
on clinical symptoms, the oxygen level at admission and level of care (pandemic department
or intensive care unit) [24]. Briefly, the severity of COVID-19 was classified into three
categories: moderate (bilateral pneumonia with SpO2 > 93% on room air), severe (bilateral
pneumonia with SpO2 ≤ 93% on room air, dyspnea and/or tachypnea > 24/min), and
critical (intensive care unit, ARDS criteria, high-flow nasal cannula oxygen therapy (HFNC),
non-invasive (NIV)/invasive mechanical ventilation (IMV)) [24].
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2.3. Data Collection

At admission, demographic and comorbidity data were collected, including the pres-
ence of cardiovascular disease (CVD), arterial hypertension, chronic pulmonary disease
(asthma, chronic obstructive pulmonary disease), chronic renal failure (CRF), diabetes
mellitus, dyslipidemia, gastritis or gastroesophageal reflux disease (GERD) and chronic
medications. All patients had their body mass index (BMI) measured.

The following routine laboratory results were obtained at admission: C-reactive pro-
tein (CRP), procalcitonin (PCT), ferritin, white blood cell count (WBC), absolute neutrophil
(ANC) and lymphocyte count (ALC), platelet count (Plt), bilirubin, aspartate aminotrans-
ferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), serum creatinine,
gamma-glutamyl transferase (GGT), lactate dehydrogenase (LDH), fibrinogen and D-dimer.

The disease severity scores on the admission of each patient were calculated for
MEWS [25], SOFA [26], PSI [27] and 4C mortality score [28].

The patients were treated according to the standard of care at the time, which included
anticoagulants, remdesivir, tocilizumab, baricitinib and dexamethasone, at the discretion of
the supervising physician.

Clinical monitoring, including oxygen requirements, invasive and non-invasive venti-
lation and complications, were assessed daily and collected in a standardized form.

2.4. Measurement of Semaphorin Serum Concentrations

Semaphorins were quantified using standardized enzyme-linked immunosorbent
assay (ELISA) (Human Semaphorin-3A, -3F, -4D and -7A by ELISA kit, AssayGenie, Dublin,
Ireland, and Human Semaphorin-3C ELISA Kit, MyBioSource, San Diego, CA, USA), as
suggested by the manufacturer.

2.5. Statistical Analysis

Clinical, laboratory and demographic data were analyzed and reported descriptively
as frequencies and medians with interquartile ranges. To compare two groups, Fisher’s
exact test and the Mann–Whitney U test were used. To compare three or more groups,
the Kruskal–Wallis test with Dunn’s multiple comparisons test was used. All tests were
two-tailed, with a statistically significant p-value of 0.05. Spearman’s rank correlation
coefficient was used to examine correlations, which were then summarized in a correlation
matrix. A receiver operating characteristic (ROC) analysis was used to compare the dis-
criminatory performance of the laboratory variables under consideration. Time to hospital
discharge or readiness for discharge stratified by biomarker levels was evaluated using
the Kaplan–Meier method and hazard ratios (HR) with 95% confidence intervals (95%
CI) and p-values were calculated by the log-rank test. Risk factors associated with critical
COVID-19 were investigated using a univariate and subsequently multivariable logistic
regression analysis. The strength of association was expressed as an odds ratio (OR) and its
corresponding 95% CI. GraphPad Prism Software version 10 (San Diego, CA, USA) was
used for statistical analyses.

3. Results
3.1. Baseline Patients’ Characteristics

Eighty patients with COVID-19 (44 males (55%); median age 62, IQR 47–68 years) and
40 controls (20 males (50%); median age 59, IQR 41–67 years) were included.

COVID-19 severity was categorized as moderate in 24 (30%), severe in 32 (40%), and
critical in 24 (30%) patients. As shown in Table 1, there were no differences in the age,
gender, comorbidities, chronic medications or duration of symptoms before admission
between the groups. Patients with critical COVID-19 had a higher BMI than those with
severe or moderate COVID-19. As expected, the severity of clinical symptoms and disease
severity scores, including MEWS, SOFA, PSI and the 4C mortality score, differed signifi-
cantly between groups (Table 1). Patients in the critical group had lower peripheral oxygen
saturation (82%, IQR 78–87 vs. 88%, IQR 82–89 vs. 95% IQR 93–96, p = 0.0001) and a lower
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PaO2/FiO2 ratio (126 IQR 76–174 vs. 183 IQR 137–250 vs. 347 IQR 323–428, p = 0.0001)
on admission.

Table 1. Baseline patients’ characteristics.

Moderate
n = 24

Severe
n = 32

Critical
n = 24 p-Value

Male sex 13 (54.17%) 19 (59.38%) 12 (50%) 0.7801
Age, years 64 (48–69) 62 (44–71) 63 (48–65) 0.8829

BMI, kg/m2 26 (24–29) 29 (27–34) 30 (25–31) 0.0517
Waist–hip ratio (WHR) 0.97 (0.91–1) 1 (0.97–1.1) 0.98 (0.92–1.1) 0.0744

Comorbidities

Charlson comorbidity index 1.5 (0–3.8) 2 (0.25–3) 2 (1.3–3.8) 0.5018
Diabetes mellitus 8 (33.33%) 4 (12.50%) 6 (25.00%) 0.1706

Arterial hypertension 13 (54.17%) 17 (53.13%) 11 (45.83%) 0.8152
COPD 2 (8.33%) 3 (9.38%) 2 (8.33%) 0.9870

Dyslipidemia 3 (12.50%) 7 (21.88%) 5 (20.83%) 0.6411
Gastritis/GERD 4 (16.67% 1 (3.13%) 2 (8.33%) 0.2062

Cardiovascular diseases 5 (20.83%) 4 (12.50%) 5 (20.83%) 0.6301
No comorbidities 7 (29.17%) 10 (31.25%) 6 (25.00%) 0.8761

Chronic medications

ACE inhibitors 5 (20.83%) 15 (46.88%) 13 (54.17%) 0.0563
Acetylsalicylic acid 3 (12.50%) 4 (12.50%) 1 (4.17%) 0.5230

Beta blockers 4 (16.67%) 12 (37.50%) 9 (37.50%) 0.1832
Proton pump inhibitors 5 (20.83%) 4 (12.50%) 2 (8.33%) 0.4379

Hypolipidemic 3 (12.50%) 6 (18.75%) 5 (20.83%) 0.7279
Peroral hypoglycemics 5 (20.83%) 7 (21.88%) 6 (25.00%) 0.9364

No medications 7 (29.17%) 10 (31.25%) 6 (25.00%) 0.8761

Disease severity
at admission

Duration of illness, days 9 (7–9) 10 (7–11) 9 (7.3–9.8) 0.8483
Body temperature, ◦C 38 (37–38) 38 (37–38) 37 (37–38) 0.2829

Heart rate/min 93 (84–100) 96 (80–105) 98 (86–107) 0.5774
Mean arterial

pressure, mmHg 94 (87–103) 93 (83–100) 100 (89–108) 0.1196

Respiratory rate/min 21 (18–24) 25 (21–30) 27 (22–31) 0.0006
SpO2 on room air, % 95 (93–96) 88 (82–89) 82 (78–87) <0.0001

Pao2/FiO2 ratio 347 (323–428) 183 (137–250) 126 (76–174) <0.0001

MEWS 2 (1–3.5) 3 (2–4) 3 (2–3.8) 0.0422
SOFA 1.5 (1–2) 2 (2–3) 2 (2–3) 0.0008

PSI 54 (41–73) 64 (52–77) 84 (58–99) 0.0078
4C mortality score 5 (3–8) 9 (6–11) 11 (8–12) <0.0001

Data are presented as medians with interquartile ranges (IQR) or frequencies with percentages (n, %). Abbre-
viations: Body mass index (BMI); Charlson comorbidity index (CCI); Chronic Obstructive Pulmonary Disease
(COPD); Gastro-esophageal reflux disease (GERD); Angiotensin-converting enzyme (ACE) inhibitors; Modified
Early Warning Score (MEWS); Sequential Organ Failure Assessment (SOFA) Score; Pneumonia Severity Index
(PSI); Coronavirus Clinical Characterization Consortium (4C) Mortality Score.

As illustrated in Table 2, patients with critical and severe COVID-19 had significantly
higher serum concentrations of CRP and IL-6, glucose, urea, AST, LDH and CK at the time
of admission. There were no differences in other routine laboratory findings.

In the group of severe COVID-19, oxygen supplementation had a median of 9.5 L
(IQR 4–15 L) and the duration of required oxygen supplementation was 6.5 days (IQR
4.7–9 days). In the critical group, all patients required HFNC (median duration of 6 days,
IQR 3–8 days), 12 (50%) of them received NIV during hospitalization (median duration
of 2 days (IQR 1–6 days). Ten patients (41.67%) required invasive mechanical ventilation
(median duration of 4 days, IQR 3–11 days), 6 patients (25%) needed continuous renal
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replacement therapy (CRRT), and one patient was treated with veno-venous extracorporeal
membrane oxygenation (vv-ECMO).

Table 2. Laboratory findings at admission.

Moderate
n = 24

Severe
n = 32

Critical
n = 24

p-
Value

CRP, mg/L 83 (30–120) 101 (67–171) 133 (75–213) 0.0214
Procalcitonin, µg/L 0.11 (0.058–0.19) 0.13 (0.073–0.41) 0.2 (0.094–0.69) 0.0611

Interleukin-6, pg/mL 15 (6.5–54) 61 (18–107) 68 (18–142) 0.0102
Ferritin, µg/L 711 (443–1222) 841 (623–1468) 945 (656–2063) 0.2179
WBC, ×109/L 5.9 (4.8–8.7) 6.3 (4.1–8.2) 6.4 (5.1–11) 0.3815

Lymphocyte count, 109/L 0.83 (0.55–1.1) 0.6 (0.44–0.88) 0.68 (0.49–0.83) 0.3235
Neutrophil count, 109/L 4.4 (3.5–6.4) 5.1 (3.2–6.7) 5.4 (4.2–9) 0.2769

Hemoglobin, g/L 135 (117–147) 134 (127–145) 140 (126–148) 0.5138
Platelets, ×109/L 166 (120–277) 190 (137–247) 197 (141–246) 0.6331
Glucose, mmol/L 6.5 (5.8–7.9) 7.2 (6.6–8.1) 8.2 (6.9–9.8) 0.0367

Urea, mmol/L 4.4 (3.2–5.1) 6.2 (4.5–9.2) 6.1(4.7–9.3) 0.0003
Creatinine, µmol/L 72 (64–83) 80 (67–97) 69 (60–99) 0.2905

eGFR, ml/min/1.73 m2 99 (80–107) 89 (71–106) 91 (57–100) 0.1748
Bilirubin, µmol/L 10 (8–12) 13 (10–16) 11 (8.3–14) 0.1045

AST, IU/L 39 (26–51) 59 (34–86) 49 (37–90) 0.0104
ALT, IU/L 29 (21–57) 51 (28–75) 31 (24–65) 0.1682
GGT, IU/L 50 (30–55) 47 (26–124) 43 (2293) 0.5901
LDH, IU/L 262 (199–319) 382 (251–490) 483 (370–598) <0.0001
CK, IU/L 104 (56–272) 173 (66–319) 269 (120–524) 0.0352

Albumins, g/L 38 (36–41) 37 (35–41) 37 (35–39) 0.2015
Fibrinogen, g/L 5.6 (5–6.4) 6.2 (5.4–6.9) 5.8 (5.4–6.9) 0.3437
D-dimer, mg/L 0.95 (0.63–2) 0.86 (0.5–1.6) 1 (0.52–1.3) 0.7481

Data are presented as medians with interquartile ranges (IQR), p-values are calculated by Kruskal–Wallis test.
Abbreviations: C-reactive protein (CRP); White blood cell Count (WBC); Blood urea nitrogen (BUN); estimated
glomerular filtration rate (eGFR); Aspartate Aminotransferase (AST); Alanine Aminotransferase (ALT); Gamma-
glutamyl transferase (GGT); Lactate dehydrogenase (LDH); Creatinine Kinase (CK).

Overall, 47 (58.75%) patients were treated with remdesivir, 76 (95%) with dexametha-
sone, 12 (15%) with tocilizumab and 4 (5%) with baricitinib.

In 10 patients (12.5%), pulmonary thrombosis was diagnosed (1 in the mild, 4 in the
severe and 5 in the critical group). Nosocomial infections were diagnosed in 16 patients (20%);
10 patients with critical, 5 with severe and 1 with mild COVID-19. Ten patients (12.5%) in our
cohort died during hospitalization (7 males, median age of 63, IQR 50–68 years).

3.2. Analysis of Serum Semaphorin Concentrations in Patients with COVID-19 and
Healthy Controls

Concentrations of the serum semaphorins SEMA3A, SEMA3C, SEMA3F, SEMA4D and
SEMA7A were detectable in all patients with COVID-19 (Figure 1). Patients with COVID-19
had significantly higher SEMA3C (1.6 ng/mL, IQR 0.8–2.4 vs. 0.5 ng/mL, IQR 0.2–1.1,
p ≤ 0.0001), SEMA3F (4.6 ng/mL, IQR 4.1–6.0 vs. 1.2 ng/mL, IQR 0.9–1.5, p ≤ 0.0001) and
SEMA7A (1.5 ng/mL, IQR 0.7–2.7 vs. 0.9 ng/mL, IQR 0.2–1.3, p ≤ 0.0001) concentrations
compared to healthy controls (Figure 1a, Table 3). In contrast, patients with COVID-19
had significantly lower SEMA3A concentrations (14 ng/mL, IQR 11–16 vs. 21 ng/mL, IQR
15–24, p ≤ 0.0001). There were no statistical differences in SEMA4D serum concentrations
between groups (32 ng/mL, IQR 31–73 and 47 ng/mL, IQR 21–81, p = 0.4459).
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Figure 1. (a) Serum concentrations of semaphorin measured by ELISA in healthy controls and
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Table 3. Serum concentrations of semaphorins in healthy controls and COVID-19 patients and ROC
analysis of sensitivity and specificity in differentiating COVID-19 patients from healthy controls.

Healthy Controls
(n = 40)

COVID-19
Patients (n = 80)

Difference
(95% CI)

p-
Value

SEMA3A, ng/mL 21 (15–24) 14 (11–16) −7.2
(−8.6–−4.2) <0.0001

SEMA3C, ng/mL 0.56 (0.25–1.1) 1.6 (0.84–2.4) 1.1
(0.4–1.2) <0.0001

SEMA3F, ng/mL 1.2 (0.95–1.5) 4.6 (4.1–6) 3.4
(3.2–3.9) <0.0001

SEMA4D, ng/mL 47 (21–81) 32 (31–73) −14
(−17–11) 0.4459

SEMA7A, ng/mL 0.9 (0.2–1.3) 1.5 (0.78–2.7) 0.5
(0.3–1.1) <0.0001

COVID-19 vs. HC Sensitivity
(95% CI)

Specificity
(95% CI) AUC (95% CI) p-

Value

SEMA3A < 15.50 ng/mL 71.25%
(62.34%–78.77%)

72.50%
(59.75%–82.40%)

0.7953
(0.7188–0.8718) <0.0001

SEMA3C > 1.00 ng/mL 63.64%
(54.30%–72.05%)

66.67%
(53.53%–77.64%)

0.7792
(0.7086–0.8498) <0.0001

SEMA3F > 2.10 ng/mL 97.47%
(92.63%–99.33%)

97.5%
(89.54%–99.74%)

0.9981
(0.9951–1.0) <0.0001

SEMA7A > 1.15 ng/mL 63.75%
(54.59%–72.01%)

65%
(52.01%–76.09%)

0.7339
(0.6591–0.8087) <0.0001

Next, ROC analysis was performed to determine cut-off values of serum semaphorin
concentrations for differentiating patients with COVID-19 from healthy controls (Figure 1b
and Table 3). All tested semaphorins showed good accuracy in distinguishing patients
with COVID-19 from HC. A cutoff value of SEMA3F > 2.10 ng/mL correctly predicted
COVID-19 with a sensitivity of 97% and specificity of 97% (AUC 0.99, 95%CI 0.99–1.00).
SEMA3A < 15.5 ng/mL predicted COVID-19 with a sensitivity of 71% and specificity of
72% (AUC 0.79, 95%CI 0.72–0.87). SEMA3C > 1.00 ng/mL showed a sensitivity of 63% and
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specificity of 66% (AUC 0.77, 95%CI 0.71–0.85) and SEMA7A >1.15 ng/mL had a sensitivity
of 64% and specificity of 65% (AUC 0.73, 95%CI 0.66–0.81).

3.3. Correlation of Semaphorin Serum Concentrations with COVID-19 Severity

As shown in Figure 2 and Table 4, serum concentrations of SEMA3A and SEMA3C
were negatively correlated with disease severity, with the lowest concentrations in the most
severely ill patients. SEMA4D serum concentrations showed no correlation with disease
severity. In contrast, serum concentrations of SEMA3F and SEMA7A positively correlated
with COVID-19 severity, with the highest levels in patients with critical COVID-19 (Figure 2,
Table 3).
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Figure 2. Serum concentrations of semaphorin SEMA3A, SEMA3C, SEMA3F and SEMA7A in
healthy controls (HC) and patients with COVID-19 stratified by disease severity (moderate, severe,
critical). Data are presented as medians with interquartile ranges. The p-values are calculated by
Kruskal–Wallis test with Dunn’s multiple comparisons test.
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Table 4. Comparing serum semaphorin concentrations, CRP, IL-6 and LDH levels in distinction of
moderate from severe/critical COVID-19 and critical from moderate/severe COVID-19. Shown are
AUCs with 95% CI.

Sensitivity
(95% CI)

Specificity
(95% CI) AUC (95% CI) p-Value

Moderate vs.
severe/critical

SEMA3A > 14 ng/mL 62.5%
(51.5%–72.3%)

66.6%
(49.8%–80.0%)

0.7586
(0.66–0.85) 0.0003

SEMA3C > 1.80 ng/mL 60.3%
(49.1%–70.6%)

58.3%
(41.7%–73.2%)

0.6612
(0.56–0.76) 0.0242

SEMA3F < 4.35 ng/mL 72.7%
(61.9%–81.3%)

70.8%
(54.1%–83.3%)

0.739
(0.54–0.84) 0.0008

SEMA7A < 1.23 ng/mL 66.1%
(55.1%–75.5%)

58.3%
(41.7%–73.2%)

0.7154
(0.62–0.80) 0.0024

CRP < 95 mg/L 60.7%
(49.7%–70.7%)

58.3%
(41.7%–73.2%)

0.7428
(0.63–0.85) 0.0087

IL-6 < 53 pg/mL 60.5%
(47.2%–72.4%)

75.0%
(56.7%–87.2%)

0.7428
(0.63–0.85) 0.0025

LDH < 300 IU/L 80.3%
(70.3%–87.6%)

70.8%
(54.1%–83.3%)

0.779
(0.68–0.86) <0.0001

Critical vs.
moderate/severe

SEMA3A < 13.0 ng/mL 69.6%
(58.8%–78.6%)

70.8%
(54.1%–83.3%)

0.7865
(0.69–0.87) <0.0001

SEMA3F > 4.7 ng/mL 63.6%
(52.5%–73.4%)

70.8%
(54.7%–83.3%)

0.7591
(0.66–0.85) 0.0003

SEMA7A > 2.0 ng/mL 82.1%
(72.3%–89.0%)

70.8%
(54.1%–83.3%)

0.8177
(0.73–0.89) <0.0001

CRP > 100 mg/L 50.0%
(39.2%–60.7%)

54.1%
(37.8%–69.6%)

0.5432
(0.42–0.65) 0.5426

IL-6 > 60 pg/ml 68.4%
(55.1%–79.2%)

55.0%
(37.2%–71.5%)

0.6447
(0.51–0.77) 0.0719

LDH > 450 IU/L 76.7%
(66.4%–84.7%)

58.3%
(41.7%–73.2%)

0.7563
(0.66–0.85) 0.0003

3.4. ROC Analysis of Serum Semaphorins Concentrations in Predicting COVID-19 Severity

As shown in Table 4 and Figure 3a, ROC analysis was performed to determine the
threshold value of serum semaphorin concentrations for differentiating patients with
moderate from patients with severe/critical COVID-19. A cutoff value > 14 ng/mL of the
SEMA3A correctly predicted moderate COVID-19 with a sensitivity of 62% and specificity
of 66% (AUC 0.75, 95%CI 0.66–0.85). SEMA3F < 4.35 ng/mL had a sensitivity of 73%
and specificity of 71% (AUC 0.74, 95%CI 0.54–0.84), SEMA7A < 1.23 ng/mL showed a
sensitivity of 66% and specificity of 58% (AUC 0.71, 95%CI 0.62–0.80) and SEMA3C > 1.80
ng/mL showed a sensitivity of 60% and specificity of 58% (AUC 0.66, 95%CI 0.56–0.76).
The diagnostic accuracy was similar to routinely measured CRP, IL-6 and LDH.

Next, ROC analysis was performed to determine the cut-off value of serum semaphorin
concentrations for differentiating patients with critical COVID-19 from patients with mod-
erate/severe COVID-19 (Figure 3b). A cutoff value < 13 ng/mL of the SEMA3A predicted
critical COVID-19 with a sensitivity of 70% and specificity of 71% (AUC 0.78, 95%CI
0.69–0.87), SEMA3F > 4.7 ng/mL showed a sensitivity of 64% and specificity of 71% (AUC
0.76, 95%CI 0.66–0.85), SEMA7A > 2.0 ng/mL showed a sensitivity of 82% and specificity
of 71% (AUC 0.82, 95%CI 0.74–0.89). Serum semaphorin levels show better predictive
values than CRP, IL-6 and LDH for differentiating critical from moderate/severe COVID-19
(Table 4).
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Figure 3. The ROC curve analysis of serum semaphorin concentrations for discrimination of (a) mod-
erate COVID-19 and severe/critical COVID-19 patients; (b) critical COVID-19 and moderate/severe
COVID-19. Shown are AUCs with 95% CI.

Finally, we performed a multivariable logistic regression analysis to identify factors
associated with the development of critical COVID-19. After adjustment for potential
cofounders, SEMA3F > 4.7 ng/mL (OR 5.73, 95%CI 1.38–29.76), SEMA7A > 2.0 ng/mL (OR
12.76, 95%CI 2.45- 96.32), admission paO2/FiO2 < 150 (OR 3.76, 95%CI 1.03–14.45) and 4C
mortality score > 9 (OR 3.69, 95%CI 1.12–13.42) were associated with the critical disease,
while age, sex, comorbidities, CCI, obesity and laboratory parameters such as CRP and
LDH were not associated with critical disease in our model (AUC 0.89, 95%CI 0.81–0.96).

3.5. Association of Serum Semaphorin Concentrations with COVID-19 Clinical Outcomes
and Complications

We examined the impact of serum semaphorin concentrations on time to recovery, as
defined by time to hospital discharge or readiness for discharge by day 28. In a survival analysis
using Kaplan–Meier estimates, SEMA3A < 13 ng/mL (HR 4.4, 95% CI 1.21–16.55, p = 0.0116),
SEMA3F > 4.7 ng/mL (HR 5.24, 95% CI 1.38–19.88, p = 0.0186) and SEMA7A > 2.0 ng/mL
(HR 10.11, 95% CI 2.55–40.01, p = 0.0002) appeared to be an efficient prognostic biomarker
associated with time to recovery.

Twelve patients required mechanical ventilation (including NIV and IMV) during
hospitalization. In this group, SEMA3F (6.0 ng/mL, IQR 4.5–6.7 vs. 4.5 ng/mL, IQR
3.9–5.4, p = 0.0308) and SEMA7A (2.8 ng/mL, IQR 2.2–5.8 vs. 1.3 ng/mL, IQR 0.55–1.9,
p = 0.0004) were significantly higher than in patients who did not require advanced respira-
tory support.

Ten patients were diagnosed with pulmonary thrombosis, and these patients had sig-
nificantly higher serum concentrations of SEMA3C (2.9 ng/mL, IQR 2.3–3.6 vs. 1.4 ng/mL,
IQR 0.84–2.3, p = 0.0007), SEMA3F (6.5 ng/mL, IQR 4.7–6.6 vs. 4.4 ng/mL, IQR 4.0–5.7,
p = 0.0339) and SEMA7A (2.9 ng/mL, IQR 1.2–7.1 vs. 1.4 ng/mL, IQR 0.76–2.2, p = 0.0471).

Next, we analyzed baseline serum semaphorin concentrations with the development of
nosocomial infections as a complication of COVID-19. Patients who developed nosocomial
infections had significantly higher levels of SEMA3F (6.0 ng/mL, IQR 4.5–6.4 vs. 4.5 ng/mL,
IQR 3.9–5.6, p = 0.0411) and SEMA7A (2.8 ng/mL, IQR 1.90–4.2 vs. 1.3 ng/mL, IQR 0.59–1.9,
p = 0.0005).

Overall, 10 patients in our cohort died during hospitalization. Non-survivors had
significantly lower SEMA3A (11 ng/mL, IQR 6.9–14 vs. 13 ng/mL, IQR 11–16, p = 0.0269)
and higher SEMA7A (2.8 ng/mL, IQR 2.0–8.6 vs. 1.4 ng/mL, IQR 0.59–2.0, p = 0.0029)
serum concentrations.
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3.6. Correlation Analysis of Serum Semaphorin Concentrations with Routine Clinical and
Laboratory Parameters

We analyzed potential correlations among paired laboratory parameters, including
semaphorin concentrations and clinical variables in patients with COVID-19, as presented
in Figure 4. Serum SEMA3A negatively correlated with the 4C mortality score (r = −0.22,
p= 0.05), AST (r = −0.25, p = 0.03), LDH (r = −0.36, p < 0.01) and CK (r = −0.27, p = 0.02).
Serum SEMA3C positively correlated with SEMA4D (r = 0.32, p = 0.01), ANC (r = 0.23,
p = 0.05), and negatively with CK (r = −0.25, p = 0.03). Serum SEMA3F positively correlated
with SEMA7A (r = 0.39, p < 0.01), 4C mortality score (r = 0.30, p = 0.01), Hb (r = 0.32,
p < 0.01), urea (r = 0.25, p = 0.02), LDH (r = 0.32, p < 0.01) and d-dimer (r = 0.26, p = 0.02),
while negatively with ALP (r = −0.23, p = 0.04). Serum SEMA4D positively correlated with
SEMA3C (r = 0.32, p = 0.01). Serum SEMA7A positively correlated with SEMA3F (r = 0.39,
p < 0.01), 4C mortality score (r = 0.44, p < 0.01), CRP (r = 0.35, p < 0.01), procalcitonin
(r = 0.27, p = 0.02), ANC (r = 0.42, p < 0.01), Plt (r = 0.41, p < 0.01), urea (r = 0.41, p < 0.01),
LDH (r = 0.25, p = 0.02), Troponin T (r= 0.31, p = 0.01), fibrinogen ( r = 0.36, p < 0.01), d-dimer
(r = 0.21, p = 0.05), and negatively correlated with albumin level( r = −0.25, p = 0.03).
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Figure 4. Spearman correlation correlogram. The strength of the correlation between two variables is
represented by the color at the intersection of those variables. Colors range from dark blue (strong
negative correlation; r = −1.0) to red (strong positive correlation; r = 1.0). Results were not displayed
if p > 0.05.

4. Discussion

In this study, we provide the first evidence that COVID-19 patients have different
semaphorin serum concentrations as compared to healthy controls. While SEMA3A was
decreased, SEMA3C, SEMA3F and SEMA7A were increased in COVID-19. Furthermore,
we showed an association of semaphorin levels with COVID-19 severity; SEMA3F and
SEMA7A were higher in critical COVID-19, while SEMA3A and SEMA3C negatively
correlated with COVID-19 severity and were lower in the critical group. Semaphorins
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showed equal or better accuracy in predicting disease severity than the widely used CRP,
IL-6 or LDH.

Firstly, we found decreased serum concentrations of SEMA3A that further decreased
with COVID-19 severity. Class 3 semaphorins, specifically SEMA3A, have immunosuppres-
sive and regulatory effects that include neutrophil migration, induce the shift of activated
macrophages (M1) to the resolution phase phenotype (M2) and negatively control the T
cell-mediated response predominantly via the activation of regulatory T cells (Tregs) [29]. In
patients with autoimmune diseases (e.g., SLE, rheumatoid arthritis, systemic sclerosis and
allergic diseases), a reduced expression of SEMA3A correlated with T-cell-mediated inflam-
mation and disease severity [10,15]. The role of SEMA3A in the pathogenesis of infections
might depend on the receptor utilized, which has been the subject of several experimental
studies. Inhibition of the SEMA3A/PLXNA4 complex attenuates Toll-like receptor (TLR)
pathways, which was associated with a decreased septic response and improved survival
rates [30]. In contrast, inhibition of the SEMA3A/NRP-1 complex demonstrated increased
production of proinflammatory cytokines and higher mortality [31]. In the transcrip-
tome study (GEO dataset GSE57011), SEMA3A was identified as the most downregulated
gene in ARDS patients [20], and overexpression of SEMA3A in the lipopolysaccharides
(LPS)-induced ARDS model alleviates oxidative stress and inflammation by suppressing
activation of the extracellular signal-regulated kinase/Jun-N-Terminal Kinase (ERK/JNK)
signaling pathway in rat pulmonary microvascular endothelial cells [20].

Since the fine-tuned immune response is vital in determining the outcome of the
SARS-CoV-2 infection [32], we can hypothesize that decreased serum concentrations of
SEMA3A in COVID-19 patients and its negative correlation with disease severity might
result in the lack of anti-inflammatory and immunosuppressive effects of SEMA3A, which
might lead to an uncontrolled inflammatory cascade.

Next, we found that SEMA3C is increased in moderate, but not in critical, COVID-19.
Furthermore, SEMA3C was increased in a subgroup of patients diagnosed with pulmonary
thrombosis. Less is known about the immunoregulatory role of SEMA3C, but it was shown
that SEMA3C regulates fibrosis, vascular development, pathological angiogenesis and the
migration of tumor cells. The expression of SEMA3C is related to tumor progression and
poor prognosis in lung cancer, prostate, breast cancer, gastric cancer and ovarian cancer,
which makes it a potential therapeutic target for malignant diseases [33,34]. SEMA3C regu-
lates extracellular matrix composition through increased expression of IL-6, transforming
growth factor-β (TGF-β) and connective tissue growth factor (CTGF), and was implicated
in the development of liver fibrosis [13,14,35]. Recently, it was shown that SEMA3C plays
an important role in the development of murine acute kidney injury by promoting vas-
cular permeability, interstitial edema, leukocyte infiltration and tubular injury [36]. After
administration of SEMA3C in murine models, systemic and renal hemodynamics changed:
mean arterial pressure decreased and vascular resistance was reduced [36]. SEMA3C has
a pivotal role in vascular smooth muscle cell migration and cardiovascular system devel-
opment [37,38]. Interestingly, SEMA3C might regulate pathological angiogenesis, where
SEMA3C exerted potent inhibiting effects and was suggested as a potent and selective
inhibitor of pathological retinal angiogenesis [39]. Since severe COVID-19 is character-
ized by significant distortion of the lung angioarchitecture, small vessel vasculitis and
microthrombosis, all associated with worse prognosis and increased mortality [40], we
can theorize that SEMA3C might play a role in aberrant angiogenesis associated with the
development of severe ARDS that is still to be investigated.

Similarly, SEMA3F and SEMA7A concentrations were increased and positively cor-
related with COVID-19 disease severity and were identified as predictors of COVID-19
outcomes, including the need for mechanical ventilation, development of pulmonary throm-
bosis and nosocomial infections. Both SEMA3F and SEMA7A are secreted by activated
immune cells and have emerged as regulators of neutrophil migration, vascular permeabil-
ity and cytoskeletal remodeling, and the initiation of an inflammatory signaling cascade in
models of acute lung injury. An increased number of neutrophils in bronchoalveolar fluid
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with a high expression of SEMA3F and NRP2 was observed in a murine model after the LPS
challenge, and neutrophil-specific loss of SEMA3F resulted in more rapid neutrophil recruit-
ment and clearance from the lungs [41]. By interacting with various receptors and organ
systems, SEMA7A has opposing effects: in interactions with integrin receptors, SEMA7A
has a protective and anti-inflammatory effect, while via the plexin C1 receptor it promotes
extravascular neutrophil migration and the release of pro-inflammatory cytokines [42]. In
the murine model, SEMA7A causes transendothelial migration of neutrophils into lung
tissue [43,44], and a blockade of SEMA7A in in vivo and in vitro models showed reduced
injury-induced neutrophil influx, correlating with reduced lung injury along with reduced
cytokine response [18]. To summarize, the SEMA3F and SEMA7A in COVID-19 might reg-
ulate vascular permeability and cytoskeletal remodeling along with neutrophil migration
and retention in inflamed tissue, which leads to the amplification of inflammation.

In our study, there were no differences in SEMA4D serum concentrations between
healthy controls and COVID-19 patients. SEMA4D regulates immune activation and inflam-
matory responses by modulating cytoskeleton reorganization through its principal receptor,
CD72, located on T cells, B cells, macrophages and dendritic cells [45]. In animal models
of autoimmune diseases such as multiple sclerosis and autoimmune encephalomyelitis,
SEMA4D correlated with disease severity [46], as in patients with psoriasis and rheumatoid
arthritis [47]. SEMA4D is most extensively studied in oncology and it is currently consid-
ered a promising target for antitumor therapy for breast cancer [48]. The impact of class IV
semaphorins on COVID-19 outcomes should be further examined.

Recent research has shown that micro RNAs (miRNA) control SEMA signaling in
immune, cardiovascular and nervous systems, and malignancies, directly through their
receptors, or indirectly by modulating the molecules that regulate the expression of
semaphorins [49]. Similarly, there are reports that specific miRNA signatures in blood
or respiratory samples can distinguish COVID-19 disease severity or COVID-19 patients
from healthy people [50]. Some of them are linked with semaphorin signaling such as
miR-17-5p [51], miR-142-5p [52], miR-126-3p [53], miR-19b-3p [54], miR-92a-3p [55] and
miR-320a [56], thus highlighting the potential importance of semaphorin signaling in
COVID-19. Interestingly, SARS-CoV-2-encoded miRNAs were shown not only to target
viral genomes and alter viral fitness, but can also be transported to host cells during viral
infection and bind to host miRNAs and genes and alter immune responses [57]. However,
their role in regulating semaphorins remains to be elucidated.

This study should be viewed within its limitations; since this was an observational
study, causality could not be determined; a relatively small number of participants in
COVID-19 severity subgroups limits statistical analysis and should be confirmed in a larger
population; the impact of comorbidities on semaphorins and other inflammatory markers
was not evaluated; the concentrations of semaphorins were determined at a single time
point, and dynamic variations related to clinical outcomes were not examined. Neverthe-
less, we studied a well-defined cohort of patients and report the first data examining the
semaphorins’ profile in patients with COVID-19. Additional studies are needed for a better
understanding of the complex underlying immunopathological mechanisms including their
effect on development and activation of B and T cells, and how semaphorins contribute to
COVID-19 progression.

5. Conclusions

In conclusion, we have shown that patients with COVID-19 have different expressions
of SEMA3A, SEMA3C, SEMA3F and SEMA7A than healthy controls, which correlate with
disease severity and outcomes. Due to their role in regulating inflammation, cell migration,
fibrosis and angiogenesis, which have already been explored in neoplastic and autoimmune
diseases, semaphorins could be new diagnostic and prognostic biomarkers and potential
therapeutic targets in COVID-19, which warrant further investigation.



Biomedicines 2023, 11, 2786 13 of 15

Author Contributions: Conceptualization, A.V. and N.P.; methodology, N.P., L.S. and M.V.; valida-
tion, A.V. and M.B.T.; formal analysis, M.V. and N.P.; data curation, M.V. and L.S.; writing—original
draft preparation, M.V.; writing—review and editing, A.V., M.B.T. and N.P.; funding acquisition, N.P.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Croatian Science Foundation, project entitled “The role of
immune semaphorins in NAFLD and sepsis” (principal investigator Neven Papić, project number
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