Potencijalni rizici farmakološki izazvane hipoklorhidrije

Canjuga, Iva

Master's thesis / Diplomski rad

2019

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, School of Medicine / Sveučilište u Zagrebu, Medicinski fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:105:811186

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2020-09-17

Repository / Repozitorij:

Dr Med - University of Zagreb School of Medicine Repository
Potencijalni rizici farmakološki izazvane hipoklorhidrije

Zagreb, 2019.
Korištene kratice

ADMA – asimetrični dimetilarginin
ATP – adenosin trifosfat
CYP – citokrom P450
DNK – deoksiribonukleinska kiselina
ECL – enterokromafina stanica (enterochromaffin-like cell)
FAP – familijarna adenomatozna polipoza
FDA – Agencija za hranu i lijekove (Food and drug administration)
HCl – klorovodična kiselina
IM – infarkt miokarda
IPP – inhibitori protonske pumpe
NO – dušikov monoksid
NSAR – nesteroidni antireumatici
OTC – bezreceptni lijekovi (over-the-counter)
RNK – ribonukleinska kiselina
SIBO – sindrom prekomjernog prerastanja tankog crijeva bakterijama (small intestinal bacterial overgrowth)
ZOS – Zollinger-Ellisonov sindrom
Sadržaj

1. UVOD .. 1
2. FARMAKOKINETIKA I FARMAKODINAMIKA IPP-a ..2
3. DEFINICIJA AKLORHIDRIJE I HIPOKLORHIDRIJE 6
4. RIZICI HIPOKLORHIDRIJE U BOLESNIKA LIJEČENIH INHIBITORIMA PROTONSKE PUMPE ...7
 4.1 UČINAK NA METABOLIZAM VITAMINA I MINERALA7
 4.1.1 UČINAK NA METABOLIZAM ŽELJEZA ... 7
 4.1.2 UČINAK NA METABOLIZAM MAGNEZIJA 8
 4.1.3 UČINAK NA METABOLIZAM KALCIJA 9
 4.1.4 UČINAK NA METABOLIZAM VITAMINA B12 10
 4.2 POJAVNOST INFEKCIJA ...11
 4.2.1 POJAVNOST ENTERALNE INFEKCIJE 12
 4.2.2 POJAVNOST PNEUMONIJA ... 13
 4.3 UTJECAJ HIPOKLORHIDRIJE I AKLORHIDRIJE NA SLUZNICU ŽELUCA I RIZIK NASTANKA KARCINOMA ... 13
 4.3.1 HIPERGASTRINEMIJA .. 13
 4.3.2 UTJECAJ HIPOKLORHIDRIJE I AKLORHIDRIJE NA NASTANAK POLIPA ŽELUCA ... 16
 4.4 UTJECAJ HIPOKLORHIDRIJE I AKLORHIDRIJE NA NASTANAK BOLESTI BUBREGA, SRCA I DEMENCIJU ... 17
5. ZAKLJUČAK ... 20

Zahvale .. 21
Literatura .. 22
Životopis .. 25
Popis slika, grafikona i tablica

Slika 1. Parijetalna stanica – djelovanje protonske pumpe (5)...............................2
Slika 2. Usporedba želučanih pH vrijednosti na terapiji različitim IPP-ima (5).........4
Slika 3. Utjecaj hipoklorhidrije na resorpciju kosti (5)...9
Slika 4. Utjecaj hipergastrinemije na parijetalne i ECL-stanice (5)............................14
Slika 5. Endoskopski prikaz žlijezdanih polipa fundusa želuca (5)............................17
Slika 6. Utjecaj IPP-a na asimetrični dimetilarginin (5)...18

Grafikon 1. Usporedba koncentracije magnezija u krvi u pacijenata s terapijom IPP-
ima i bez terapije IPP-ima (5)..8
Grafikon 2. Prevalencija SIBO-a ovisno o trajanju terapije IPP-ima (5)...............11
Grafikon 3. Sinergističko djelovanje IPP-a i H.pylori (5)..16

Tablica 1. Farmakokinetika inhibitora protonske pumpe (6)....................................3
Tablica 2. Povezanost rizika prijeloma kuka i dugotrajne terapije IPP-ima (5)........9
Potencijalni rizici farmakološki izazvane hipoklorhidrije

Iva Canjuga

Inhibitori protonske pumpe (IPP) trenutno su najdjelotvorniji lijekovi u regulaciji lučenja želučane kiseline. Postali su terapija izbora u liječenju gastroezofagealne refluksne bolesti, peptičkih ulkusa, Zollinger-Ellisonova sindroma (ZOS), funkcionalne dispepsije, lezija uzrokovanih nesteroidnim antireumaticima (NSAR), eradikacije Helicobacter pylori i ostalih hipersekretornih stanja. Na tržištu se nalazi pet lijekova iz ove skupine: omeprazol, esomeprazol, lansoprazol i rabeprazol za oralnu i pantoprazol za oralnu i intravensku upotrebu. Glavni mehanizam njihova djelovanja je inhibicija protonske pumpe parijetalnih stanica želuca i smanjenje stvaranja želučane kiseline. Visoka učinkovitost, jednostavna primjena, prihvatljiva cijena i rijetke nuspojave dovele su do pretjeranog propisivanja IPP-a u bolničkih i ambulantnih pacijenata. Zbog toga dolazi do povećane izloženosti pacijenata potencijalnim rizicima. Dugotrajna terapija IPP-ima uzrokuje hipoklorhidriju, hipergastrinemiju i proliferaciju parijetalnih stanica. Potencijalno nepovoljno djelovanje može se odraziti na metabolizam vitamina B12, željeza i magnezija, regulaciju kalcija i nastanak osteoporotičnih fraktura, pojavnost enteralnih infekcija, posebice Clostridium difficile kolitisa i izvanbolničke pneumonije, promjenu sluznice želuca stvaranjem benignih polipa ili malignih promjena, nastanak demencije i pogoršanje bolesti srca i bubrega. Racionalnom primjenom IPP-a, kontrolom i evaluacijom stanja pacijenata te njihovom edukacijom moguće je smanjiti pojavnost rizika i stanja do kojih dovodi neprimjereno liječenje.

Ključne riječi: inhibitori protonske pumpe, hipoklorhidrija, rizici
SUMMARY

The potential risk of pharmacologically induced hypochlorhydria

Iva Canjuga

Proton pump inhibitors (PPI) are currently the most effective drugs regulating hydrochloric acid secretion. They have become the therapy of choice for a range of upper gastrointestinal tract disorders, including gastroesophageal reflux disease, peptic ulcer disease, Zollinger-Ellison syndrome (ZOS), functional dyspepsia, lesions caused by nonsteroidal anti-inflammatory drugs (NSAIDs), Helicobacter pylori eradication therapy and other hypersecretory conditions. There are five PPIs approved for use. While omeprazole, esomeprazole, lansoprazole and rabeprazole are available as oral formulations, pantoprazole is intended for oral and intravenous use. Their main mechanism of action is inhibition of parietal cells’ proton pump and suppression of hydrochloric acid secretion. Great effectiveness, simple use, acceptable costs and rare adverse effects have led to overutilization in hospital and ambulatory care. It increases the risk of some side effects. The long-term use of PPIs causes hypochlorhydria, hypergastrinemia and parietal cell proliferation. It may affect the metabolism of vitamin B12, iron and magnesium, absorption of calcium, increased risk of osteoporotic bone fracture, enteric infections including Clostridium difficile-associated diarrhea, community-acquired pneumonia, the transformation of the gastric mucous membrane, deterioration of dementia, heart and kidney disease. Reasonable approach to clinical indications and patients’ education can minimize the potential for adverse events.

Keywords: proton pump inhibitors, hypochlorhydria, risk
1. UVOD

Upravo je poremećaj lučenja želučane kiseline prisutan u bolestima gornjeg dijela gastrointestinalnog trakta. Pritom je važno spomenuti najčešća stanja koja nastaju zbog poremećaja u regulaciji stvaranja i izlučivanja želučane kiseline, a to su: gastroezofagealna refluksna bolest, funkcionalna dispepsija, duodenalni i želučani ulkusi, lezije uzrokovane uzimanjem NSARa, Zollinger-Ellisonov sindrom (ZOS) i neulkusna dispepsija (3). Visoka prevalencija navedenih stanja te djelotvornost, dobra podnošljivost i prihvatljiva cijena lijekova IPP-ima razlozi su zbog kojih se potrošnja tih lijekova višestruko povećala. Nažalost, propisuju se prečesto, čak i onda kada ne postoji jasnog indikacija, a primjena lijekova na predugo razdoblje i u prevelikim ukupnim količinama potencijalno može utjecati na zdravlje pacijenta i povećati omjer štete i koristi (4).
2. FARMAKOKINETIKA I FARMAKODINAMIKA IPP-a

IPP-i dijele zajedničku strukturu supstituiranog benzimidazola koji se kovalentno veže na enzim H+/K+ ATPazu parijetalnih stanica želučne sluznice. Enzim se nalazi na apikalnoj strani okrenutoj lumenu želuca. Neovisno o podražaju koji potiče stvaranje želučane kiseline i bazalnom djelovanju, protonska je pumpa ta koja je odgovorna za izlučivanje H+ iona u zamjenu za K+ ione koji cirkuliraju nazad u lumen zajedno s ionima klora, tvoreći tako u lumenu klorovodičnu kiselinu (HCl).

Jednom vezani IPP blokirat će gore opisanu funkciju ATPaze. Duljina djelovanja ovisi o tipu cisteina na koji se veže pojedini IPP. Uz cistein 813 na koji se vežu svi IPP-i, pantoprazol veže cistein 822, omeprazol veže cistein 892, a lansoprazol i rabeprazol vežu cisteine 892 i 321. Oporavak ATPaze inhibirane lansoprazolom i omeprazolom brži je od očekivanog s poluvremenom oporavka od 13 do 27 sati. Pantoprazol djeluje dulje s poluvremenom oporavka od 46 sati što je približno očekivanom u slučaju potpune de novo sinteze enzima na parijetalnim stanicama (2).

Slika 1. Parijetalna stanica – djelovanje protonske pumpe.

Tablica 1. Farmakokinetika inhibitora protonske pumpe.

<table>
<thead>
<tr>
<th>LIJEK</th>
<th>BIORASPOLOŽIVOST (%)</th>
<th>T(_{1/2}) (sati)</th>
<th>T(_{\text{max}}) (sati)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omeprazol</td>
<td>40 – 65</td>
<td>0.5 – 1.5</td>
<td>1 – 3.5</td>
</tr>
<tr>
<td>Esomeprazol</td>
<td>> 80</td>
<td>1.2 – 1.5</td>
<td>1.6</td>
</tr>
<tr>
<td>Lansoprazol</td>
<td>> 80</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>Pantoprazol</td>
<td>77</td>
<td>1.0 – 1.9</td>
<td>2.5 – 4.0</td>
</tr>
<tr>
<td>Rabeprazol</td>
<td>52</td>
<td>1.0 – 2.0</td>
<td>2.0 – 5.0</td>
</tr>
</tbody>
</table>
Smanjenjem koncentracije želučane kiseline inhibitori protonske pumpe djeluju na apsorpciju drugih lijekova. Povišenje pH povećava apsorpciju digoksina, nifedipina, aspirina, midazolama i metadona. Važnije djelovanje povišenog pH je smanjenje apsorpcije slabih baza poput ketokonazola, itrakonazola i cefpodoksima koje dovodi do smanjenja učinka propisanih doza.

Metabolizam IPP-a reguliran je sustavom citokrom P450 monooksigenaza u različitom omjeru djelovanja CYP2C19 i CYP3A4. Omeprazol i esomeprazol većinom inhibiraju CYP2C19, stoga ulaze u interakcije s diazepamom, fentoinom i R-izomerima varfarina te dovode do smanjenje pretvorbe klopigodrela u njegov aktivni metabolit. Metaboliti IPP-a eliminirani su iz organizma putem urina i fecesa.

Kratak poluvijek eliminacije ne utječe na duljinu djelovanja lijeka zbog već spomenute kovalentne veze IPP-a i ATPaze, glavnog mehanizma djelovanja lijeka (4). Inhibirane mogu biti samo aktivne protonske pumpe, otprijek 80 % njihova ukupnog broja prvog dana terapije nakon podražaja, npr. hranom. Idućeg dana može biti inhibirano 20 % preostalih pumpi uz dio novonastalih pumpi. Ovaj se proces ponavlja do kad se ne postigne ravnotežno stanje u kojem je broj novonastalih ATPaza jednak broju novoinhibiranih. Sukladno tome, povećava se postotak dana u kojem je pH želuca viši od 4.

Da bi djelovanje IPP-a bilo potpuno, važno je pravovremeno uzimanje terapije. Preporuka je uzimati lijek 30 do 60 minuta prije doručka ili prvog obroka u danu kad je najveći broj protonskih pumpi aktiviran. Ukoliko je potrebno, moguće je dodati još jednu dozu lijeka prije večere (6).

Tolerancija se ne razvija tijekom terapije IPP-ima za razliku od terapije antagonistima H₂ receptorova čija se doza mora povećati nakon tri do pet dana da bi imali isti učinak (7).
3. DEFINICIJA AKLORHIDRIJE I HIPOKLORHIDRIJE

Unatoč dobroj podnošljivosti, i u ovoj skupini lijekova postoji određen broj deklariranih neželjenih štetnih učinaka. Od onih češćih navedeni su glavobolja, mučnina, dijarejalni sindrom, bol u trbuhi, slabost i vrtoglavica s učestalošću od 4 %. U oko 1.5 % slučajeva pojavljanjem ovih simptoma prekinuta je terapija IPP-ima. Nešto rjeđe zabilježeni su osip, svrbež, flatulencija, konstipacija i depresija, dok u izrazito rijetkim slučajevima dolazi do razvoja eritema multiforme i pankreatitisa (5).

Hipoklorhidriju, koja je posebice česta u osoba starijih od 65 godina koje dulje od 12 mjeseci u kontinuitetu uzimaju IPP-e, povezuje se s promjenama u metabolizmu vitamina i minerala, pojavnošću infekcija, promjenama na želučanoj sluznici i riziku nastanka karcinoma. Uočeno je negativno djelovanje na funkciju bubrega i srca te razvoj demencije.

4.1 UČINAK NA METABOLIZAM VITAMINA I MINERALA
4.1.1 UČINAK NA METABOLIZAM ŽELJEZA

4.1.2 UČINAK NA METABOLIZAM MAGNEZIJA

Magnezij je unutarstanični kation važan za mnoge stanične funkcije, sintezu proteina, enzimske reakcije i ostale reakcije u kojima je neizostavan ATP. Većina se nalazi u kostima, a samo manji dio u krvi. Simptomi hipomagnezemije jako variraju, a smatra se da i mali deficit magnezija povećava rizik kardiovaskularnog i ukupnog mortaliteta djelujući na lijevu klijetku i disfunkciju endotela (10). Dosadašnja istraživanja prikazala su 30-ak slučajeva povezanosti hipomagnezemije i terapije IPP-ima dulje od pet godina (1). U većine pacijenata zapaženi su istovremeno znakovi hipokalemije i hipokalcemije, od teške ataksije i parestezija do konfuznih stanja i GI simptoma. Smanjenje bubrežne funkcije i malapsorpcija nisu bili uočeni u navedenim istraživanjima kao potencijalni konkomitantni uzroci hipomagnezemije. Prema preporukama Agencije za hranu i lijekove iz 2011. godine, potrebno je pratiti razinu magnezija u bolesnika na terapiji IPP-ima, osobito ako isti uzimaju dodatne lijekove, npr. diuretike, aminoglikozide ili citostatike, koji bi mogli potencirati smanjenje koncentracije magnezija. Također, poseban oprez nužan je u bolesnika s anamnezom srčanih aritmija i onih na terapiji antiaritmicima.

Grafikon 1. Usporedba koncentracije magnezija u krvi u pacijenata s terapijom IPP-ima i bez terapije IPP-ima.

4.1.3 UČINAK NA METABOLIZAM KALCIJA

Za apsorpciju kalcija izuzetno je važna regulacija koncentracije želučane kiseline. Osim djelovanja IPP-a na tanko crijevo i spomenutu apsorpciju, protonske pumpe koje mogu biti inhibirane nalaze se i na osteoklastima. Potencijalno izravno djelovanje IPP-a na funkciju osteoklasta dovodi do poremećene resorpcije kalcija iz kostiju (1).

Yang i suradnici (1) proučavali su povezanost prijeloma kuka i dugotrajne terapije IPP-a. Rezultati su pokazali da je učestalost prijeloma veća u muškaraca nego u žena, posebice onih starijih od 50 godina, proporcionalno trajanju terapije i dozi lijeka.

Tablica 2. Povezanost rizika prijeloma kuka i dugotrajne terapije IPP-ima.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR (95% CI)*</td>
<td>1.43 (1.35-1.52)</td>
<td>1.84 (1.67-2.01)</td>
<td>2.10 (1.91-2.35)</td>
<td>2.17 (1.93-2.45)</td>
</tr>
<tr>
<td>Crude</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted†</td>
<td>1.22 (1.15-1.30)</td>
<td>1.41 (1.28-1.56)</td>
<td>1.54 (1.37-1.73)</td>
<td>1.59 (1.39-1.80)</td>
</tr>
</tbody>
</table>

(5)
Targownik i suradnici (11) u svojem retrospektivnom kohortnom istraživanju povezali su rizik osteoporotičnih prijeloma kuka i duljinu kontinuirane terapije IPP-ima. U slučaju trajanja terapije kraće od šest godina nije utvrđena jaka povezanost. Nakon sedam godina terapije rizik raste i potvrđena je povezanost povećanja rizika i hipoklorhidrije. Unatoč brojnim istraživanjima koja podupiru ovu povezanost, nije definirano koji je mehanizam dominantan u nastanku osteoporoze. Smatra se da najveću ulogu ima poremećena apsorpcija kalcija u tankom crijevu uz posljedičnu aktivaciju paratireoidnih žlijezdi i sekundarni hiperparatireoidizam koji dovodi do pojačane resorpcije kosti. FDA izdala je 2011. godine upozorenje o postojanju povećanog rizika nastanka fraktura kostiju, posebice u bolesnika koji su dulji vremenski period na terapiji IPP-ima. Naknadno je ovo upozorenje prošireno i obuhvatio je bezrezceptne lijekove, tzv. OTC (over-the-counter) pripravke uz preporuku njihova maksimalnog korištenja do tri jednogodišnjih ciklusa, s trajanjem jednog ciklusa najdulje dva tjedna (10,12). Poželjno je starijim pacijentima pod rizikom, kojima je nužna terapija IPP-ima, savjetovati dijetu ili dodatke prehrani koji sadrže kalcij i vitamin D.

4.1.4 UČINAK NA METABOLIZAM VITAMINA B12

Hipoklorhidrija uzrokovana dugotrajnom primjenom IPP-a može utjecati na smanjenu apsorpciju cijanokobalamina u starijih pacijenata. Njihova želučana sluznica najvjerojatnije pokazuje određeni stupanj atrofičnog gastritisa koji potencira negativno djelovanje IPP-a (14). Utvrđena je povezanost smanjene koncentracije vitamina B12 u krvi pacijenata s gastrinom liječen ih IPP-ima dulje od 12 mjeseci (14).

4.2 POJAVNOST INFEKCIJA

Sindrom prekomjernog prerastanja tankog crijeva bakterijama (small intestinal bacterial overgrowth, SIBO) predstavlja skupinu simptoma uzrokovanih prerastanjem tankog crijeva bakterijama posljedično smanjenoj koncentraciji želučane kiseline. Neki od najčešćih simptoma su dijarea, mučnina i povraćanje, depresija, nadutost, umor, gubitak na težini i malnutricija. Hipoklorhidrija kao posljedica terapije IPP-ima povezuje se s navedenim stanjem. Izraženost i učestalost simptoma ovise o duljini trajanja terapije, s prevalencijom od 75 % uz trajanje dulje od pet godina.

Grafikon 2. Prevalencija SIBO-a ovisno o trajanju terapije IPP-ima.
4.2.1 POJAVNOST ENTERALNE INFEKCIJE

Ljudski probavni sustav koloniziran je određenim brojem bakterija koje u ravnoteži djeluju protektivno i omogućuju urednu funkciju sustava. Razvojem hipoklorhidrije postoji, već spomenuta, mogućnost prerastanja prirodne flore štetnim bakterijama, što bi inače zaustavila želučana kiselina.

Metaanaliza koja je uključivala hospitalizirane pacijente na terapiji IPP-ima različitog trajanja pokazala je povećan rizik nastanka Clostridium difficile (C. difficile) kolitisa te infekcija uzrokovanih Campylobacterom, Salmonellom, Shigellom i Listeriom (1). Preporuča se ukinuti kontinuiranu terapiju u onih hospitaliziranih pacijenata kojima ona nije hitna ili nastaviti terapiju uz minimalne doze IPP-a.

C. difficile kolitis razvio se u pacijenata na dugotrajnoj terapiji IPP-ima s kroničnim bubrežnim zatajenjem, pokazalo je istraživanje s AOR od 5.7. Brojni su rizični faktori koji mogu dodatno utjecati na razvoj ove infekcije, npr. upotreba antibiotika, životna dob, ženski spol, loša higijena, imunosupresivna terapija ili doticaj sa zaraženom osobom. Isključivanjem ovih rizika značajne povezanosti infekcije i terapije IPP-ima nema (14).
4.2.2 POJAVNOST PNEUMONIJA

Plućne komplikacije moguće su uslijed terapije IPP-ima i prateće hipoklorhidrije. Povećan broj intragastričnih aerobnih bakterija i povećano stvaranje acetaldehida iz alkohola doprinosе mikroaspiracijama i kolonizaciji plućа. Smanjena funkcija neutrofila povezuje se s inhibicijom ekstragastričnih H+/K+ APTaza (4). Sekrecija iz orofarinksa također može doprijeti do donjih dišnih puteva. Pretpostavlja se da postoje i drugi mehanizmi kolonizacije plućа budući da su dokazani različiti mikroorganizmi u želučanom soku i bronhoalveolarnom lavatu (14).

Laheij i suradnici (1) pokazali su u svom istraživanju slučaja i kontrola povezanost izvanbolničkih pneumonija i duljinu terapije IPP-ima. Uočen je 4.5 puta veći rizik u pacijenata na terapiji IPP-ima koja je započeta unutar 30 dana prije pojave simptoma pneumonije. Kratak period korištenja IPP-a donosi veći rizik razvoja izvanbolničke pneumonije, tj. obrnuto je proporcionalan s periodom propisanog liječenja. Isto ne vrijedi za nozokomijalne pneumonije. Naprotiv, smanjen je rizik od pneumonije u hospitaliziranih pacijenata s nazogastričnom sondom terapiji IPP-ima.

Zbog heterogenosti istraživanja provedenih na ovu temu i dalje ne možemo dokazati povezanost navedenog. Potrebno je držati na oprezu pacijente s povećanim rizikom obolijevanja od pneumonije; starije pacijente s kroničnim plućnim bolestima, pacijente na imunosupresivnoj terapiji te one s rekurentnim pneumonijama.

4.3 UTJECAJ HIPOKLORHIDRIJE I AKLORHIDRIJE NA SLUŽNICU ŽELUĆA I RIZIK NASTANKA KARCINOMA

4.3.1 HIPERGASTRINEMIJA

Razina gastrina u serumu regulirana je intragastričnim pH. Supresija lučenja želučane kiseline, neovisno kojeg porijekla, mijenja fiziološki inhibicijski odgovor. Hipergastrinemiјa tipična je reakcija na hipoklorhidriju. Pretpostavlja se da razina serumskog gastrina raste 2 do 4 puta nakon dva tjedna terapije IPP-ima. Tijekom kronične terapije unutar prva dva mjeseca dolazi do porasta gastrina 3 do 4 puta s daljnjom stabilizacijom ili padom vrijednosti. Najviše dosegнуте vrijednosti su do 100
pg/ml ili 250 pg/ml te iznimno rastu više od 5 puta. U oko 3 % pacijenata vrijednosti dosegnu 500 pg/ml što diferencijalno dijagnostički može upućivati na pernicioznou anemiju ili gastrinom (6).

Slika 4. Utjecaj hipergastrinemije na parijetalne i ECL-stanice.

Djelovanje somatostatina usmjereno je na inhibiciju hormona koji potiču stvaranje želučane kiseline; gastrina i histamina. Njegova se koncentracija povećava nakon uzimanja jedne doze omeprazola unutar jednog do četiri sata (16). Dugodjelujući analog somatostatina, oktreotid, prevenirat će bazalno i hranom potaknuto povišenje gastrina u pacijenata na terapiji omeprazolom. Protektivno djelovanje oktreotida smanjuje hipergastrinemiju i trofički učinak gastrina (17).

Iako se smatraju sigurnim lijekovima, IPP-i i hipergastrinemija povezuju se s rizikom pojava malignih promjena sluznice želuca. Već spomenuta trofička uloga gastrina
glavni je povod brojnim istraživanjima koja su provedena kako bi se ova sumnja potvrdila ili opovrgnula. Istraživanja su pokazala povećan broj G-stanica u djece nakon dugoročne primjene omeprazola kao i pojavu malih tumora G-stanica bulbusa duodenuma u H. pylori pozitivnih odraslih (4).

U ženki štalakora zabilježena je pojava karcinoida nakon dugotrajne primjene IPP-a, no takva neoplastična promjena ECL-stanica u ljudi i dalje je diskutabilna, iako je utvrđena povezanost hipergastrinemije i hiperplazije. U Zollinger-Ellisonovusindromu prisutna je izrazito visoka razina gastrina u serumu, no rijetko dolazi do maligne alteracije i rasta ECL-stanica (18).

Infekcija H. pylori djeluje nepovoljno na želučanu sluznicu i dovodi do razvoja gastritisa koji se najčešće javlja u antrumu ili korpusu želuca, u akutnom ili kroničnom obliku. Promjena može progrediti do atrofije sluznice, intestinalne metaplazije i adenokarcinoma želuca (3).
IPP-i i *H. pylori* mogu ubrzo takt progresiju atrofičnog gastritisa u korpusu želuca i dovesti u pitanje povezanost atrofije i nastanak adenokarcinoma. Temeljem dosadašnjih rezultata, nije dokazano djelovanje IPP-a na pogoršanje postojećega kroničnog gastritisa, atrofije sluznice korpusa ni intestinalne metaplasije (14).

Važno je naglasiti da terapija IPP-ima može prikriti rane simptome karcinoma želuca i iz tog razloga odgoditi ranu dijagnozu i početak pravovremenog liječenja.

4.3.2 UTJECAJ HIPOKLORHIDRIJE I AKLORHIDRIJE NA NASTANAK POLIPA ŽELUCA

Više od 85 % želučanih polipa su hiperplastični polipi žlijezda antruma. Inflamatorni polipi upalne su prirode i najčešće se nalaze na mjestima gastroenteroanastomoza. Adenomatozni polipi prave su neoplastične tvorbe s visokim malignim potencijalom te ih je potrebno kirurški odstraniti. Od ostalih vrsta potrebno je spomenuti juvenilne, Peutz-Jeghersove i polipe gušteračinog izvodnog voda. U kontekstu ovog rada najvažniji su žlijezdani polipi fundusa želuca koji se najčešće javljaju u sklopu familijarne adenomatozne polipoze (FAP) i kao posljedica dugotrajne terapije IPP-ima (3).

4.4 UTJECAJ HIPOKLORHIDRIJE I AKLORHIDRIJE NA NASTANAK BOLESTI BUBREGA, SRCA I DEMENCIJU

Ozbiljne nuspojave dugotrajne terapije IPP-ima, iako rijetko, mogu se pojaviti u obliku akutnoga intersticijskog nefritisa uz omeprazol, hepatitisa uz omeprazol i lansoprazol, i eventualnih poremećaja vida uz omeprazol i pantoprazol (14). Lazarus i suradnici (20) proveli su opservacijsko istraživanje s ciljem povezivanja dugotrajne terapije IPP-ima i pojavnosti kronične bolesti bubrega. U istraživanju su sudjelovala 10482 pacijenta. Kontrolna skupina liječena je antagonistima H2 receptora, dok su IPP-i predstavljali nezavisni čimbenik nastanka bubrežne bolesti. Hipoteza je
potvrđena, a pojavnost bolesti u izloženoj skupini bila je povećana za 20 do 50 %. Budući da istraživanje nije randomizirano kontrolirano, velik je broj dodatnih učinaka koji bi mogli negativno utjecati na razvoj promatrane bolesti, stoga je potrebno utvrditi točan mehanizam nastanka bolesti bubrega i izravni utjecaj IPP-a (5).

Kardiovaskularne bolesti, na čelu s infarktom miokarda (IM), vodeći su uzrok smrtности kod nas i u svijetu (3). Zbog sve većeg, često predrugog i nepotrebnog propisivanja IPP-a, provedene su studije koje ukazuju na moguću povezanost kronične terapije IPPIMA i povećanog rizika infarkta miokarda. IPP-i djeluju na stvaranje dušikova monoksida (NO) i citrulina povećavajući serumsku razinu asimetričnog dimetilarginina (ADMA) koji sudjeluje u oksidativnom oštećenju stanice. Smanjeno stvaranje NO i citrulina omogućuje slabije antiaterogeno, antitrombogeno i vazodilatacijsko djelovanje. Rizik IM-a povećan je 2.2 puta u općoj populaciji bez anamneze srčanih bolesti (21).

Slika 6. Utjecaj IPP-a na asimetrični dimetilarginin.
5. ZAKLJUČAK

Zahvale

Zahvaljuem svojem mentoru, prof. dr. sc. Nevenu Ljubičiću, na ljubaznosti, pristupačnosti, strpljenju i pomoći.

Najveće hvala mojoj obitelji, dečku i prijateljima na podršci tijekom čitavog studiranja.
Literatura

Životopis