Kristina Hrabrić

Pseudomonas aeruginosa kao uzročnik infekcija u hematoloških bolesnika

DIPLOMSKI RAD

Zagreb, 2016.
SVEUČILIŠTE U ZAGREBU
MEDICINSKI FAKULTET

Kristina Hrabrić

Pseudomonas aeruginosa kao uzročnik infekcija u hematoloških bolesnika

DIPLOMSKI RAD

Zagreb, 2016.
Ovaj diplomski rad izrađen je u Kliničkom zavodu za kliničku i molekularnu mikrobiologiju Kliničkog bolničkog centra Zagreb, pod vodstvom doc. dr. sc. Ivane Mareković i predan je na ocjenu u akademskoj godini 2015./2016.
POPIS I OBJAŠNJENJE KRATICA KORIŠTENIH U RADU

ADPRT – adenosindifosfat-riboziltransferaza
AHL – acil-homoserin laktoni
AIDS – acquired immune deficiency syndrome (sindrom stečene imunodeficijencije)
AML – akutna mijeloična leukemija
CD14 – cluster of differentiation 14
CMV – citomegalovirus
CVK – centralni venski kateter
DNA – deoxyribonucleic acid (deoksiribonukleinska kiselina)
EBV – Epstein-Barr virus
EF2 – elongation factor 2 (faktor elongacije 2)
GvHD – Graft versus Host Disease (bolest presatka protiv primaoca)
HIV – human immunodeficiency virus (virus humane imunodeficijencije)
HSV – herpes simplex virus
LPS – lipopolisaharid
MASCC – Multinational Association of Supportive Care in Cancer
QRDR – quinolone resistance dermining regions (regije koje određuju rezistenciju na kinolone)
QS – quorum sensing
RND – resistance nodulation division
SZO – Svjetska zdravstvena organizacija
SŽS – središnji živčani sustav
TLR4 – toll-like receptor 4
T3SS – type three secretion system (tip 3 sekrecijskog sustava)
VAP – ventilator associated pneumonia (pneumonija povezana s mehaničkom ventilacijom)
VZV – varicella-zoster virus
<table>
<thead>
<tr>
<th>SADRŽAJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SAŽETAK .. 2</td>
</tr>
<tr>
<td>2. SUMMARY .. 2</td>
</tr>
<tr>
<td>3. UVOD .. 1</td>
</tr>
<tr>
<td>4. HEMATOLOŠKE BOLESTI KAO UZROK POVEĆANE SKLONOSTI INFEKCIJAMA 2</td>
</tr>
<tr>
<td>4.1. Podjela hematoloških bolesti ... 2</td>
</tr>
<tr>
<td>4.2. Benigne bolesti granulocita .. 2</td>
</tr>
<tr>
<td>4.2.1. Neutropenija ... 2</td>
</tr>
<tr>
<td>4.3. Neoplastičke bolesti krvotvornog sustava .. 4</td>
</tr>
<tr>
<td>4.3.1. Akutne leukemije ... 4</td>
</tr>
<tr>
<td>4.3.2. Limfoproliferativne bolesti .. 4</td>
</tr>
<tr>
<td>4.4. Infekcije nakon transplantacije hematopoetskih matičnih stanica 5</td>
</tr>
<tr>
<td>4.4.1. Infekcije prije prihvaćanja transplantata ... 5</td>
</tr>
<tr>
<td>4.4.2. Infekcije neposredno nakon prihvaćanja transplantata 6</td>
</tr>
<tr>
<td>4.4.3. Infekcije kasno nakon prihvaćanja transplantata ... 6</td>
</tr>
<tr>
<td>4.5. Neutropenični bolesnik s vrućicom .. 7</td>
</tr>
<tr>
<td>5. PSEUDOMONAS AERUGINOSA – OPORTUNITIČKI PATOGEN 9</td>
</tr>
<tr>
<td>5.1. Fiziologija i struktura .. 9</td>
</tr>
<tr>
<td>5.2. Epidemiologija .. 10</td>
</tr>
<tr>
<td>5.3. Patogeneza i faktori virulencije .. 11</td>
</tr>
<tr>
<td>5.4. Klinička slika ... 15</td>
</tr>
<tr>
<td>5.5. Laboratorijska dijagnostika .. 18</td>
</tr>
<tr>
<td>6. BAKTERIJEJMJA UZROKOVANA S PSEUDOMONAS AERUGINOSA 19</td>
</tr>
<tr>
<td>6.1. Epidemiologija .. 19</td>
</tr>
<tr>
<td>6.2. Klinička slika ... 20</td>
</tr>
<tr>
<td>6.3. Liječenje .. 22</td>
</tr>
<tr>
<td>6.4. Prognoza .. 22</td>
</tr>
<tr>
<td>7. ENDOKARDITIS UZROKOVAN S PSEUDOMONAS AERUGINOSA 24</td>
</tr>
<tr>
<td>7.1. Klinička slika ... 24</td>
</tr>
<tr>
<td>7.2. Dijagnoza ... 24</td>
</tr>
<tr>
<td>7.3. Liječenje .. 25</td>
</tr>
<tr>
<td>7.4. Prognoza .. 25</td>
</tr>
<tr>
<td>8. LIJEČENJE INFEKCIJA UZROKOVANIH S PSEUDOMONAS AERUGINOSA 25</td>
</tr>
<tr>
<td>8.1. Mehanizmi rezistencije na antibiotike ... 26</td>
</tr>
</tbody>
</table>
1. SAŽETAK

PSEUDOMONAS AERUGINOSA KAO UZROČNIK INFEKCIJA U HEMATOLOŠKIH BOLESNIKA

KRISTINA HRABRIĆ

Pseudomonas aeruginosa je gram-negativan nefermenativan bacil ubikvitarno prisutan u medijima poput tla, vode i vegetacije. Iako posjeduje mnoge čimbenike virulencije, to je oportunistički patogen koji rijetko uzrokuje infekcije u zdravih osoba. Infekcije se javljaju uglavnom u osoba sa oštećenjem kožne ili sluznične barijere uzrokovanim opeklinama, ranama i kirurškim zahvatima, imunokompromitiranih osoba, intubiranih osoba ili osoba sa kateteriziranim mokraćnim mjehurom. Posebna pažnja se pridaje _P. aeruginosa_ kao potencijalnom patogenu u bolnicama budući da se pojavljuje na rizičnim odjelima (hematološki odjeli, odjeli intenzivne skrbi). Svi oblici imunokompromitiranosti mogu predisponirati razvoj infekcije, posebice neutropenija, defekti stanične i humoralne imunosti, cistična fibroza, karcinomi, sindrom stečene imunodeficijencije, dijabetes. Veliki broj zahvaćenih su upravo hematološki bolesnici, posebice oboljeli od akutnih leukemija. Oni mogu razviti infekciju kao posljedicu samog maligniteta ili zbog neutropenije uzrokovane terapijom koja može uključivati kemoterapiju i transplantaciju krvotvornih matičnih stanica. _Pseudomonas aeruginosa_ u tih bolesnika najčešće uzrokuje sepsu i endokarditis. Klinički se bakterijemija uzrokovana s _P. aeruginosa_ ne razlikuje od onih uzrokovanih drugim gram-negativnim bakterijama ali im je smrtnost vrlo visoka te može dosezati i do 50%. U nekim slučajevima javlja se karakteristična kožna lezija - echtyma gangrenosum. Ostali simptomi variraju ovisno o lokalizaciji primarne infekcije. Kod nekih pacijenata, zbog nemogućnosti stvaranja upalnog odgovora, klasični znaci i simptomi infekcije mogu biti maskirani. _P. aeruginosa_ posjeduje veliki broj mehanizama rezistencije što često čini liječenje pseudomonasnih infekcija složenim i dugotrajnim. Zbog sve većeg broja multiple rezistentnih sojeva nerijetko zahtjeva kombiniranu antibiotsku terapiju.

Ključne riječi: _Pseudomonas aeruginosa_, hematološke bolesti, oportunističke infekcije
2. SUMMARY

Pseudomonas aeruginosa as a cause of infections in haematological patients

KRISTINA HRABRIĆ

Pseudomonas aeruginosa is a gram-negative non-fermentative bacillus, ubiquitously present in mediums such as soil, water and vegetation. Even though it has many virulence factors, it is an opportunistic pathogen which rarely causes infections in healthy persons. Infections occur in persons with damaged skin or mucosal barrier caused by burns, wounds and surgical procedures, in immunocompromised persons, intubated persons or persons with indwelling urinary catheters. It is important to take notice of _P. aeruginosa_ as potential pathogen in hospitals as it appears in high-risk wards (haematological wards, intensive care units). All forms of immunodeficiency can lead to infections, especially neutropenia, cellular and humoral immune deficiency, cystic fibrosis, cancer, acquired immunodeficiency syndrome and diabetes. Hence, large number of affected are haematological patients, especially the ones who suffer from acute leukaemia. They can develop an infection as a consequence of the cancer itself or because of neutropenia following chemotherapy and stem cell transplant. In these patients _P. aeruginosa_ mostly causes sepsis and endocarditis. It is usually not possible to distinguish between bacteraemia caused by _P. aeruginosa_ and bacteraemia caused by other gram-negative bacteria, but its mortality is very high and can reach up to 50%. In some cases, a characteristic skin lesion develops – echtyma gangrenosum. Other symptoms vary, depending on the origin of infection. Some patients can have masked signs and symptoms of infection due to inability to create inflammatory response. _P. aeruginosa_ has notable intrinsic mechanisms of resistance and is capable of acquiring multiple mechanisms of antibiotic resistance which can make the treatment of these infections long and complicated. Because of the rising number of multidrug-resistant strains, combination therapy is often required.

Keywords: _Pseudomonas aeruginosa_, haematological diseases, opportunistic infections
3. UVOD

Oportunističke infekcije su značajan uzrok morbiditeta i mortaliteta u osoba oboljelih od hematoloških malignih bolesti. One predstavljaju i veliki izazov za kliničare budući da su uzročnici vrlo česti rezistentni na terapiju. Neutropenija značajno povišuje rizik za bakterijske, gljivične i virusne infekcije. Ona se može javiti neovisno ili kao posljedica citotoksične kemoterapije. *Pseudomonas aeruginosa* je vrlo važan uzročnik nozokomijalnih infekcija, koje mogu biti komplicirane i životno ugrožavajuće. To su najčešće bakterijemije, pneumonije i infekcije urinarnog trakta, iako svi organski sustavi mogu biti zahvaćeni, ovisno o rizičnim čimbenicima.
4. HEMATOLOŠKE BOLESTI KAO UZROK POVEĆANE SKLONOSTI INFEKCIJAMA

4.1. Podjela hematoloških bolesti

Hematološke bolesti definiramo kao bolesti eritrocita, trombocita, granulocita, limfocita i plazma stanica. Svaka od krvnih loza ima svoju specifičnu funkciju, što direktno utječe na kliničku sliku poremećaja. S obzirom na patogenske mehanizme nastanka poremećaja uobičajena je podjela na reaktivne (disfunkcionalne ili benigne) poremećaje i neoplastičke (klonalne) poremećaje pojedine stanične linije. Benigni poremećaji uobičajeno se dijele na kvalitativne i kvantitativne (Labar & Jakšić, 2008). U daljnjem tekstu će biti pobliže opisani oni hematološki poremećaji koji uzrokuju imunokompromitiranost i pogoduju pojavi oportunističkih infekcija.

4.2. Benigne bolesti granulocita

4.2.1. Neutropenija

Neutropenija je stanje kada je broj neutrofilnih granulocita u perifernoj krvi manji od 1,5x10^9/L krvi. Može biti umjerena (više od 1,0), srednje teška (0,5-1,0) i teška (manje od 0,5), koja se naziva agranulocitoza. Uzroci neutropenije mogu biti nasljedni i stečeni čimbenici (vidi tablicu 1), a nastaju zbog: 1) oštećenja matične stanice koštane srži, 2) poremećaja u diobi i sazrijevanju neutrofila u koštanoj srži, 3) skraćenja duljine života neutrofila, 4) preraspodjele u krvotoku, 5) kombinacije više poremećaja (Lang & Minigo, 2008). U neutropeničnih bolesnika javljaju se različite
vrste i težine infekcija. Pri neutropeniji s brojem granulocita manjim od 0,5x10⁹/L razvija se teška klinička slika sa naglim početkom, zimicom, tresavicom, vrućicom, tahikardijom i slikom toksičnog šoka, a nastaje kao posljedica teške bakterijemije i sepse. Bolesnici s kliničkom slikom teške neutropenije zahtijevaju hitnu hospitalizaciju te mikrobiološku obradu i primjenu antimikrobne terapije. Poseban klinički entitet predstavlja febrilna neutropenija koja se javlja u bolesnika u kojih se primjenjuje kemoterapija. Ovaj poremećaj u broju neutrofila predstavlja ijatrogeni sindrom za koji je karakteristična povišena tjelesna temperatura (>38,5 °C) i pad broja neutrofila u perifernoj krvi (<0,5x10⁹/L) (Petranović et al., 2011). U neutropeničnih bolesnika najčešći uzročnici infekcije su koliformne bakterije, P. aeruginosa, stafilokoki, streptokoki te Candida spp. i Apergillus spp.

Tablica 1: Najčešći uzroci neutropenije. Prema: Petranović et al., 2011

<table>
<thead>
<tr>
<th>Infekcije</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusi (najčešći uzročnici): EBV, HIV, influenza</td>
</tr>
<tr>
<td>Bakterije: tuberkuloza, bruceloza, tifus, malarija</td>
</tr>
<tr>
<td>Lijekovi i terapijski postupci</td>
</tr>
<tr>
<td>Citotoksična terapija, radioterapija</td>
</tr>
<tr>
<td>Nedostatak vitamina</td>
</tr>
<tr>
<td>B12 (megaloblastična anemija), folna kiselina</td>
</tr>
<tr>
<td>Bolesti koštane srži</td>
</tr>
<tr>
<td>Leukemije, mijelodisplastični sindrom, aplastična anemija, mijelofibroza</td>
</tr>
<tr>
<td>Autoimuni procesi</td>
</tr>
<tr>
<td>Autoimuna destrukcija neutrofila (primarna ili sekundarna udružena npr. s Feltyjevim sindromom)</td>
</tr>
<tr>
<td>Hipersplenizam</td>
</tr>
</tbody>
</table>

Međutim, uz isti stupanj neutropenije, bolesnik s akutnom mijeloičnom leukemijom (AML) može imati drugačiju infekciju od bolesnika s aplastičnom anemijom. Ako bolesnik s AML-om ima oštećenu sluzicu probavnog sustava zbog liječenja citostaticima, sklon je infekciji gram-negativnim bakterijama, alfa-hemolitičkim streptokokima i anaerobima. Bolesnik koji ima aplastičnu anemiju i neoštećenu sluznicu može dulje vrijeme podnositi neutropeniju, no ukoliko se liječi
kortikosteroidima ili ciklosporinom postoji povećan rizik od razvoja gljvičnih i virusnih infekcija (Begovac et al., 2006).

4.3. Neoplastičke bolesti krvotvornog sustava
4.3.1. Akutne leukemije
Akutne leukemije su heterogena skupina zloćudnih bolesti nastala neoplastičnom transformacijom krvotvornih matičnih stanica. Dijele se na mijeloične (nelimfocitne) i limfocitne. Leukemijske matične stanice pokazuju poremećaj sazrijevanja – zaostaju na razini blasta ili promijelocita. Leukemijski klon raste autonomno i ne postoji mehanizam negativne povratne sprege. Kad je tako nastala klonalna populacija dovoljno velika, uzorkuje klinički prepoznatljivu bolest. Klinička slika u akutnih leukemija posljedica je 1) ekspanzije i zloćudnog rasta leukemijskog klona, tj. infiltracije leukemijskih stanica u različitim tkivima i organima; 2) slabosti funkcije normalne koštane srži zbog potiskivanja leukemijskim klonom; 3) toksičnog djelovanja citostatske terapije i 4) metaboličkih komplikacija. Javljaju se slabost, umor i bljedilo kao posljedica anemije, klinički znakovi krvarenja i simptomi lokaliziranih ili generaliziranih infekcija. Infekcije su jedan od vodećih simptoma u bolesnika s akutnom leukemijom. Nastaju kao posljedica granulocitopenije i imunodeficijencije izazvanih osnovnom bolesti ili liječenjem citostaticima. Incidencija bakterijemije gotovo je 100% u bolesnika s brojem granulocita nižim od 0,5x10⁹/L (Labar, 2008).

4.3.2. Limfoproliferativne bolesti
rizika od ponavljajućih infekcija inkapsuliranim bakterijama – S. pneumoniae i H. influenzae. U Hodgkinovu limfomu je zbog poremećene T-stanične imunosti povećana sklonost infekcijama intracelularnim patogenima, osobito VZV-om (Begovic et al., 2006).

4.4. Infekcije nakon transplantacije hematopoetskih matičnih stanica

Razlikujemo alogenu transplantaciju hematopoetskih matičnih stanica u kojoj se transplantiraju stanice drugih davatelja i autolognu transplantaciju pri kojoj se rabe vlastite matične stanice oboljelog koje je potrebno izdvojiti iz krvi, pohraniti i nakon određenog vremena vratiti. Transplantirane matične stanice započinju svoj rast i razvoj 10-28 dana nakon transplantacije (Labar et al., 2006). Primatelj autolognih matičnih stanica osobito je sklon infekcijama u dva razdoblja – prije prihvaćanja (manje od 3 tjedna od transplantacije) i neposredno nakon prihvaćanja transplantata (3 tjedna – 3 mjeseca od transplantacije). Najčešći klinički entiteti uzrokovani bakterijama koji se javljaju nakon transplantacije koštane srži su infekcije krvotoka, pneumonije i gastrointestinalne infekcije, koje uključuju tifilitis (neutropenični enterokolitis) i infekcije uzrokovane bakterijom Clostridium difficile. U posljednjih nekoliko desetljeća ostvaren je značajan napredak u smanjenju smrtnosti od gram-negativnih bakterijemija u neutropeničnih bolesnika, uglavnom zbog uvođenja empirijske antibiotičke terapije u liječenju febrilne neutropenije i primjene antibiotičke profilakse. Međutim, pojavom višestruko rezistentnih gram-negativnih bakterija (posebice P. aeruginosa) postavljeni su novi izazovi u liječenju bolesnika oboljelih od bolesti krvotovornog sustava, koji su tim infekcijama osobito sklani.

4.4.1. Infekcije prije prihvaćanja transplantata

Ova faza karakterizirana je neutropenijom i trombocitopenijom te se infekcije koje se pojavljuju ovom periodu ne razlikuju značajno od onih koje se javljaju u ostalih neutropeničnih bolesnika, npr. kod akutnih leukemija. Međutim, režim kondicioniranja i pripreme bolesnika za transplantaciju (pogotovo zračenje cijelog tijela) dovodi do oštećenja sluznica oboljelog što povećava rizik od infekcije. U gotovo svih bolesnika se javlja febrilna neutropenija. Drugi simptomi infekcije, osim vrućice, mogu biti odsutni ili diskretni te izvor infekcije često može ostati neidentificiran. Bakterije uzrokuju oko 90% infekcija u ovom postransplantacijskom periodu. Bakterijemija, često povezana sa centralnim venskim kateterom (CVK) i/ili teškim mukozitisom,

4.4.2. Infekcije neposredno nakon prihvaćanja transplantata
U 14% bolesnika dolazi do bakterijemije nakon prihvaćanja transplantata, sa sličnim mortalitetom kao i kod bakterijemije prije prihvaćanja. Bakterijemije su u 30% slučajeva povezane s CVK, a uzrokovane su u više od 50% slučajeva gram-pozitivnim patogenima, osobito stafilokokima (Maschmeyer & Ljungman, 2011). Druge češće infekcije u ovom periodu uključuju pneumonije koje uzrokuju Streptococcus pneumoniae, Klebsiella spp., P. aeruginosa ili Aspergillus. Reaktivirane infekcije citomegalovirusom (CMV) su učestale u periodu nakon prihvaćanja transplantata i javljaju se u 60-70% seropozitivnih pacijenata, dok se primoinfekcije zbivaju u otprilike trećine seronegativnih pacijenata (Boeckh & Ljungman, 2009).

4.4.3. Infekcije kasno nakon prihvaćanja transplantata
Glavni rizični čimbenik u ovom periodu je kronični oblik bolesti presatka protiv primaoca (prema engl. Graft versus Host Disease, GVHD) koji dovodi do oštećenja kože, sluznice i drugih mehanizama obrane (stanična, humoralna imunost, hiposplenizam, opsonizacija, fagocitoza). Bakterijske infekcije dišnog sustava predstavljaju važan uzrok smrti (Chen et al., 2003), a tipično su uzrokovane inkapsuliranim bakterijama kao što su Haemophilus influenzae i Streptococcus pneumoniae (Maschmeyer & Ljungman, 2011) no nije rijetkost ni gram-negativna bakterijemija (Pseudomonas aeruginosa). Važan patogen je i Pneumocystis jirovecii koji uzrokuje intersticijsku pneumoniju (De Castro et al., 2005), a bez odgovarajuće profilakse infekcija ima smrtnost do 30%. Od virusnih infekcija važno je spomenuti reaktivaciju infekcije CMV i varicela-zoster virusom (VZV).
4.5. Neutropenični bolesnik s vrućicom

Definicija febrilnog stanja u neutropeničnog bolesnika jest jednokratno izmjerena temperatura >38,5°C, odnosno temperatura ≥38,0°C u trajanju od najmanje 1 sat u bolesnika koji ima broj neutrofila <0,5x10^9/L (Petranović et al., 2011). Uzročnici infekcije u tom slučaju mogu biti sve poznate bakterije i gljive, često i one koje čine uobičajenu floru. To je stanje koje zahtijeva brzu dijagnostiku i terapijsku intervenciju.

Vrućica u neutropeničnih bolesnika je jedna od najtežih nuspojava malignih hematoloških bolesti i kemoterapije. Intenzivna kemoterapija, osim što dovodi do neutropenije, ima citotoksičan učinak na stanice gastrointestinalnog trakta. Infekcije u neutropeničnih pacijenata imaju sklonost rapidnoj progresiji te dovode do životno ugrožavajućih komplikacija. Promptni početak empirijske antibiotike terapije smanjuje mogućnost razvoja sepsise u tih bolesnika. Pacijenti koji razviju neutropeniju mogu se kategorizirati one visokog i niskog rizika za razvoj komplikacija i samim time lošiji ishod. Procjena rizika važna je za odluku o načinu liječenja, uključujući potrebu za hospitalizacijom te izbor antibiotika. Za te potrebe upotrebjava se indeks nastao na temelju studije Multinacionalne skupine za potpornu terapiju oboljelih od malignih bolesti (prema engl. *Multinational Association of Supportive Care in Cancer, MASCC*). Faktori povezani sa smanjenim rizikom komplikacija i većim postotkom povoljnog ishoda su odsutnost simptoma, blagi ili umjereni simptomi; maligna bolest u kompletnoj ili parcijalnoj remisiji; odsutnost hipotenzije; nepostojanje kronične opstruktivne plućne bolesti, šećerne bolesti, smetenosti i drugih poremećaja svijesti; prisutnost solidnog tumora ili, u pacijenata sa hematološkim malignitetima, nepostojanje gljivične infekcije; pojava vrućice u izvanbolničkim uvjetima; temperatura <39.0°C; normalan nalaz rendgenograma pluća; broj respiracija ≤24/min, odustrnost dehidracije; dob ispod 60 godina (Duraković & Nemet, 2007).

Visokorizični pacijenti (indeks rizika >21 prema MASCC studiji) zahtijevaju hospitalizaciju te parenteralnu primjenu empirijske antibiotike terapije; monoterapiju antipseudomonasnim betalaktamom kao što je cefepim, karbapenemima (imipenem-cilastatin ili meropenem) ili piperacilin/tazobaktamom. Drugi antimikrobni lijekovi (aminoglikozidi, fluorokinoloni ili/vancomicin) mogu biti naknadno dodani inicijalnom režimu dođe do komplikacija (hipotenzija, pneumonija) ili ako se posumnja ili dokaže rezistencija na inicijalnu terapiju (Freifeld et al., 2011). Naravno, daljnji režim terapije i trajanje liječenja treba modificirati ovisno o kliničkoj slici. Profilaksa fluorokinolonom
treba biti uzeta u obzir kod visokorizičnih pacijenata kod kojih se očekuje produljena neutropenija (broj neutrofila <100/mm³ dulje od 7 dana). Prema dosadašnjim istraživanjima levofloksacin i ciprofloksacin su se pokazali podjednako uspješnima, no treba dati prednost levofloksacinu kod pacijenata sa povećanim rizikom za razvoj oralnog mukožitisa uzrokovanog invazivnim viridans streptokokima. Također je potrebno sustavno pratiti razvoj rezistencije na fluorokinolone među gram-negativnim bacilima (Freifeld et al., 2011).

Niskorizični pacijenti (vjerojatnost razvoja komplikacija <5%) mogu biti liječeni peroralnom terapijom i to kombinacijom antibiotika kojim se osigurava djelotvornost protiv širokog spektra uzročnika. Preporučena terapija uključuje kombinaciju amokisicilina s klavulanskom kiselinom i ciprofloksacina, ukoliko pacijent nije dobio profilaktičnu dozu fluorokinolona (Duraković & Nemet, 2007). Ukoliko je prisutna perzistentna ili rekurentna vrućica nakon 4-7 dana antibiotičke terapije ili ukoliko očekujemo trajanje neutropenije >7 dana treba uzeti u obzir primjenu empirijske antifungalne terapije i istražiti eventualnu invazivnu gljivičnu infekciju. HSV seropozitivni pacijenti u procesu alogene transplantacije koštane srži te pacijenti oboljeli od leukemije bi trebali primiti aciklovir kao antiviralnu profilaksu (Freifeld et al., 2011).

Spektar uzročnika izoliranih iz bolesnika s febrilnom neutropenijom se promijenio iz većim dijelom gram-negativnih (1970-ih godina) u gram-positivne (sredina 1980-ih godina), što je posljedica antibakterijske profilakse fluorokinolonom i uporabe centralnih venskih katetera. Danas su najčešće izolirani gram-positivni patogeni koagulaza-negativni stafilokoki, *S. aureus* (uključujući meticilin-rezistentne sojeve), *Enterococcus* spp. (uključujući vankomicin-rezistentne sojeve), *Pseudomonas* spp. (Villafuerte-Gutierrez et al., 2014). Incidencija gram-negativnih bakterija kao uzročnika bakterijemije varira ovisno o centru u kojem se studija provodi. Studija provedena u Francuskoj na 513 pacijenata oboljelih od hematoloških bolesti koji su razvili febrilnu neutropeniju pokazala je da su gram-negativne bakterije uzrok infekcije u 10.7% slučajeva, od toga najviše *E. Coli* (5.8%), druge enterobakterije (2.1%) dok je *Pseudomonas* spp. bio uzročnik infekcije u 13 (4.3%) pacijenata. Pojava gram-negativne bakterijske infekcije povezana je sa dobi >45
godina, nedavnom primjenom betalaktamskih antibiotika, tresavicom, urinarnim simptomima i izostankom primjene kolistina i aminoglukožida (Cordonnier et al., 2005). Druga studija, provedena u Turskoj, koja je uključivala 282 epizode febrilne neutropenije u 126 pacijenata, dokazala je gram-negativne bakterije kao uzročnike 74% bakterijemija. Od toga je 12% bilo uzrokovano karbapenem rezistentnim uzročnicima – *Acinetobacter baumanii*, *Pseudomonas aeruginosa* i *Serratia marcescens* (Gedik et al., 2014).

Treba imati na umu da kod neutropeničnih bolesnika mogu nedostajati klasični znakovi infekcije (crvenilo, otok, gnoj), te između 48 i 60% bolesnika ima okultnu infekciju. Te bolesnike treba temeljito pregledati, a posebnu pažnju treba obratiti na ždrijelo i usnu šupljinu, kožu i kožne pregibe, anus i spolovilo, mjesto insercije trajnog intravaskularnog katetera te mjesto punkcije i biopsije kosti. Potrebno je uzeti krv za hemokulture, a ako bolesnik ima postavljen intravaskularni katater nužno je uzeti više od jedne hemokulture iz katetera i iz periferne vene. Potrebno je učiniti mikrobiološku pretragu urina te mikrobiološki pregled stolice ako postoje simptomi infekcije probavnog trakta (Duraković & Nemet, 2007).

5. **PSEUDOMONAS AERUGINOSA – OPORTUNISTIČKI PATOGEN**

5.1. Fiziologija i struktura

P. aeruginosa je medicinski najznačanija vrsta unutar roda *Pseudomonas* jer ima sposobnost invazije i posjeduje brojne čimbenike virulencije i toksičnosti. To je asporogena, aerobna gram-negativna bakterija, dužine 1,5 – 5 μm, a širine 0,5 – 1 μm. Neki sojevi posjeduju polysaharidnu kapsulu. Posjeduje enzime citokrom-oksidazu i katalazu. Test dokazivanja oksidaze važan je za razlikovanje pseudomonasa od enterobakterija koje ne posjeduju taj enzim. Vodotoplivi pigmenti piocijanin i pioverdin odgovorni su za karakterističnu plavo-zelenu boju na krutom agaru. Prisutnost polarnog biča i fimbrija omogućuju joj pokretljivost. *P. aeruginosa* je ubikvitarno prisutan u različitim okolišnim uvjetima te posjeduje sposobnost da preživi u različitim tekućinama. Karakteristika bakterija unutar roda *Pseudomonas* je da imaju minimalne nutritivne zahtjeve te su mnoge sposobne koristiti raznolike hranjive tvari iz okoliša kao izvor energije; *P. aeruginosa* može iskoristiti acetat i amonijak kao
izvore ugljika i dušika. Uz to, neki izolati imaju sposobnost preživljenja u anaerobnim uvjetima. Navedene karakteristike razlog su široke rasprostranjenosti i iznimne mogućnosti preživljavanja \textit{P. aeruginosa} u okolišu (Drenjačević & Vraneš, 2013).

5.2. Epidemiologija

\textit{P. aeruginosa} je oportunistički patogen ubikvitarno prisutan u različitim okolišnim uvjetima. To je visoko prilagodljiva bakterija; primarni habitat joj čini tlo, međutim obitava i u vodenim medijima. \textit{P. aeruginosa} je važan biljni patogen. Može se naći u vodama u prirodi (potoci, rijeke, jezera) te također u umivaonicima, kadama, respiratornoj opremi, čak i u destiliranoj vodi (Ratnam et al., 1986; Favero et al., 1971). Čovjek može unijeti \textit{P. aeruginosa} ingestijom iz navedenih izvora, međutim neće doći do postojane adherencije na normalan intaktni epitel. Posljedično, može se naći u ljudskom organizmu kao dio normalne intestinalne flore ali u osoba sa zdravim imunosnim sustavom neće doći do infekcije.

\textit{P. aeruginosa} je oportunistički patogen ubikvitarno prisutan u različitim okolišnim uvjetima. To je visoko prilagodljiva bakterija; primarni habitat joj čini tlo, međutim obitava i u vodenim medijima. \textit{P. aeruginosa} je važan biljni patogen. Može se naći u vodama u prirodi (potoci, rijeke, jezera) te također u umivaonicima, kadama, respiratornoj opremi, čak i u destiliranoj vodi (Ratnam et al., 1986; Favero et al., 1971). Čovjek može unijeti \textit{P. aeruginosa} ingestijom iz navedenih izvora, međutim neće doći do postojane adherencije na normalan intaktni epitel. Posljedično, može se naći u ljudskom organizmu kao dio normalne intestinalne flore ali u osoba sa zdravim imunosnim sustavom neće doći do infekcije.

\textit{P. aeruginosa} se može naći u bolnicama, naročito u odjelima intenzivne skrbi gdje stvara rezervoare u vodi unutar respiratorne opreme. Zbog svoje intrinzične i stečene otpornosti na mnoge antimikrobne agense, \textit{P. aeruginosa} se može izolirati iz krema za ruke, umivaonika, sapuna, ovlaživača zraka, sanitarnih odvoda, kapi za oči i tekućina za ispiranje, a čak može preživjeti unutar antiseptičkih otopina koje se koriste za dezinfekciju endoskopa i kirurške opreme (Wilson et al., 1981). Posebno su podložne kolonizaciji oprema za mehaničku ventilaciju i oprema za dijalizu budući da zahtjevaju topao i vlažan okoliš (Kerr & Snelling, 2009).

\textit{P. aeruginosa} je uzročnik velikog broja infekcija u ljudi, uključujući neonatalnu sepsu, sepsu kod bolesnika s opeklinama, akutne i kronične infekcije pluća itd. To je uobičajeni oportunistički patogen, a izaziva klinički manifestnu infekciju najčešće kod bolesnika s kroničnom neutropenijom i defektima neutrofila, hematološkim karcinomima, sindromom stečene imunodeficijencije i dijabetes melitusom. Kronične plućne infekcije učestale su kod oboljelih od cistične fibroze (Burns et al., 1998).

Prema analizi provedenoj u Sjedinjenim Američkim državama u razdoblju od 1995. do 2002. godine, \textit{P. aeruginosa} je dokazan kao uzročnik 4% bakterijemija te je treći najučestaliji uzročnik gram-negativne infekcije krvotoka a sedmi najučestaliji općenito (Wipplinghoff et al., 2004). Također, \textit{P. aeruginosa} je drugi najučestaliji uzročnik
pneumonije povezane s mehaničkom ventilacijom (VAP) (Hidron et al., 2008). Uz to, \textit{P. aeruginosa} je treći najučestaliji uzročnik infekcije urinarnog trakta (7%) te četvrty najučestaliji uzročnik infekcije postoperativnih rana (8%) (Kanj & Sexton, 2015).

5.3. Patogeneza i faktori virulencije

\textit{P. aeruginosa} posjedojuje brojne čimbenike virulencije koji se mogu podijeliti na strukturne i sekrecijske. Čimbenici vezani za površinu stanice odgovorni za adheziju i pokretnjivost jesu: polarni bič (flagela), pili (fimbrije), lipopolisaharid (LPS), a čimbenici virulencije koje bakterija izlučuje su: eskracelularni produkti (enzimi, hemolizini, egzotoksin A), proteini tipa III sekrecijskog sustava (T3SS), \textit{quorum sensing} signalne molekule i alginat (polisaharidna kapsula) (Drenjačević & Vraneš, 2013). Zanimljivo je da se \textit{P. aeruginosa} izolirani iz akutnih infekcija fenotipski znatno razlikuju od \textit{P. aeruginosa} izoliranih iz kroničnih infekcija (Smith et al., 2006). Izolati iz akutnih infekcija izražavaju velik broj čimbenika virulencije dok oni iz kroničnih plućnih infekcija često ne izražavaju neke od najvirulentijih faktora kao što su flagela, pili i tip 3 sekrecijskog sustava (T3SS) (Hogardt & Heeseman, 2010). Nadalje, češće formiraju biofilm i imaju povećanu ekspresiju egzopolisaharidnog alginata čime ti sojevi postaju mukoidni (Sadikot et al., 2005, Kipnis et al., 2006).

\textbf{Flagela i pili}

\textit{P. aeruginosa} posjeduje jedan polarni bič i nekoliko kraćih fimbrija također lokaliziranih na polovima bakterije. Ti nastavci funkcioniraju kao adhezini te omogućuju pokretanje bakterije. Flagela i pili također mogu inicirati upalni odgovor domaćina. U toku infekcije bakterija može adherirati na epitel domaćina pomoću vezanja flagele na glikoplipid asialoGM1 i tako pokrenuti snažni upalni odgovor posredovan NFκB (Miao et al., 2007). Pili su vrlo vjerojatno najvažniji adhezini koje \textit{P. aeruginosa} posjeduje te su također važni za pokretnjivost i formiranje biofilma. Pili dovode do agregacije (udruživanja) bakterija i formiranja mikrokolonija na ciljnim tkivima te koncentriranja bakterija na jednom mjestu, čime se štite od imunosnog sustava domaćina i djelovanja antibiotika (Craig et al., 2004). Uz to, pili su ligandi potrebni za vezanje makrofaga stimuliranih fibronektinom u procesu neopsonizacijske fagocitoze (Kelly et al., 1989). Flagela i pili su razmatrani kao
potencijani antigeni u razvoju antipseudomonasnog cjepiva, međutim zasad bez uspjeha (Doring et al., 2007; Johansen et al., 2008).

Tip III sekrecijskog sustava

Quorum sensing

Quorum sensing (QS) označava složeni regulatorni krug koji uključuje međustaničnu signalizaciju a omogućava bakterijama koordiniranu adaptaciju promjenama u okolišu. Ovaj signalni mehanizam omogućuje *P. aeruginosa* regulaciju genske ekspresije u ovisnosti o broju bakterija kroz produkciju malih difuzibilnih molekula zvanih autoinduktori. U mnogih bakterijskih vrsta QS-signalizacijske molekule jesu acil-homoserin laktoni (AHL). Kad je dosegnuta granična koncentracija AHL, molekule se vežu za LasR/RhlR aktivatore transkripcije te induciraju ekspresiju određenih gena. Procjenjuje se da je gotovo 10% gena u genomu i više od 20% proteoma regulirano sa QS (Deep et al., 2011). *P. aeruginosa* stvara 3 tipa autoinduktora - dva su AHL a treći je 2-heptil-3-hidroksi-4-kinolon (Deep et al., 2011; Heeb et al., 2011). Aktivacija QS-kaskade promiče formaciju biofilm, regulira virulence i preživljenje baterije tako da sojevi sa manjkavim QS mehanizmom
pokazuju smanjenu patogenost (Pearson et al., 2000; Sadikot et al., 2005; Kipnis et al., 2006).

Biofilm

Biofilm označava strukturiranu i visoko organiziranu bakterijsku zajednicu u kojoj su bakterije pričvršćene jedna za drugu i za površinu na kojoj se nalaze. Stvaranje biofilma je visoko povezano sa QS. Te bakterijske zajednice su učahurene u ekstracelularne polimerne tvari koje se se mogu sastojati od polisaharida, nukleinskih kiselina, lipida i proteina. Taj ekstracelularni matriks čini 50-90% volumena biofilma te bakterijskim zajednicama daje sposobnost odolijevanja mehaničkim silama (npr. mlaz vode) te smanjuje prodiranje toksičnih kemijskih spojeva (npr. antibiotici) (Hall-Stoodley & Stoodley, 2009; Lieleg et al., 2011).

Smanjena dostupnost kisika i hranjivih tvari unutar biofilma pridonosi usporenom rastu bakterija te ekspresiji stresnog odgovora organizma što je vjerojatno povezano sa povećanom rezistencijom na na antibiotike. Uz navedene mehanizme, povećanoj rezistenciji pridonose prilagodbe u genskoj ekspresiji, smanjena penetracija antibiotika, QS i povišene izvanstanične koncentracije enzima koji razgrađuju antibiotike. Biofilm se može formirati na invazivnim medicinskim pomagalima kao što su kateteri i endotrahelani tubusi te na tkivima domaćina tijekom kroničnih infekcija, posebice pri plućnim infekcijama kod oboljelih od cistične fibroze (Bjarnsholt et al., 2010).

Proteaze

P. aeruginosa izlučuje nekoliko proteaza, koje imaju važnu ulogu u infekcijama oka i sepsi, gdje ragrađuju imunoglobuline i fibrin te razraju čvrste veze (engl. tight junctions) između stanica epitela (Kipnis et al., 2006). Kod infekcija pluća pridonose oštećenju tkiva i razgrađuju surfaktant (Fleischig & Evans, 2002; Hobden, 2002; Kipnis et al., 2006). Alkalna proteaza je cink metaloproteinaza koja razara proteine komplementa i fibronektin domaćina (Laarman et al., 2012). *P. aeruginosa* izlučuje dvije elastaze, LasA i LasB, koje su regulirane lasI QS sistemom. LasA je serin-proteaza poznata pod nazivom „staflolizin“ zbog činjenice da ima sposobnost hidrolize penta-glicinskog mosta potrebnog za stabilizaciju peptidoglikana u staničnom zidu stafilokoka. LasB posjeduje višestruko jaču elastolitičku aktivnost te se smatra da LasA služi kao pojačivač aktivnosti LasB (Toder et al., 1994;
Proteaza IV je serin proteaza koja razgrađuje proteine komplementa, imunoglobuline i fibrinogen.

Lipopolisaharid (LPS)

Lipopolisaharid je kompleksni glikolipid koji se nalazi na vanjskoj strani membrane bakterije. Ima antigena svojstva, potiče upalni odgovor, sprječava djelovanje molekula iz okoline i posreduje u interakciji s antibioticima (King et al., 2009). *P. aeruginosa* proizvodi LPS koji se sastoje od tri domene – lipid A koji je usidren u membranu, polisaharidna srž i visoko varijabilni O-specifični polisaharid (O-antigen). Lipid A se sastoji od diglukozamin bifosfata i O-povezanih i N-povezanih primarnih i sekundarnih masnih kiselin.

Lipid A se veže na MD2 i CD14 koreceptore stanice domaćina te dovodi do aktivacije TLR4 i NFκB signalnog puta i stvaranja proupalnih citokina i kemokina, upale i u krajnjem slučaju endotoksičnog šoka (Teghanemt et al., 2005; Akira et al., 2006). Modifikacije lipida A mogu mijenjati osjetljivost bakterije na polimiksine i kationske antimikrobne peptide te mijenjati proupalna svojstva, što se često može dogoditi kao reakcija na promjene u okolišu bakterije.

O-polisaharid (O-antigen) se nalazi kao sastavni dio LPS u otprilike 15% LPS molekula. Dva strukturno i serološki različita O-antigena mogu postojati istovremeno u jednoj *P. aeruginosa* bakteriji. *A-band* polisaharid je homopolimer D-ramnoze koji ne potiče jaki serološki odgovor, za razliku od *B-band* polisaharida koji je varijabilne dužine i sastava, potiče jaki serološki odgovor i predstavlja osnovu za serotipizaciju (King et al., 2009). Neki sojevi *P. aeruginosa* uopće ne stvaraju O-polisaharid dok neki sojevi umjesto lipida A imaju samo jednu O-saharidnu jedinicu.

Ostali faktori virulencije

Egzotoksin A je adenosindifosfat-riboziltransferaza (ADPRT) koja inhibira faktor elongacije 2 (EF2) u stanici domaćinu čime sprječava sintezu proteina i izaziva smrt stanice. Ta inhibicija sinteze proteina vjerojatno dovodi i do supresije imunosnog odgovora u domaćinu. Egzotoksin A može inducirati apoptotičnu smrt stanice te je zbog tog razloga razmatran kao potencijalni imunotoksin u antitumorskoj terapiji (Wolf & Elsasser-Beile, 2009; Du et al., 2010).
Lipaze i fosfolipaze razgrađuju lipide surfaktanta i fosfolipide unutar stanične membrane stanice domaćina (Kipnis et al., 2006)

Plavo-zeleni pigment piocijanin daje kolonijama P. aeruginosa karakterističnu boju. U domaćinu izaziva oksidativni stres, razara katalazu i onemogućuje transport elektrona u mitohondriju (Lau et al., 2004). Pročišćeni piocijanin in vitro uzrokuje apoptozu neutrofila te inhibira fagocitozu apoptotičnih tjelesaca (Lau et al., 2004; Bianchi et al., 2008).

Pioverdin je kelator željeza koji ima sposobnost sekvestracije željeza iz zaliha domaćina te se ponaša kao signalna molekula. Vezanje željeza je važan faktor u razvoju kronične upale. Može pojačati stvaranje egzotoksina A, endoproteaza i samoga sebe (Jimenez et al., 2012).

5.4. Klinička slika

P. aeruginosa poglavito uzrokuje oportunističke infekcije u bolesnika s oštećenom imunošću. Mogu biti zahvaćeni svi organski sustavi. Često je riječ o infekcijama udruženim s hospitalizacijom i zdravstvenom skrbi te je P. aeruginosa jedan od najznačajnijih uzročnika bolničkih infekcija. Infekcije koje uzrokuje P. aeruginosa jesu: bakterijemije i sepse, infektivni endokarditis, infekcije dišnog sustava, infekcije središnjeg živčanog sustava, infekcije uha, oka, kože i mekih tkiva, infekcije kostiju i zglobova te infekcije mokraćnog sustava.

Bakterijemija uzrokovana s P. aeruginosa i infektivni endokarditis kao infekcije važne u hematoloških bolesnika detaljnije su objašnjeni kasnije.

Infekcije dišnog sustava

Infekcije donjeg dijela dišnog sustava variraju od asimptomatske kolonizacije ili benignog traheobronhitisa do teške nekrotizirajuće bronhopneumonije. P. aeruginosa može uzrokovati izvanbolničku pneumoniju (engl. community-acquired), no spada u rjeđe uročnice tog tipa pneumonije i javlja se uglavnom kod osoba zaraženih virusom HIV-a, poslije transplantacije solidnih organa ili koštane srži te kod neutropeničnih osoba. S druge strane, P. aeruginosa je najčešći uzročnik pneumonije udružene s mehaničkom ventilacijom, gdje uzrokuje gotovo 21% svih slučajeva (Richards et al., 1999). Povremeno pneumonija uzrokovana s P. aeruginosa može biti praćena
bakterijemijom, septičnim šokom i akutnim respiratornim distres sindromom, posebice u imunokompromitiranih pacijenata. Smrtnost od pneumonije udružene s mehaničkom ventilacijom doseže 30 % (Williams et al., 2010). Kolonizacija je česta kod bolesnika s cističnom fibrozom, drugim kroničnim bolestima pluća ili neutropenijom. Infekcija u pacijenata s cističnom fibrozom povezuje se s egzacerbacijom osnovne bolesti. U tih osoba se često izoliraju mukoidni oblici P. aeruginosa koje je iznimno teško eradicirati. Predispozicije za infekciju P. aeruginosa u imunokompromitiranih bolesnika su prethodna terapija antibioticima širokog spektra te mehanička ventilacija. Invazivnu bolest pluća karateriziraju difuzna, bilateralna bronhopneumonija sa mikroapscesima i nekrozom tkiva.

Infekcije kože i mekih tkiva

P. aeruginosa tipično uzrokuje infekciju u bolesnika s opeklinama, čija koža bude kolonizirana u toku hospitalizacije. Kolonizaciju slijedi lokalno vaskularno oštećenje, nekroza tkiva i bakterijemija. Vlažna površina opekline i nemogućnost neutrofila da prodru unutar rane predisponiraju nastanak infekcije. Folikulitis je također jedna od učestalih infekcija uzokovana P. aeruginosa; može nastati nakon kupanja u kontaminiranoj vodi (bazeni, kupelji i sl.) (Crnich et al., 2003) ili kao sekundarna infekcija u bolesnika s aknam. U osoba čije ruke su učestal izložene vodi može nastati infekcija nokti, tzv. sindrom zelenog nokta (Greenberg, 1975). Kao posljedica traume (npr. ubod na čavao), posebno u vodenom okruženju (jezera, rijeke), može doći do razvoja osteohondritisa, septičnog artritisa i osteomijelitisa, koji se ipak javlja češće u toku bakterijemije, u sklopu polimikrobne infekcije ulkaza kod dijabetičara ili kao posljedica direkne inokulacije. Kod dijabetičara i neutropeničnih domaćina postoji opasnost od razvoja celulitisa i nekrotizirajućeg fasciitisa koji može, posebno kod imunokompromitiranih, rapidno progredirati i vitalno ugroziti oboljelog.

Echtyma gangrenosum je kožna lezija izazvana s P. aeruginosa, a nastaje karakteristično u neutropeničnih bolesnika kao posljedica hematogenog rasapa. Pobliže je opisana kasnije u tekstu.

Infekcije uha

P. aeruginosa može uzrokovati perihondritis uha, upalu vanjskog uha te otitis externa maligna. Upala vanjskog uha manifestira se najčešće kao lagana infekcija povezana s plivanjem („plivačko uho”), koju karacterizira bol i privremeno konduktivno

Infekcije oka

Infekcije urinarnog trakta

P. aeruginosa je treći najčešći uzročnik nozokomijalne infekcije urinarnog trakta (Mittal et al., 2009). Nastanak tih infekcija povezan je s prisutnošću urinarnog katetera, kroničnim prostatitisom, nefrolitijazom i prethodnom antibiotskom terapijom. Rijetko uzrokuje izvanbolničke infekcije urinarnog trakta (Gupta K et al., 2001).

Meningitis

Meningitis i apsces SŽS pojavljuju se relativno rijetko, a gotovo su uvijek povezani s neurokirurškim zahvatom, ventrikuloperitonealnim shuntom i ozljedom glave. Mogu nastati izravnim širenjem iz lokalne infekcije ili su posljedica bakterijemije. Smrtnost doseže 35% (Lu et al., 1999; Chang et al., 2000).
5.5. Laboratorijska dijagnostika

Slika 1. Pseudomonas aeruginosa kolonije na agaru
(preuzeto sa http://textbookofbacteriology.net/pseudomonas.html)
6. BAKTERIJEMIJA UZROKOVANA S *PSEUDOMONAS AERUGINOSA*

Zanimljivo je spomenuti da je do 1950-ih godina zabilježeno manje od 100 slučajeva bakterijemije uzrokovane s *P. aeruginosa* (Kerby, 1947). Uvođenjem imunosupresivne terapije u liječenje neoplastičnih i upalnih bolesti 1950-ih i 1960-ih godina taj broj se dramatično povećao. Bakterijemija uzrokovana s *P. aeruginosa* se iznimno rijetko javlja u osoba koje nemaju predisponirajući faktor, nisu imunokompromitirane ili su izvan bolničkog okruženja. Dapače, veliki broj zabilježenih slučajeva potječe upravo iz tercijarnih sveučilišnih centara u kojima se provodi liječenje hematoloških malignih bolesti (64-92% slučajeva bakterijemija uzrokovanih s *Pseudomonas aeruginosa* javlja se u bolnicama i ustanovama za njegu). Uz akutne leukemije koje čine gotovo polovicu navedenih slučajeva, javlja se i kod limfoma, nakon transplantacije koštane srži i solidnih organa, kod neutropenije, deficijencija imunoglobulina, opeklina itd (Aksamit, 1993).

6.1. Epidemiologija

Infekcija krvotoka uzrokovana s *P. aeruginosa* je najčešće stečena u bolnici i predstavlja problem širom svijeta. Prema već spomenutoj prospektivnoj analizi SCOPE (engl. *Surveillance and Control of Pathogens of Epidemiologic Importance*), *Pseudomonas* spp. bio je uzročnik 4% bakterijemija i treći vodeći uzročnik gram-negativnih infekcija (Wisplinghoff et al., 2004). U jedinicama intenzivnog liječenja taj postotak je još i veći. Faktori rizika koji pogoduju nastaku bakterijemije uzrokovane s *P. aeruginosa* su: 1) neutropenija ili druge imunodeficijencije (hematološki maligniteti, transplantiran organ ili koštana srž, HIV infekcija), 2) visoka dob, 3) bolesti pankreatobilijarnog sustava, 3) teške opekline, 4) CVK ili urinarni kateter, 5) antimikrobna terapija u posljednja 3 mjeseca, 6) rane i ozljede kontaminirane vodom, 7) nedavna hospitalizacija (Chatzinikolaou et al., 2000; Schechner et al., 2009; Sorvillo et al., 2001). Hospitalno stečena bakterijemija uzrokovana s *P. aeruginosa* može nastati kao posljedica infekcije pluća, bilijarnog ili gastrointestinalnog trakta, urinarnog trakta, infekcije kože i mekih tkiva ili iz inficiranih intravaskularnih katetera. Izvor bakterijemije ostaje nepoznat u 40% slučajeva (Kanj & Sexton, 2015). Studija provedena na 794 pacijenta s alogeno transplantiranom koštanom srži pokazala je da je incidencija *P. aeruginosa* kolonizacije gastrointestinalnog trakta i posljedične
pseudomonasne infekcije niska. Od 794 pacijenta, 58 (7.3%) je imalo bar jednu koprokulturu pozitivnu na \textit{P. aeruginosa}; 19/58 (32.8%) je razvilo pseudomonasnu infekciju. S druge strane, 37/736 (5%) pacijenata koji nisu bili kolonizirani je razvilo pseudomonasnu infekciju. Tipovi infekcije su uključivali pneumoniju u 26 (46%), bakterijemiju u 20 (36%), infekciju urinarnog trakta u 8 (14%) pacijenata te ostale infekcije u 2 (4%) pacijenta. Time je ustanovljeno da su pacijenti koji nisu bili kolonizirani imali malu vjerojatnost da će razviti infekciju, a većina pacijenata koji su razvili infekciju nisu imali fekalnu kolonizaciju, što sugerira drugi izvor infekcije. Koprokulture se time nisu pokazale kao pouzdani pokazatelj izvora infekcije (Nesher et al., 2014).

Još jedna studija, u trajanju od 10 godina, koja je obuhvatila 1310 pacijenata oboljelih od hematoloških bolesti ustanovila je da rutinski \textit{screening} \textit{P. aeruginosa} kolonizacije kod pacijenata pod rizikom od infekcije nema utjecaj na previđanje eventualne bakterijemije kod tih bolesnika. Uzorci za \textit{screening} bili su bris nazofarinksa i rektuma. Od 1310 pacijenata, 108 (8.2%) je bilo pozitivno, ali samo 8 (0.7%, od toga 6 sa istim izolatom kao u brisevima) je razvilo bakterijemiju (Sidler et al., 2015).

6.2. Klinička slika

Klinička slika bakterijemije uzrokovane \textit{P. aeruginosa} ne razlikuje se od kliničke slike bakterijemije uzrokovane drugim gram-negativnim bacilima. Svi gram-negativni bacili sadrže endotoksin, koji je inicijator šoka u tih pacijenata. Klinička manifestacija uglavnom obuhvaća vrućicu, tahikardiju i tahipneju, sa ili bez tresavice. Česte komplikacije, posebno u imunokompromitiranih pacijenata, su dezorijentacija, hipotenzija i respiratorna insuficijencija koje obično ukazuju na nastanak septičkog šoka, pneumonije ili akutnog respiratornog distres sindroma. Septički šok se vidi u oko 25% pacijenata u sklopu kliničke slike gram-negativne bakterijemije (Kang et al., 2005).

Pneumonija uzrokovana \textit{P. aeruginosa} može nastati kao posljedica bakterijemije ili bakterijemija može nastati kao posljedica hematogenog širenja bacila iz primarnog plućnog žarišta. Pretpostavlja se da pneumoniji prethodi kolonizacija gornjeg dišnog sustava i distalna aspiracija, a zatim dolazi do hematogene invazije i nastanka difuzne pneumonije. Uz nju mogu postojati ekstrapulmonalna žarišta infekcije –

Dodatni simptomi variraju ovisno o lokaciji primarne infekcije (Kanj & Sexton, 2014). Kod nekih pacijenata se razvije echyma gangrenosum (slika 2) - lezija kože i sluznica koja nastaje kao posljedica perivaskularne bakterijske invazije arterija i vena sa sekundarnom ishemičnom nekrozom. Lezije rapidno progradiraju iz stadija makule u nodule, vezikule i ulcerirajuće eshare. Eritematozne nodularne lezije se razviju u hemoragično, ulcerativno i nekrotično područje. Najčešće se nalaze u aksili, preponama i perianalnoj regiji. Iako echyma gangrenosum nije patognomonična za infekciju uzrokovanoj P. aeruginosa, prisutnost ovih lezija treba odmah potaknuti sumnju da je uzročnik infekcije navedena bakterija (Kanj & Sexton, 2014). Druge kožne lezije koje se mogu javiti u sklopu pseudomonasne bakterijemije su: difuzni makulopapularni osip, petehije, bolne nakupine vezikula ili pustula, ravna oštro ograničena područja celulitisa koja s vremenom nekrotiziraju i metastatski apscesi na ekstremitetima ili vršcima prstiju (Roberts et al., 1982; Forkner et al., 1958).

Slika 2. Echyma gangrenosum
6.3. Lijećenje
Što raniji početak terapije antibioticima ključan je u liječenju bakterijemije uzrokovane s *P. aeruginosa*. Pacijenti koji imaju povećan rizik (npr. pacijenti s neutropenijom ili teškim opeklinama) te oni sa sepsom ili kliničkom slikom šoka uobičajeno se liječe kombiniranom empirijskom antibioticom terapijom prije određivanja osjetljivosti uzročnika te se po potrebi kasnije terapija modificira kada se uzročnik kultivira i napravi antibiotogram. Upotrebljava se kombinacija aminoglikozida ili s antipseudomonasnim penicilinom proširenog spektra ili cefalosporinom koji ima antipseudomonasnu in vitro aktivnost. Ne postoje uvjerljivi dokazi da je kombinirana terapija učinkovitija od monoterapije, no taj pristup je i dalje zastupljen, osobito kod neutropeničnih pacijenata. Teoretski, dvije glavne prednosti kombinirane antibiotičke terapije bile bi povećana pokrivenost uzročnika i sinergija antibiotika čime se povećala učinkovitost liječenja. Međutim, najveća među provedenim studijama, kohortna studija koja je uključivala 593 epizode bakterijemije uzrokovane s *P. aeruginosa*, nije pokazala značajnu prednost kombinirane pred monoterapijom (Peña et al., 2013). Pacijente koji ne spadaju u visokorizičnu skupinu najčešće je dovoljno liječiti jednim intravenskim antipseudomonasnim antibiotikom; aminoglikozidi ne bi trebali biti upotrijebljeni sami. Trajanje terapije u najvećoj mjeri ovisi o primarnom žarištu infekcije. Također treba ukloniti inficirane ketetere, a apscese i opstrukcije treba drenirati i ukloniti.

6.4. Prognoza
Bakterijemija uzrokovana s *P. aeruginosa* se povezuje s većim mortalitetom u usporedbi s bakterijemijama uzrokovanim drugim gram-negativnim ili gram-pošitivnim bacilima. Studija provedena na 314 pacijenata s bakterijemijom uzrokovanim s *P. aeruginosa* i *S. aureus* je pokazala značajno viši mortalitet bakterijemije uzrokovane s *P. aeruginosa* (30.6%) u usporedbi s bakterijemijom uzrokovanim s meticilin-osjetljivim *S. aureus* (16.2%) i meticilin-rezistentnim *S. aureus* (13.5%) (OSMON et al., 2004). Retrospektivna analiza 136 slučajeva bakterijemije uzrokovane s *P. aeruginosa* pokazala je mortalitet od 39% unutar 30 dana od dijagnoze (Kang et al., 2003). Mortalitet je osobito visok u neutropeničnih pacijenata te u pacijenata koji razviju septički šok. Studija temeljena na 133 epizode bakterijemije uzrokovane s *P. aeruginosa* retrogradno je utvrdila četiri varijable koje neovisno jedna o drugoj utječu
na ishod bolesti: 1) razvoj septičkog šoka; 2) granulociti u krvi<500 mm3; 3) neprimjerena antibiotitska terapija; 4) razvoj septičnih metastaza (Bisbe et al., 1988). Druge studije su pokazale da prognoza ovisi o podležećem stanju bolesnika i primarnoj lokaciji infekcije. U još jednoj studiji, temeljenoj na 100 slučajeva bakterijemije uzrokovane s P. aeruginosa, preživljenje je direktno koreliralo sa osnovnom bolesti pacijenta. Preživljenje pacijenata sa nefatalnim podležećim bolestima iznosilo je 55%, dok je kod pacijenata sa fatalnim bolestima ono bilo 25% (Baltch et al., 1979).

Rezistencija na antibiotike također nepovoljno utječe na prognozu. Sojevi P. aeruginosa koji proizvode metalo-beta-laktamaze ili specifične (PER-1) beta-laktamaze proširenog spektra, kada su prisutni u krvotoku, uzrokuju viši mortalitet (Marra et al., 2006; Endimiani et al., 2006). Drugi faktori koji utječu na ishod bakterijemije uzrokovane s P. aeruginosa su polimikrobna bakterijemija i viša dob pacijenata (Aliaga et al., 2000; Scheetz et al., 2009).

Studija koja je uključivala 80 epizoda pseudomonasnih infekcija u 66 pacijenata oboljelih od hematoloških malignih bolesti pokazala je povećan rizik od septičkog šoka, time i smrti, kod pacijenata s vrucicom koja traje ≥3 dana uz antibiotsku terapiju, hemoglobinom <50 g/L, hipofosfatemijom, hipoproteinemijom <50 g/L, prokalcitoninom >10ng/mL i povišenim serumskim laktatima. Mortalitet od septičkog šoka iznosio je 19.6% (Jeddi et al., 2011). Naravno, uz sve navedeno jedan od najvažnijih faktora preživljenja je pravovremena i optimalna antibiotitska terapija. Studija temeljena na 410 slučajeva bakterijemije uzrokovane s P. aeruginosa pokazala je veliku razliku u preživljenju pacijenata koji su primali prikladnu antibiotsku terapiju (preživljenje 67%) naspram onih koji nisu (preživljenje 14%). Terapija odgođena za jedan ili dva dana smanjila je postotak preživljenja sa 74% na 46% (Bodey et al., 1985). Prognoza bakterijemija uzrokovanih s P. aeruginosa u bolesnika s hematološkim neoplazmama se značajno poboljšala (Todeschini et al., 1999), najviše zbog promjena u liječenju – upotreba novih antipseudomonasnih betalaktamskih antibiotika i ciprofloksacina umjesto aminoglikozida kao monoterapije te promptno uklanjanje katetera.
7. ENDOKARDITIS UZROKOVAN S PSEUDOMONAS AERUGINOSA

Endokarditis uzrokovani s P. aeruginosa nije čest, a javlja se najčešće u intravenoznih narkomana i/ili osoba sa umjetnim srčanim zaliscima i elektrostimulatorima. Povremeno se javlja kao endokarditis stečen u bolnici, pa je u jednoj studiji P. aeruginosa zabilježen kao uzročnik 10% slučajeva endokarditisa na odjelu intenzivne njege (Gouëllo et al., 2000).

7.1. Klinička slika

Klinička manifestacija infektivnog endokarditisa uzrokovanih ovim mikroorganizmom se ne razlikuje od endokarditisa uzrokovanih drugim uzročnicima. Uključuje vrućicu, šumove na srcu, petehije po koži, emboliju i endokardne vegetacije. Budući da je usko povezan sa intravenskom upotrebom droge, najčešće je zahvaćen triskuspoidni zalistak, no može doći do zahvaćanja multiplih zalistaka. Zahvaćenost triskupidnog zališka očituje se kašljem, bolovima u prsima i hemoptizom. Ti pacijenti imaju multiple diskretne plućne lezije koje mogu progredirati do kavitacije. Pacijenti sa infekcijom lijevog srca često imaju fuminantnu kliničku sliku sa brzom progresijom simptoma i zatajenjem srca ili arterijskom embolijom. Česte komplikacije su prstenasti i anularni apscesi (Komshian et al., 1990).

7.2. Dijagnoza

Za dijagnozu je potrebno učiniti ehokardiografiju i primijeniti Duke kriterije za endokarditis. Velika većina pacijenata s bakterijemijom uzrokovanim s P. aeruginosa nema endokarditis (čak i oni s rizičnim čimbenicima kao što je umjetni zalistak) tako da nije opravdana isplativost ehokardiografskog pregleda svih oboljelih od bakterijemije. Iznimka su osobe kod kojih je infekcija krvotoka i dalje prisutna nakon terapije, osobe za kliničkim znakovima infektivnog endokarditisa (novonastali šum na srcu, embolija perifernih arterija, pluća ili središnjeg živčanog sustava) te prisutnost faktora rizika za nastanak endokarditisa (intravenska upotreba droga, umjetni zalistak, endokarditis u anamnezi).
7.3. Liječenje
Liječenje endokarditisa uzrokovanih s *P. aeruginosa* obično zahtjeva kombinaciju antibiotika i kirurškog liječenja, što se temelji na činjenici da betalaktamski antibiotici imaju spori nastup baktericidne aktivnosti, nemaju postantibotski efekt i mogu izazvati brzi nastanak rezistencije (Karaj & Sexton, 2015). Za antimikrobnu terapiju preporučena je upotreba dva parenteralna antipseudomonasna antibiotika, od kojih je jedan aminoglikozid, te bi trebala trajati bar 6 tjedana. Potrebno je što prije zamijeniti zahvaćeni zalistak, posebno kod lijevostranog endokarditisa. U slučaju nastanka apscesa u slezeni potrebno je učiniti splenektomiju. Trikuspidna i/ili pulmonalna valvulektomija bez trenutne zamjene zaliska radi se u pacijenata s desnostranim endokarditisom kod kojih bakterijemija traje i nakon dva tjedna terapije ili koji imaju relaps nakon terapije u trajanju od 6 tjedana (Arbulu et al., 2001; Robin et al., 1976). Trikuspidni zalistak se u tom slučaju može zamijeniti unutar šest do osam mjeseci.

7.4. Prognoza
Prognoza endokarditisa uzrokovanih s *P. aeruginosa* nije dobra, te ovisi o lokaciji infekcije i njenoj terapiji. U lijevostranom endokarditisu ishod je bolji ako se, uz antimikrobnu terapiju, učini i rana zamjena zaliska u odnosu na ishod ako se primijeni samo antimikrobnja terapija (Wieland et at, 1986; Reyes et al., 2009).

8. LIJEČENJE INFEKCIJA UZROKOVANIH S *PSEUDOMONAS AERUGINOSA*

P. aeruginosa je po svojoj prirodi rezistentan na brojne antimikrobnje kemoterapeutike i posjeduje razne mehanizme stjecanja otpornosti na antibiotike što dovodi do stvaranja izrazito rezistentnih sojeva, posebice u bolničkom okruženju. Ukoliko je otporan na tri ili više antimikrobnja lijeka naziva se multirezistentan *P. aeruginosa*. Faktori rizika za razvoj multiple rezistencije su produljena hospitalizacija, izloženost antimikrobnjoj terapiji i imunokompromitiranost (Gerald & Rhamphal, 1994). Primjerice, studija provedena na 572 slučaja bakterijemije uzrokovane s *P. aeruginosa* pokazala je da je u osoba koje su primile ciprofloksacin unutar 30 dana prije nastanka bakterijemije bila povećana učestalost rezistencije na ceftazidim, imipenem, meropenem, piperacilin-tazobaktam i ciprofloksacin u odnosu na osobe...
koje taj antibiotik nisu primile (López-Dupla et al., 2009), što se smatra posljedicom rasta mutiranih sojeva u prethodno koloniziranih ili inficiranih pacijenata. Pojavljuje se najčešće na rizičnim odjelima (jedinice intenzivnog liječenja, hematološki odjeli).

8.1. Mehanizmi rezistencije na antibiotike

Pseudomonas aeruginosa ima jedan od najvećih genoma u bakterijskom svijetu što je čini visoko adaptibilnom za promjene u okolišu. Tome pridonosi i horizontalni prijenos gena. Mehanizmi rezistencije na antibiotike dijele se na intrinzične i stečene. Intrinzični su rezultat velikog broja genetski kodiranih mehanizama a stečeni podrazumijevaju naknadno nastale dodatne mehanizme ili posljedice mutacija nastalih pod selektivnim pritiskom.

Smanjena propusnost vanjske membrane

Propusnost vanjske membrane _P. aeruginosa_ vrlo je mala. Iznosi samo 8% propusnosti vanjske membrane _E. coli_ (Hancock & Brickman, 2002). Male hidrofilne molekule antibiotika poput betalaktama i fluorokinolona ulaze u stanicu _P. aeruginosa_ preko porinskih kanala. U rezistenciji na antibiotike najvažniju ulogu ima porin OprD koji omogućuje ulazak karbapenema u stanicu _P. aeruginosa_. Gubitak proteina OprD iz vanjske membrane značajno smanjuje osjetljivost vrste _P. aeruginosa_ na karbapeneme, pogotovo imipenem. Gubitak OprD u kombinaciji s pojačanom ekspresijom transportera za aktivno izbacivanje antibiotika dovodi do visoke rezistencije na imipenem, meropenem i doripenem (Gužvinec et al., 2012).

Efluks

Do danas je identificirano pet skupina bakterijskih efluksnih sustava, od kojih je u _P. aeruginosa_ i srodnih bakterija najznačajnija RND (engl. Resistance Nodulation Division) skupina (Schweizer 2003). Pumpe iz skupine RND su složeni transmembranski sustavi koji se sastoje od tri dijela: transportni protein smješten u staničnoj membrani, porin smješten u vanjskoj membrani i protein smješten u periplazmatskom prostoru. Ovakav trodjelni sustav tvori kanal koji se pruža kroz čitavu stijenu bakterijske stanice te omogućuje izbacivanje lipofilnih i amfipatskih lijekova iz periplazmatskog prostora i citoplazme u izvanstanični prostor. Uslijed pojačane aktivnosti efluks pumpi dolazi do smanjenja stanične koncentracije
antibiotika ispod minimalnih inhibitornih razina, a rezultat je obično istovremena rezistencija na različite grupe antibiotika i pojava multiplo rezistentnih sojeva (Poole & Srikumar 2001). Najznačajnija efluks pumpa, MexAB-OprM, bitno pridonosi rezistenciji. Pojačana ekspresija MexAB-OprM efluks pumpe rezultira smanjenom osjetljivošću na kinolone, antipseudomonasne peniciline i cefalosporine (Livermore, 2002). Regulacija efluksnih pumpi odvija se u tandemu s regulacijom ekspresije proteina membrane vanjske membrane.

Promjena cilnog mjesta djelovanja antibiotika

Inaktivacija antibiotika bakterijskim enzimima

Enzimi opisani kod *P. aeruginosa* zaslužni za rezistenciju i inaktivaciju antibiotika su betalaktamaze, koje uključuju stečene betalaktamaze molekularne klase A, stečene betalaktamaze molekularne klase B (metalo-betalaktamaze), betalaktamaze AmpC (serinske betalaktamaze klase C) i betalaktamaze molekularne klase D, te aminoglikozid-modificirajuće enzime. U početku su stečene betalaktamaze kod *P. aeruginosa* uključivale enzime klase A ograničenog spektra supstrata koji je uključivao samo peniciline i starije cefalosporine užeg spektra djelovanja, no s vremenom je opisan veliki broj novih enzima koji uključuju betalaktamaze proširenog spektra koje hidroliziraju veći broj betalaktama uključujući cefalosporine širokog spektra i monobaktame, te karbapenemaze koje hidroliziraju većinu betalaktama uključujući i karbapeneme (Gužvinec at al, 2012).
8.2. Antimikrobnja terapija
Ovisno o rezultatima testiranja osjetljivosti na antibiotike, u liječenju *P. aeruginosa* infekcija upotrebljavaju se antipseudomonasni penicilini (tikarcilin, piperacilin, karbenicilin), cefalosporini treće i četvrte generacije (ceftazidim, cefepim, cefoperazon), karbapenemi (imipenem, meropenem), monobaktami (aztreonam), fluorokinoloni (ciprofloksacin, norfloksacin, levofloksacin), aminoglikozidi (gentamicin, amikacin) i u multirezistentnih sojeva toksičniji antibiotici poput polimiksina (polimiksin B i kolistin). Često se uz betalaktamski antibiotik u liječenju upotrebljava kombinacija s aminoglikozidom (Drenjačević & Vraneš, 2013). Polimiksini, koji su napušteni kao terapija izbora razvitkom antipseudomonasnih antibiotika zbog zabilježene nefrotoksicičnosti i neurotoksicičnosti, u novije vrijeme su vraćeni u upotrebu upravo zbog gorućeg problema antibiotičke rezistencije u višestruko rezistentnim sojevima *P. aeruginosa*. Što se tiče rezistencije *P. aeruginosa* u Hrvatskoj, prema podacima iz 2011. g., bilježi se porast rezistencije na ceftazidim i piperacilin/tazobaktam (porast sa 6% za ceftazidim, odnosno 7% za piperacilin/tazobaktam u 2010. g. na 11% za ceftazidim i 12% za piperacilin/tazobaktam u 2011. g.). Zabrinjavajući je postupni, ali kontinuirani porast rezistencije *P. aeruginosa* na carbapeneme, imipenem i meropenem. U 2004. g. zabilježena je 9% rezistencija na oba antibiotika, dok je u 2011. g. ona iznosila 14% rezistentnih na imipenem i 13% na meropenem (Tambić A & Tambić T, 2011).

8.3. Prevencija i kontrola infekcije
P. aeruginosa je vrlo široko rasprostranjena i prisutna posvuda u okolišu. Zbog toga je iznimno teško eradicirati iz jednom kontaminiranog područja. Širenje nozokomijalnih patogeni, uključujući i *P. aeruginosa*, često je preko ruku, posebice u osoba koje nose prstenje, dugačke ili umjetne nokte. Za uspješnu kontrolu i suzbijanje širenja bolničkih infekcija ključna je edukacija medicinskog i ostalog osoblja o ispravnoj higijeni ruku (Boyce & Pittet, 2002). Osobe koje ulaze u sobu u kojoj se nalazi pacijent koloniziran s višestruko rezistentnim mikroorganizmom trebaju nositi rukavice i ogrtače te obratiti pažnju na higijenu ruku i ispravno odlaganje materijala kad napuštaju sobu. U slučaju izbijanja bolničke epidemije potrebno je upotrijebiti molekularne epidemiološke metode te potražiti izvor zaraze u okolišu. Ukoliko se dokaže klonalnost a bez dokazanog okolišnog izvora infekcije
treba primjeniti kontaktnu izolaciju što uključuje i identifikaciju asimptomatskih nositelja i odvajanje od nekoloniziranih pojedinaca. Poželjno je reducirati upotrebu antibiotika na najmanju moguću mjeru da se spriječi nastanak višestruko rezistentnih sojeva *P. aeruginosa*. Medicinsku opremu treba prvo ručno očistiti, a zatim sterilizirati parom (ako je otporna na toplinu). Za čišćenje se ne smije koristiti voda iz slavine budući da može biti kolonizirana s *P. aeruginosa*.
9. ZAHVALE

Zahvaljujem svojoj mentorici, doc. dr. sc. Ivani Mareković, što mi je pomogla u izradi ovog diplomskog rada.
10. LITERATURA

11. ŽIVOTOPIS

Pasivno govorim njemački, a aktivno engleski jezik.