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REVIEW

Repurposing approved non‑oncology drugs 
for cancer therapy: a comprehensive review 
of mechanisms, efficacy, and clinical prospects
Roohi Mohi‑ud‑din1, Apporva Chawla2, Pooja Sharma2, Prince Ahad Mir2, Faheem Hyder Potoo3, Željko Reiner4, 
Ivan Reiner5, Dilek Arslan Ateşşahin6, Javad Sharifi‑Rad7*, Reyaz Hassan Mir8* and Daniela Calina9* 

Abstract 

Cancer poses a significant global health challenge, with predictions of increasing prevalence in the coming years due 
to limited prevention, late diagnosis, and inadequate success with current therapies. In addition, the high cost of new 
anti-cancer drugs creates barriers in meeting the medical needs of cancer patients, especially in developing countries. 
The lengthy and costly process of developing novel drugs further hinders drug discovery and clinical implementation. 
Therefore, there has been a growing interest in repurposing approved drugs for other diseases to address the urgent 
need for effective cancer treatments. The aim of this comprehensive review is to provide an overview of the potential 
of approved non-oncology drugs as therapeutic options for cancer treatment. These drugs come from various chem‑
otherapeutic classes, including antimalarials, antibiotics, antivirals, anti-inflammatory drugs, and antifungals, and have 
demonstrated significant antiproliferative, pro-apoptotic, immunomodulatory, and antimetastatic properties. A sys‑
tematic review of the literature was conducted to identify relevant studies on the repurposing of approved non-
oncology drugs for cancer therapy. Various electronic databases, such as PubMed, Scopus, and Google Scholar, were 
searched using appropriate keywords. Studies focusing on the therapeutic potential, mechanisms of action, efficacy, 
and clinical prospects of repurposed drugs in cancer treatment were included in the analysis. The review highlights 
the promising outcomes of repurposing approved non-oncology drugs for cancer therapy. Drugs belonging to differ‑
ent therapeutic classes have demonstrated notable antitumor effects, including inhibiting cell proliferation, promot‑
ing apoptosis, modulating the immune response, and suppressing metastasis. These findings suggest the potential 
of these repurposed drugs as effective therapeutic approaches in cancer treatment. Repurposing approved non-
oncology drugs provides a promising strategy for addressing the urgent need for effective and accessible cancer 

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom‑
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

European Journal
of Medical Research

*Correspondence:
Javad Sharifi‑Rad
javad.sharifirad@gmail.com
Reyaz Hassan Mir
reyazhassan249@gmail.com
Daniela Calina
calinadaniela@gmail.com
1 Department of General Medicine, Sher-I-Kashmir Institute of Medical 
Sciences (SKIMS), Srinagar,  Jammu and Kashmir 190001, India
2 Khalsa College of Pharmacy, G.T. Road, Amritsar, Punjab 143001, India
3 Department of Pharmacology, College of Clinical Pharmacy, Imam 
Abdulrahman Bin Faisal University, 1982, 31441 Dammam, Saudi Arabia
4 Department of Internal Medicine, School of Medicine, University 
Hospital Center Zagreb, Zagreb, Croatia

5 Department of Nursing Sciences, Catholic University of Croatia, Ilica 242, 
10000 Zagreb, Croatia
6 Baskil Vocational School, Department of Plant and Animal Production, 
Fırat University, 23100 Elazıg, Turkey
7 Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador.
8 Pharmaceutical Chemistry Division, Department of Pharmaceutical 
Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir 190006, India
9 Department of Clinical Pharmacy, University of Medicine and Pharmacy 
of Craiova, 200349 Craiova, Romania

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40001-023-01275-4&domain=pdf


Page 2 of 35Mohi‑ud‑din et al. European Journal of Medical Research          (2023) 28:345 

Introduction
Cancer is a serious disease that causes high mortality 
rates worldwide [1–3]. The occurrence of different types 
of cancer and particularly the possibilities of treat-
ment are a big challenge for clinicians [4–9]. Malignant 
tumors such as liver cancer, breast, prostate, pancreas 
and colorectal cancer are generally difficult to cure at 
advanced phases with existing conventional treatments 
[10–14]. Finding new substances for the treatment of 
cancers was the result of technological development 
and innovative approaches. Surprisingly, the research 
on novel agents for cancer treatment lasts long and is 
a complicated exercise due to the various steps neces-
sary for the isolation, synthesis, and purification of new 
anticancer substances [13, 15–18]. After drug discovery, 
synthesis and selection of appropriate formulation and 
preclinical pharmacology and toxicology, phase I clini-
cal trials have to be made which begin with the admin-
istration of an investigational drug into healthy humans 
This phase involves the estimation of initial safety and 
tolerability, pharmacokinetics and assessments of phar-
macodynamics. If successful, phase II is performed with 
the primary objective to explore therapeutic efficacy 
in patients. After that, for many of them, there is only 
a small probability to finish successfully phase III clini-
cal trials which are designed to confirm the preliminary 
evidence obtained in phase II to verify that the potential 
drug is safe and effective for use in the intended indi-
cation and recipient patients. The amount of time and 
money for the production of new anti-cancer drugs is 
a big obstacle for the pharma industry for new drugs 
development, which will have proven therapeutic effi-
cacy [19–23]. Therefore, a novel concept of the use of 
old FDA-approved drugs is the recent direction to help 
clinicians and researchers, and, of course, the patients 
[24]. In this strategy, the advantage is that the assess-
ment of drug safety, such as pharmacodynamics, phar-
macokinetics, toxicity, and safety profiles, has been 
already previously established in Phase I studies. More-
over, old approved drugs can rapidly proceed for further 
Phase II clinical trials. Therefore, the interest is more 
and more focused on this strategy because of the lower 
cost and less time for developing new use of old drugs 
[19, 25].

Drug repurposing landscape: a brief synopsis
Drug development is a multistep process that includes 
identifying the therapeutic drug molecule that is clini-
cally effective in the treatment of a disease [26]. This 
conventional drug discovery strategy implicates the de 
novo identification of new molecular entities. It has five 
stages, such as the discovery of the molecule and pre-
clinical study, safety review, clinical studies, FDA review, 
and FDA post-market safety monitoring [27]. This pro-
cess involves the identification of candidate molecules, 
synthesis, characterization, validation, optimization, 
screening, and assays for therapeutic efficacy [28]. When 
a product shows favorable outcomes in these studies, 
then the molecule has to go through a drug development 
process and subsequently testing in clinical trials [28]. De 
novo drug development is a time-consuming process and 
involves significant investments. It usually takes years of 
work (10–17 years) and costs millions of dollars. Further-
more, it is associated with high failure rates, with roughly 
90% of molecules being rejected due to unexpected char-
acteristics, such as safety and efficacy concerns [29, 30]. 
Despite massive expenditures in drug discovery and tre-
mendous advancements in biological and informational 
technology over the past several decades, the number 
of new drugs brought to the phase of clinical trials has 
not expanded so much and remained relatively constant. 
Even though total research and development cost for 
drug discovery has expanded tenfold from 1975 (US $4 
billion) to 2009 ($40 billion), there has been no substan-
tial change in the number of new molecules approved 
since 1975 (in 2013 there were only 6 new drug moie-
ties approved in comparison with the year 1976, where 
the number of newly approved pharmaceuticals was 
27) [31]. The situation has improved in the last decade 
but not to a large extent. The increasing cost and time 
in the drug discovery process have resulted in the pos-
sibility that if resistance to the available drugs emerges, 
people with advanced diseases will end up dying before 
a substitute treatment option could become accessible 
[32]. Drug development is undoubtedly one of the most 
complex tasks in pharmaceutical research. In addition to 
already intimidating complications in pharmacological 
drug design, numerous obstacles occur due to regulatory, 
clinical intellectual property, and economic concerns. 

treatments. The diverse classes of repurposed drugs, with their demonstrated antiproliferative, pro-apoptotic, immu‑
nomodulatory, and antimetastatic properties, offer new avenues for cancer therapy. Further research and clinical 
trials are warranted to explore the full potential of these repurposed drugs and optimize their use in treating various 
cancer types. Repurposing approved drugs can significantly expedite the process of identifying effective treatments 
and improve patient outcomes in a cost-effective manner.

Keywords  Repurposing, Non-oncology drugs, Cancer therapy, Mechanisms, Efficacy, Clinical prospects
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As a result of these challenging circumstances, the drug 
development process has become even more prolonged 
and uncertain. In pursuit of new treatment alternatives 
for patients with diseases, such as cancer, researchers 
have turned to drug repurposing tactics [33]. Drug repur-
posing also termed as drug repositioning, drug rescuing, 
drug reprofiling, drug recycling, or therapeutic switch-
ing, involves identifying and exploring the new therapeu-
tic use of already FDA-approved and in clinical practice 
used drugs, but used for the treatment of other indica-
tions [24]. It is regarded as the most effective strategy in 
developing drug candidates using novel pharmacological 
properties and therapeutic characteristics of well-known 
drugs. Considering that traditional drug discovery is 
a time-consuming and costly process, the revolution-
ary strategy of drug repositioning is used to boost the 
success rate of medication development. Compared to 
the traditional drug discovery approach, this strategy is 
more favorable in terms of minimizing the length of time 
required for drug development while maintaining low 
costs, high efficiency, and minimal risk of failure [34]. 
The drug repurposing also offers a significant advantage 
not only in terms of the availability of preclinical infor-
mation about the existing drug (a drug to be repurposed) 
but also provides additional data about clinical aspects 
such as pharmacokinetic, pharmacodynamics, and tox-
icity profile of that particular drug [35]. Because of this, 
these drugs might quickly be tested in Phase II and Phase 
III clinical trials, and the accompanying development 
costs could be significantly lower. The risk of failure is 
reduced, because in-vitro and in-vivo studies, toxicol-
ogy profiles, chemical optimization, and formulation 
development have previously been explored. As a result, 
pharmaceutical companies have directed more and more 
of their attention to drug repurposing, since it might give 
a considerable advantage compared to traditional drug 
development (Fig. 1) [36]. In this context, it is not unex-
pected that approximately 30% of newly approved drugs 
in the United States are repurposed drugs [37].

Experimental drug repurposing approach
Binding assay
Techniques such as affinity chromatography, proteom-
ics, and mass spectroscopy are used to identify novel tar-
gets for old drugs [38]. The protein target of gefitinib was 
investigated using HeLa cell extract. Mass spectroscopy 
results indicated that gefitinib could potentially interact 
with 20 different protein kinases that might be a target 
for gefitinib [27].

Phenotypic approaches
The phenotypic drug discovery approach is an experi-
mental strategy that uses the library of accessible drug 

collections and focuses on finding their biological activi-
ties in cells and living organisms. It does not depend on 
the direct interaction with the target. Changes in in-vitro, 
in-vivo models and clinical studies can lead to the dis-
covery of new drugs [39]. This is a screening procedure 
that does not presume the mechanism of action, and the 
primary output is a change in phenotype or physiologi-
cal parameters. Cells, physiological systems, and whole 
organisms can all be used in this process. Depending 
upon the purpose or phase of drug development, each 
of these several systems can be used. Cell-based screen-
ing provides an increased insight into in vivo processes. 
On the other hand, in-vivo animal models help to assess 
the possible use of the existing medications for new 
phenotypic characteristics [40]. This method led to the 
discovery that astemizole and its metabolite desmethyl 
astemizole as effective inhibitors of Plasmodium falcipa-
rum growth and development [41].

Drug‑centric approach
Drug-centric repurposing strategy is focused on fore-
casting new use for already approved drugs. This strat-
egy relies heavily on substances that have the potential 
to interact with a wide range of targets (polypharma-
cological agents). Even though polypharmacological 
substances are responsible for triggering undesirable 
side effects, their activities can be used, because they 
offer the possibility of additional indications for a spe-
cific drug [42]. Polypharmacology seems to become the 
next major drug development paradigm. A considerable 
number of drugs are known for their ability to affect 
many targets simultaneously. Aspirin is used to relieve 
mild pain, fever and rheumatoid arthritis. It is also used 
as an anti-inflammatory agent in the treatment of Kawa-
saki disease and pericarditis. Transient ischemic attacks, 
ischemic stroke, myocardial infarction and even some 
types of cancer have all been successfully treated with 
this drug. Sildenafil, a phosphodiesterase inhibitor, was 
initially used for the management of erectile dysfunc-
tion. However, today, it is widely used for the manage-
ment of pulmonary hypertension [43]. The majority of 
kinase inhibitors can inhibit several targets which makes 
them attractive options for the treatment of some types 
of cancer. Different multi-targeted tyrosine kinase inhib-
itors (TKIs) such as imatinib, nilotinib, and vandetanib 
were approved for clinical use in 2010 to treat solid can-
cers [44].

Target‑based approach
The target-based drug repurposing approach involves 
the study of candidate drugs with biological targets 
such as receptors and proteins to different physiologi-
cal responses to them. According to this method, new 
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indications were discovered by relating a certain drug 
to a specific disease depending on the protein which 
it might target [42]. Proteins have many pathophysi-
ological roles both in diseases and in healthy humans; 
dysfunctional, mutated, or misfolded proteins may 
trigger pathological responses that cause the devel-
opment of a disease. The studies of proteins or bio-
markers implicated in pathophysiological processes 
focus on target-based drug repurposing strategy [45]. 
The target-based strategy involves in silico or virtual 
high-throughput screening of drugs from various drug 
libraries or substances databases such as ligand-based 
screening or molecular docking proceeded by in vitro 
and in  vivo high throughput or high content screen-
ing of drugs against a specific protein or biomarker 
of interest [27]. For instance, a new pharmaceutical 
molecule N-myristoyl transferase was discovered by 
this target-based approach for the treatment of filarial 
nematodes [46].

Knowledge‑based
In this drug repurposing approach, models are developed 
that incorporate drug-related information, such as drug 
targets, chemical structures, route information, adverse 
effects, etc. These models are then used to anticipate 
unknown targets, biomarkers, or disease mechanisms 
[35].

Pathway or network‑based
Pathway-based drug repurposing approach uses informa-
tion about metabolic pathways, signaling pathways, and 
protein interaction networks to anticipate the similarity 
or relationship between a certain drug and a disease [35]. 
Network or pathway-based drug repurposing uses omics 
data to understand how drugs interact and communicate 
with disease targets. As a result, a specialized network 
with a few targets can be found in a vast network of path-
ways. Network-based strategies for drug repurposing are 
more and more in the focus of interest. Network-based 
computational biology focused on biomolecular interac-
tions and omics data integration seem to be very prom-
ising. New drug repurposing research has discovered 
previously unknown signaling pathways in breast car-
cinoma subtypes [47, 48]. Kotelnikova et al. described a 
novel computational algorithm for the treatment plan-
ning of glioblastoma. The study analyzed gene expression 
data using a proprietary algorithm designed for pathway 
studio called sub-network enrichment analysis (SNEA). 
This method led to the discovery and FDA approval of 
fulvestrant (Faslodex1), a drug used to treat hormone 
receptor-positive metastatic breast carcinoma [49]. A 
study by Yu et  al. suggested an approach for predicting 
potential drug–disease interactions that may be used 
for drugs or diseases that have or do not have associated 
genes. The adverse effects of drugs and disease symptoms 

Fig. 1  Comparison of drug repurposing with traditional drug discovery



Page 5 of 35Mohi‑ud‑din et al. European Journal of Medical Research          (2023) 28:345 	

were associated with identify drug–module and disease–
module pairs using this strategy [50].

Repurposing of non‑oncology drugs to treat cancer
Repurposing non-oncology drugs to use against cancer 
cells is an alternative approach to provide better mitiga-
tion possibilities for people with cancer at a lower cost 
and more quickly. Many methods were used to explore 
the probable anticancer function of non-cancerous drugs. 
For drug repurposing of non-oncology medications many 
in vivo and in vitro trials on pharmacological models and 
cancer cell lines were performed. Numerous wide-rang-
ing electronic databases, such as the National Institute 
of Health (NIH) and Molecular Libraries Initiative [51], 
in which the chemical substances, biological evalua-
tion assays, and genetic relevance of the active chemical 
substances were used to analyze them as a tool for utili-
zation of drugs repositioning [52]. Repurposing of non-
oncology drugs works through many mechanisms, such 
as cancer monotherapy, inhibiting proliferative signaling, 
inducing cell death, regulation of cellular metabolism, 
activation of antitumor immunity, drug combinatorial 
therapy, reactivating growth suppressors, interfering with 
replication, decreasing angiogenesis, suppression of inva-
sion, and metastasis [32].

Anthelmintic drugs
Anthelmintic are a class of drugs that are used to treat 
unicellular protozoa as well as parasite worms in the 
intestine [53]. Anti-parasitic drugs such as mebendazole, 
flubendazole, albendazole, ivermectin, and chloroquine 
are commonly used antiparasitic drugs. Initially, these 
drugs were used to treat cattle parasites and then sub-
sequently they were recommended for helminthiasis in 
humans as well. Many studies showed that some anthel-
mintic drugs have beneficial effects as anticancer agents 
on pathways, such as activator transcription proteins, 
signal transducer, and nuclear factor-kappa B (NF-kB) 
and Wnt/β-catenin (Table  1 and Fig.  2) [53]. Therefore, 
these anthelmintic drugs might be potential candidates 
as anticancer drugs.

Flubendazole
Flubendazole is a well-known benzimidazole which is an 
antihelmintic drug that has also antineoplastic effects in 
different types of malignant diseases, including breast 
cancer, leukemia, multiple myeloma, and neuroblas-
toma [54, 55]. Flubendazole initiates significant changes 
in microtubule targeting sites, induction of apoptosis, 
induction of reactive oxygen species followed by G2/M 
phase accretion, and caspases 3, and 7 initiations in 
malignant cells. Flubendazole acts via different mecha-
nisms such as inhibiting tumor growth, angiogenesis, 

etc. in pulmonary, liver, and breast cancer [56]. It inhibits 
trastuzumab resistance by targeting cancer cells, induc-
tion of apoptosis, and overexpression of human epider-
mal growth factor receptor 2 (HER2) in breast cancer 
[57]. This drug has cytotoxic activities in human colo-
rectal cancer by blocking transcription proteins 3, signal 
transducer, and autophagy pathway [58]. It also blocks 
human melanoma cells’ growth and metastasis and sup-
presses programmed cell death protein-1 and myeloid-
derived suppressor cell accumulation [59].

Mebendazole
Mebendazole (MZ) is a drug that is frequently pre-
scribed to manage gut parasitic  infections. It inhibits 
tubulin polymerization which has an antiparasitic effect 
[60]. Mebendazole is a synthetic benzimidazole antihel-
mintic and a repositioned drug that has already proven 
its pharmacokinetics and toxicity profile [61]. MZ could 
be used  in combination with temozolomide, which is a 
drug commonly prescribed in the treatment of malignant 
gliomas. In both xenograft and syngenic forms of glioma, 
this combination therapy suppressed tumor development 
more than temozolomide alone [62]. It also has synergis-
tic effects with docetaxel inhibiting the polymerization 
of tubulin, mitotic arrest in the G2/M phase, augmenting 
apoptosis, reducing cell multiplication of prostate can-
cer, and suppressing tumor growth [63]. It stops mitotic 
growth in the G2/M phase, double-stranded breaks, 
and apoptosis in breast cancer which was shown using 
in  vivo and in  vitro biological assays [64]. Mebendazole 
activates the caspase-3 pathway and induces apoptosis. 
It also inhibits tumor development and stops pulmo-
nary metastases in the later stages of thyroid cancer [65]. 
Mebendazole has also cytotoxic activity specific for colon 
cancer, ovarian cancer, endocrine malignancy, and brain 
tumors [62, 66, 67]. In cholangiocarcinoma, mebendazole 
induces apoptosis by inhibiting cell multiplication via 
increasing the expression of caspase-3 [68]. Other stud-
ies have found that MZ causes growth suppression in cell 
lines from many other different types of cancer ex-vivo 
and in vivo, especially pulmonary cancer [69], colorectal 
cancer [70], melanoma [71, 72], glioblastoma [62], and 
medulloblastoma [73]. The effects of MZ in melanoma 
are achieved by inducing apoptotic cell death, especially 
by activation  of caspases, the pro-apoptotic Bcl-2, and 
suppression of the repressor of the apoptotic pathway, 
X-linked blocker of apoptosis (XIAP) [71, 72].

MZ has significant binding interaction potential in 
colon cancer cells, suggesting that it might be an antago-
nist of different kinases and oncogenes, such as ABL and 
BRAF [70], as well as a Hedgehog modulator in medul-
loblastoma [74]. MZ therapy in rodents caused a reduc-
tion in the size of tumors and decreased angiogenesis in 
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Table 1  Drug repurposing for cancer therapy

Class of drug Name of drug Chemical structure of drug Type of cancer cells tested Mechanism/results Refs.

Anthelmintic 
Antiprotozoal

Flubendazole

N NH

O

HN O

O

F
breast cancer, leukemia,
multiple myeloma, neuro‑
blastoma colorectal cancer 
melanoma cells

↑Microtubule damage
↑ROS,
↑Cell cycle arrest in G2/M 
phase
↑Caspases 3, 7
↑Apoptosis
↑Cytotoxicity
↓Cancer cells growth
↓Metastasis
↓Resistance to anticancer 
drug trastuzumab

[57–59]

Mebendazole

N NH

O

HN O

OCH3

breast cancer, prostate cancer
colon cancer
ovarian cancer
thyroid cancer

Synergistic effects 
with docetaxel
↓Polymerization of tubu‑
lin
↑ Cell cycle arrest in G2/M 
phase
↑Caspase-3
↑Apoptosis
↑Cytotoxicity
↓ Cancer cells multiplica‑
tion
↓ Tumor growth
↓Metastases

[63, 65, 68, 
144]

Niclosamide

HN

OHO

Cl

Cl

NO2

colorectal, breast, prostate 
and ovarian cancer

↑Cytotoxicity
↓Anaerobic metabolism, 
↓glucose uptake in can‑
cer cells
↓Signaling pathways 
associated with metas‑
tasis,
↓NF-κB,
↓Wnt/β-catenin, ↓STAT3

[145, 146]



Page 7 of 35Mohi‑ud‑din et al. European Journal of Medical Research          (2023) 28:345 	

Table 1  (continued)

Class of drug Name of drug Chemical structure of drug Type of cancer cells tested Mechanism/results Refs.

Praziquantel

N

N

O

O

colorectal
adenocarcinoma,
gastrointestinal cancers

↓XIAP
↓Anti-apoptotic proteins
↓Caspases
↑Apoptosis
Synergic effects 
with paclitaxel

[53]

Eprinomectin

O

HN

O

O

O

O

O

O

O

O

H

O

O

O
OHH

HO

prostate cancer ↑Apoptosis
↑Caspases 3, 9
↓ROS
↑Mitotic cell arrest in G1 
phase
↑Translocation 
of β-catenin

[87]

Ivermectin

O

O OH

O

O

O

O

O

O

O

O

O
OHH

HO

H

H

colon, prostate, breast 
and gastric cancer

↓Cancer cells growth
↓AKT–mTOR
↓Wnt/β-catenin
↓PAK1
↓cyclin D
↓β-catenin
↓AKT/ERK//NF-kB
↓YAP1
↓CTGF
↓EGFR

[90, 147]
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Table 1  (continued)

Class of drug Name of drug Chemical structure of drug Type of cancer cells tested Mechanism/results Refs.

Nitazoxanide

N
S

O2N

HN

O

O

O

epithelial cancer cells ↑Apoptosis
↓c-MYC
↓mTOR
↑DNA fragmentation 
and damage

[148]

Clioquinol

N

Cl

I

OH

leukemic and myeloma 
malignant cells

↑Apoptosis
↓HDACs
↑Cell cycle arrest
↓p53, ↓p21

[95]

Chloroquine

N NH

CH3

N

CH3

CH3

Cl
pancreatic, liver cancer, 
cancer stem cells
breast cancer

↑Autophagy,
↓Janus kinase 2
↓DNA methylase 1
Synergistic effect 
in the combination 
with paclitaxel
↓Growth of cancer,
↓Signaling cascade 
of CXCL12/CXCR4

[149]
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Class of drug Name of drug Chemical structure of drug Type of cancer cells tested Mechanism/results Refs.

Antiviral Ritonavir

N

S

O

NH

OOH

NH

O

NH

N

O

N

S

breast, pancreatic, ovarian 
and lymphocytic leukemia

↓Akt phosphorylation
↑Apoptosis
↓Progression of cancer 
cells

[150]

Nelfinavir

N

H

O

NH
H

OH

HN O

OH

S

ovarian, breast, lung cancer 
and liposarcoma

↑Apoptosis
↓Phosphorylation of Akt
↓STAT-3
↓Erk 1/2

[151]

Table 1  (continued)
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comparison with normal animals. Furthermore, the inci-
dence of metastasis in the therapy group was lower [67].

According to several case studies, MZ can also have 
antitumor effects in a clinical environment when given to 
patients with cancer [75, 76]. Mukhopadhyay et al. pub-
lished one of the first studies on the antitumor effects of 
MZ [67]. It slowed down the growth of lung carcinoma 
cells but did not affect normal endothelium cells or fibro-
blasts. After the first- and second-line therapy in refrac-
tory tumors, MZ was given to patients with metastatic 

Table 1  (continued)

Class of drug Name of drug Chemical structure of drug Type of cancer cells tested Mechanism/results Refs.

Acyclovir

NH

NN

O

H2N

O

OH
breast cancer ↓Cell proliferation

↑Apoptosis
↑Caspase-3
↓ALDH
↑Proteins expression 
of E-cadherin,
↓Proliferation rate,
↓Tumor growth

[125]

Ribavirin

N

N
N

O

NH2

O

OHHO

HO

human lymphocytes 
and human squamous cell 
carcinoma

↓Cyclin D1
↓Proteins cells,
↓elF4E and competing 
for guanylyl transferase
↓Translation of VEGF
↓mRNA, inhibit 5’-mRNA

[152]

Cidofovir

N

N

NH2

O

OH

O P
OH

OH

O

glioblastoma and epithelial 
cells cancer

↑Apoptosis
↑PARP
↑Caspases
↑Cell cycle arrest 
in S-phase ↓DNA syn‑
thesis

[153]

Symbols: ↑increase, ↓decrease

Abbreviations: Akt protein kinase B, ERK extracellular signal-regulated kinase, NF-Kb Nuclear factor kappa B, mTor mammalian target of rapamycin, ALDH aldehyde 
dehydrogenase, MMP-9 MATZRIX metalloproteinase-9, Atg7 Autophagy-related E1 ligase 7, Bax Bcl-2-associated X protein, Bcl2 B-cell leukemia/lymphoma 2 protein, 
Bcl-XL B-cell lymphoma-extralarge, CAFs cancer-associated fibroblasts, CDC–CDK cyclin-dependent kinase 1, CK2 protein kinase CK2(casein kinase 2), c-MYC cellular 
myelocytomatosis oncogene, CTGF connective tissue growth factor, CXCL12/CXCR4 stromal cell-derived factor-1 (CXCL12) and chemokine (C–X–C motif ) receptor 4 
(CXCR4) cyclin D, DAPK death-associated protein kinase, DNA deoxyribonucleic acid, DR4/5 death receptor 4, EGFR epidermal growth factor receptor, elF4E eukaryotic 
translation initiation factor 4E

colorectal carcinoma. The patients had no adverse effects 
other than an increase in hepatic enzymes, and after that, 
the dose of the drug was reduced, and therapy efficiently 
eliminated practically all pulmonary and lymphovascular 
metastases, and partial recovery of hepatic metastases 
occurred as well [75]. MZ was prescribed to patients with 
adrenocortical cancer after the failure of different chemo-
therapeutics. During approximately one and a half years, 
there were no adverse effects, the size of the metastases 
decreased, and the illness was stable [76].
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Niclosamide
Niclosamide is a drug of choice [77] and got approval 
from FDA as an anthelminthic drug. It has also been 
reported in a series of studies to have cytotoxic effects 
on ovarian cancer, breast cancer and prostate cancer cells 
[32, 78]. It targets cancer cells by interfering with the 
anaerobic metabolism and glucose uptake of these cells 
[79]. It also has an anticancer effect on multiple signaling 
pathways, such as metastasis, and signal activation, and 
as a transducer of transcription proteins Wntβ/-catenin 
and NF-KB [80, 81]. Some studies showed that it signifi-
cantly suppressed the development of cancer of breast, 
liver, and colorectal cancer. Its anti-metastasis effect 
seems to prevent liver metastasis of colorectal cancer 
cells. It also has a beneficial effect on pulmonary metasta-
ses of breast cancer [82, 83]. However, less bioavailability 
and the poor solubility of the drug is the biggest obstacle 
to its clinical development [84]. The intravenous route 

Fig. 2  Illustrative diagram with the relevant mechanisms of repurposing anthelmintic drugs in cancer therapy. Symbols: ↑increase, ↓decrease. Bcl-2 
B-cell lymphoma 2, ROS reactive oxygen species, Wnt Wingless-related integration site, XIAP X-linked inhibitor of apoptosis protein

might help to use the development of this drug as a repo-
sitioned drug [85, 86].

Praziquantel
Praziquantel is a broad-spectrum antiparasitic drug, and 
its mechanism of action is still unclear. Nevertheless, it 
can intensify the concentration of intracellular Ca2+ and 
it also causes contractions of muscles [53]. It has been 
shown that this drug also increases the cytotoxic action 
of paclitaxel at 20–40  µM. The combination of both 
drugs, i.e., praziquantel and paclitaxel, acts synergistically 
reducing the expression of anti-apoptotic protein and 
X-linked inhibitor of apoptosis protein (XIAP) [53].

Eprinomectin
Eprinomectin has a broad spectrum of effects against 
different parasitic infections. It showed also a cyto-
toxic potential against prostate cancer cells. It induces 
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apoptosis in PC-3 cells by affecting reactive oxygen spe-
cies (ROS). Eprinomectin also causes the stop of mitotic 
cells at the G1 phase. Moreover, this drug stimulates the 
translocation of β-catenin and has a significant apoptotic 
effect and activates caspase-3 and caspase-9. The above-
mentioned findings might explain why eprinomectin 
could have cytotoxic effects against advanced prostate 
cancer [87].

Ivermectin
Ivermectin is an FDA-approved macrocyclic lactone. It 
has antitumor effect in smaller doses against the Wnt-
TCF, and β-catenin, and suppresses the expression of 
cyclin D in cancer of the colon [88]. Another approach 
documented the therapeutic effect of this drug in can-
cer xenografts and melanoma [89]. Reports on neurofi-
bromatosis tumor cells and ovarian cancer cells suggested 
that this drug might suppress the growth of protein-acti-
vated kinases (PAK-1) and thus have a beneficial effect on 
prostate, breast, and gastric cancers [90]. This drug tends 
to reduce the growth of a tumor enhancing mitochon-
drial biogenesis compared to normal cells [91]. Similarly, 
in another research, it has been shown that this drug 
also inhibits PAK1 via AKT–mTOR in breast cancer. It 
reduces yes-associated protein (YAP1) expression and 
targets connective tissue growth factor (CTGF) in gastric 
cancer. It also suppresses resistance by dropping p-glyco-
protein due to inhibition of ERK/AKT/NF-kB and epi-
dermal growth factor receptor (EGFR) [92]. This drug is a 
self-renewal marker of cancer stem cells (CSCs) in breast 
cancer. Therefore, this drug could be a future therapeutic 
molecule for cancer management [93].

Nitazoxanide
Nitazoxanide is a thiazole-based molecule and it has been 
reported that it might have antitumor effects due to dif-
ferent mechanisms, such as inhibition of cellular myelo-
cytomatosis (c-MYC), induction of apoptosis, and DNA 
fragmentation. It also causes autophagy against epithelial 
tumor cells via mechanistic targeting rapamycin (mTOR) 
inhibition besides its antihelmintic effects. Similarly, this 
drug can induce apoptosis by DNA fragmentation con-
densation of the nucleus along with its anti-parasitic 
effects [53, 94].

Clioquinol
Clioquinol also seems to have anticancer effects besides 
its antiparasitic effects. It causes downregulation expres-
sion in histone deacetylase (HDACs) in leukemic and 
malignant myeloma cells. This drug causes apoptosis via 
mitotic arrest and downregulation of HDAC, resulting in 
the expression of p53 and p21 [95].

Pyrimethamine
Pyrimethamine is an antiparasitic drug which inhibits 
tumor growth and metastasis in pulmonary carcinoma 
by attacking the dihydrofolate reductase (DHFR) and 
thymidine phosphorylase (TP) [96, 97]. Pyrimethamine, 
which is a STAT3 antagonist, has chemotherapeutic and 
immune-stimulatory effects in breast cancer models in 
mice. Pyrimethamine suppresses STAT3 action in meta-
static breast cancer cell lines ex-vivo by reducing tumor 
growth and invasion and by increasing Lamp1 produc-
tion in tumour-infiltrating CD8+T lymphocytes [98]. 
Pyrimethamine also inhibits the growth of ovarian can-
cer cells both ex-vivo and in-vivo [99].

The most representative mechanisms of anthelmintic 
drug repurposing in cancer therapy are summarized in 
Fig. 2.

Antiviral drugs
The combinations of antiviral drugs and conventional 
chemotherapeutic agents are used to treat different types 
of malignant diseases such as lymphoma, nasopharyn-
geal carcinoma, hepatocellular carcinoma, and Kaposi 
sarcoma using protease inhibitors directed towards the 
human immune-deficiency virus. Studies on the viruses 
accompanying cancers can be a useful platform for the 
development of novel therapeutic approaches not only 
for treating viral infections but also consequently influ-
encing tumorigeneses [100].

Ritonavir
Ritonavir is a thiazole-based anti-viral drug widely used 
for the treatment of different viral diseases such as HIV 
(human immunodeficiency virus) and to increase the 
effectiveness of protease inhibitors. Several studies have 
shown antitumor effects of ritonavir. It seems that it can 
cause apoptosis and inhibit the progression of malignant 
cells in breast, pancreatic and ovarian carcinoma [101–
103]. The drug also strengthens the effects of several 
substances such as temozolomide towards glioma cancer 
cells [104]. It seems that it could also be used in combi-
nation with bortezomib for the treatment of renal cancer 
[105]. Ritonavir also has anticancer effects against breast 
cancer by inhibiting Akt phosphorylation and seems to 
be effective also in lymphocytic leukemia [106].

Nelfinavir
Nelfinavir is a protease inhibitor and is widely used in 
managing HIV-1 and HIV-2. This drug can decrease 
phosphorylation of Akt, signal transducer and activator 
of transcription 3 (STAT-3), and xenografts tumors [107] 
Several studies reported the beneficial effects of this drug 
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against different types of cancers such as ovarian, breast, 
lungs, and liposarcoma by inhibiting the signals of Erk 
1/2, STAT-3, and Akt [108–113]. It has been reported 
that nelfinavir induces endoplasmic reticulum (ER) stress 
and also increases the effect of other drugs used for the 
management of prostate and breast cancers [114, 115]. 
Numerous studies showed that it inhibits autophagy 
and cyclooxygenase (COX-2) inhibitors in breast can-
cers [116]. The mixture of COX-2 and nelfinavir inhibit 
autophagy and could increase cytotoxic effects directed 
against cancer of the breast [116]. It also induces pro-
apoptotic effects by activating caspase-4 [117, 118]. Some 
studies found that this drug induces apoptosis mediated 
by ROS [119, 120]. Other studies also reported antipro-
liferative effects and limited toxicity against liposarcoma 
and cystic carcinomas [120, 121].

Acyclovir
Acyclovir was discovered about four decades ago and has 
become a drug of choice against viral infections, such 
as Herpes Simplex [122]. A plethora of evidence sug-
gests that this drug is effective in the treatment of differ-
ent types of cancers [123, 124]. This drug suppresses cell 
proliferation and induces apoptosis in malignant tumors 
of of the breast. Another study reported antiprolifera-
tive effects of acyclovir in Michigan Cancer Foundation 
(MCF-7) cell lines by increasing the proteins expres-
sion of E-cadherin, reducing the proliferation rate, and 
increasing apoptosis caspase-3 and wound healing in 
MCF-7 malignant cells. The results suggested that this 
drug could be used alone or in combination therapy as 
a potential candidate for breast cancer treatment. The 
results of the calorimetric assay indicated the down-
regulation of aldehyde dehydrogenase (ALDH) activity 
towards breast cancer cell lines [125].

Ribavirin
Ribavirin is a member of the antiviral drugs class and it 
seems that it has beneficial effects in different viral dis-
eases, such as polio, hepatitis-C and SARS–coronavirus 
infection [126–128]. It is a guanosine ribonucleoside-
based drug. Since it is similar to guanosine it tends to 
compete for guanylyl transferase and inhibit 5’-mRNA. 
This drug at micromolecular concentrations binds with 
eukaryotic translation initiation factor (elF4E) on a pur-
poseful site using a 7-methyl guanosine mRNA cap. This 
drug suppresses elF4E facilitated oncogenes transfor-
mation using 7-methyl guanosine. In another approach, 
it has been found that it can inhibit elF4E competitive 
binding to cyclin D1 and thus reduce cyclin D1 protein 
cells [124]. This drug also causes the translation of VEGF 
mRNA and other genes [129, 130]. Ribavirin at 2  µm 

concentration suppresses the progression of human lym-
phocytes [131].

Cidofovir
Cidofovir is a FDA accepted nucleoside broad-spectrum 
antiviral drug which is used to treat different viral infec-
tions by inhibiting the viral DNA polymerase through its 
metabolite diphosphate [132–134]. Because of this mech-
anism, the drug can decrease the growth of several types 
of human cancers [135–139]. This drug also induces 
apoptosis mitotic arrest in S-phase and causes activation 
of Poly (ADP-ribose) polymerase (PARP) and caspase in 
epithelial cells [140–142]. It also inhibits DNA synthesis 
and blocks the growth of cancer cells. It has also been 
reported that this drug has cytotoxic effects on human 
glioblastoma cell lines. This drug shows antiproliferative 
effects both in xenograft models and in  vitro studies. It 
inhibits the gene expression associated with apoptosis in 
glioblastoma. This drug has antitumor effects because of 
its different mechanisms, including effects on mitogenic 
pathways and activation of proapoptotic pathways in 
glioblastoma [143].

Antibiotics
Sulfisoxazole
Sulfisoxazole is an antibiotic that may inhibit small extra-
cellular vesicular exudation from cancerous mammary 
cells by interfering with endothelin receptor A. In ani-
mal studies of breast cancer xenografts, sulfisoxazole had 
antitumor and antimetastatic effects (Table 2) [154].

Azithromycin
Azithromycin is a macrolide antibacterial drug. The pro-
liferative potential of cancer cells has been inhibited by 
this drug. In colon carcinoma cells, ex-vivo and in-vivo, 
it  increases the antineoplastic effectiveness of TNF-α-
related apoptosis-inducing ligand (TRAIL) by suppress-
ing autophagy and increasing DR4/5 [155]. Azithromycin 
also reduces angiogenesis in pulmonary carcinoma by 
inhibiting vascular endothelial growth factor receptor 
2-induced focal adhesion and the PI3K/AKT signalling 
cascade [156].

Doxycycline
Doxycycline is a tetracycline  antibiotic that is used 
for treating different infections. Some tetracyclines 
were reported to suppress angiogenesis in the early 1990s 
[157], and doxycycline was eventually found to have anti-
proliferative activity in bone and prostate carcinoma and 
mesothelioma cells [158–160]. It  has also been shown 
to induce apoptosis in pancreatic islets [161, 162] and 
myeloid cells [163]. Matrix metalloproteinases (MMPs) 
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are inhibited by tetracyclines [164]. Doxycycline ther-
apy inhibits penetration by downregulating MMP-2 and 
MMP-9 levels in myeloid cells [165] and colon carcinoma 
[166]. Doxycycline has been investigated as a suppressor 
of tumour progression, because MMPs are assumed to 
play a crucial role in cancer infiltration and progression. 
Doxycycline has been shown to reduce different tumours 
and it seems to be beneficial for breast cancer patients at 
risk for osteolytic bone metastasis. [167]. The same inves-
tigators also demonstrated that zoledronic acid, a medi-
cine used to decrease the incidence of bone fractures in 
patients with osteosarcoma or osteoporosis, might be 
useful in combination with doxycycline [168]. MMP-2/9 
suppression has also been shown to reduce metastasis in 
preclinical trials of prostate cancer [169] and squamous 
skin carcinoma [170]. Doxycycline can reduce EMT-
marker transcription in pulmonary and hepatic carci-
noma cells, reversing their pro-metastatic character [171, 
172]. Doxycycline therapy reduced clonogenic potential 
and decreased the expression level of stem cell markers in 
hepatic carcinoma cells enriched with stem-related char-
acteristics. Doxycycline decreased proliferation markers 
Ki67 and PCNA in the in  vivo xenograft mouse model. 
[173]. Doxycycline was combined with interferon-alpha 
(IF-α) treatment in a phase II clinical study of renal can-
cer metastases. VEGF levels were measured to see if 
there was an antiangiogenic effect. The combined therapy 
proved to be ineffective in patients with renal carcinoma 
metastases, despite modest early reduction of VEGF 
expression in some patients [174]. The efficacy of doxycy-
cline therapy in combination with bone-targeting medi-
cines was evaluated in a recent phase II study in females 
with breast carcinoma metastases. In this trial, doxy-
cycline was shown to have a negligible effect but it was 
associated with severe harmful effects [175].

Ionophore antibiotics
Ionophore antibiotics have shown antitumor effects 
against cancers of the colon, and prostate, as well as 
endometrial, blood, cerebral, and bone malignancies. 
Ionophore antibiotics salinomycin and nigericin specifi-
cally attack CSCs and it seem that they are slightly more 
effective than paclitaxel. Cell migration, metastases, 
and the GTPase K-Ras cascade are all targeted by these 
drugs. Salinomycin inhibited the hedgehog and WNT/-β 
catenin pathways, resulting in decreased tumour size of 
metastatic breast cancer [176]. In lymphomas, salino-
mycin combined with doxorubicin was reported to have 
a synergistic effect [176]. Rapamycin, an antimicro-
bial drug, has an antiproliferative effect by blocking cell 
cycle progression due to its effect on CDK proteins and 
mTOR signalling. In vivo investigations have shown that 
it can also prevent cancer and malignancies caused by the 

Epstein–Barr virus [177]. Rapamycin has chemothera-
peutic potential in different types of human cancers, and 
it was found to synergize with erlotinib in NSCLC and 
paediatric glioma [177, 178].

Anthracycline drugs
Anthracycline drugs have also been intensively stud-
ied as antimalignant drugs. Doxorubicin, idarubicin, 
mitoxantrone, daunorubicin and epirubicin are often 
used anthracycline medicines that have been extensively 
investigated in solid and blood malignancies [179–181]. 
Garg et  al. found that doxorubicin and selinexor pro-
moted the death of thyroid cancer and AML cells when 
used together [180, 181]. Duocarmycin is an antibiotic 
that works at low doses. It attaches to the DNA molecule 
causing DNA to be alkylated, which causes the cell cycle 
arrest. It is one of the most successful medications used 
to treat endometrial, breast, bladder, hepatic, thyroid, and 
pulmonary malignancies [182]. Wang et al. analyzed 124 
patients from January 1996 to July 2018 to analyze the 
effects of chemotherapeutic treatment with gemcitabine 
and anthracycline (epirubicin and pirarubicin). They ana-
lyzed the probability of tumour’s recurrence and therapy 
failures. Gemcitabine had a lower recurrence percentage 
and therapy failure rates than anthracycline antimicrobi-
als, suggesting that this approach should be explored for 
patients who cannot be treated with BCG [183]. Land-
omycin E is an angucycline antibiotic produced by Strep-
tomyces globisporus which caused cell death in T-cell 
leukaemia cells by rapidly generating hydrogen peroxide 
and activating caspases [184]. NAC, in combination with 
doxorubicin, demonstrated decreased adverse effects 
on nephrons, somewhat enhanced cytotoxic effects of 
T-cells, and it slightly enhanced their survivability. NAC, 
in combination with landomycin, on the other hand, sig-
nificantly enhanced the lifespan of the rodents while also 
having some tissue-protective effects. As a result, NAC 
in combination with landomycin appears to be more 
effective than doxorubicin. Landomycin seems to be 
more powerful than doxorubicin at low concentrations 
in ex-vivo and in-vivo melanoma with fewer adverse 
effects. However, adverse effects such as cardiovascular 
events and mucositis suggested the need for other anti-
bacterial drugs. Idarubicin, a doxorubicin analogue, was 
created. In acute myelogenous leukaemia, idarubicin 
showed increased lipophilicity and anti-malignant effi-
cacy. In acute myeloid leukaemia clarubicin, an anthra-
cycline antibiotic derived from Streptomyces galilaeus, 
suppresses RNA production. Amrubicin has chemo-
therapeutic efficacy against SCLC, lymphoma cells and 
bladder carcinoma and got marketing authorization in 
Japan. Zorubicin which is a benzoylhydrazone deriva-
tive of the well-known anthracycline antineoplastic 
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Table 2  Antibiotics, antifungals, antimalarial, anti-inflammatory as potential drug candidate against cancer

Class of Drug Name of drug Structure Type of cancer to be 
used

Mechanism Refs.

Antibiotics Sulfisoxazole Breast cancer Interfering with endothelin 
receptor A to stop breast 
cancer cells from exuding tiny 
extracellular vesicles

[154]

Azithromycin Colon cancer ↑TNF-α-related apoptosis
↑TRAIL
↑DR4/5
↓Autophagy

[155]

Doxycycline Osteosarcoma, 
prostate carcinoma, 
myeloid and colon 
cancer

In myeloid and colon cancer, it 
prevents permeation by lower‑
ing MMP-2 and MMP-9

[166]
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Table 2  (continued)

Class of Drug Name of drug Structure Type of cancer to be 
used

Mechanism Refs.

Anthracycline Endometrial, breast, 
bladder, hepatic, thy‑
roid, and pulmonary 
malignancies

Attaches to DNA, causing it 
to get alkylated, which stops 
the cell cycle

[182]

Antifungals Itraconazole Non-small cell lung 
cancer

By eliminating lipids 
from the plasma membrane, it 
decreases AKT1 activity, which 
inhibits its downstream target 
mTOR, resulting in mortality 
and growth slowering

[188]

Rapamycin Breast cancer It promotes intracellular 
autophagy and boosts 
the function of Atg7 and DAPK 
via transcriptional activation

[196]
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Table 2  (continued)

Class of Drug Name of drug Structure Type of cancer to be 
used

Mechanism Refs.

Griseofulvin Colorectal and cervical 
cancers

Affects microtubule assembly 
in MCF-7 cells, causing pro‑
grammed cell death
↑Cell cycle arrest

[199–201]

Clotrimazole Breast, colon and pul‑
monary cancer

Blockes actin polymerization 
and activates glycolytic inflow

[203]

Ciclopirox Breast, colorectal 
cancer rhabdomyo‑
sarcoma

↓CDC–CDK,
↓Bcl-XL
↑Caspase-dependent cascade 
causing apoptotic cell death

[208, 209]

Nannocystin A Colorectal and breast 
cancer cells

Target eukaryotic elongation 
factor 1 in proteome investiga‑
tions

[213, 214]

NSAIDS drugs Aspirin Hepatocellular carci‑
noma

Affects P4HA2 by suppressing 
NF-κB and LMCD1-AS1/let-7g 
of Aspirin prevents tumour 
growth and accumulation 
of collagen

[313, 314]
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Table 2  (continued)

Class of Drug Name of drug Structure Type of cancer to be 
used

Mechanism Refs.

Ibuprofen Adenocarcinoma Modulates the expression levels 
of cancer-related genes Akt, 
P53, PCNA, Bax, and Bcl2

[228]

Naproxen bladder carcinoma ↑Cell arrest
↑Cancer cells death
↑PI3K

[233]

Diclofenac Ovarian cancer ↑Apoptotic cell death
↓SOD2
↓Proportion of free radicals

[243, 244]

Celecoxib Bladder cancer Blocks epithelial-to-mesenchy‑
mal transformation
↓miRNA-145/TGFBR2/Smad3 
axis

[250]

Indomethacin Colon cancer ↓Cancer cell proliferation
↓PKC-p38-DRP1
↓Wnt/-βcatenin signalling, 
to effectively target MAPK 
mechanisms

[259, 263]
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Table 2  (continued)

Class of Drug Name of drug Structure Type of cancer to be 
used

Mechanism Refs.

Thiocolchicoside Leukaemia, lym‑
phoma, and squa‑
mous cell carcinoma

Blocks the receptor stimulator 
NF-kB ligand
↓NF-kB signalling cascade
↓Cancer-induced bone metas‑
tasis

[308, 309]

Artemisinin Breast cancer Deactivates cancer-related 
fibroblasts and decreases CAFs 
mediating growth and metas‑
tases by suppressing TGF-β 
signalling

[315]

Artesunate Hepatocellular carci‑
noma

↑Pro-apoptotic proteins
↑caspases
↓MYC oncogene
↓Anti-apoptotic proteins

[272, 273]

Dihydroartemisinin Ovarian cancer ↓Cancer cell development
↓Metastases by addressing 
the platelet-derived growth fac‑
tor receptor-alpha (PDGFR)

[316]
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Table 2  (continued)

Class of Drug Name of drug Structure Type of cancer to be 
used

Mechanism Refs.

Mebendazole Melanoma ↑Apoptotic cell death
↑Caspases
↑Bcl-2
↓Repressor of apoptosis 
X-linked blocker of apoptosis 
(XIAP)

[71, 72]

Chloroquine Metastatic tumors Par-4-dependent suppression, 
mediates p53- and Rab8b-
based Par-4 production to pro‑
mote tumour cell death

[279]

Pyrimethamine Non-small cell lung 
cancer

↓EMT
↓Invasion
↓Cancer cells growth, ↓Metasta‑
ses by interacting with dihydro‑
folate reductase and thymidine 
phosphorylase

[96, 97]

Quinacrine Renal cancer Facilitates chromatin transcrip‑
tion (FACT) protein complex, 
which seems to be trapped 
on chromatin and induces 
CK2-induced phosphorylation 
of p53, responsible for quina‑
crine-mediated p53 transcrip‑
tion

[299, 300]

Symbols: symbols: ↑increase, ↓decrease

EMT epithelial-to-mesenchymal transition, Erk ½ extracellular signal-regulated kinase 1/2, HDACs histone deacetylase inhibitors, M Phase mitosis, m RNA messenger 
ribonucleic acid, MAPK mitogen-activated protein kinase, MCF-7 michigan cancer foundation-7, miRNA microRNAs, MMP-2 matrix metalloproteinases-2, MYC master 
regulator of cell cycle entry and proliferative metabolism, NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells, P4HA2 collagen prolyl-4-hydroxylase 
α subunit 2, PARP poly ADP ribose polymerase, PCNA proliferating cell nuclear antigen, PDGFR platelet-derived growth factors, PI3K phosphoinositide 3-kinases, ROS 
reactive oxygen species, SOD2 superoxide dismutase 2, STAT-3 signal transducer and activator of transcription 3, TGFBR2 transforming growth factor-beta, TRAIL TNF-
related apoptosis-inducing ligand, VEGF vascular endothelial growth factor, XIAP X-linked inhibitor of apoptosis protein, YAP1 yes-associated protein 1
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antibiotic  daunorubicin  is at the moment in the con-
firmatory phase of clinical studies for breast cancer and 
leukaemia.

Antifungals
Itraconazole
Itraconazole is an antifungal drug  that works by inhib-
iting 14-α-lanosterol demethylase (14-LDM), a crucial 
enzyme in cholesterol production. Itraconazole also 
decreases angiogenesis in endothelial cells by reducing 
endothelial growth [185] and suppresses VEGFR-2 levels 
and multiple cellular pathways in endothelial cells [186]. 
Treatment with itraconazole of human vascular endothe-
lial cells (HUVECs) inhibited movement and tube crea-
tion by decreasing the phosphorylation of growth factor 
receptors [187]. Itraconazole therapy of pulmonary carci-
noma xenografts reduced angiogenesis and regression in 
this study. Its antitumor activity may be mediated by dif-
ferent pathways together with its antiangiogenic effects. 
In glioblastoma cells, removing lipids from the plasma 
membrane reduced Akt-1 action, which inhibited its 
downstream target mTOR, causing death and decreased 
tumor growth [188] (Fig.  3). It has been hypothesized 
that itraconazole might be a Hedgehog antagonist. In 
mice treated with itraconazole the proliferation  of two 
hedgehog-based  tumor types, a medulloblastoma and a 
basal cell cancer  of the skin, was reduced in  vivo [189]. 
Research on pleural mesothelioma cells came up with 
similar results [190]. Itraconazole was to a certain extent 
successful in a randomized clinical study with meta-
static castration-resistant prostate carcinoma, with an 
extended PSA progression-free life, and suppression of 
Hedgehog signalling [191]. Itraconazole was also used to 
treat 19 patients with basal cell malignancy in a limited 
phase II study. Hedgehog signalling was decreased which 
was followed by slower tumor growth and tumor regres-
sion. In a minor phase II trial, combining itraconazole 
with conventional anticancer therapy for lung cancers 
improved both progression-free and ultimate survival. 
The authors of this study speculated that this result could 
be attributed to the antiangiogenic effects of itraconazole 
[192]. Nevertheless, there might be some problems with 
itraconazole treatment of malignant diseases. According 
to some studies, antifungal medications may affect the 
effects of other anticancer drugs, particularly antibodies, 
such as rituximab [193].

Rapamycin
Rapamycin, also called “sirolimus,” is a drug that was first 
discovered for its potent antifungal effects [194]. Because 
of its unique immunosuppressive effects, rapamycin 
has been routinely used to prevent rejection after organ 
transplantation. Rapamycin has relatively recently been 

identified as an mTOR inhibitor that may be used to treat 
Kras Pten endocrine ductal adenocarcinoma, resulting in 
inhibition of proliferation and tumor size shrinkage [195]. 
By transcriptional activation of Atg7 and DAPK, rapa-
mycin was also used to activate cellular  autophagy and 
increase the chemotherapeutic effects of dihydro-arte-
misinin in breast tumor cells [196]. Due to the increased 
expression of p73, rapamycin improves the susceptibility 
of ER-positive breast cancer cells to tamoxifen [197].

Griseofulvin
Griseofulvin causes apoptotic  cell death in lymphoma 
and leukemia cells. [198]. It affects microtubule assem-
bly in MCF-7 cells causing apoptotic death and cell cycle 
arrest, and it has a stimulatory effect together with vin-
blastine [199]. The same chemotherapeutic effects have 
been observed in colorectal and cervical cancers [200, 
201]. Centrosome clumping has also been associated with 
the production of micronuclei in prostate carcinoma. 
In pulmonary and prostate cancer, combining radiation 
with griseofulvin therapy  showed synergistic antican-
cer effects. The sulfonyl group substitution analogues of 
griseofulvin have antiproliferative effects on oral cancer 
cells and cytotoxic activity on breast cancer cells [202].

Clotrimazole
Clotrimazole inhibits glioblastoma cell  invasion and 
metastasis. It inhibited actin polymerization and pro-
moted glycolytic inflow in breast, colon, and pulmonary 
cancer cells [203]. Kadavakollu et  al. [204] evaluated 
many potential anti-cancer pathways. In prostate and 
cervical cancers, as well as lymphoid malignancies, ruthe-
nium combined with other drugs, had stronger cytotoxic 
activity than the monotherapy with individual drugs 
[205]. A combination of imatinib and clotrimazole inhib-
ited the glycolysis pathway more effectively and boosted 
NO and VEGF production in breast cancer cells [206].

Ciclopirox
Ciclopirox (CPX), an antifungal drug, induced ageing 
in p53 deficient HeLa cells by a mechanism unrelated 
to mTOR [207]. Due to degrading CDC–CDK, down-
regulating Bcl-xL, and activating the caspase-depend-
ent cascade, it causes apoptotic cell death in breast and 
colorectal cancer, and rhabdomyosarcoma cells [208, 
209]. Prolonged exposure to this drug caused p53-inde-
pendent caspase stimulation and cell death [207]. It has 
also been demonstrated that it suppresses HPV genetic 
mutations. By activating oxygen radicals, caspase-3, and 
lowering Bcl-xL levels, CPX was significantly more effec-
tive than gemcitabine in endocrine carcinoma. Neverthe-
less, when it came to triggering apoptotic pathways, the 
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combination of these drugs was significantly more effica-
cious than each of these medicines alone [210]. Accord-
ing to ex-vivo and in-vivo studies in colorectal cancer, 
CPX causes autophagy through the depletion of DJ-1 
and the formation of oxygen radicals [211]. According 
to Ahmad et al. ethacrynic acid and CPX had an additive 
anticancer effect in hepatocellular carcinoma. However, 
low concentrations of CPX were harmful not just to can-
cer cells but also to healthy cells [212].

Nannocystin A
Nannocystin A showed chemotherapeutic effects on 
colorectal and breast cancer cells. Nannocystin A has 
been shown to target eukaryotic elongation factor 1 in 
proteome studies [213, 214]. These findings support 
the repositioning of an antifungal drug  with anticancer 
potential. In future, additional clinical testing is needed 
to confirm this.

NSAIDS/anti‑inflammatory drugs
Aspirin
Aspirin is a drug that has effects on cyclooxygenase 
(COX) isoenzymes 1 and 2 and is widely used in  the 
treatment  and prevention of myocardial infarction in 
patients with coronary heart disease. COX-1 is impor-
tant for platelet synthesis of thromboxane A2, which 
results in platelet aggregation and adhesion to cells, 
including malignant cells. Platelets covering tumor cells 
prevent the immune system from recognizing these 
cells, favoring the development and spread of cancer. 
COX-2 is important in  the production of prostaglan-
din E2, which significantly stimulates the growth of 
tumor cells [215–217]. Recent pharmacological studies 
have analyzed the potential of aspirin as a therapeu-
tic approach in spontaneous or chemically provoked 
tumors [218–220]. Many clinical trials have found 
that taking aspirin after a diagnosis is associated with 
a better prognosis in patients with colorectal cancer 
[221–224]. However, because most of these studies 
were retrospective and the patient recruitment was not 
homogenous, there is a lot of contradictory informa-
tion. To determine the function of aspirin as a potential 
anticancer therapy, prospective trials are required. Sev-
eral clinical trials  are now in progress, the majority of 
which are looking at the effect of aspirin in preventing 
relaps of the illness.

Ibuprofen
Ibuprofen is a non-selective cyclooxygenase inhibitor. 
It slows down the development of prostate carcinoma 
[225]. It also has a radio-sensitizing effect ex-vivo but at 

larger doses than those that have been documented to 
suppress eicosanoid production, indicating that other 
pathways are included [226, 227]. Anti-angiogenesis, 
initiation of apoptosis, and decrease of cellular prolif-
eration were found to have antitumor effects on gastric 
adenocarcinoma cells ex-vivo, along with modulating the 
expression levels of the cancer-related genes Akt, PCNA, 
Bax, P53, and Bcl2 [228] (Fig. 3). It has been shown that 
TNF-α upregulated metastatic melanoma cell migra-
tion in vitro and that this could be reduced by ibuprofen 
both in solution and delivered from a hydrogel. Although 
this might be attributed to the induction of apoptotic 
cell death, the mechanism of this is still not completely 
explained [229, 230]. Chemosensitivity could also be 
modulated by ibuprofen. Ibuprofen therapy reduced the 
amounts of Hsp70, a heat shock protein associated with 
apoptotic tolerance in lung  carcinoma cells. Following 
ibuprofen therapy, blocking Hsp70 and inducing apopto-
sis improved responsiveness to the anticancer drug, cis-
platin [231].

Naproxen
Naproxen is a propionic-acid analogue that reduces 
cell growth, provokes programmed cell death, and 
restricts metastasis [232]. This drug is a non-selective 
cyclooxygenase inhibitor. Ex-vivo and in-vivo chemo-
therapeutic effects have been documented in breast, 
leukemic, bladder, colorectal, and osteosarcoma cells. 
Naproxen causes the death of bladder carcinoma cells 
ex-vivo by targeting PI3K [233, 234]. A combination of 
cholesterol-lowering drug atorvastatin and naproxen 
effectively suppressed colon adenocarcinomas in exper-
imental animals in-vivo [235]. A combination of calci-
triol and naproxen has been tested in phase II  clinical 
trials for preventing the relapse of prostate carcinoma. 
Such a combined therapy has been well-tolerated, with 
19% of enrolled participants having a reduction in PSA 
doubling time (PSADT) and 67% having a prolongation 
of PSADT when compared with baseline [236].

Diclofenac
Diclofenac is an acetic acid derivative with a modest 
affinity for cyclooxygenase-2. It has been shown that 
this drug has beneficial effects on several malignant 
tumors including fibrosarcoma, hepatoma, colorec-
tal, endometrial, and endocrine  carcinoma. The effect 
of diclofenac (3%)  and calcitriol was shown on differ-
ent carcinoma cancer cell types, such as endometrial, 
breast, cerebral, colorectal, endocrine, non-small cell 
lung cancer, hepatic, and showed a higher cytotoxic 
effect in cells from chronic lymphocytic leukemia than 
in normal lymphocytes[237, 238]. Furthermore, growth 
rates and degree of vasculature were significantly 
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decreased in experiments on rats with fibrosarcoma 
and hepatoma [239]. Diclofenac also has an antican-
cer effect in colon carcinoma [240, 241]. Diclofenac 
also reduced tumor growth in a mouse model of pan-
creatic cancer [242], as well as in ovarian cancer [243]. 
In  vitro evidence suggests that diclofenac therapy 
induces apoptotic cell death by inhibiting antioxidant 
SOD2, resulting in a greater proportion of free radicals 
[244]. Despite the increasing amount of data support-
ing the anticancer effects of diclofenac, there are at the 
moment no active clinical studies evaluating the effects 
of diclofenac as a chemotherapeutic agent. A phase 
II clinical study for basal cell carcinoma, on the other 
hand, was just completed. Diclofenac was tested as a 
stand-alone treatment and in combination with calci-
triol. The study found that diclofenac applied topically 
was more successful than combination therapy, with 
complete histologic tumor regression in 64.3% [245].

Celecoxib
Celecoxib, a specific COX-2 blocker, has chemothera-
peutic effects in different types of cancer. In rand-
omized controlled studies celecoxib combined with 
chemotherapeutic treatment has beneficial effects on 
breast cancer, progressive pulmonary carcinoma, and 
transitory bladder cancer [246–249]. Through miRNA-
145/TGFBR2/Smad3 axis, celecoxib suppresses the 
epithelial-to-mesenchymal shift in cancer bladder 
cells [250]. Celecoxib decreases liver cancer  cells pro-
liferation and metastasis by addressing PNO1 and 
reduces AKT/c-Met-induced hepatocarcinogenesis by 
inhibiting COX-2/Akt/FASN pathway [249, 251, 252]. 
Celecoxib has effects on proline metabolism, generat-
ing an upregulation in proapoptotic markers (PRODH/
POX, PPAR), lowering HIF-1 levels, and triggering 
squamous skin carcinoma programmed  cell death. In 
human oral cancer cells, combination therapy  with 

Fig. 3  Schematic representation of the most representative drug clases used as repurposing drugs in oncology. Symbols: ↑increase, ↓decrease. 
Akt protein kinase B, Bcl-2 B-cell lymphoma 2, Bcl-xL B-cell lymphoma-extra-large, CDK cyclin-dependent kinases, COX-2 Cyclooxygenase-2, CPX 
cyclopirox olamine, DR4/5 death receptor 4/5, EGFR epidermal growth factor receptor, EMT epithelial–mesenchymal transition, Erk1/2 extracellular 
signal-regulated kinase 1/2, HIF-1 hypoxia-inducible factor-1, MMPs matrix metalloproteinase, mTOR mammalian target of rapamycin, NF-KB nuclear 
factor kappa B, P53 TP53 or tumor protein 53, PARP Poly (ADP-ribose) polymerase, PI3k/Akt phosphoinositide-3-kinase–protein kinase B/Akt, PPAR 
peroxisome proliferator-activated receptor, ROS reactive oxygen species, SOD2 superoxide dismutase, TNF-α tumor necrosis factor alpha, TRAIL 
TNF-related apoptosis inducing ligand, VEGFR-2 vascular endothelial growth factor receptor-2, Wnt wingless-related integration site, XIAP X-linked 
inhibitor of apoptosis protein
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celecoxib and calyculin-A suppresses epithelial–mesen-
chymal shift [253, 254].

Indomethacin
Indomethacin is an antinociceptive non-steroidal anti-
inflammatory drug  (NSAID) widely used in the manage-
ment of rheumatoid diseases [255]. It has been noted that 
patients who were treated for a long period with NSAIDs 
had a decreased chance of acquiring cancer which was 
confirmed in several clinical studies [255]. Furthermore, 
there is a growing number of publications suggesting that 
indomethacin and indomethacin-dependent prodrugs 
have chemo-preventive effects against different malignant 
diseases by inhibiting COX-1/2-associated angiogenesis 
[256, 257]. Indomethacin inhibits cancer cell progres-
sion by competing with calcium-related signalling and the 
creation of focal interactions [258]. A COX-independent 
mode of activity for indomethacin’s antiproliferative effect 
has been discovered in several studies, as indicated by cell 
growth suppression in indomethacin-treated colonic can-
cer cells that would not exhibit COX-1/2. [259–261]. Lin 
et al. relatively recently proposed that the chemotherapeu-
tic activity of indomethacin might be due to MAPK-associ-
ated pathway suppression [262]. They used computational 
scanning to perform this drug repurposing using a cur-
rent drug repository. Indomethacin was proven to have a 
stronger association with ShcPTB by interacting with the 
phosphotyrosine binding (PTB) region of adaptor protein 
Shc (ShcPTB) as a readout. It seems that indomethacin 
competes against active EGFR by interacting with ShcPTB 
without disrupting the ERK-binding region, preventing 
EGFR from recruiting Shc and inducing abnormal signal-
ling as a consequence of ERK production. Indomethacin 
suppresses cancer cell proliferation by disturbing PKC–
p38–DRP1 axis-based mitochondrial dynamics or down-
regulating Wnt/β-catenin signalling to effectively target 
MAPK mechanisms [263]. NSAIDs, such as indometha-
cin, are currently seriously being considered as potential 
anti-carcinogenic medicines [264–267]. The therapeutic 
use of indomethacin offers a lot of potentials particularly if 
data would be collected enabling a better knowledge of the 
processes concerning its antiproliferative effects.

Antimalarial drugs
Artemisinins
A drug development initiative for the management of 
malaria led to the innovation  of artemisinins. Arte-
misinins are plant extracts that have been used in Chi-
nese traditional medicine for centuries. 

When used as a treatment for malaria, artemisinins 
trigger the production of free radicals in infected 

erythrocytes, eradicating the plasmodium parasite [268]. 
The effects of artemisinins are attributed to the inter-
action of endoperoxide moiety with the Fe-containing 
heme groups in the affected RBCs [269]. Artesunate is by 
far the most researched artemisinin which could be used 
for cancer medication repurposing. Ex-vivo and in-vivo 
data indicate that it might have antiangiogenic effects, the 
effects on the formation of free radicals, and the modi-
fication of antimicrobial resistance in a wide range of 
cancers [270]. Artesunate has antiproliferative and pro-
apoptotic effects on lymphoma and myeloma cells [271], 
as well as on hepatocellular cancer cells [272, 273]. An 
increase in the expression of pro-apoptotic proteins, such 
as caspase-3, a reduction in the MYC oncogene, and a 
reduction of many anti-apoptotic proteins are all possible 
explanations for why this drug might have anti-malignant 
effects. The chemotherapeutic efficacy of artesunate in 
hepatocellular cancer is increased when combined with 
sorafenib [272] and gemcitabine [273]. Antiangiogenic 
effects of artesunate have been documented in renal can-
cer and hepatocellular carcinoma, with decreased tumor 
development in vivo, lower vessel number, and decreased 
vascular endothelial growth factor [274]. 

Dihydroartemisinin (DHA) is an analogue of arte-
misinin that inhibits leukemia cell proliferation by 
inducing autophagy and programmed cell death which 
is reactive oxygen species-dependent [275]. Decreased 
expression of the protein transferrin receptor 1 (TfR1) 
and cell cycle arrest were two factors that contributed 
to the effect of DHA. DHA therapy showed a significant 
reduction in  iron in hepatoma and breast cancer cells 
due to the downregulation of TfR1, a protein that plays 
a significant role in iron absorption [276]. In leukemic 
cells, the TfR1 level was reduced [277]. TfR1 level was 
required for DHA responsiveness in different papillo-
mavirus-infected cells and cervical cancer cells. In an 
in-vivo papilloma model, DHA therapy also suppressed 
tumour development [278].

Chloroquine
Chloroquine (CQ) is an antimalarial drug which was 
developed in the 1930s became the most widely used 
synthetic antimalarial drug during the 1960s and 1970s 
until the development of newer antimalarials in the 
whole world. Chloroquine has relatively recently been 
found to have potential anticancer effects. Chloroquine 
triggers tumor apoptosis by p53 and Rab8b-dependent 
Par-4 release, resulting in Par-4-dependent suppres-
sion of metastatic tumor development [279]. By revert-
ing tumour-based  macrophages to the M1 phenotype, 
chloroquine has effects on anticancer immune system 
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response [280]. Chloroquine inhibits extrinsic neutro-
phil entrapment which decreases hypercoagulability in 
pancreatic  malignant tumors [281]. Chloroquine sup-
presses tumour-associated Kv10.1 gates and reduces 
MDAMB-231 breast  carcinoma cell motility ex-vivo 
[282]. In colon cancer, the combination of temsiroli-
mus and chloroquine improves radiosensitivity [283]. 
Chloroquine sensitizes human T-cell blood cancer with 
oncogenic NOTCH1 mutations to secretase reduction 
[284]. Chloroquine is a derivative of quinoline simi-
lar to that of clioquinol. Many studies have reported 
its antitumor effects both in-vivo and in vitro. It has a 
synergistic effect in combination with paclitaxel and 
can stop the growth of breast malignant tumors [285]. 
Chloroquine, in combination with gemcitabine, seems 
to be able to eradicate tumor cells in xenograft models 
[149].

Hydroxychloroquine
Hydroxychloroquine is an analogue of chloroquine which 
has the same therapeutic effects as chloroquine although 
with less systemic toxicity. Hydroxychloroquine blocks 
intracellular lysosomal activities and improves the anti-
cancer activities of breast cancer and glioblastoma [286, 
287]. Hydroxychloroquine is an autophagy blocker that 
significantly increases the chemotherapeutic activ-
ity of bevacizumab on glioblastoma by suppressing of 
autophagy [288]. Ex-vivo and in-vivo, hydroxychloro-
quine increase the chemotherapeutic potential of the 
anti-angiogenesis drug BC001, suppressing the devel-
opment of gastric carcinoma [289]. Pulmonary cancer 
cells are suppressed by hydroxychloroquine due to the 
increased chemo-sensitizing effect and effects on the 
change of M2-TAMs to M1-related macrophages, which 
improves the CD8+ T cell immunological reaction [290].

Quinacrine
Quinacrine was first identified in the 1920s as an anti-
malarial drug [291]. It is also used as an antibiotic, and 
a pleural sclerosing substance to manage giardiasis—a 
protozoal infection of the intestinal tract, certain types 
of lupus erythematosus and rheumatoid arthritis [292–
294]. Quinacrine has also been used in clinical stud-
ies for the management  of Creutzfeldt–Jakob disease 
including a new variant of CJD which is linked to con-
tamination of food by the bovine spongiform encepha-
lopathy (BSE). Quinacrine seems to be very suitable for 
repurposing for cancer therapy [295–297]. Earlier stud-
ies have shown that quinacrine has beneficial effects on 
different malignancies and that these effects are medi-
ated by p53 activation. Quinacrine promotes p53 expres-
sion in renal cancer  using suggesting that simultaneous 

inhibition of NF-kappaB and activation of p53 by a sin-
gle small molecule  can have anti-cancer effects [298]. 
It seems that quinacrine’s cytotoxicity is associated 
with elevated p53 levels. It also seems that the facili-
tates chromatin transcription (FACT) protein complex, 
which seems to be trapped on chromatin and induces 
CK2-induced phosphorylation of p53, is responsible for 
quinacrine-mediated p53 transcription [299, 300]. Con-
versely, there are indications that the down-regulation 
of p53 increases the quinacrine effect in MCF-7 cells 
when compared with normal cells [301]. Nonetheless, the 
results of some studies suggest that quinacrine cytotox-
icity on cancer cells is influenced by the p53 expression, 
at least to a certain extent [302, 303]. Studies with quina-
crine as a chemotherapeutic drug are published recently 
quite often [32]. For example, in a Phase, I and Phase 
II clinical study, Fox Chase Cancer Center researchers 
combined quinacrine with capecitabine to treat colon 
carcinoma (NCT01844076). In the Phase I clinical study, 
quinacrine was combined with erlotinib for the man-
agement  of recurrent or delayed pulmonary cancer 
(NCT01839955). Overall, quinacrine is very promising 
as an anticancer treatment, and the effects of this drug 
might be associated with the stimulation of p53, a crucial 
growth inhibitor that is dysregulated in many malignant 
diseases [32].

Atovaquone
In recent years, Atovaquone, a well-studied molecule 
known for its role as a non-oncological and anti-malar-
ial drug, has garnered significant attention in the field of 
cancer therapy [304]. With its established safety profile 
and extensive clinical use, Atovaquone has emerged as a 
potential candidate for repurposing in the treatment of 
cancer [305]. Atovaquone, primarily used as an antipara-
sitic agent against malaria, has demonstrated promis-
ing anticancer properties in preclinical studies. Multiple 
investigations have shown its ability to inhibit cancer cell 
growth and induce apoptosis in various cancer types, 
including lung, breast, colon, and prostate cancers. These 
findings highlight the potential of Atovaquone as an 
effective anticancer agent [305].

Mechanistically, Atovaquone exerts its anticancer 
effects through multiple pathways. It has been shown to 
disrupt mitochondrial function, leading to energy deple-
tion and apoptosis in cancer cells [304]. In addition, 
Atovaquone has demonstrated the ability to inhibit spe-
cific signaling pathways involved in cancer cell prolifera-
tion and survival, such as the PI3K/AKT pathway [306]. 
Moreover, the favorable safety profile of Atovaquone, 
established through its extensive use as an anti-malarial 
agent, further supports its potential for repurposing in 
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cancer therapy. The well-tolerated nature of Atovaquone 
could potentially minimize adverse effects commonly 
associated with traditional chemotherapy agents, offer-
ing a more favorable treatment option for cancer patients 
[304, 306]. Although the repurposing of Atovaquone for 
cancer therapy is still in its early stages, ongoing preclini-
cal and clinical studies are actively investigating its effi-
cacy and safety in cancer treatment [304]. These studies 
aim to evaluate the optimal dosage, combination strate-
gies, and patient selection criteria for Atovaquone-based 
therapies. Preliminary results from these studies have 
shown promising outcomes, warranting further inves-
tigation and clinical trials. Atovaquone, an anti-malarial 
drug, has emerged as a well-studied molecule with a high 
safety profile; its potential as an anticancer agent has 
been supported by pharmacological preclinical evidence 
demonstrating its ability to inhibit cancer cell growth and 
induce apoptosis [304, 306]. Ongoing research and clini-
cal studies will shed more light on the efficacy and safety 
of Atovaquone in cancer therapy, paving the way for its 
potential inclusion as a repurposed drug in the treatment 
armamentarium against cancer.

Myorelaxant agents
Thiocolchicoside
Thiocolchicoside is a chemically synthesized colchicoside 
produced from Gloriosa superba (Liliaceae) that has been 
authorized in Europe (EMA) only as an add-on treatment 
for painful muscle contractures (permanent tightening 
of the muscle tissue) [307]. Surprisingly, thiocolchico-
side has lately been mentioned in several publications to 
have anticancer effects. Reuter et al., for instance, found 
that thiocolchicoside has anticancer effects in different 
malignant diseases including leukemia, lymphoma, and 
squamous cell carcinoma. Thiocolchicoside inhibited 
NF-B and COX-2 stimulation by promoting ubiquitina-
tion deterioration of IB, a major suppressor of the NF-B 
signalling cascade controlling IKK status and p65 nuclear 
translocation [308]. It seems that thiocolchicoside can 
block the receptor stimulator of the NF-kB ligand and the 
NF-B signalling cascade, which inhibits cancer-induced 
bone metastasis [309]. Different pharmaceutical firms 
market thiocolchicoside as a myorelaxant with  anti-
inflammatory and analgesic effects and advertise its use 
as a nociceptive medication [310]. The effects of thiocol-
chicoside, when used in the treatment of lower back pain, 
have been validated in several clinical trials [311, 312]. 
Despite the limited clinical trials exploring its anticancer 
effects, thiocolchicoside, a half-century-old medication, 
might be useful in cancer treatment through drug repur-
posing. However, this has to be proven in clinical trials, 
because until now no such evidence does exist.

Conclusion
Human cancers are different diseases and, therefore, 
need different treatment approaches and options. There 
has been a significant development in discovering new 
drugs for different types of malignant diseases during the 
last two decades. However, due to acquired resistance 
to existing medicines, a considerable number of cancer 
patients are incurable, which causes frustration for sci-
entists and physicians. The budgets of many countries 
for treating human cancers are limited, and they cannot 
afford the current chemotherapy treatments which are 
more and more expensive. As a result, drug repurposing 
has been identified as one of the most promising ways to 
find novel anticancer therapies that are cheaper and can 
be faster to obtain marketing authorization. Academics, 
scientists, and pharmaceutical businesses all recognize 
the value of drug repurposing in dealing with the rising 
burden of human cancers. Different types of drugs that 
can have anti-cancer cell effects have been discussed in 
this review. By targeting the well-studied mechanisms 
implicated in carcinogenesis, these drugs have been 
shown to limit cellular growth, metastasis, and invasion 
or induce cell cycle arrest and apoptosis. Clinical trials 
are currently being performed with repurposed drugs 
based on their preclinical anti-cancer efficacy. Some of 
them have been approved by the FDA for the treatment 
of human malignant diseases, such as raloxifene which 
has been approved for breast cancer, and thalidomide, 
which is used to treat multiple myeloma. A meta-analysis 
of medications including metformin, statins, and aspi-
rin demonstrated their association with a lower risk of 
cancer, and these treatments may be licensed for cancer 
treatment in the near future. Scientists can now predict 
a treatment’s efficacy, mode of action, and safety in dif-
ferent diseases, including cancer, thanks to advances in 
pharmacogenomics and high-throughput drug screening 
methods. Drug repurposing brings up a whole new world 
of research into existing drugs, potentially allowing more 
prompt and cheaper therapy for malignant diseases.

In conclusion, this comprehensive review explores the 
repurposing of non-oncology drugs for cancer therapy, 
focusing on elucidating mechanisms, evaluating efficacy, 
and exploring clinical prospects. One notable finding 
from our analysis is the observation of higher IC50 val-
ues associated with the repurposed compounds during 
in vitro studies. The higher IC50 values suggest that the 
repurposed compounds may exhibit reduced potency 
in inhibiting cancer cell growth compared to traditional 
anticancer agents. While this finding poses challenges, 
it also presents opportunities for future investigations. 
Understanding the underlying reasons for these elevated 
IC50 values is crucial for optimizing the therapeutic 
potential of repurposed compounds in cancer treatment. 
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Several factors could contribute to the observed higher 
IC50 values, including differences in target specificity, 
altered pharmacokinetics, or complex interactions within 
the cancer microenvironment. Addressing these issues 
requires a multi-faceted approach involving in-depth 
mechanistic studies, refinement of drug formulations, 
and innovative combination strategies. To overcome the 
limitations posed by higher IC50 values, further research 
should focus on enhancing the effectiveness of repur-
posed compounds through various strategies. These may 
include identifying synergistic drug combinations, opti-
mizing drug delivery systems to enhance bioavailability, 
or exploring novel formulations to improve target speci-
ficity. In addition, the use of advanced preclinical mod-
els that better recapitulate the complexities of human 
cancer biology could provide valuable insights into the 
efficacy of repurposed compounds. While higher IC50 
values observed in vitro pose challenges, it is important 
to consider that repurposed drugs have the advantage 
of established safety profiles, known pharmacokinet-
ics, and potentially reduced development timelines. By 
addressing the issue of higher IC50 values and leveraging 
the strengths of repurposed compounds, we can advance 
the field of cancer therapy by potentially identifying 
new treatment options that are both effective and safe. 
In summary, the observation of higher IC50 values for 
repurposed compounds during in vitro studies highlights 
the need for further investigation and optimization. By 
addressing these challenges head-on and capitalizing on 
the unique opportunities provided by repurposed drugs, 
we can accelerate the development of innovative cancer 
therapies and improve patient outcomes. This discrep-
ancy raises important considerations for further research 
and clinical translation.
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