Prognostički značaj fluorescencijske in situ hibridizacije (FISH) u bolesnika s kroničnom limfocitnom leukemijom

Drmić, Željka

Master's thesis / Diplomski rad

2017

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, School of Medicine / Sveučilište u Zagrebu, Medicinski fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:105:616993

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2020-12-25

Repository / Repozitorij:

Dr Med - University of Zagreb School of Medicine Repository
Željka Drmić

Prognostički značaj flourescencijske in situ hibridizacije (FISH) u bolesnika s kroničnom limfocitnom leukemijom

DIPLOMSKI RAD
POPIS KRATICA

KLL - kronična limfocitna leukemija

MBL - eng. *monoclonal B-lymphocytosis*, monoklonalna B-limfocitoza

SLL - eng. *small lymphocytic lymphoma*, limfom malih stanica

iwCLL - eng. *The International Workshop on Chronic Lymphocytic Leukemia*

TTM - totalna tumorska masa

LTD - podvostručenje broja limfocita u 12 mjeseci

TK - tirozin kinaza

β2MG - beta-2-mikroglobulin

IgVH - varijabilne regije imunoglobulinskih gena

FISH - flourescencija in situ hibridizacija

FCR - fludarabin, ciklofosfamid, rituksimab

ORR - eng. *overall response rate*, stupa ukupnog odgovora

PFS - eng. *progression free survival*, vrijeme do progresije bolesti

OS - eng. *overall survival*, ukupno preživljenje

FC - fludarabin, ciklofosfamid

BR - bendamustin, rituksimab

Chl-R - klorambucil, rituksimab

Chl-O - klorambucil, obinutuzumab

BCR - eng. *B-cell receptor*

LSI - eng. *locus-specific identifier*

CEP - eng. *centromeric enumeration probe*

PR - parcijalna remisija

KR - kompletna remisija

BTK - Brutonova tirozin kinaza
SADRŽAJ

1. UVOD ... 1
 1.1 Definicija.. 1
 1.2 Epidemiologija ... 1
 1.3 Klinička slika .. 1
 1.4 Dijagnoza .. 2
 1.5 Prognostički značaj sustava klasificiranja bolesti ... 2
 1.6 Prognostički značaj FISH-a ... 3
 1.7 Kriteriji za početak liječenja .. 4
 1.8 Liječenje .. 5

2. HIPOTEZA .. 7

3. CILJ RADA .. 7

4. ISPITANICI I METODE .. 8
 1.9 Dizajn studije .. 8
 1.10 Ispitanici .. 8
 1.11 Metode .. 8
 1.11.1 FISH metoda ... 9
 1.12 Statistička analiza .. 10

5. REZULTATI ... 11
 1.13 Značajke bolesnika i bolesti .. 11
 1.14 Citogenetske promjene ... 12
 1.15 Terapija i ishod ... 13
 1.16 Ukupno preživljenje i vrijeme bez progresije bolesti ... 15
 1.17 Ovisnost prognostičkih faktora o vremenu bez progresije bolesti 17
 1.18 Ovisnost citogenetike o vremenu bez progresije bolesti i ukupnom preživljenju 19

6. RASPRAVA .. 22

7. ZAKLJUČAK ... 25

8. ZAHVALE ... 26

9. LITERATURA ... 27

10. ŽIVOTOPIS .. 31
Željka Drmić

PROGNOSTIČKI ZNAČAJ FLOURESCENCIJSKE IN SITU HIBRIDIZACIJE (FISH) U BOLESNIKA S KRONIČNOM LIMFOCITNOM LEUKEMIJOM

Flourescencijska in situ hibridizacija omogućila je detekciju citogenetskih promjena u bolesnika sa kroničnom limfocitnom leukemijom. Ova metoda koristi se u dijagnostičkoj obradi bolesnika prije inicijacije kemoimunoterapije. Ova retrospektivna studija obuhvatila je 70 novodijagnosticiranih bolesnika u razdoblju između 2013. i 2017. godine sa ciljem praćenja ishoda bolesti, odnosno brzine progresije bolesti i odgovora na konvencionalnu terapiju, u odnosu na nalaz citogenetskih promijena, uzimajući u obzir i druge prognostičke čimbenike dobi, spola te kliničkog stadija.

Citogenetske promjene nađene su u 20 bolesnika. Najčešći nalaz bila je delecija 13q14 (16%), zatim 17p (9%), dok su delecija 11p i trisomija 12 nađene u samo jednog bolesnika. Iako je broj bolesnika sa nađenim citogenetskim promjenama bio malen, nađene su statistički značajne razlike u OS-u i PFS-u među skupinama, gdje se istaknula delecija 17p kao citogenetska promjena najlošijeg ishoda.

Ključne riječi: kronična limfocitna leukemija, prognostički čimbenik, FISH
SUMMARY

Željka Drmić

PROGNOSTIC VALUE OF FLOURESCENCE IN SITU HYBRIDIZATION (FISH) IN PATIENTS WITH CHRONIC LYMPHOCYTIC LEUKEMIA

Flourescence in situ hybridization has improved the detection of genomic aberrations in patients with chronic lymphocytic leukemia (CLL). This method is used to identify chromosomal abnormalities in patients with CLL before treating a patient on protocol. We applied FISH to blood smear samples from all newly diagnosed patients with CLL in the period from 2013 to 2017. Overall survival and progression free survival in 70 patients were analysed to evaluate prognosis regarding chromosomal aberrations, age, gender, Binet and Rai stage. Chromosomal aberrations were found in 20 of 70 patients. Most frequent aberrations were deletions in 13q14 (16%), 17p (9%), while deletion 11q and trisomy 12 were found in one patient. Patients with 17p deletion had the shortest progression free survival and overall survival. In conclusion, FISH is an important prognostic factor of disease progression and overall survival.

Key words: chronic lymphocytic leukemia, prognostic factor, FISH
1. UVOD

1.1 Definicija

Kronična limfocitna leukemija (KLL) je zloćudna novotvorina B-limfocita obilježena infiltracijom koštane srži i perifene krvi, uz promjenjiv stupanj infiltracije limfnih čvorova, slezene i ostalih organa. (1) Morfološki, tumorsko tkivo sastoji se od malih, naizgled zrelih limfocita, uz promjenjivi udio ostalih limfocitnih varijanti (veći, atipični limfociti te prolimfocita). Imunološki, to su stanice koje pokazuju koekspresiju T-antigena CD5 i B-antigena CD19, CD20 i CD23. (2) Za dijagnozu KLL-a potrebno je najmanje 5x10⁹/L limfoidnih stanica u perifernoj krvi čija se klonalnost treba potvrditi protočnom citometrijom. Prisutnost manjeg broja stanica potvrđene klonalnosti definira se kao monoklonalna B-limfocitoza (MBL). (2,3) Prema klasifikaciji Svjetske zdravstvene organizacije kronična limfocitna leukemija i limfom malih stanica (SLL, eng. Small Lymphocytic Lymphoma) različite su manifestacije iste bolesti. Glavna razlika između dvaju entiteta je što se kod KLL-a abnormalni limfociti nalaze u koštanoj srži i krvi, dok kod SLL-a dominantno infiltriraju solidne organe, obično limfne čvorove i koštanu srž. (4)

1.2 Epidemiologija

KLL je najčešća leukemija odraslih u zapadnim zemljama s procijenjenom incidencijom u Sjedinjenim Američkim Državama od 5,03 na 100.000 muškaraca i žena. (5) Procijenjena incidencija u Hrvatskoj iznosi 6,22 na 100.000 stanovnika. (6) Od KLL-a uglavnom obolijevaju ljudi starije životne dobi sa medijanom pojavljivanja u dobi od preko 70 godina. Muškarci obolijevaju češće nego žene, u omjeru 1.5-2 : 1.(5)

1.3 Klinička slika

Kako se u više od tri četvrtine bolesnika bolest otkriva »slučajnim« pronalaskom izolirane periferne limfocitoze, većina bolesnika nema simptoma niti znakova bolesti. (7) Simptomi koji dovode bolesnika liječniku mogu biti posljedica infekcija, autoimune hemolitičke anemije, rjeđe imunotrombocitopenije te tumorskog povećanja limfnih čvorova ili slezene. (8) Noćno
znojenje, gubitak na tjelesnoj težini i umor u sklopu B-simptoma prisutni su tek u oko 15% bolesnika. Pri fizikalnom pregledu često se otkrivaju povećani limfni čvorovi u regijama vrata, aksila i ingvinuma. Limfadenopatija može biti lokalizirana ili generalizirana, a simetrična, generalizirana limfadenopatija s vremenom se razvije u većine bolesnika. (9) Infekcije kao posljedice imunosupresije čest su i značajan problem u oboljelima: u početku dominiraju bakterijske infekcije kao posljedica hipogamaglobulinemije, a s progresijom bolesti, uz produbljenje hipogamaglobulinemije i razvoj znatnijeg deficit stanične imunosti, javljaju se i teže virusne te gljivične infekcije.(10) Karakterističan je varijabilni tijek razvoja i ishoda bolesti – u nekih bolesnika bolest je indolentnog tijeka i žive desetljećima bez potrebe za terapijom, dok u drugih bolest agresivno progredira i, unatoč intenzivnoj terapiji, podliježu bolesti kroz nekoliko godina. (11)

1.4 Dijagnoza

Prema Međunarodnoj skupini za kroničnu limfocitnu leukemiju (iwCLL, eng.TheInternational Workshop on Chronic Lymphocytic Leukemia) iz 2008., za dijagnozu kronične limfocitne leukemije nužno je zadovoljiti sljedeće kriterije: broj B limfocita u perifernoj krvi iznosi >5x10⁹/L čija se klonalnost treba potvrditi protočnom citometrijom; morfologija odgovara malim, zrelim limfocitima bez vidljive jezgrice, dok atipične stanice (veći atipični limfociti ili prolimfociti) mogu činiti ispod 55% ukupnih limfocita; imunofenotipizacijom se nalazi ekspresija CD5, bez pozitivnosti drugih pan-T antigena, ekpresija B-antigena (CD19, CD20 ili CD23), dok je gustoća CD20 i CD79b karakteristično manja u usporedbi sa normalnim B-limfocitima. Prema ovim kriterijima dijagnoza se temelji na razmazu periferne krvi i određivanju imunofenotipa pa je protočna citometrija dostatna za jasnu dijagnozu, no mogu se analizirati i uzorci koštane srži ili drugih tkiva. Biopsija koštane srži nije nužna za postavljanje dijagnoze, ali je još uvijek preporučljiva pretraga za određivanje uzorka infiltracije i opsega zahvaćenosti koštane srži bolešću te razjašnjavanje etiologije eventualnih citopenija. (2)

1.5 Prognostički značaj sustava klasificiranja bolesti

Postoje dva široko prihvaćena kvalitativna sustava klasificiranja kliničkog stadija bolesti prema Raiu i Binetu čija je uporaba jednostavna i lako primjenjiva. Oba određuju poširenost i intenzitet bolesti te razvrstavaju bolesnike u 3 grupe prema niskom, srednjem i visokom riziku kojima se pokušava procijeniti medijan preživljenja. (12,13) Međutim, unatoč uvriježenoj
uporabi tih klasifikacija preko 40 godina i dalje postoji znatna klinička variabilnost ishoda među bolesnicima iste Rai i Binet kategorije. (14) Treći i kvantitativni sustav određivanja ukupne tumorske mase (TTM) osniva se na činjenici da je tumorska masa raspodijeljena u koštanoj srži i perifernoj krvi, limfnim čvorovima te slezeni pa na taj način određuje veličinu tumora neovisno o insuficijenciji mijelopoeze. Stoga TTM ima bitnu ulogu u praćenju progresije bolesi i određivanja terapijskog učinka. (15) Navedeni sustavi klasificiranja su lako primjenjivi, jeftini i potpuno se oslanjaju na fizikalni pregled i standardne laboratorijske testove. Neprevidiv tijek ishoda bolesti istaknuo je potrebu prethodnih 20-ak godina za traženjem boljih progostičkih faktora koji bi predvidjeli preživljenje i progresiju bolesti te objektivizirali korist ranog terapijskog pristupa, naročito u ranim stadijima. (7) Do danas su pronađeni brojni nepovoljni progostički faktori kao što su podvostručenje broja limfocita u 12 mjeseci, (LTD), povišene vrijednosti serumske LDH, timidin kinaze (TK) i β₂-mikroglobulina (β2MG). (16–19) Veliki broj staničnih biljega pokazao je svoju vrijednost u prognozi KLL-a među kojima se ističu kao osobito važni CD38 i/ili ZAP-70 zbog svoje važnosti u biologiji B-KLL-a i zbog određene povezanosti s statusom mutiranosti varijabilnih regija imunoglobulinskih gena (IgVH). B-receptori kodirani su ograničenim brojem IgHV gena. U oko 50% bolesnika u IgHV gena prisutne su somatske hipermutacije te je kod tih bolesnika slabije izraženo signaliziranje preko B-receptora, manje izražena proliferacija i bolesnici imaju bolju prognozu, dok nemutirani imaju bitno lošiju prognozu. (18,20) No zbog složenosti i skupoće pretrage, ova molekularno genetska analiza ne koristi se u svakodnevnjoj kliničkoj praksi.

1.6 Progostički značaj FISH-a

popravak i eliminaciju stanice sa uništenom DNK, sudjeluje u regulaciji mitoze i apoptoze. (7,21)

Bolesnici u kojih je nađena delecija 17p imaju lošiji ishod i relativno su rezistentni na standardnu kemoimunoterapiju. Iako je ta delecija nađena u manje od 10% svih bolesnika, oni čine 30-50% svih bolesnika koji razvijaju rezistenciju ili su refraktorni na standardnu kemoimunoterapiju. (22) Bolesnici u kojih je nađena 11q delecija često se prezentiraju sa „bulky“ limfadenopatijom (limfni čvorovi promjera >10 cm), brzom progresijom bolesti i kraćim ukupnim preživljenjem. (23) Detekcija ovih citogenetskih promjena dovela je do novih spoznaja u razumijevanju tijeka KLL-a i potaknula veliki broj studija koje su ispitivale prognoštički značaj citogenetskih promjena i njihovu ulogu u rezistenciji na konvencionalnu terapiju.

1.7 Kriteriji za početak liječenja

Nakon postavljanja dijagnoze KLL-a nije potrebno odmah liječiti sve bolesnike. Prema nekoliko provedenih studija, upotreba alkilirajućih lijekova u bolesnika u ranom asimptomatskom stadiju bolesti (Rai 0, Binet A) ne produžuje preživljenje. (24,25) Prema tome, u takvih bolesnika liječenje nije potrebno, već se koristi "watch and wait" strategija koja uključuje redovito praćenje i bilježenje napredovanja bolesti. (26) Indikaciju za liječenje imaju oni bolesnici kod kojih je bolest postala simptomatska (aktivna, progresivna). Prema iwCLL smjernicama, aktivnu bolest čini barem jedan od sljedećih kriterija: progresivna mijelosupresija (razvoj ili pogoršanje anemije i/ili trombocitopenije); bulky bolest (slezena ≥6 cm ispod rebrenog luka ili limfni čvorovi ≥10 cm); progresivna limfocitoza (podvostrukrenje broja limfocita za >50% u 2 mjesec); autoimuna anemija i/ili trombocitopenija koja ne odgovara na terapiju kortikosteroidima; konstukcionalni simptomi (nenamjeran gubitak tjelesne težine, povišena temperatura bez znakova infekcije, noćno znojenje, umor). (2) Navedeni kriteriji obuhvaćaju većinu bolesnika sa stadijima Binet B i C, kao i dio onih bolesnika sa stadijem Binet A koji imaju naznake progresije bolesti. (2,26) Prema smjernicama KroHem-a prilikom odluke o započinjanju liječenja pridaje se važnost vrijednosti totalne tumorske mase, pa tako vrijednost TTM-a ≥15 čini indikaciju za početak liječenja. (15,27) Treba i napomenuti da, iako imaju prognoštički značaj, nalaz delecije 17p ili mutacije P53 bez znakova aktivne bolesti, ne predstavljaju indikaciju za započinjanje liječenja. (2)
1.8 Liječenje

Prilikom planiranja osnovne strategije liječenja ključno je procijeniti opće stanje bolesnika na temelju dobi i pridruženih bolesti kako bi se mogla razlučiti sposobnost bolesnika da tolerira agresivnost terapije. Uz kronološku dob, komorbiditeti, funkcija organa i farmakokinetika lijekova postali su ključni u evaluaciju odgovarajuće terapije. Kemoimunoterapija predstavlja osnovni način liječenja kronične limfocitne leukemije. Može se primijeniti kao monoterapija ili kao kombinacija lijekova. (28,29)

Za bolesnike dobrog općeg stanja kombinacija fludarabina, ciklofosfamida i rutiksimaba (FCR) predstavlja standard aktivne terapije u 1.liniji liječenja. (26) Ova kombinacija citostatika pokazala se nahućinkovitim izborom radi visoke stope odgovora na terapiju (95%) (ORR, eng. Overall response rate), preživljenja bez progresije bolesti od 80 mjeseci (PFS, eng. Progression-free survival) i šestogodišnjom stopom ukupnog preživljenja od 77% (OS, eng. Overall survival). (30) Uz to, učinkovitost protokola FCR potvrđena je velikom internacionalnom CLL8 studijom kada je dodatak rituksimaba kombinaciji fludarabin-ciklofosfamid (FC) pokazao bolji ishod s produženim PFS-om (medijan 52 mjeseca, trogodišnja stopa 65%) naspram bolesnika liječenih FC-om (medijan 33 mjeseca, trogodišnja stopa 45%).(31)

Otkriće rituksimaba, monoklonskog protutijela usmjerenog protiv CD20 antigena čiji se mehanizam djelovanja razlikuje od standardne kemoterapije, unio je novitet u liječenje KLL-a. (32) Iako je pokazao skroman učinak kada ga se primjenilo kao monoterapiju (postignuta stopa ORR-a iznosila je oko tek 50%, od kojih je samo 4% činilo postignutu kompletnu remisiju, procijenjenog medijana PFS-a 19 mjeseci) (33), dodatak rituksimaba citotoksičnim lijekovima rezultirao je znatno učinkovitijim odgovorom. Iako trenutno najučinkovitija, FCR terapija ujedno je agresivna i toksična te se povezuje sa učestalijom pojavom neutropenije, teških infekcija i sekundarnih neoplazmi. (34) Iz tog se razloga sve više istražuju kombinacije rituksimaba s manje toksičnim, ali ne i manje uspješnim kemoterapijskim protokolima.

Kombinacija bendamustina i rituksimaba (B-R) pokazala se obećavajućom radi visoke stope ORR-a od 88%, medijanom PFS-a od 34 mjeseca i stopom OS-a 90% nakon medijana praćenja od 27 mjeseci. (35) U velikoj CLL10 studiji uspoređivan je protokol prema shemi BR sa FCR-om na 567 bolesnika. Iako su oba protokola pokazala istu visoku stopu odgovora od 98%, u skupini liječenog FCR protokolom zabilježena je veća stopa kompletnih remisija (41% naspram 32%) i duži medijan PFS-a (54 mjeseca naspram 43 mjeseca) pa je tako FCR potvrdio svoje
mjesto zlatnog standarda u 1.liniji liječenja. No, istovremeno u skupini liječenoj FCR zabilježena je znatno češća pojava leukopenija, neutropenija i infektivnih komplikacija, pogotovo u starijih bolesnika. Nadalje, kvaliteta života bila je znatno bolja u skupini liječenoj B-R protokolom, stoga se B-R se predlaže kao alternativni izbor u liječenju starijih bolesnika dobrog općeg stanja. (26,36)

U bolesnika starijih doba i lošijeg općeg stanja cilj liječenja je što dulja remisija i bolja kvaliteta života. (28) U takvom slučaju najboljim izborom pokazala se kombinacija klorambucila i monoklonskog protutijela na CD20 (rituksimab, obinutuzumab). (37) Prednosti klorambucila su niska toksičnost, niska cijena te mogućnost oralnog uzimanja lijeka. Najveći nedostatak je niska do nepostojana kompletna remisija i produžena citopenija nakon produženog uzimanja. (29) U velikoj CLL11 studiji provedenoj na 781 bolesniku uspoređivane su 3 skupine terapije: monoterapija klorambucilom, kombinacija klorambucila i rituksimaba (Chl-R) te klorambucila i obinutuzumaba (Chl-O). Pokazano je da dodatak CD20 monoklonskog protutijela klorambucilu naspram monoterapije klorambucila značajno produžuje vrijeme bez progresije bolesti. Medijan PFS-a u bolesnika liječenih Chl-O iznosio je 26 mjeseci, u skupini liječenog sa Chl-R 16 mjeseci, a samo 11 mjeseci u skupini liječenom monoterapijom klorambucila. Uspoređujući rituksimab i obinutuzumab u kombinacijama sa klorambucilom, kombinacija Chl-O je pokazala višu stopu ORR-a od 78% (naspram 65% kod Chl-R), sa stopom kompletnie remisije 21% (naspram 7% kod Chl-R) i značajno dužim medijanom PFS-a od 27 mjeseci (naspram 15 mjeseci kod Chl-R). (99) Rezultati ove studije imali su ključni značaj u postavljanju kombinacije klorambucil-obinutuzumab kao novog standarda u liječenju starijih bolesnika lošijeg općeg stanja. (26,37)

Uz kemoterapiju, danas se sve više nade polažu u djelovanje imunoterapije. Pojava monoklonskih protutijela i inhibitora BCR-puta dovela je do razvoja novih i efektivnih kombinacija kemoimunoterapije. U tijeku je veliki broj kliničkih studija koje evaluiraju nove kombinacije lijekova, uključujući i one sa drugačijim mehanizmima djelovanja.
2. HIPOTEZA

Nalaz citogenetskih promjena prema FISH-u je prognostički čimbenik ishoda u bolesnika s kroničnom limfocitnom leukemijom.

3. CILJ RADA

1. FISH je prognostički čimbenik ishoda svih bolesnika bez obzira na status liječenja
2. FISH je prognostički čimbenik ishoda koji su primarno liječeni
3. FISH je prognostički čimbenik ishoda u ukupnom preživljenju
4. Stadiji bolesti Rai, Binet, TTM su prognostički čimbenici ishoda
4. ISPITANICI I METODE

1.9 Dizajn studije

Ova studija temelji se na retrospektivnom pregledu i analizi bolničkih podataka bolesnika sa dijagnozom kronične limfocitne leukemije. Uz dobivenu suglasnost Etičkog povjerenstva, istraživanje je provedeno na Zavodu za hematologiju Klinike za unutarnje bolesti Kliničke bolnice Merkur.

1.10 Ispitanici

Iz medicinske dokumentacije prikupljeni su podaci svih bolesnika kojima je dijagnosticirana kronična limfocitna leukemija u razdoblju između 1. siječnja 2013. i 31. prosinca 2016. godine.

1.11 Metode

1.11.1 FISH metoda

Svim bolesnicima učinjena je metoda FISH kao sastavni dio dijagnostičkog protokola. Metoda je rađena iz uzoraka razmaza periferne krvi, odnosno razmaza aspirata koštane srži.

FISH je citogenetska metoda koja pomoću nukleinske probe obilježene flouresceinom detektira željenu nukleinsku sekvencu unutar kromosoma. Ovisno kojom je bojom označena proba, tražena nukleinska sekvencna se može jasno vidjeti pod mikroskopom kao narančasti, zeleni ili plavi signal. Takav postupak omogućuje detekciju numeričkih i strukturnih kromosomskih promjena. Uz pomoć komercijalno dostupnih proba za KLL panel, moguće je utvrditi postoji li delecija regija kromosoma 17p (gen p53), 11q (gen ATM), 13q14.3 i 13q34 te trisomija kromosoma 12.

U ovoj studiji korištena su dva seta proba. Prvi set sadrži LSI (Locus-Specific Identifier) probe za detekciju p53 i ATM gena, a drugi set sadrži LSI probe za detekciju D13S319 i 13q34 sekvencite CEP (Centromeric Enumeration Probe) za detekciju 12. kromosoma proizvođača Vysis Inc. USA.

4.3.1.1. Otopine i postupak

OTOPINE:

• metanol:ledena octena kiselna (50:50)
• 70% alkohol
• 85% alkohol
• apsolutni etanol
• 20x SSC (175,3 g NaCl + 88,2 g natrij-citrat-dihidrat u l destilirane vode, pH 7)
• 2x SSC (100 mL otopiti 20x SSC u l vode)
• 0.4xSSC/0.3% NP-40 (20 mL 20x SSC otopiti u 1 L vode + 3 mL NP-40L)
• 2xSSC/0.1% NP-40 (100 mL 20x SSC u 1 L vode + 1 mL NP-40)
• DAPI
POSTUPAK:

PRIPREMA PREPARATA ZA HIBRIDIZACIJU:
• inkubirati u otopini metanol:ledena octena kiselna (50:50) 2 minute
• sušiti na zraku 30 minuta
• dehidrirati u alkoholima 70%-om, 85%-om i apsolutnom etanolu po 2 min.
• sušiti na zraku 15 minuta
• staviti 0.6-2 μl probe po uzorku, prekriti pokrovnicom, zalijepiti pokrovnice selotejpom
• staviti stakla u hibridajzer - vlažnu komoru (spužvica natopljena 60% formamidom razrijedenim sa 1xSSC-om) prema programu dobivenom od proizvođača (30 minuta 73°C – denaturacija, a zatim 12-16 sati na 37°C – hibridizacija)

POSTHIBRIDIZACIJA:
• zagrijati bočicu sa otopinom 50 ml 0,4xSSC/0,3% NP-40 u termostatu na 73°C
• izvaditi stakla iz hibridajzera, skinuti selotejp i pokrovnice, staviti u zagrijanu otopinu na 3.5 minute
• isprati u otopini 50 ml 2xSSC/0.1% NP-40 na sobnoj temperaturi 5-60 sekundi
• obrisati stražnju stranu stakla, posušiti stakla
• staviti 10 μl DAPI po uzorku, prekriti pokrovnicom i ostaviti 1 h u mraku
• strpljivo mikroskopirati

1.12 Statistička analiza

U prvoj analizi je korištena deskriptivna statistika, primarno frekvencije. U analizi vremenskih ishoda korištene su tablice života. U analizi prediktivnih faktora korištene su Kaplan-Meier krivulje s log-rank testom. Sve p vrijednosti manje od 0.05 smatrane su statistički značajnima.Sva analiza je učinjena na statističkom programu „Statistical Package for Social Sciences“. (38)
5. REZULTATI

1.13 Značajke bolesnika i bolesti

Analizirani su podaci ukupno 70 bolesnika. Omjer muškaraca i žena bio je podjednak. Medijan dobi u trenutku dijagnoze iznosio je 67 (37-83) godina te je većina (N=50, 71%) bolesnika bila je starija od 60 godina. Kao što je i očekivano, u većine bolesnika KLL je dijagnosticiran u ranim stadijima – samo 10% bolesnika (N=7) imalo je uznapredovalu bolest (Binet C, Rai3-4), odnosno 7% bolesnika (N=15) iznos TTM-a je bio>15.

Tablica 5.1

<table>
<thead>
<tr>
<th>BR. BOLESNIKA ZA KOJE JE PODATAK RASPOLOŽIV</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPOL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUŠKARCI</td>
<td>34</td>
<td>(49%)</td>
</tr>
<tr>
<td>ŽENE</td>
<td>36</td>
<td>(51%)</td>
</tr>
<tr>
<td>DOB U VRIJEME DIJAGNOZE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEDIJAN</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>RASPON</td>
<td>37-83</td>
<td></td>
</tr>
<tr>
<td><60 GODINA (%)</td>
<td>20</td>
<td>(29%)</td>
</tr>
<tr>
<td>>60 GODINA (%)</td>
<td>50</td>
<td>(71%)</td>
</tr>
<tr>
<td>BINET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>37</td>
<td>(53%)</td>
</tr>
<tr>
<td>B</td>
<td>26</td>
<td>(37%)</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>(10%)</td>
</tr>
<tr>
<td>RAI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>15</td>
<td>(22%)</td>
</tr>
<tr>
<td>1</td>
<td>38</td>
<td>(54%)</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>(14%)</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>(3%)</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>(7%)</td>
</tr>
<tr>
<td>TTM</td>
<td></td>
<td></td>
</tr>
<tr>
<td><9</td>
<td>52</td>
<td>(74%)</td>
</tr>
<tr>
<td>9-14</td>
<td>13</td>
<td>(19%)</td>
</tr>
<tr>
<td>>15</td>
<td>15</td>
<td>(7%)</td>
</tr>
</tbody>
</table>
Što se tiče određivanja TTM-a pri dijagnozi, medijan TTM-a bio je 6.8 (SD=4.32, MIN=3.1, MAX=28) što je prikazano na slici 5.1.

![Distribucija totalne tumorske mase pri dijagnozi](image)

Slika 5.1

1.14 Citogenetske promjene

Kao ključnu temu ovog rada, odnosno citogenetske promjene pri dijagnozi u najvećeg broja bolesnika nije bilo moguće detektirati aberacije pomoću FISH-a. (N=50, 71.4%). Najčešća citogenetska promjena bila je delecija 13q14 u 9 bolesnika (12.9%), dok je delecija 17p uočena u 6 bolesnika (8.6%). Ostale promjene su bile rjeđe, uključujući 1 bolesnika sa delecijom 11p te jednog bolesnika sa trisomijom 12. Navedeno je prikazano na slici 5.2.

![Citogenetska (N=50, 71.4%)](image)

Slika 5.2
1.15 Terapija i ishod

Kao što je očekivano u većine bolesnika (84.1%) pri postavljanju dijagnoze nije bila inicirana terapija već je korištena „watch and wait“ strategija, dok je u 13 (15.9%) bolesnika odmah započeta terapija. U dodatnih 13 bolesnika (22.8%), koji nisu bili liječeni prilikom postavljanja dijagnoze, u nekom trenutku praćenja započeta je terapija. Većina bolesnika (N=44, 62.8%) u cijelom periodu praćenja nije primila niti jedan od vidova terapije.

Vodeći kriterij za inicijaciju terapije bila je vrijednost TTM >15 u 21 bolesnika (81%). Ostali kriteriji prema iwCLL grupi bili su manje zastupljeni.

Većina bolesnika je kao prvu liniju terapije primila kemoterapiju po shemi FCR (N=13, 50%). Zanimljiv je nalaz da je drugi vodeći protokol monoterapija klorambucilom (N=8, 30.8%), dok je u 4 bolesnika (15.4%) klorambucil bio udružen s rituksimabom.

Navedenom terapijom u većine bolesnika (N=10, 52.6%) je postignuta parcijalna remisija (PR), dok je u 6 bolesnika (31.6%) postignuta kompletna remisija (KR). Navedeno čini ukupnu stopu odgovora neovisno o terapiji u iznosu od 84.2%. Četiri (21.1%) su bolesnika bila refraktorna na terapiju, a za njih 7 (26.9%) podaci o ishodu nisu bili dostupni u trenutku nastajanja ovog rada. Od bolesnika s postignutom kompletnom remisijom, niti jedan bolesnik tijekom praćenja nije doživio relaps bolesti, a iz skupine bolesnika s parcijalnom remisijom, relaps je doživjelo njih 3. Druga linija terapije je inicirana u 2 bolesnika. Navedeno je prikazano u tablici 5.2.
Tablica 5.2

<table>
<thead>
<tr>
<th>BR. BOLESNIKA ZA KOJE JE POĐATAK RASPOLOŽIV</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>INICIJACIJA TERAPIJE PRI DIJAGNOZI</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>DA</td>
<td>13</td>
<td>(16%)</td>
</tr>
<tr>
<td>NE („watch and wait“ strategija)</td>
<td>57</td>
<td>(84%)</td>
</tr>
<tr>
<td>INICIJACIJA TERAPIJE U TOKU PRAČENJA</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>DA</td>
<td>13</td>
<td>(23%)</td>
</tr>
<tr>
<td>NE</td>
<td>44</td>
<td>(77%)</td>
</tr>
<tr>
<td>KRITERIJI ZA LIJEČENJE¹</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>TTM</td>
<td>21</td>
<td>(81%)</td>
</tr>
<tr>
<td>B-SIMPTOMI</td>
<td>6</td>
<td>(23%)</td>
</tr>
<tr>
<td>LIMFADENOPATIJA</td>
<td>2</td>
<td>(8%)</td>
</tr>
<tr>
<td>AIHA/ITP</td>
<td>2</td>
<td>(8%)</td>
</tr>
<tr>
<td>PRVA LINIJA TERAPIJE</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>FCR</td>
<td>13</td>
<td>(50%)</td>
</tr>
<tr>
<td>KLORAMBUCIL</td>
<td>8</td>
<td>(31%)</td>
</tr>
<tr>
<td>KLORAMBUCIL + RUTUKSIMAB</td>
<td>4</td>
<td>(15%)</td>
</tr>
<tr>
<td>RUTUKSIMAB</td>
<td>1</td>
<td>(4%)</td>
</tr>
<tr>
<td>ODGOVOR NA TERAPIJU²</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>KR</td>
<td>6</td>
<td>(32%)</td>
</tr>
<tr>
<td>PR</td>
<td>10</td>
<td>(53%)</td>
</tr>
<tr>
<td>SD</td>
<td>2</td>
<td>(10%)</td>
</tr>
<tr>
<td>PD</td>
<td>1</td>
<td>(5%)</td>
</tr>
<tr>
<td>REFRAKTORNA</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>DA</td>
<td>4</td>
<td>(23%)</td>
</tr>
<tr>
<td>NE</td>
<td>13</td>
<td>(77%)</td>
</tr>
<tr>
<td>RELAPS</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>DA</td>
<td>3</td>
<td>(18%)</td>
</tr>
<tr>
<td>NE</td>
<td>14</td>
<td>(82%)</td>
</tr>
</tbody>
</table>
1.16 Ukupno preživljenje i vrijeme bez progresije bolesti

Medijan praćenja bolesnika iznosio je 18.5 mjeseci (SD=12.52). U navedenom razdoblju dogodila su se tri smrtna slučaja. Procijenjeno trogodišnje ukupno preživljenje iznosi 89% prikazano na slici 5.3.

Slika 5.3
Medijan preživljenja bez progresije bolesti (PFS, eng. *progression free survival*) za cijelu skupinu bolesnika, za bolesnike koji nisu inicijalno nisu liječeni te za sve liječene bolesnike nije dosegnut. Procijenjeno trogodišnje preživljenje bez progresije bolesti iznosi 50%, za bolesnike koji inicijalno nisu liječeni iznosi 66%, te za skupinu bolesnika koji su bili liječeni 55% što je prikazano na slici 5.4.

![Slika 5.4](image-url)
1.17 Ovisnost prognostičkih faktora o vremenu bez progresije bolesti

Ispitali smo postoji li ovisnost između poznatih prognostičkih faktora (dob, spol, stadij bolesti Rai, Binet, TTM), odnosno jesu li frekvencije njihova pojavljivanja značajno veće u određenim skupinama bolesnika.

Kao jedan od prognostičkih faktor u odnosu na PFS za cijelu skupinu uzeli smo spol i dob. Ni u slučaju spola ($\chi^2=1.278$, DF=1, $p=0.258$), niti dobi ($\chi^2=0.063$, DF=1, $p=0.802$) nije bilo statistički značajne razlike, što je prikazano na slici 5.5.

![Slika 5.5](image_url)
Slijedeći postupak bio je ispitati kako klinički stadij utječe na PFS. Nakon medijana praćenja od 18.5 mjeseci, medijan PFS-a pacijenata s nepovoljnim Binet stadijem (stadij C) iznosio je 0 mjeseci, za stadij B iznosio je 20 mjeseci, dok za stadij A nije postignut. Razlika je statistički značajna ($\chi^2=21.37, \text{DF}=4, p<0.0001)$.

Sličan rezultat pokazuje i analiza ovisnosti PFS-a za cijelu skupinu o Rai stadiju. Medijan preživljenja za bolesnike u Rai stadiju 0 i 1 nije dosegnut, dok je za Rai stadij 2 iznosio 12 mjeseci. Očekivano za više stadije medijan preživljenja je dosegnut 0 mjeseci. Pokazana je statistički značajna razlika ($\chi^2=21.37, \text{DF}=4, p<0.0001)$.

U analizi totalne tumorske mase kao prognostičkog čimbenika za preživljenje bez progresije bolesti za cijelu skupinu, medijan preživljenja za bolesnike s TTM-om <9 nije dosegnut. Za one bolesnike s TTM-om između 9 i 14 iznosio je 12 mjeseci, dok je za bolesnike s TTM-om ≥15 iznosio očekivano 0 mjeseci. Razlika je statistički značajna ($\chi^2=28.503, \text{DF}=2, p<0.0001)$.

Grafički prikaz ove analize naznačen je na slici 5.6.

Slika 5.6
1.18 Ovisnost citogenetike o vremenu bez progresije bolesti i ukupnom preživljenju

U analizi citogenetskih promjena u ovisnosti PFS-a za cijelu skupinu pokazana je statistički značajna razlika ($\chi^2=14.704 \text{ DF}=5, \ p=0.012$). Medijan u bolesnika s del(13q34) ili onih bolesnika bez citogenetskih anomalija u FISH-u nije dosegnut za razliku od svih ostalih skupina što je prikazano na slici 5.7.

U subanalizi bolesnika s del(17p), usprkos početnom razdvajanju krivulja i razlici u medijanima u PFS-u (6 mjeseci vs. nije dosegnut), nije dokazana statistički značajna razlika ($\chi^2=0.78, \text{ DF}=1, \ p=0.377$) što je prikazano na slici 5.7.

Slika 5.7
U idućoj analizi, analizirali smo citogenetski nalaz kao prognostički čimbenik PFS-a za liječenu skupinu. Pronađena je granično statistički značajna razlika ($\chi^2=9.373$, DF=4, p=0.05) s najlošijim medijanom preživljenja u skupini s del(17p) što je prikazano na slici 5.8.

U analizi del(17p) kao prognostičkog čimbenika PFS-a bolesnika koji su liječeni, medijan preživljenja bolesnika s del(17p) iznosio je 4 mjeseci naspram drugih bolesnika u kojih medijan nije dosegnut što je prikazano na slici 5.8. Razlika je bila statistički značajna ($\chi^2=9.086$, DF=1, p=0.003).

Slika 5.7
U analizi ukupnog preživljenja samo je jedan prognostički čimbenik bio statistički značajan ($\chi^2=6.354$, DF=1, $p=0.012$). Bolesnici s del(17p) su imali medijan preživljenja od 16 mjeseci u odnosu na druge bolesnike u kojih ta delekcija nije dokazana. Navedeno je prikazano na slici 5.9.

Slika 5.8
6. RASPRAVA

Ova retrospektivna studija obuhvatila je 70 novodijagnosticiranih bolesnika sa ciljem praćenja ishoda bolesti, odnosno brzine progresije bolesti i odgovora na konvencionalnu terapiju, u odnosu na nalaz citogenetskih promjena, uzimajući u obzir i druge prognostičke čimbenike dobi, spola te kliničkog stadija.

Tijekom medijana praćenja od 18,5 mjeseci, zabilježena su 3 smrtna ishoda te je procijenjeno trogodišnje preživljenje 89%. U navedenom razdoblju 37% bolesnika steklo je potrebu za liječenje mšto pokazuje indolentnu prirodu tijeka bolesti te je procijenjeno vrijeme bez progresije bolesti za cijelu kohotru iznosilo 50%.

Od svih prognostičkih čimbenika, nalaz citogenetskih promjena FISH-em trenutno predstavlja aktualnu temu. Otkako je FISH ušao u dijagnostičku uporabu, prvo u kliničkim istraživanjima, a potom i u svakodnevnu praksu, počele su se uočavati razlike među skupinama bolesnika različitih citogenetskih promjena. (21,22)

U ovoj studiji citogenetske promjene nađene su u 28,6% bolesnika. Najčešća promjena bila je del(13q14) nađena u 15,7% bolesnika, zatim del(17p) u 9,0%, dok su del(11q) i trisomija 12 nađene u jednog bolesnika (1,4%). U drugim studijama citogenetske promjene redovito se nalaze u više od 70% bolesnika, među kojima dominira nalaz del(13q) kao najčešće citogenetske promjene, a nalazi del(11q) te del(17p) također zauzimaju veći udio. (21,36,39–41) Kako se brojke kreću u drugim hrvatskim centrima te ima li takva razlika u nalazima ikakvog demografskog značaja, ostaje otvoreno pitanje.
Iako je broj bolesnika sa nađenim citogenetskim promjenama bio malen, nađene su statistički značajne razlike u PFS-u i OS-u među skupinama. Skupina bolesnika s del(17p) istaknula se kao jedini statistički značajna u analizi OS-a, medijana preživljenja od samo 16 mjeseci. Niti jedan drugi ispitivani prognostički čimbenik nije se pokazao statistički značajnim u toj analizi. Dok medijani PFS-a za bolesnike bez citogenetskih promjena i del(13q) nisu dosegnuti, najkraći su bili u skupini s del(17p). Ovakvi rezultati su u skladu s rezultatima drugih studija koje del(13q) i normalni kariotip često spominju kao promjene povezane sa najdužim medijanima preživljenja. (21) Del(17p), koja je ujedno značajna i gubitak funkcije gena P53, redovito je povezivana s najlošijim ishodom, kratkim PFS-om i OS-om te se ističe, uz del(11q), kao visokorizična citogenetska promjena. (21,40,42)

Tijekom perioda praćenja, 37,1% bolesnika razvilo je aktivnu bolest i započelo liječenje. Gledajući sveobuhvatno, postignuta je visoka stopa odgovora na liječenje od 84,2%, neovisno o vrsti kemoterapijskog protokola, pri čemu je stopa KR-a iznosila 31,6%. No, kada se pobliže pogledaju rezultati liječenja skupine sa del(17p), stope odgovora na terapiju mnogo su niže. Od 3 liječena bolesnika sa del(17p), 2 su bolesnika bila refraktorna na terapiju. Takvi rezultati odrazili su se na medijane PFS-a liječenih bolesnika te je pokazana statistički značajna razlika PFS-a među bolesnicima različitih citogenetskih promjena, pri tome je najlošiji medijan imala skupina sa del(17p). Ovakve značajne razlike među ishodima idu u prilog velikim studijama koje su ukazivale na razlike u prognozi, ističući del(17p) i (11q) kao prediktore lošeg ishoda. (42,43) Također, različita klinička istraživanja prilikom utvrđivanja djelotvornosti lijekova, često su izdvajale del(17p) kao neovisnog čimbenika radi bitno lošijih stopa odgovora na kemoterapiju ili kratkotrajnu remisiju po liječenju. (35,37,40) Tim studijama utvrđeno je da del(17p) redovito pokazuje rezistenciju na liječenje alkilirajućim lijekovima i purinskim analozima. Pretpostavlja se da je razlog gubitak funkcije tumor supresor gena P53. Međutim, gubitak funkcije P53, osim mehanizmom selekcije, može nastati i mutacijom samog gena ili inaktivacijom gena regulatora transkripcije. (44)

Razvoj inhibitora BCR-puta doveo je do razvoja novih i efektivnijih kombinacija kemoimunoterapije. Kako inhibitori BCR-puta nemaju genotoksični način djelovanja, ulagala se nada da će del(17p) imati dobar odgovor na takvu terapiju. Ibrutinib, inhibitor Brutonove tirozin kinaze (BTK), bio je prvi odobreni inhibitor BCR-puta za liječenje KLL-a. Tri kliničke studije evaluirale su odgovor na liječenje ibrutinibom u bolesnika sa del(17p) pri čemu su po prvi put u takvoj skupini zabilježene visoke stope odgovora na terapiju. (45–47) Ovi rezultati
imali su ključni značaj u postavljanju ibrutiniba kao zlatnog standarda u liječenju bolesnika sa del(17p).

Nove citogenetske promjene mogu se steći tijekom razvoja bolesti. Primjećena je veća pojavnost del(17p) u liječenih, nego u neliječenih bolesnika. (48) Uzevši to u obzir, preporuča ponoviti FISH prije inicijacije svake nove linije terapije.

Zbog kratkog praćenja i retrospektivne prirode, ova studija ima nekoliko ograničenja. Prije svega obuhvaćen je relativno mali broj bolesnika. Uz to, zabilježen je relativno malen broj događaja, uključujući broj bolesnika sa nađenim citogenetskim promjenama, kao i broj bolesnika koji stekli indikacije za liječenje. Uzevši to u obzir, nije bilo moguće napraviti Cox regresijsku analizu.
7. ZAKLJUČAK

1. FISH je važan prognostički čimbenik ishoda u bolesnika sa KLL-om.
2. FISH je važan prognostički čimbenik ishoda u ukupnom preživljenju.
3. FISH je važan prognostički čimbenik ishoda u vremenu bez progresije bolesti u svih bolesnika i u liječenih bolesnika.
4. Bolesnici s delecijom 17p imali su najlošiji ishod bolesti u smislu kraćeg ukupnog preživljenja, kraćeg vremena bez progresije bolesti te lošije stope odgovora na konvencionalnu kemoterapiju.
5. Loš odgovor na konvencionalnu kemoterapiju pripisuje se gubitku funkcije tumor supresor gena P53.
8. ZAHVALE

Prije svega se zahvaljujem svojoj mentorici, prof.dr.sc. Slobodanki Ostojić Kolonić na predloženoj temi, stručnim savjetima i ukazanoj priliki da radim znanstveno istraživanje i kroz njega svladam nove vještine i steknem nova znanja.

Posebnu zahvalu dugujem dr. Viboru Milunoviću na pomoći oko statističke obrade podataka, iznimnoj pristupačnosti i korisnim savjetima.

Zahvaljujem prof.dr.sc. Slavku Gašparovu na utrošenom vremenu i prenesenom znanju o FISH-u, kao i pomoći oko prikupljanja podataka. Također, zahvaljujem Adrijani Lekić, bacc.med.lab.diagn. radi izdvojenog vremena kako bi mi pobliže pokazala i približila izradu preparata za FISH.

Zahvaljujem prof.dr.sc. Ani Planine Peraici na pomoći oko prikupljanja podataka.

Zahvaljujem svojim prijateljima i kolegama koji su olakšali slatke muke nastanka ovog rada svojom potporom, vrijednim savjetima i motivacijom.

Zahvaljujem svojoj dragoj majci na bezuvjetnoj potpori i podršci.
9. LITERATURA

27. AMANDMAN KROHEM KLL SMJERNICE v1 2017.pdf [Internet]. Dostupno na: http://www.krohem.hr/hr/Guidelines.aspx

38. IMB SPSS Statistics for Windows. IBM Corp. Released; 2011.

10. ŽIVOTOPIS