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Classic galactosemia (CG, OMIM#230400, ORPHA: 79,239) is a hereditary disorder
of galactose metabolism that, despite treatment with galactose restriction, affects
brain function in 85% of the patients. Problems with cognitive function,
neuropsychological/social emotional difficulties, neurological symptoms, and
abnormalities in neuroimaging and electrophysiological assessments are
frequently reported in this group of patients, with an enormous individual
variability. In this review, we describe the role of impaired galactose metabolism
on brain dysfunction based on state of the art knowledge. Several proposed disease
mechanisms are discussed, as well as the time of damage and potential treatment
options. Furthermore, we combine data from longitudinal, cross-sectional and
retrospective studies with the observations of specialist teams treating this disease
to depict the brain disease course over time. Based on current data and insights, the
majority of patients do not exhibit cognitive decline. A subset of patients, often with
early onset cerebral and cerebellar volume loss, can nevertheless experience
neurological worsening. While a large number of patients with CG suffer from
anxiety and depression, the increased complaints about memory loss, anxiety and
depression at an older age are likely multifactorial in origin.

KEYWORDS

classic galactosemia, brain, galactose, cognitive problems, neurodevelopment, movement
disorders, neuropsychiatry

1 Galactose metabolism

Galactose is a natural aldohexose that exists as free
galactose and as a component of complex carbohydrates,
glycoproteins and glycolipids. Together with glucose,
galactose forms lactose, a disaccharide abundantly present in
dairy products. Among other functions, it serves as a key source
of energy in infants and is important for galactosylation of
complex molecules such as galactocerebroside in myelin. On
average, 88% of galactose is retained in the liver (Coelho et al.,
2015a; Conte et al., 2021).

The Leloir pathway is the main pathway of galactose
metabolism and consists of four steps, consecutively mediated
by galactose mutarotase (GALM EC 5.1.3.3), galactokinase
(GALK1 EC 2.7.1.6), galactose-1-phosphate uridylyltransferase
(GALT, EC 2.7.7.2012) and UDP-galactose 4′-epimerase (GALE,

EC 5.1.3.7) (Figure 1A). Galactose entering the Leloir pathway
either becomes a precursor for glycosylation (as UDP-galactose)
or is used in glycolysis and glycogen synthesis pathways (as UDP-
glucose) (Conte et al., 2021).

In Classic Galactosemia (CG), severe deficiency of GALT
(<1% residual activity) fuels several alternative galactose
disposal routes. Firstly, aldose reductase (AR, EC 1.1.1.21)
converts α-D-galactose into galactitol in a NADPH-dependent
reaction. Secondly, galactose is oxidized to galactonate by
galactose dehydrogenase (GALDH, EC 1.1.1.48), producing
NADH. Galactonate is excreted from the body or converted to
D-xylulose 5-phosphate to enter the pentose phosphate pathway
(Coelho et al., 2015a; Conte et al., 2021). Lastly, although a poor
substrate (low affinity), Gal-1-P can be converted to UDP-
galactose by UDP-glucose pyrophosphorylase 2 (UGP2, EC
2.7.7.9) (Coelho et al., 2015a).

Frontiers in Genetics frontiersin.org02

Panis et al. 10.3389/fgene.2024.1355962

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1355962


2 Clinical spectrum

The first description of an infant with galactosemia dates from
1908 (von Reuss, 1908). In the following years, more patients were
described with hypergalactosemia and neonatal illness, including
hepatocellular damage, renal tubular disease, Escherichia coli sepsis,
encephalopathy and cataract (Göppert, 1917; Mason and Turner,
1935). A well-recognized phenomenon is brain edema, also called

‘pseudotumor cerebri’, leading to increased intracranial pressure
and bulging of the fontanel (Wells et al., 1965; Quan-Ma et al., 1966;
Huttenlocher et al., 1970; Belman et al., 1986; Berry et al., 2001). A
galactose-restricted diet resolves the acute neonatal symptoms but is
insufficient to prevent long-term complications, which have the
same prevalency in patients with and without neonatal illness.

Brain impairments occur in 85% of CG patients despite diet
(Rubio-Gozalbo et al., 2019) (Figure 1C; Supplementary Table S1).

FIGURE 1
Galactosemetabolism and CG pathophysiology. (A) The first step of the Leloir pathway involves the conversion of β-D-galactose to its stereoisomer
α-D-galactose by galactose mutarotase (GALM). Then, α-D-galactose is phosphorylated to α-D-galactose-1-phosphate (Gal-1-P) by galactokinase
(GALK1). Galactose-1-phosphate uridylyltransferase (GALT) catalyzes the 2-step reaction through which Gal-1-P and UDP-glucose are converted to α-
D-glucose-1-phosphate and UDP-galactose. Finally, UDP-galactose 4′-epimerase (GALE) mediates the interconversion of UDP-galactose (UDP-
gal) and UDP-glucose (UDP-glc). This enzyme is crucial to maintain the steady state UDP-galactose/UDP-glucose ratio in different cells, playing an
important role in glycoconjugate formation. Accumulation of α-D-galactose due to GALT deficiency leads to the formation of galactitol and galactonate,
mediated by aldose reductase (AR) and galactose dehydrogenase (GALDH), respectively. Additionally, Gal-1-P can be converted into UDP-Gal via the
action of UDP-glucose pyrophosphorylase (UGP); however its affinity is much lower when compared to the main substrate, Glc-1-P. Except for GALK1,
the enzymes in this pathway can work in both directions, depending on the substrate levels and energy demand of the cell. Please note that there are only
two enzymes in humans that are capable of converting Gal-1-P to UDP-galactose, the GALT enzyme and the UGP enzyme. Additionally, while UGP is
bidirectional in nature, the reaction usually goes in the direction of Glc-1-P to UDP-Glc because PPi is rapidly hydrolyzed. (B) The accumulation of toxic
metabolites, aberrant glycosylation,myo-inositol deficiency, endoplasmic reticulum (ER) stress and oxidative stress, and signaling pathway alterations all
seem implicated in the pathophysiological cascade elicited in CG. Increased levels of Gal-1-P can inhibit inositol monophosphatase (IMPase1), which
converts L-myo-inositol-1-phosphate to free myo-inositol, thereby limiting the intracellular myo-inositol concentration. Accumulation of galactitol
generates osmotic stress whichmay result in decreased transcription of themyo-inositol cotransporter SMIT1, further aggravating the intracellularmyo-
inositol deficiency. The myo-inositol deficiency and subsequent alterations in inositide signaling can impair calcium homeostasis and cause ER stress,
which is associated with apoptosis and downregulation of PI3K/Akt signaling. Gal-1-P and aberrant glycosylation may also contribute to ER stress. Lastly,
the role of epigenetics andmodifier genes also needs to be considered in CG pathology. Dotted lines represent associations that are still under debate. (C)
Classic Galactosemia (CG) patients can suffer from brain pathology in multiple domains, i.e., cognition, neurology, neuropsychology, neuropsychiatry
and neuro-imaging.
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Cognitive problems frequently experienced are global
developmental delay and language delay (Komrower and Lee,
1970; Fishler et al., 1980; Waisbren et al., 1983; Waggoner et al.,
1990; Schweitzer et al., 1993; Kaufman et al., 1995a; Hansen et al.,
1996; Robertson et al., 2000; Antshel et al., 2004; Bosch et al., 2004;
Potter et al., 2008; Hughes et al., 2009; Hoffmann et al., 2011; Potter,
2011; Timmers et al., 2011; Timmers et al., 2012; Waisbren et al.,
2012; Potter et al., 2013; Demirbas et al., 2019; Kuiper et al., 2019;
Welsink-Karssies et al., 2020a; Welsink-Karssies et al., 2020b;
Hermans et al., 2023), with a below average mean total
intelligence quotient (IQ) of 87 (Coss et al., 2013; Welling et al.,
2017a). The language and speech impairments cannot solely be
explained by lower cognitive abilities (Waisbren et al., 1983;
Waggoner et al., 1990; Schweitzer et al., 1993; Kaufman et al.,
1995a; Robertson et al., 2000; Antshel et al., 2004; Potter et al.,
2008; Hughes et al., 2009; Potter, 2011; Timmers et al., 2011;
Timmers et al., 2012; Waisbren et al., 2012; Potter et al., 2013;
Kuiper et al., 2019). Expressive language is mainly affected, with
receptive language and comprehension being relatively preserved
(Potter et al., 2008; Timmers et al., 2011). Among the speech
disorders are verbal dyspraxia (23.5%) and dysarthria (19.9%)
(Nelson et al., 1991; Potter et al., 2008; Potter, 2011; Kuiper
et al., 2019). Patients require more time to prepare and finish the
utterances and make more errors (Timmers et al., 2012), and also
recruit additional and more extensive brain regions than control
participants (Timmers et al., 2015a).

Approximately half of the CG patients suffer from neurological
complications, the most prevalent being tremor (31.0%), which may
affect daily life in some cases (Rubio-Gozalbo et al., 2019). Other
complications include general motor abnormalities, ataxia, dystonia
and epilepsy (Jan and Wilson, 1973; Lo et al., 1984; Bohles et al.,
1986; Friedman et al., 1989; Waggoner et al., 1990; Koch et al., 1992;
Schweitzer et al., 1993; Robertson et al., 2000; Arn, 2003; Antshel
et al., 2004; Martins et al., 2004; Ridel et al., 2005; Potter et al., 2008;
Hughes et al., 2009; Shah and Kuchhai, 2009; Waisbren et al., 2012;
Rubio-Agusti et al., 2013; Demirbas et al., 2019; Kuiper et al., 2019;
Rubio-Gozalbo et al., 2019; Welling et al., 2019; Özgün et al., 2019;
Welsink-Karssies et al., 2020a; MacWilliams et al., 2021). Epilepsy is
not frequently reported (Friedman et al., 1989; Aydin-Ozemir et al.,
2014) and may be the result of brain damage occurring in the
neonatal period, or the consequence of unrelated genetic
predisposition. Psychiatric and behavioral problems such as
depression and anxiety disorder are reported in 44.4% of the
patients (Rubio-Gozalbo et al., 2019). Most have a shy and
reserved personality (Antshel et al., 2004) and achieve fewer
social developmental milestones when compared to healthy
controls, which is postulated to be intrinsic to the disease rather
than a result of the burden of a chronic disease or lifelong dietary
restrictions (Bosch et al., 2009; Gubbels et al., 2011).

Numerous central nervous system (CNS) grey and white matter
abnormalities have been reported in CG (Crome, 1962; Haberland et al.,
1971; Lo et al., 1984; Choulot et al., 1991; Koch et al., 1992; Nelson et al.,
1992; Kaufman et al., 1995b; Hughes et al., 2009; Timmers et al., 2015b;
Timmers et al., 2016; Özgün et al., 2019; Ahtam et al., 2020; Welsink-
Karssies et al., 2020a; Welsink-Karssies et al., 2020c). Magnetic
resonance imaging (MRI) in a cohort of 67 patients showed cerebral
and cerebellar atrophy in 22 and 8 patients, respectively, as well as white
matter abnormalities in 11 patients (Nelson et al., 1992). In a study that

assessed the integrity of myelinated networks, abnormal somatosensory
evoked potentials were present in 17 (28%) of 60 CG patients who had
electrophysiological testing of the median nerve, and in 26 (77%) of
34CGpatients who had the posterior tibial nerve tested (Kaufman et al.,
1995b). Neurite orientation dispersion and density imaging (NODDI)
revealed a lower neurite density index (NDI) in bilateral anterior areas
and increased orientation dispersion index (ODI) mainly in the left
hemisphere (Timmers et al., 2015b). More recent studies showed lower
white matter volume and impaired microstructure in the whole brain,
especially in the corticospinal tract (Welsink-Karssies et al., 2020c), as
well as the left cerebellum, bilateral putamen and left superior temporal
sulcus (Ahtam et al., 2020). Additional disturbances in grey matter
density have also been described (Nelson et al., 1992; Dubroff et al.,
2008; Timmers et al., 2016; Ahtam et al., 2020).

Several studies have attempted to correlate the grey and white
matter abnormalities with clinical outcome. The severity of
symptoms at the age of diagnosis was associated with abnormal
somatosensory evoked potentials (Kaufman et al., 1995b).
Additionally, neurocognitive outcome was linked to patients’
resting-state brain connectivity patterns (van Erven et al., 2017),
and grey matter density disturbances associated with later initiation
of dietary intervention (Timmers et al., 2016). Furthermore, patients
with a tremor and/or dystonia had smaller white matter volume,
more impaired white matter microstructure and less myelin
compared to patients without movement disorders. Patients with
IQ < 85 had grey and white matter abnormalities, as well as lower
cerebral and cerebellar volume (Welsink-Karssies et al., 2020c).
Lastly, language difficulties were correlated with abnormal
diffusivity values of the bilateral dorsal and ventral language
networks (Ahtam et al., 2020).

Although the aforementioned abnormalities could help explain
the neurocognitive profile, the possibility of a coexistent disorder
should always be considered, especially in case of unexpected
symptoms (Papachristoforou et al., 2014; Neville et al., 2016;
Boca and Whone, 2017; Rossi-Espagnet et al., 2021).

3 Proposed disease mechanisms

Toxic metabolites, aberrant glycosylation, myo-inositol
deficiency, endoplasmic reticulum (ER) stress and oxidative
stress, signaling pathway alterations, and structural impairment
of GALT, all seem implicated in the pathophysiological cascade
elicited in CG (Haskovic et al., 2020) (Figure 1B). Additionally, the
role of epigenetics and modifier genes needs to be considered.
Different mechanisms could be acting synergistically, depending
on the tissue type and developmental stage.

3.1 Metabolite toxicity

Despite diet, the levels of galactose metabolites are persistently
increased due to endogenous production of galactose, which is
mainly derived from lysosomal hydrolysis of glycolipids,
glycoproteins and proteoglycans (Berry et al., 1995a; Berry et al.,
1997). The rate of galactose production is higher in infants and
children and decreases until adulthood (Berry et al., 2004;
Schadewaldt et al., 2004).
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Gal-1-P is deemed one of the key pathogenic agents of CG
(Gitzelmann, 1995; Leslie, 2003; Lai et al., 2009). Toxicity has been
ascribed to the inhibition of enzymes like UGP,
phosphoglucomutase, glycogen phosphorylase and inositol
monophosphatase, but convincing evidence is still lacking
(Gitzelmann, 1995; Lai et al., 2009). Notably, GALK1 deficiency,
which causes accumulation of the galactose metabolites except Gal-
1-P, does not give rise to the brain and ovarian complications seen in
CG (Tang et al., 2010).

Galactitol excretion in urine can be elevated up to 300 times
in patients on diet (Krabbi et al., 2011). Studies have reported
galactitol elevations in the brains of neonatal and pediatric CG
patients (Quan-Ma et al., 1966; Berry et al., 2001; Otaduy et al.,
2006; Rossi-Espagnet et al., 2021). Galactitol is poorly diffusible
and highly osmotic, and can lead to cell swelling and brain
edema. In vivo elevation of brain galactitol was associated with
diffuse white matter abnormalities in a newborn with CG and
encephalopathy (Berry et al., 2001). Furthermore, increased
T2 signal in white matter and areas of restricted diffusion
involving the cortex and deep grey matter nuclei, consistent
with cytotoxic edema, was observed in 3 patients during
neonatal illness and confirmed galactitol accumulation (Rossi-
Espagnet et al., 2021).

Little attention has been paid to the possible role of
galactonate in CG pathophysiology. Although the metabolite is
excreted in urine or used in the pentose phosphate pathway, its
toxicity cannot be ruled out completely and requires further
study (Berry et al., 1998).

3.2 Aberrant glycosylation

Aberrant glycosylation has been hypothesized to be a major
mechanism of disease (Maratha et al., 2017). UDP-hexoses serve
as key sugar donors for glycosylation, and deficiency of UDP-
galactose and disturbance of the UDP-glucose/UDP-galactose
ratio have been described in CG (Charlwood et al., 1998; Lai
et al., 2003; Coss et al., 2014; Maratha et al., 2017). Furthermore,
Gal-1-P may compete as substrate for other nucleotide
sugar reactions.

Systemic glycan assembly defects have been documented in
neonatal illness which largely resolve with galactose restriction
(Charlwood et al., 1998; Quintana et al., 2009). However, there
is evidence of continuing glycan processing abnormalities (Coss
et al., 2012; Coss et al., 2014; Maratha et al., 2017). Of interest, in
a CG sibling study, marked differences in outcomes of the
second born siblings were noted, with early onset cerebellar
and cerebral atrophy in 2 sibling pairs (Hughes et al., 2009), and
significant differences in N-glycosylation in later life (Coman
et al., 2010).

While differences in glycosylation can be identified in CG
individuals at older age, with differing tolerances to moderate
galactose intake liberalization (Coss et al., 2012; Knerr et al.,
2015), the significance of these findings is unknown.
Polymorphic glycan modifier genes (MGAT3, FUT8 and
ALG9) can influence glycan chain bisecting and fucosylation,
and subsequent cell signaling and adhesion (Wahl et al., 2018).

Myelin may be especially vulnerable to disturbed glycosylation,
as it is rich in galactocerebrosides (Barnes-Vélez et al., 2023). Low
levels in autopsy brain tissue of an untreated patient raised the
question of aberrant glycosylation of galactocerebrosides
(Haberland et al., 1971; Koch et al., 1992; Lebea and Pretorius,
2005). Glycosylation also plays an important role in the
neuromuscular junction (NMJ) (Dani and Broadie, 2012), and
GALT was identified as a potent regulator of NMJ structure in
Drosophila melanogaster (Jumbo-Lucioni et al., 2014).

3.3 Myo-inositol deficiency

Myo-inositol serves a dual role in human physiology. It is a
precursor of membrane phospholipids that are important for
calcium- and protein kinase C signaling, and serves as a buffer of
osmotic balance (Berry et al., 1995b; Berry, 2011). Brain content of
myo-inositol peaks prenatally and continues to decline until a
postnatal baseline is reached, which is maintained up to a second
decline at middle age (Kreis et al., 2002; Buccafusca et al., 2008).
Reduction in intracellular myo-inositol has been associated with
impaired integrated stress response signaling and ER stress (Wells
and Remy, 1965; Slepak et al., 2007; Hagen-Lillevik et al., 2022). The
first reports of myo-inositol deficiency in the brain of CG children
date back to 1965 (Wells et al., 1965) and 1966 (Quan-Ma et al.,
1966). High levels of Gal-1-P may sequester myo-inositol as inositol
monophosphate by inhibition of inositol monophosphatase (Slepak
et al., 2007). In addition, galactitol accumulation may lead to poor
myo-inositol transport into the cell, further decreasing myo-inositol
availability (Berry, 2011).

3.4 Endoplasmic reticulum stress, oxidative
stress and signaling pathway alterations

ER stress (Slepak et al., 2007; De-Souza et al., 2014) and
oxidative stress (Slepak et al., 2007; Jumbo-Lucioni et al., 2012;
Tang et al., 2014) are two other pathological mechanisms. In
fibroblasts derived from CG patients (Slepak et al., 2007) and
GalT gene-trapped mice (Balakrishnan et al., 2016; Balakrishnan
et al., 2017), evidence was found for activation of the unfolded
protein response and ER stress. Interestingly, salubrinal (an eIF2α
phosphatase inhibitor) administration in these mice reversed the
downregulation of PI3K/Akt signaling pathway and significantly
slowed down the loss of Purkinje cells in the cerebellum
(Balakrishnan et al., 2017). Additionally, administration of purple
sweet potato color (PSPC) and myo-inositol, two compounds
hypothesized to rescue aberrant signaling pathways in CG partly
due to their antioxidant properties, ameliorated dysregulation of
cellular pathways in this model (Hagen-Lillevik et al., 2022).

3.5 Structural impairments of GALT

The fundamental biochemical cause of the disease is a severe
decrease in enzymatic activity. Some of the pathogenic variants
result in a less stable protein that is unable to reach a correct folding,
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and so has an increased propensity to aggregation and proteolysis
(McCorvie et al., 2013; Coelho et al., 2014).

3.6 Potential epigenetic effects and
genetic modifiers

The role of epigenetics and modifier genes needs to be studied
more extensively. Genetic modifiers are genetic variants that can
influence the phenotypic outcome of a disease-causing variant in
another gene, and have repeatedly been postulated to explain the
phenotypic variability seen in CG (see also subsection aberrant
glycosylation). It is well recognized that genetic modifiers can affect
glycosylation pathways in Congenital Disorders of Glycosylation,
rendering what was considered to be single gene abnormalities as
‘multifactorial’ (Quelhas et al., 2023). Several genetic modifiers have
already been discovered for other rare Mendelian disorders (Rahit
and Tarailo-Graovac, 2020).

4 Time of damage

Intra-uterine toxicity of galactose metabolites has been
postulated an important pathogenic factor (Holton, 1995; Segal,
1995). Gal-1-P was elevated in the liver of galactosemic fetuses at
20 weeks gestation, as well as in the cord blood of galactosemic
infants born to mothers who abstained from galactose consumption
during pregnancy (Gitzelmann, 1995; Holton, 1995).

GALT activity measured in several animal models throughout
development (Shin-Buehring et al., 1977; Rogers et al., 1989a; Rogers
et al., 1989b; Rogers et al., 1992; Daude et al., 1996) was particularly
higher in the early postnatal period relative to adulthood, which has
been attributed to the high galactose ingestion and physiological needs
during the suckling period (Rogers et al., 1989a). GALT mRNA and
protein are already weakly expressed during late embryonic and
postnatal development of the brain and peripheral nerve of the rat,
with a peak of expression concomitant with myelogenesis (Daude et al.,
1996). GALT activity in the late prenatal stage in various organs of a
sheep model (Coelho et al., 2017) showed that galactosemia acute target
organs–liver, small intestine and kidney–had the highest late prenatal
activity, whereas the chronic target organs–brain and ovary–did not
exhibit a noticeable pre- or postnatal different activity, in line with the
notion that some organs/cells have a greater susceptibility to impaired
galactose metabolism.

Supporting an early life injury, disruptions of fiber tracts and
brain nuclei formed during embryogenesis and early fetal brain
development were reported in ten adult patients (Ahtam et al.,
2020). Moreover, a recent study that used retinal neuro-axonal
imaging as a surrogate of brain pathology to assess neuronal
integrity and monitor neurodegenerative disease progression
pointed towards early brain damage (Lotz-Havla et al., 2023).

Some movement disorders, e.g., tremor, are more frequently
seen at an older age (Kuiper et al., 2019). It is not clear whether
disease-related mechanisms continue to damage structures
(striatum/cerebellum) or whether this is the result of a prenatal/
perinatal hit with a dying back phenomenon. Vasogenic edema
might play a role in the delayed myelination later in life (Rossi-
Espagnet et al., 2021). However, disturbances in myelination are also

found in children without neonatal illness, suggesting the
implication of other disease mechanisms.

5 Follow-up/treatment current and
future perspectives

Dietary galactose restriction is currently the cornerstone for
treatment but does not prevent long-term complications. In 2016,
the members of the Galactosemia Network (GalNet) developed an
evidence-based and internationally applicable guideline for
diagnosis, treatment and follow-up of CG patients (Welling et al.,
2017b). The guideline recommends a galactose-restricted diet that
eliminates sources of galactose from dairy products but permits
galactose from non-milk sources. The natural history study showed
that patients with a liberalized diet did not have a worse outcome
neurologically (Rubio-Gozalbo et al., 2019). Moderate liberalization
of galactose intake improved IgG glycosylation in a small number of
patients (Coss et al., 2014; Knerr et al., 2015). The guideline also
offers guidance for testing various neurocognitive and psychosocial
domains to facilitate tailored interventions as part of the
treatment plan.

In search of new therapeutic approaches, extensive research has
been performed to limit accumulation of toxic metabolites or
increase levels of deficient metabolites (Simard-Duquesne et al.,
1985; Ng et al., 1989; Mizisin and Powell, 1993; Tang et al., 2012; Ji
et al., 2017; Hu et al., 2019; Mackinnon et al., 2021).
GALK1 inhibitors were shown to prevent accumulation of Gal-1-
P in cellular models, but remain to be studied in vivo (Tang et al.,
2012; Hu et al., 2019; Mackinnon et al., 2021). Uridine
supplementation to increase levels of UDP-Glc and UDP-Gal was
not able to rescue the biochemical and clinical phenotype (Ng et al.,
1989). Safety and effectiveness of the AR inhibitor AT007 is
currently being investigated (NCT04902781; NCT05418829).

Furthermore, to improve GALT activity, chaperone therapy and
nucleic acid therapy have been studied. Supplementation of the
amino acid arginine as a chaperone had a mutation-specific effect
with rescue of human GALT in an E. coli model (Coelho et al.,
2015b), but failed to exhibit positive effects in four c.563A>G;
p.Gln188Arg homozygous patients (Haskovic et al., 2018).
Whether other pathogenic variants are amenable has not been
studied. hGALT mRNA therapy and GALT gene therapy restored
GALT activity in cellular and animal models of CG (Balakrishnan
et al., 2020; Brophy et al., 2022; Daenzer et al., 2022; Delnoy et al.,
2022), but many unknowns remain to be answered before these
therapies can be applied. Other treatment options could be
compounds that target the integrated stress response such as
PSPC and myo-inositol (Balakrishnan et al., 2016), which
improved brain tissue structures in GalT gene-trapped mice
(Hagen-Lillevik et al., 2022). An advantage is their favorable
safety profile in humans, which could hasten their application in
clinical practice.

6 Brain function through adulthood

In CG, brain function is affected in 85% of the patients, with
significant individual variability in severity and symptoms (Rubio-
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Gozalbo et al., 2019). Since Komrower (Komrower and Lee, 1970) in
1970 reported on physical and mental development in the first
cohort of 60 dietary treated CG patients, numerous studies have
been performed to shed more light on brain effects in CG
(summarized in Supplementary Table S1). While these have
expanded our knowledge on the neurocognitive,
neuropsychological, neuropsychiatric, social emotional and
neurological difficulties associated with the disease, as well as
the abnormalities seen in neuroimaging and
electrophysiological assessments, information about the
disease course in adulthood is still scarce. The majority of
studies are cross-sectional, or retrospective using cross-
sectional data from different age groups. The few
longitudinal studies that have been performed are usually
based on small sample sizes, with relatively young patients
and limited follow-up time. Although the results from these
studies should be treated cautiously, they provide us with the
first valuable insights into CG brain function over time.

Nelson et al. (Nelson et al., 1992) performed MRI imaging in
63 CG patients (1 month–42 years of age). Of the 24 patients who
underwent follow-up MRI after 1–4 years, abnormal peripheral
white matter and ventricle enlargement remained unchanged.
One patient showed progression of cerebellar atrophy.
Schadewaldt et al. (Schadewaldt et al., 2010) reported TIQ, PIQ
and VIQ scores in 23 patients, with the first tests performed at a
mean age of 11±5 years and the second tests at a mean age of
26±5 years. The mean TIQ and PIQ did not change significantly
over time, whereas the mean VIQ score showed a variable but
significant decline at follow-up. However, no consistent changes
were found, as a number of participants showed significant increases
and other patients decreases of these scores with age. In line with
these results, neurocognitive function did not deteriorate in a cohort
of 35 patients aged 1 week - 16 years, but the follow-up time was only
2–5 years (Manis et al., 1997). A recent study in a robust dataset of
CG patients (mean age of 18 years) concluded that speech/voice/
language, cognitive, motor, and psychosocial outcomes are not
progressive in most patients, but also here the time between
testing was limited (Smith et al., 2023). A pilot study with
10 adult patients (mean age 33 years) and a mean time interval
of 3 years and 9months reported cognitive stability (Hermans
et al., 2024).

In addition to the longitudinal studies, Lotz-Havla et al.
(Lotz-Havla et al., 2023) studied retinal neuroaxonal function
as marker for neurodegeneration in 11 CG patients and
60 controls, and did not find evidence for retinal neuroaxonal
degeneration. Moreover, specialist teams within the GalNet that
treat CG patients and take part in this review observe
improvements in language performance (scores on verbal
tests), and absence of cognitive decline. Patients, nevertheless,
do complain about motor and social function, and at older ages
complaints about tremor, memory issues, anxiety and depression
are reported more often.

Although there might be progression concerning signs of
early aging, memory issues and depression, “growing into
deficits” can play a role. Adult life is often more stressful than
childhood, so the features of anxiety and depression (financial
worries, loneliness) may be more pronounced with time. There is
also a subset of patients that experience neurological worsening,

which are very often patients who already had significant
neurological issues in childhood. Patients with early onset
cerebral or cerebellar atrophy can also show progressive
natural senescence effects. The pathophysiological mechanisms
therefore seem multifactorial, with individual susceptibility as
one of the most important determinants. Studies with sensitive
tests for the different affected domains and follow-up of decades
in larger cohorts need to be performed to adequately delineate the
disease course through adulthood.

7 Conclusion

In this review, we describe the role of impaired galactose
metabolism on brain dysfunction. Our conclusion is that, based
on the current data and insights, the majority of patients do not
exhibit cognitive decline. A subset of patients experiences
neurological worsening, often those patients with early onset
cerebral and cerebellar volume loss. At older ages complaints
about memory issues, anxiety and depression are seen more
often, but are likely multifactorial in origin.
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