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Abstract: Small cell lung cancer (SCLC) is an aggressive malignancy characterized by rapid pro-
liferation, early dissemination, acquired therapy resistance, and poor prognosis. Early diagnosis
of SCLC is crucial since most patients present with advanced/metastatic disease, limiting the po-
tential for curative treatment. While SCLC exhibits initial responsiveness to chemotherapy and
radiotherapy, treatment resistance commonly emerges, leading to a five-year overall survival rate of
up to 10%. New effective biomarkers, early detection, and advancements in therapeutic strategies
are crucial for improving survival rates and reducing the impact of this devastating disease. This
review aims to comprehensively summarize current knowledge on diagnostic options, well-known
and emerging biomarkers, and SCLC treatment strategies and discuss future perspectives on this
aggressive malignancy.

Keywords: small cell lung carcinoma (SCLC); biomarkers; diagnosis; therapeutic targets

1. Introduction

Lung cancer remains a significant global health concern, with staggering mortality
rates. According to GLOBOCAN, it accounted for 2.1 million new cases and 1.8 million
deaths in 2018, making it the leading cause of cancer-related deaths worldwide [1]. Lung
cancer is categorized into two main histological types: non-small cell lung cancer (NSCLC)
and small cell lung cancer (SCLC). NSCLC comprises approximately 85% of cases, while
SCLC represents around 15% [2]. SCLC is an aggressive neoplasm characterized by rapid
proliferation, early dissemination, metastases, acquired therapy resistance, and poor out-
comes [3]. Each year, approximately 250,000 new cases of SCLC are reported, resulting
in at least 200,000 deaths worldwide [1]. While historically more common in men, the
prevalence of SCLC among women has risen due to global smoking trends. Exposure to
tobacco carcinogens (polycyclic aromatic hydrocarbons and tobacco-specific nitrosamines)
is considered a key risk factor for SCLC, as only 2% of all SCLC cases are among never-
smokers [4]. Early diagnosis of SCLC is crucial as most patients present with metastatic
disease, limiting the potential for curative treatment. While SCLC exhibits initial respon-
siveness to chemotherapy and radiotherapy, treatment resistance often emerges, leading to
a five-year overall survival rate of only 10% [5]. Poor prognosis is associated with factors
such as male gender, poor performance status, and age over 70 [5,6]. Diagnostic procedures
for SCLC typically involve physical examination, performance status evaluation, laboratory
tests, and imaging techniques, including contrast-enhanced CT scans of the chest and ab-
domen, brain MRI or CT, and optional FDG PET/CT for limited-stage disease. Pathological
examination following bronchoscopy, lymph node biopsy, and metastatic lesion biopsy is

Biomedicines 2023, 11, 1982. https://doi.org/10.3390/biomedicines11071982 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines11071982
https://doi.org/10.3390/biomedicines11071982
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0001-9743-7265
https://orcid.org/0000-0002-2837-4157
https://doi.org/10.3390/biomedicines11071982
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines11071982?type=check_update&version=1


Biomedicines 2023, 11, 1982 2 of 19

essential for accurately classifying SCLC [5]. To combat the high mortality rates associated
with lung cancer, smoking cessation, and prevention remain the most critical interventions
in reducing lung cancer mortality [5,6].

Common clinical manifestations of SCLC at diagnosis include central tumor masses,
mediastinal involvement, and extrathoracic spread in 75–80% of patients [6]. Symptoms
may include cough, wheezing, dyspnea, hemoptysis, weight loss, pain, fatigue, and parane-
oplastic syndromes. Metastasis frequently occurs in the brain, liver, adrenal glands, bone,
and bone marrow, often resulting in neurological deficits and paraneoplastic syndromes [7].

With the addition of programmed cell death protein-1 (PD-1) and programmed death-
ligand 1 (PD-L1) inhibitors to chemotherapy in the first line of extensive small cell lung
cancer (SCLC), a step forward has been made in improving overall treatment outcomes
for patients with SCLC [8]. In routine clinical practice, there are currently no available
predictive biomarkers for immunotherapy response, and the use of programmed death-
ligand 1 (PD-L1) and tumor mutational burden (TMB) testing is not recommended [5]. The
need for biomarkers to predict treatment response in patients with SCLC is urgent. Potential
biomarkers such as PD-L1 expression, high TMB (TMB-H), and microsatellite instability
(MSI-H) need further investigation for applicability in SCLC. Effective biomarkers, early
detection, and advancements in therapeutic strategies are crucial for improving survival
rates and reducing the impact of this devastating disease. Therefore, this review aims
to comprehensively summarize current diagnostic options, well-known and emerging
biomarkers, and treatment options of SCLC and discuss future perspectives of this distinct
oncological challenge.

2. Pathology of SCLC

SCLC belongs to the spectrum of neuroendocrine pulmonary neoplasms that share
some common morphologic, ultrastructural, immunohistochemical, and molecular genomic
characteristics [9,10]. Four major neuroendocrine pulmonary neoplasms are carcinoids
(typical and atypical) and neuroendocrine carcinomas (SCLC and large cell neuroendocrine
carcinomas; LCNEC). A typical carcinoid is a low-grade neoplasm, and atypical carcinoid
is intermediate-grade, whereas both neuroendocrine carcinomas are, per definition, high-
grade neoplasms. The current evidence suggests that carcinoids (typical and atypical) are
closely related and etiologically different from SCLC and LCNEC [9,10]. Carcinoids are not
precursor lesions of neuroendocrine carcinomas (SCLC and LCNEC) and may be seen more
frequently among non-smokers [9,10]. A small subset of carcinoids can be seen in patients
with multiple endocrine neoplasia 1 (MEN1) syndrome (OMIM#131100), while somatic
MEN1 gene mutations are commonly observed in carcinoids [9,10]. Rare cases of histologic
transformation of epidermal growth factor receptor (EGFR)—or anaplastic large kinase
(ALK)-altered pulmonary adenocarcinomas have also been well-documented [11]. It is
widely accepted that SCLC has the same endodermal origins as other major subtypes of lung
carcinoma (e.g., adenocarcinoma or squamous cell carcinoma), arising from multipotent
precursor cells [9,10,12,13].

Morphologically, SCLC is composed of densely packed, small neoplastic cells with
scanty cytoplasm and finely granular nuclear chromatin but without prominent nucleoli;
nuclear molding and smudging are commonly present (Figure 1A,B). The cells are round
or oval, although spindle cells (fusiform pattern of cancer cells) are frequently seen. Mitotic
figures are numerous, while the tumor necrosis and crush artifacts may be extensive.

SCLC expresses neuroendocrine markers, such as synaptophysin, chromogranin-A,
and CD56/NCAM, which should be used as a panel [14,15]. CD56 is the most sensitive as
it stains 90–100% of all SCLC, while synaptophysin and chromogranin-A can be negative
in >50% of cases [16–18]. Neuron-specific enolase (NSE) is frequently positive in SCLC
but is considered non-specific due to its widespread expression in non-neuroendocrine
neoplasms (both pulmonary and extrapulmonary) [19]. Thyroid transcription factor 1 (TTF-
1) is positive in ~80–90% of cases [10]. Other pulmonary biomarkers, including Napsin-A
(positive in adenocarcinomas), p63, and p40 (positive in squamous cell carcinomas), are
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not immunoreactive in SCLC and can help in differential diagnosis, particularly on small
biopsies. Other challenging cases (metastatic neuroendocrine tumors from other anatomic
locations, e.g., mammary, gastrointestinal, or Merkel cell carcinoma from the skin) can be
resolved using clinical history and other specific immunohistochemical biomarkers.
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Figure 1. (A,B) Hematoxylin and Eosin (H&E) stain of a lung biopsy showing a small cell carcinoma
with sheet-like diffuse growth pattern and basophilic appearance (A, magnification 10×); Image 1B
reveals a prominent nuclear molding of neoplastic cells (magnification 20×).

3. Genomic Features of SCLC

Recent research has focused on understanding the genetic basis of SCLC to identify
new therapeutic targets and develop more effective treatments [20]. Genetic alterations
contribute significantly to the development and progression of SCLC. Concomitant inacti-
vation of two tumor suppressor genes, TP53 and RB1, is found in most SCLC cases [21,22]
and is found in up to 90% and 50–90% of SCLC cases, respectively. These molecular fea-
tures are strikingly different from those seen in NSCLC, in which various oncogenic driver
mutations/fusions prevail (e.g., EGFR, KRAS, ALK, BRAF, RET, ROS1, MET, NTRK1-3,
HER2/ERBB2) [22,23]. Additionally, genetic alterations contributing to SCLC’s development
include amplifying the MYC family of oncogenes (MYC, MYCL, and MYCN), inactivation
of the phosphatase and tensin homolog (PTEN) tumor suppressor gene, and mutations in
the Notch signaling pathway. Genomic alterations of MYC family members are seen in
SCLC and represent biomarkers of poor prognosis. In particular, MYCN alterations are
related to SCLC cases with immunotherapy failure. The most important genes altered in
SCLC in humans are summarized in Table 1.

Different studies have identified recurrent mutations in chromatin remodeling genes,
such as ARID1A, ARID1B, and SMARCA4, which regulate gene expression. These muta-
tions may contribute to the dysregulation of critical genes involved in cell proliferation
and survival, leading to the development of SCLC, characterized by a high frequency of
mutations in genes that regulate cell cycle and DNA damage response pathways, such
as TP53, RB1, and PTEN. Additionally, SCLC often exhibits widespread chromosomal
instability, with frequent amplifications and deletions of large genome regions. In addition
to these genetic alterations, SCLC is characterized by a high frequency of copy number
alterations, including amplification of MYC family members and deletion of the tumor
suppressor gene cyclin-dependent kinase inhibitor 2A (CDKN2A) [24]. In addition, the
changes in the stroma and immune microenvironment are additional factors involved in
the pathogenesis of SCLC [25].

Overall, the genetic landscape of SCLC is complex and heterogeneous, with multiple
genetic alterations contributing to its aggressive phenotype. Understanding the underlying
genetic mechanisms of SCLC is crucial for developing effective targeted therapies and
personalized treatment strategies for patients with this aggressive cancer. SCLC mutational
characteristics reveal a clear causal connection with smoking. Direct scientific evidence
confirms that carcinogens from tobacco are responsible for initiating SCLC [26].

Genomic profiling in patients with SCLC has not revealed mutationally defined sub-
types of SCLC. However, due to the lack of larger studies, this may be a consequence of the
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insufficient number of tumor samples included in analyses. Therefore, there is a substantial
need for clinical trials that include the analyses of tumor tissue to identify vital genomic
triggers. However, there is an accentuated difficulty in tumor material collection. Ethnic-
ity or smoking status did not affect the consistency of mutational differences; however,
the prevalence of oncogenic triggers is considered higher in never-smokers with SCLC
compared to tobacco users [27].

In addition, genetically modified mice have provided critical genetic lessons and con-
tributed to the knowledge of molecular mechanisms of SCLC etiopathogenesis, metastasis,
and response to treatment. It has been shown that tumors in mice show genetic alterations
and histological features like those in humans. Ferone et al. provided a comprehensive
review of lung cancers and lessons from mouse studies, showing an enormous contribution
of animal studies in pulmooncology [28].

Table 1. Most important genes altered in SCLC (mostly according to memorial Sloan Kettering-
integrated mutation profiling of actionable cancer targets—MSK-IMPACT sequencing of SCLC
tumors)—data adopted from Cheng et al. [29], Rudin et al. [23], and Liu et al. [30].

Gene Aliases Gene Location
on Human
Chromosome
and Number of
Amino Acids

Gene Alteration
in SCLC

Known Function
and Features

Frequency
of Mutation
in SCLC (%
in Various
Cohorts)

Refs.

TP53 Tumor protein 53;
p53;
Phosphoprotein P53;
Antigen NY-CO-13;
Transformation-
Related Protein 53;
BCC7, LFS1, TRP53,
tumor protein BMFS5

Chromosome
17 at position
17p13.1.;
375 amino acids

Inactivating
mutation;
deletion

Nuclear phosphoprotein
involved in the regulation of
cell proliferation; tumor
suppressor; transcription
regulation

77–89 Chang et al. [31]
Rudin et al. [23]

RB1 RB1, pRb, RB,
retinoblastoma 1,
OSRC, PPP1R130,
p105-Rb, pp110,
Retinoblastoma
protein, RB
transcriptional
corepressor 1,
p110-RB1

Chromosome
13 at position
13q14.1-q14.2.;
928 amino acids

Inactivating
mutation;
deletion; loss or
inactivation of
both copies of
the gene

Tumor suppressor protein
that is dysfunctional in
several major cancers.
Prevents excessive cell
growth by inhibiting cell
cycle progression -key
regulator of the G1/S
transition of the cell cycle

50–90 George et al. [21]
Febres-
Aldana et al. [32]

KMT2D KMT2D, ALR,
KABUK1, MLL2,
MLL4, lysine
methyltransferase 2D,
histone-lysine
methyltransferase 2D,
TNRC21, AAD10,
KMS, CAGL114

Chromosome
12 at position
12q13.12.;
5316 amino
acids

Inactivating
mutation;
deletion; gene
fusion;
truncating non-
sense/frameshift/
splice site
mutations

Key regulator of
transcriptional enhancer
function; major enhancer
regulator in mammalian
cells, including regulation of
development,
differentiation, metabolism,
and tumor suppression.

5–13 Wu et al. [33]
Simbolo et al. [34]
Augert et al. [35]

CREBBP AW558298, CBP,
CBP/p300, KAT3A,
p300/CBP, RSTS,
CREB binding protein,
RSTS1, MKHK1

Chromosome
16 at position
16p13.3.
2414 amino
acids.

Inactivating
mutation,
deletion

Crucial role in
transcriptional regulation
and chromatin remodeling.
Interacts with various
transcription factors and
coactivators, influencing the
expression of target genes
involved in cell growth,
differentiation,
and development.

4–10 Carazo et al. [36]
Jia et al. [37]
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Table 1. Cont.

Gene Aliases Gene Location
on Human
Chromosome
and Number of
Amino Acids

Gene Alteration
in SCLC

Known Function
and Features

Frequency
of Mutation
in SCLC (%
in Various
Cohorts)

Refs.

PTEN PTEN, 10q23del, BZS,
CWS1, DEC, GLM2,
MHAM, MMAC1,
PTEN1, TEP1,
phosphatase and
tensin homolog,
Phosphatase and
tensin homolog,
PTENbeta

Chromosome
10 at position
10q23.3.
403 amino acids

inactivating
mutations,
deletions, or loss
of expression

Tumor suppressor involved
in the regulation of the
PI3K/AKT/mTOR pathway,
which plays a critical role in
cell survival and
proliferation. PTEN’s
protein phosphatase activity
may be involved in the
regulation of the Cell cycle,
preventing cells from
growing and dividing
too rapidly.

3–10 Sivakumar et al. [38]
Zhang et al. [39]

FAT1 CDHF7, CDHR8, FAT,
ME5, hFat1, FAT
atypical cadherin 1

Chromosome 4
at position
4q35.2.
4410 amino
acids

Inactivation
mutation;
deletion

Cell-cell adhesion,
migration and
communication, regulation
of tissue growth, cell
polarity, and migration;
tumor suppressor gene

2–10 JiaXin et al. [40]
Pop-Bica et al. [41]

PIK3CA PIK3CA, CLOVE,
CWS5, MCAP, MCM,
MCMTC, PI3K,
p110-alpha, PI3K-alpha,
phosphatidylinositol-
4,5-bisphosphate
3-kinase catalytic
subunit alpha,
CLAPO, CCM4

Chromosome 3
at position
3q26.3.;
1068 amino
acids

Activating
mutation;
mutations in
specific regions

The PIK3CA gene for
synthesis of the catalytic
subunit alpha of the enzyme
phosphatidylinositol
3-kinase, having
crucial role in cell growth,
proliferation, and survival

1–7 Hung et al. [42]
Pop-Bica et al. [41]

NOTCH1 NOTCH1, Notch1,
9930111A19Rik, Mis6,
N1, Tan1, lin-12,
AOS5, AOVD1, hN1

Chromosome 9
at position
9q34.3.
2527 amino
acids

Inactivating
mutation

Tumor suppressor; involved
in cell signalling processes

1–6 Li et al. [43]
Roper et al. [44]
Herbreteau et al. [45]

NF1 NFNS, VRNF, WSS,
neurofibromin 1

Chromosome
17 at position
17q11.2.
2818 amino
acids

Inactivating
mutation,
deletion

Tumor suppressor.
Neurofibromin 1 plays a
role in regulating cell
growth and proliferation by
negatively regulating the
activity of Ras, associated
with uncontrolled
cell growth.

3–4 Ross et al. [46]
Shimizu et al. [47]

APC BTPS2, DP2, DP2.5,
DP3, GS, PPP1R46,
adenomatous
polyposis coli, WNT
signaling
pathway regulator

Chromosome 5
at position
5q22.2.
2843 amino
acids

Inactivating
mutation,
deletion

Crucial role in regulating
the Wnt signaling pathway
and controlling cell
proliferation, growth,
differentiation,
and migration.

3–4 Jin et al. [48]
Grote et al. [49]

EGFR ERBB, ERBB1, HER1,
NISBD2, PIG61,
mENA, epidermal
growth factor
receptor, erbB-1, ERRP

Chromosome 7
at position
7p12.1.
1210 amino
acids

Activating
mutation

Oncogene; a receptor
tyrosine kinase that plays a
critical role in cell growth,
proliferation, and survival;
involved in RAS
signaling pathway.

3–4 Ding et al. [50]
Hao et al. [51]
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Table 1. Cont.

Gene Aliases Gene Location
on Human
Chromosome
and Number of
Amino Acids

Gene Alteration
in SCLC

Known Function and
Features

Frequency
of Mutation
in SCLC (%
in Various
Cohorts)

Refs.

KRAS C-K-RAS, CFC2,
K-RAS2A, K-RAS2B,
K-RAS4A, K-RAS4B,
KI-RAS, KRAS1,
KRAS2, NS, NS3,
RALD, RASK2, K-ras,
KRAS proto-oncogene,
GTPase, c-Ki-ras2,
OES, c-Ki-ras, K-Ras 2,
K-Ras, Kirsten Rat
Sarcoma virus

Chromosome
12 at position
12p12.1.
189 amino acids

Activating
mutation

A GTPase involved in cell
signalingpathways that
regulate cell growth and
proliferation (RAS/MAPK).
KRAS mutations can lead to
the constitutive activation of
the KRAS protein, resulting
in dysregulated cell
signaling and increased cell
proliferation.

1–3 Otegui et al. [52]
Li et al. [53]

NOTCH3 CADASIL, CASIL,
IMF2, LMNS,
CADASIL1, notch 3,
notch receptor 3

Chromosome
19 at position
19p13.2.
2345 amino
acids

Inactivating
mutation,
deletion

Involved in cell signaling
pathways. Notch signaling
plays a critical role in
cellular processes, such as
cell fate determination,
differentiation, and
development.

<3 Herbreteau et al. [45]
Du et al. [54]

ARID1A B120, BAF250,
BAF250a, BM029,
C1orf4, ELD, MRD14,
OSA1, P270,
SMARCF1, hELD,
hOSA1, CSS2, AT-rich
interaction
domain 1A

Chromosome 1
at position
1p36.11.
2254 amino
acids

Inactivating
mutation,
deletion

Tumor suppressor gene;
plays a crucial role in
regulating chromatin
remodeling and gene
expression; involved in
various cellular processes,
including DNA repair, cell
cycle regulation, and
differentiation.

<3 Du et al. [54]
Devarakonda et al. [55]

PTPRD HPTP, HPTPD,
HPTPDELTA, PTPD,
RPTPDELTA, protein
tyrosine phosphatase,
receptor type D,
protein tyrosine
phosphatase receptor
type D, R-PTP-delta

Chromosome 9
at position
9p23.3.
1840 amino
acids

Inactivating
mutation,
deletion

Protein tyrosine
phosphatase receptor that
plays a role in regulating
cell signaling pathways,
including those involved in
cell growth, differentiation,
and migration.

<3 Sato et al. [56]

ATRX ATR2, JMS, MRXHF1,
RAD54, RAD54L,
SFM1, SHS, XH2,
XNP, ZNF-HX,
MRX52, alpha
thalassemia/mental
retardation syndrome
X-linked, chromatin
remodeler, ATRX
chromatin remodeler

X chromosome
at position
Xq21.1.

Inactivating
mutation,
deletion

Tumor suppressor; plays a
critical role in chromatin
remodeling and the
regulation of gene
expression. ATRX is
involved in maintaining the
stability and structure of
telomeres and in
cell signaling

<2 Du et al. [54]

4. Biomarkers in SCLC

In contrast to NSCLC, the discovery of therapeutic targets in SCLC has not been
easy, partly because driver mutations are in first-line loss of function or untargetable,
e.g., MYC family members [23]. The recent division of SCLC into molecular subtypes based
on the expression of transcription factors has provided an essential step in searching for
new therapeutic targets for the disease. This classification system identifies four distinct
subtypes of SCLC: achaete-scute homolog 1 (ASCL1), neurogenic differentiation factor
1 (NEUROD1), yes-associated protein 1 (YAP1), and POU class 2 homeobox 3 (POU2F3) [57].

New blood-based biomarkers for the early detection of lung cancer have been devel-
oped and evaluated, with several showing promising results. “Liquid biopsy”—biomarkers
such as tumor-derived extracellular vesicles, circulating tumor cells (CTC), and circulating
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tumor DNA (ctDNA) seem to be promising tools in cancer monitoring. For example, SCLC
cells express different tumor-specific markers, including Delta-like protein 3 (DLL-3), which
may be associated with a worse prognosis in patients with SCLC [58]. However, whether
these biomarkers listed in Table 2 will impact cancer control in the population, especially
in cancer with aggressive biologic behavior such as SCLC, remains unknown. To date, it
seems that patients with SCLC have the greatest number of CTC, which was suggested to
be a prognostic biomarker for clinically evaluating therapy efficacy [59]. Likewise, CTC-
derived DNA and plasma cell-free DNA, along with their genomic alterations, have been
recognized as potential non-invasive biomarkers that could provide insights into treatment
efficacy and the occurrence of SCLC relapse [60].

Furthermore, the characterization of extracellular vesicles, such as exosomes, appears
to be a promising tool and alternative source for various analytes in liquid biopsies [61].
This approach has the potential to significantly contribute to the identification of new
biomarkers for the diagnosis and monitoring of SCLC patients, as well as the development
of promising prognostic models. Emerging predictive and prognostic biomarkers are
crucial and indispensable for selecting the most suitable therapeutic option for patients
with SCLC.

To date, genetic alterations of MYC were noticed in about 20% of patients with SCLC,
representing the third most common genetic abnormality following TP53 and RB1 and a
potential biomarker of targeted therapy [62]. PD-L1, TMB, and MSI-H have been studied
as potential predictive biomarkers for response to immune checkpoint inhibitors (ICIs) in
patients with SCLC [62]. Schlafen 11 (SLFN11) is a DNA/RNA helicase that sensitizes
cancer cells to DNA-damaging agents. The newest scientific evidence confirms its impor-
tance as a promising predictive biomarker for several therapeutics, including platinum and
PARP inhibitors [63]. Expression of SLFN11 in CTCs provides a potential biomarker of
sensitivity for DNA-damaging chemotherapy drugs and poly (ADP-ribose) polymerase
(PARP) inhibition in SCLC patients [62]. Therefore, detecting SLFN11 by liquid biopsy in
circulating CTCs may provide a valuable non-invasive alternative to tissue sampling [64].

Table 2. Potential biomarkers in small cell lung carcinoma.

Biomarker Type Potential Application References

Delta-like ligand 3 DLL3 Tumor-specific marker Biomarker for SCLC prognosis Chen et al. [58]

Circulating tumor cells (CTC) Liquid biopsy biomarker Prognostic biomarker for therapy evaluation
of therapy efficacy

Roumeliotou et al. [59]

Circulating tumor DNA (ctDNA) Liquid biopsy biomarker Biomarker for treatment efficacy and
relapse detection

Almodovar et al. [60]

Exosomes Extracellular vesicles Non-invasive biomarkers for prognosis Zhang et al. [61]

MYC proto-oncogene/bHLH
transcription factor (MYC)

Genetic alteration Potential biomarker for targeted therapy Taniguchi et al. [62]

Programmed death-ligand
1 (PD-L1)

Immune checkpoint protein Potential biomarker for
immunotherapy response

Taniguchi et al. [62]

Tumor mutational burden (TMB) Mutation load of a tumor Potential biomarker for
immunotherapy response

Taniguchi et al. [62] and
Li et al. [65]

Microsatellite instability
(MSI-H)

Genetic marker of
Microsatellite Instability

Potential biomarker for
immunotherapy response

Taniguchi et al. [62] and
Chang et al. [66]

Schlafen 11
(SLFN11)

Liquid biopsy biomarker Potential biomarker for the response on DNA
damaging chemotherapy and PARP inhibition

Taniguchi et al. [62] and
Zhang et al. [63]

4.1. Biomarkers of Response to Immune Checkpoint Inhibitors in SCLC

Immunotherapy with ICI has markedly improved the treatment of various solid and
hematologic malignancies, including lung cancer. ICIs target PD-1 and its ligand (PD-
L1). Validated predictive biomarkers associated with a response to ICI include PD-L1
expression (in tumor or immune cells), TMB-H, and MSI-H status. Several ICIs have been
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approved for NSCLC, while for SCLC, two ICI (nivolumab and atezolizumab) obtained
approvals from FDA in 2018 and 2019, respectively [67,68]. In contrast to NSCLC, no
predictive biomarkers to ICI response (or resistance) in SCLC have been validated and
approved. However, several studies confirmed a substantial therapeutic benefit of adding
ICIs to conventional chemotherapy as a first-line treatment for extensive SCLC [69,70].
Facchinett et al. summarized the results of four randomized trials involving >1500 patients
with SCLC treated with combined ICI/chemotherapy vs. chemotherapy alone (platinum–
etoposide). They found a slight (10%) but clinically significant improvement in survival
outcomes of SCLC patients treated with a combination of chemotherapy and ICI [69].
The authors also highlighted an unmet need for proper predictive biomarkers for ICI.
Findings from another systematic review conducted by Zhou et al. also supported the use
of the combined treatment with ICI (durvalumab and atezolizumab) and etoposide-based
chemotherapy as an optimal first-line treatment approach for patients with extensive-
stage SCLC [71]. Chen et al. summarized the results of four clinical trials (>1500 patients
with extensive stage SCLC, ES-SCLC), focusing on the efficacy of four different ICIs as a
first-line treatment (atezolizumab, pembrolizumab, nivolumab, and durvalumab). They
found that none of the ICIs was superior regarding overall and disease-free survival.
However, durvalumab was superior to atezolizumab but with higher toxicity (immune-
related adverse effects) [72]. Recently designed and ongoing clinical trials appear to be
more promising, including predictive tissue-based testing before and after treatment (e.g.,
Tempus Sculptor Study) [73].

4.1.1. PD-L1 Expression in SCLC

A recently published systematic review with meta-analysis [74] analyzed PD-L1 ex-
pression in ~2800 SCLC samples reported in 27 studies. The overall PD-L1 expression was
26% with a favorable prognostic impact, although it did not reach statistical significance [74].
However, the results were heterogeneous, different cutoffs for the definition of PD-L1 pos-
itivity were used, and marked variability in subcellular localization of PD-L1 protein in
cancer cells was also observed/assessed. A recently published study by Lang et al. revealed
a lower (~10%) PD-L1 positivity in cancer cells. The stromal PD-L1 positivity was observed
in ~60% of cases with a significant favorable impact on patients’ outcomes. Notably, the
authors did not find a significant correlation between PD-L1 expression and molecular
subtypes of SCLC [75]. Yu et al. explored PD-L1 expression in SCLC regarding the anatomic
location (central vs. peripheral) and TTF-1 expression (positive vs. negative) [76]. They
found a more prevalent PD-L1 expression in centrally located, TTF-1-positive SCLC [76].

In contrast to other studies, they found PD-L1 expression as an adverse prognostic
factor in SCLC associated with vascular and lymphatic invasion [76]. In summary, variable
PD-L1 expression has been reported in SCLC. However, its predictive value has not yet
been established, so routine ICI treatment testing is not recommended.

4.1.2. Tumor Mutational Burden (TMB)

TMB is defined as the number of somatic mutations in cancer per megabase of inter-
rogated genomic sequence [77]. TMB has been validated as a predictive biomarker to ICI
in multiple studies, leading to the approval of pembrolizumab for all solid tumors with
TMB-H, regardless of histotype (tumor-agnostic approach) [78]. One of the largest studies
involving less common solid tumors was conducted by Shao et al. [79]. The study included
305 SCLC samples, of which 37% had TMB-H defined as ≥10 mutations/megabase. The
study by Hellmann et al. (2018) involved 401 patients with ES-SCLC, out of which 211 (53%)
had comprehensive molecular profiling completed. They found that 27% of tested samples
had TMB-H with a significant impact on the therapeutic benefit of ICI, particularly the
combination of nivolumab and ipilimumab [80]. Zhou et al. explored a small cohort of
SCLC patients using next-generation sequencing (NGS). The median TMB was 21.7 mu-
tations/Mb (range 9.3–55.9), and high TMB (defined as >21 mutations/Mb) was a good
prognostic factor of OS [81]. Li et al. (2023) explored a small cohort of SCLC (n = 18),
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revealing TMB-H in 78% of cases using a threshold of seven mutations/megabase [53].
Based on the current evidence, a substantial proportion of SCLC cases may harbor TMB-H
(regardless of the threshold for its definition). This feature may be used for treatment
with ICIs.

4.1.3. Microsatellite Instability (MSI-H) in SCLC

Microsatellite instability (MSI-H) is a specific molecular genomic alteration with a
hyper-mutable phenotype of a cell caused by the impaired DNA mismatch repair machin-
ery (MMR). MSI-H is particularly common in colorectal cancer, a subset of endometrial,
gastric, and upper urinary tract carcinomas, while other cancers are rarely affected by the
MSI-H/MMR phenotype. From the clinical point of view, MSI-H/dMMR status predicts
response to ICIs and is an approved biomarker for pembrolizumab therapy irrespective of
histotype (tumor-agnostic approach) [82].

Merlo et al. published one of the earliest papers reporting MSI status in SCLC [83].
The authors found a frequent MSI-H in primary SCLC. However, later studies did not
confirm these observations revealing a rare occurrence of MSI-H in lung cancers, but still
higher in SCLC compared with NSCLC (~3% vs. 0.1%) [84]. The same study showed that
MSI-H SCLC also had TMB-H [84]. A comprehensive molecular analysis of 21 SCLC cell
lines revealed that MMR deficiency does not play a prominent role in the pathogenesis of
SCLC [85]. Another study conducted by Yanagawa et al. (2021) revealed a lower (1.1%)
prevalence of MSI-H in SCLC samples [86]. A large, comprehensive genomic profiling
study of Chinese patients with SCLC revealed no MSI-H among 111 SCLC-tested cases [87].
Based on the available data, SCLC is characterized by a low prevalence of MSI-H; however,
rare cases of MSI-H SCLC may also harbor concomitant TMB-H and are more likely to
benefit from immunotherapeutic approaches.

4.1.4. Delta-Like Ligand 3 (DLL3)

Delta-like ligand 3 (DLL3) represents an inhibitory ligand of the Notch receptor whose
overexpression on the surface of neoplastic neuroendocrine cells is associated with tumor
progression [88]. The Notch signaling pathway is a highly conserved pathway involved in
various developmental processes, including developing pulmonary neuroendocrine cells [89].
DLL3 expression is regulated by achaete-scute homolog 1 (ASCL1), a transcription factor
required to develop pulmonary neuroendocrine cells properly. DLL3 is a powerful onco-
genic driver in SCLC [90]. More than 80% of SCLC overexpress DLL3 protein in diffuse
and homogenous patterns [89,91]. DLL3 expression has also been described in various
extrapulmonary neuroendocrine neoplasms (particularly high-grade carcinomas), such as
bladder, cervix, anus, prostate, and bile duct neuroendocrine carcinomas [88,89,92,93]. In
contrast, its expression in neuroendocrine carcinomas of the breast was low [94]. DLL3 ex-
pression in neuroendocrine neoplasms is associated with tumor progression and poor clinical
outcomes [88].

Although initial clinical trials (Phase II TRINITY Study; Phase III TAHOE Study)
revealed poor to modest therapeutic effects of DLL3 inhibitor rovalpituzumab tesirine in
patients with DLL3-positive SCLC [95,96], recent data with novel DLL3 inhibitors such as
tarlatamab appear to be promising [97]. Tarlatamab (TMG 757) is a “first-in-class DLL3-
targeted bispecific T-Cell engager” that binds to DLL3 and CD3 receptors, activating T-cell
mediated tumor cell lysis. In the Phase I study conducted by Paz-Ares et al. (2023),
tarlatamab exhibited encouraging therapeutic effects (objective response rate 23%) and an
acceptable safety profile in heavily pretreated SCLC patients. Interestingly, DLL3 expression
assessed by immunohistochemistry correlated well with the therapeutic responses [97].

5. SCLC Treatment and Approaches to SCLC Therapy

SCLC patient outcomes have not been substantially improved in the era of precision
oncology. The treatment algorithm for SCLC is shown in Figure 2. However, systemic
therapies, including immunotherapy, show promising results, although many patients



Biomedicines 2023, 11, 1982 10 of 19

do not respond well to the treatment and need alternative or complementary therapeutic
approaches. Discrete molecular subcategories of SCLC differ in their responsiveness to
a certain therapeutic approach, which opens new questions and directions in the ther-
apies [57]. Landmark studies have been conducted to discover crucial drivers of drug
response in cancer cells. One of the largest studies on SCLC cell lines investigated 526 chem-
ical compounds on 63 SCLC cell lines to find promising candidates for new oncological
drugs and therapeutic approaches. This extensive study showed that compounds target-
ing nuclear kinases appear effective in SCLC lines. However, additional investigations,
including xenografts, are needed to elucidate their possible therapeutic effectiveness [98].
Many efforts are being invested in screening various compounds to unravel novel targets
and biomarkers in SCLC [99]. In addition to synthetic compounds, many phytochemicals
and other naturally occurring bioactive compounds like various polyphenols, alkaloids,
terpenoids, thiols, and others are intensively investigated to design new anticancer strate-
gies [100]. Different treatment strategies for SCLC, depending on the stage of the disease,
are shown in Table 3. Considering the complex treatment algorithm for patients with
lung cancer, which encompasses the pathological and molecular phenotype, it is crucial
to present each patient to a multidisciplinary team (MDT). The main purpose of the MDT
presentation is to facilitate a comprehensive and collaborative approach to the patient’s
diagnosis, treatment, and supportive care.

Table 3. Treatment strategies for patients with small cell lung carcinoma.

Stage of the Disease Treatment Options

Limited Lobectomy with mediastinal dissection for stage I or II disease after extensive staging

Adjuvant chemotherapy with cisplatin and etoposide for negative mediastinal lymph nodes and margins

Chemoradiotherapy for positive mediastinal lymph nodes or R1–R2 margins

Prophylactic cranial radiotherapy (PCI) in case of response to therapy

The preferred regimen for chemoradiotherapy:
Cisplatin 75 mg/m2 day one and etoposide 100 to 120 mg/m2 day 1–3

External radiotherapy in a total dose of 45 Gy twice daily (BID)

A total radiotherapy dose of 60 Gy once daily is not inferior to 45 Gy BID (CONVERT study)

Extensive-stage:
First-line

Chemoimmunotherapy with atezolizumab or durvalumab in combination with
platinum-based chemotherapy

Carboplatin or cisplatin in combination with etoposide

Consolidation radiotherapy of the lung and prophylactic cranial irradiation (PCI) or MRI brain
surveillance if there is a response to chemotherapy

Extensive-stage:
Second-line Platinum reinitiation in platinum-sensitive disease

Chemotherapy (topotecan, CAV protocol, irinotecan, gemcitabine, temozolomide, docetaxel)

Lurbinectedin (for platinum-sensitive or resistant disease relapse)

Extensive-stage:
Second line or beyond

New emerging therapeutic strategies under investigation (Aurora kinase A inhibitor, poly ADP ribose
polymerase (PARP) inhibitor, ataxia telangiectasia, and Rad3 related (ATR) kinase inhibitor, Checkpoint
kinase 1 (CHK1) inhibitor, Delta-like ligand 3 (DLL3) inhibitor, MYC inhibitor, Ganglioside fucosyl-GM1,
an inhibitor of the bromodomain (BRD) and extra-terminal domain (BET) family of proteins

Rovalpituzumab tesirine (not proven benefit in phase III randomized controlled trial)

Tarlatamab (TMG 757)—DLL3-targeted bispecific T-Cell engager

Olaparib (poly ADP ribose polymerase- PARP inhibitor) in combination with temozolomide

Aurora kinase inhibitors (positive signals in patients with c-MYC expression SCLC)

ATR inhibitor in combination with topotecan
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5.1. Limited Stage

Surgical treatment of SCLC for stages I-II due to the aggressiveness of the disease and
detection of the disease in most cases at an advanced stage is carried out in a small number
of patients. Surgical treatment of lobectomy with mediastinal dissection can be performed
after extensive staging, in which stage I or II diseases are confirmed. Several retrospective
studies have verified a five-year survival rate of 45–65% for stages I-II after operative
treatment. For negative mediastinal lymph nodes and margins, adjuvant chemotherapy
with cisplatin and etoposide is advised [5,101]. In the case of positive mediastinal lymph
nodes or R1 (microscopic residual tumor) and R2 margins (macroscopic residual tumor),
chemoradiotherapy is advised. Prophylactic cranial radiotherapy (PCI) is agreed upon
with the patient due to conclusive data from the literature, where it is necessary to disclose
the benefit and toxicity of PCI.



Biomedicines 2023, 11, 1982 12 of 19

SCLC is a very chemosensitive tumor with a response rate of 70–90%, and the basis
of treatment for most patients in the limited stage of the disease is chemoradiotherapy.
The preferred chemotherapy regimen is cisplatin 75 mg/m2 day one and etoposide 100 to
120 mg/m2 day 1–3 combined with external radiotherapy in a total dose of 45 Gy twice
daily (BID). The CONVERT study showed that in combination with chemotherapy, a total
radiotherapy dose of 60 Gy once daily is not inferior to 45 Gy BID [70]. By improving
disease staging and radiotherapy techniques, the five-year OS of patients treated with
chemoradiotherapy was extended from 16% to 34% [102,103]. About 50% of patients have
brain metastases, so after the chemoradiotherapy treatment, PCI is performed on the brain
area in case of response to the therapy [5]. PCI reduces disease recurrence in the brain
and improves three-year overall survival by 5.4% [104]. Due to the greater possibility of
cognitive decline, if the patient is older than 70 years or in a worse general condition, ECOG
2 or more PCI is in agreement with the patient.

To improve the treatment of limited SCLC, studies are underway to incorporate
immunotherapy with chemoradiotherapy and improve treatment outcomes. For now,
immunotherapy and targeted therapy have no role in treating SCLC.

5.2. Extensive Stage

For the last 30 years, the mainstay of treatment for extensive SCLC (eSCLC) has been
chemotherapy with cisplatin and etoposide, with a median survival of 7–11 months. The ad-
dition of immunotherapy with checkpoint inhibitors (CPI), atezolizumab (PD-L1 inhibitor),
and durvalumab (PD-L1 inhibitor) in combination with basic platinum chemotherapy
achieves a moderate but statistically significant increase in OS for two months, from 10 to
12 months [105,106]. Based on the above results, the basis of the treatment in the first line of
eSCLC is chemoimmunotherapy with atezolizumab or durvalumab. After longer clinical
follow-up, immunotherapy with atezolizumab or durvalumab can ensure long-term sur-
vival at 18 months, 34.0%, and at 36 months, 17.6% in patients with eSCLC [107,108]. New
ICIs, such as serplulimab (PD-1 inhibitor) and adebrelimab (PD-L1 inhibitor) combined
with chemotherapy, have shown benefit in the first-line treatment of eSCLC.

In contrast, pembrolizumab (PD-1 inhibitor) and ipilimumab (CTLA-4 inhibitor) have
not shown benefit in RCTs [109–112]. In patients in whom immunotherapy is contraindi-
cated or unavailable, the basis of treatment is carboplatin or cisplatin in combination with
etoposide [5,101]. In the case of response to chemotherapy, treatment with consolidation
radiotherapy of the lung and PCI or MRI brain surveillance is considered [5,101]. The best
symptomatic supportive therapy is advised in patients with poor general conditions. In
the second line of treatment, several cytostatics are available, and the choice of cytostatic
depends on the patient’s general condition, the previous toxicity of the therapy, and the
platinum-free interval. In the case of platinum-sensitive disease, reinitiation of platinum
is recommended. In the case of platinum-resistant disease, patients can be treated with
chemotherapy with a response rate of 15–30%. Topotecan, CAV (cyclophosphamide, dox-
orubicin, vincristine) protocol, irinotecan, gemcitabine, temozolomide, and docetaxel are
used. Recently, lurbinectedin (inhibitor of DNA synthesis) has been approved, based on
a good response rate of 35.2% in a phase II study in patients with platinum-sensitive or
resistant disease relapse [113].

6. New Drugs in the Second Line or Beyond

New emerging therapeutic strategies for SCLC that are under investigation are Au-
rora A inhibitor, poly (ADP-ribose) polymerase (PARP) inhibitor, ATR kinase inhibitor,
CHK1 inhibitor, DLL3 inhibitor, MYC inhibitor, Ganglioside fucosyl-GM1 and inhibitor
of the bromodomain (BRD) and extra-terminal domain (BET) family of proteins [114].
Personalization of therapy in a patient with extensive SCLC and DLL3 ligand expression
was attempted with rovalpituzumab tesirine, an antibody-drug conjugate (ADC) that de-
stroys tumor cells by intracellular cytostatic deposition. In the Phase 1 study (protocol
number NCT01901653), the activity of rovalpituzumab tesirine was evaluated in 82 patients
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with SCLC who had progressed to one or more lines of therapy. The key finding of the
study indicated that 38% of the patients demonstrated a positive response to treatment
with rovalpituzumab tesirine in patients with high DLL3 expression, defined as having
≥50% expression on tumor cells [115]. In the Phase II TRINITY study (protocol number:
NCT02674568), rovalpituzumab tesirine demonstrated modest clinical activity among the
339 pretreated patients with SCLC, and the response rate for DLL3-positive patients was
13.2% [95]. In a randomized Phase 3 TAHOE study (protocol number: NCT03061812)
involving patients with SCLC undergoing second-line therapy, rovalpituzumab tesirine
showed inferior OS when compared to topotecan, with a median OS of 6.3 months versus
8.6 months, respectively [96]. The limitations of the Phase 1 and Phase 2 studies with
rovalpituzumab tesirine are primarily attributed to their single-arm study designs, lacking
a control comparator arm for direct comparison. Furthermore, when compared to the Phase
2 and Phase 3 studies with rovalpituzumab tesirine, the Phase 1 study’s limitations become
apparent due to the selective inclusion of patients who may not be representative of the
real-world population. For example, one of the key exclusion criteria in the Phase 1 study
was the presence of active central nervous system (CNS) metastases [115]. In a different ap-
proach to DLL3 receptors, recent data with novel DLL3 inhibitors such as tarlatamab appear
promising [97]. The Phase 1 study (protocol number NCT03319940) assessing the efficacy of
tarlatamab in heavily pretreated SCLC patients has demonstrated promising results, with a
response rate of 23.4% [97]. The Phase 1/2 study (protocol number NCT02446704) evaluat-
ing the combination of the PARP inhibitor olaparib with temozolomide in 50 patients with
previously treated SCLC revealed a promising new therapeutic strategy, with an overall
response rate of 41.7% [116]. In the Phase 2 study (protocol NCT02038647), the combination
of the Aurora A kinase inhibitor alisertib with paclitaxel demonstrated efficacy signals in
relapsed or refractory SCLC [117]. Additionally, c-Myc expression and mutations were
identified as potential predictive biomarkers of alisertib. The disease control rate, defined
as the combination of complete response, partial response, and stable disease lasting at least
8 weeks, was significantly higher with alisertib/paclitaxel compared to placebo/paclitaxel
(55% versus 33%) in the subgroup of resistant or refractory patients efficacy [118]. Among
c-Myc-positive patients, the median progression-free survival was 4.64 months with alis-
ertib/paclitaxel, whereas it was 2.27 months with placebo/paclitaxel. In the phase II study
(protocol number NCT02487095), the combination of M6620 (berzosertib), ataxia telangiec-
tasia, and rad3-related inhibitor (ATR), with topotecan in 25 patients with relapsed SCLC,
demonstrated a response rate of 36%, successfully meeting the primary efficacy endpoint.
Intensive scientific and clinical efforts are being invested in unraveling new therapeutic
options for SCLC to provide better responsiveness to this challenging malignancy.

7. Conclusions

SCLC represents a significant global health burden with high mortality rates. The
discovery of therapeutic targets in SCLC has been challenging compared to NSCLC due
to the high prevalence of untargetable driver mutations. Immune checkpoint inhibitors
(ICI) combined with chemotherapy have shown significant benefits in treating SCLC.
PD-L1 expression, tumor mutational burden, and microsatellite instability are validated
predictive biomarkers for ICI response in various cancers, but their predictive value
in SCLC remains uncertain. Although several emerging targets have been identified
(e.g., DLL3), they failed to provide satisfactory therapeutic benefits. Therefore, further
studies are needed to provide and validate novel therapeutic targets and biomarkers for
this highly aggressive malignancy.
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