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Of cheese and bedsheets – 
some notes on correlation

A somewhat bizarre title of this column comes from one 
of the charts shown on the website named “Spurious Cor-
relations” (1). It shows the correlation or association be-
tween two variables. The variables in question are per cap-
ita cheese consumption and the number of people who 
died by becoming entangled in their bedsheets. The graph 
clearly shows that the increase in cheese consumption is 
closely followed by the increase in the number of people 
who died in the previously described way. It is clear that 
there cannot be any causal link between the variables, ie, 
the change of one variable does not cause the change 
of the other variable. However, it is also indisputable that 
there is a correlation between the two variables and that 
such correlation can be expressed numerically, regardless 
of whether it makes sense or not. This type of correlation is 
called linear, bivariate, or Pearson correlation, after one of 
the founders of modern statistical science, Karl Pearson.

K. Pearson is also known as C. Pearson (his real name was 
Carl, he later changed it to Karl), or as “Pearson father” be-
cause his son, Egon Pearson, was also a statistician. Moreo-
ver, E. Pearson succeeded his father as head of the Applied 
Statistics Department at University College London. Born 
in 1857 into a well-to-do London family (his father was a 
well-known lawyer and his mother a ship-owner’s daugh-
ter), K. Pearson was a man of very wide interests. Although 
he graduated in mathematics at King’s College, Cam-
bridge, at the age of 22, his early professional interest was 
social Darwinism, and he was also a prominent promoter 
of eugenics. Thanks to a success in his studies, he received 
a 6-year college fellowship, which enabled him to continue 
his education in Heidelberg and Berlin (2), where he stud-

ied physics and philosophy. Describing the breadth of his 
interests, he said: “I rush from science to philosophy, and from 
philosophy to our old friends the poets; and then, over-wea-
ried by too much idealism, I fancy I become practical in return-
ing to science.“ (3) After returning to London, he first studied 
law for a while and then returned to his original profession, 
working as a professor of mathematics and applied math-
ematics and mechanics at University College in London. It 
was only relatively late in his professional career (in 1893, 
when he was 36) that he began to take a more active inter-
est in statistics. Namely, in 1891 he accepted the position 
of professor of geometry at Gresham College in London 
where he met the zoologist W.F.R. Weldon. Weldon was an 
evolutionary biologist with a keen interest in mathematical 
and statistical theory (4). Among other things, Weldon is 
known for his famous experiment in which he rolled a set 
of 12 dice for 23,306 times and recorded each of the results 
(5). K. Pearson later used these data in his work on the chi-
square test (6). Weldon had a crucial impact on changing 
Pearson’s area of interest and bringing his focus to statistics. 
The problem Weldon encountered was the application of 
statistical and mathematical methods developed by F. Gal-
ton in the field of heredity and eugenics. Weldon there-
fore introduced Pearson to Galton, who was a cousin of C. 
Darwin (they had a common grandparent, Erasmus Dar-
win). Galton became Pearson’s mentor and friend until his 
death in 1911. Pearson continued Galton’s work as the Gal-
ton Chair of Eugenics (later the Galton Chair of Genetics), 
a chair that still exists today, as part of the Department of 
Biology at University College London (7). For the next fif-
teen years, working on the problems of evolutionary bi-
ology and eugenics, he laid the foundations of mod-
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ern statistical science. One of the first areas in statistics that 
developed strongly as a result of his work was the theory of 
correlation, which today bears his name and is commonly 
known as Pearson’s correlation. Unlike Galton, who devel-
oped basic concepts of correlation and regression in he-
redity, but was primarily interested in physiological and he-
reditary mechanisms, Pearson approached the problem of 
association mathematically, uninterested in the biological 
aspects. The subject of his interest was how to find a math-
ematical connection between observed values, regardless 
of what mechanisms lead to such a connection (2).

What was the problem Pearson was trying to solve and 
what did the solution look like? The answer to these ques-
tions is also the definition of the assumptions the data must 
meet to be suitable for a Pearson correlation analysis.

First, the data must be in pairs, with each x having a value 
of y belonging to it (and only to it). For example, in a preg-
nancy study, one might find that a gestational age of 37 
weeks (x) was associated with a birth weight of 3650 g (y), 
a gestational age of 34 weeks with a weight of 3480 g, and 
an age of 41 weeks with a weight of 4030 g. From the given 
example, the second assumption is notable as well – the 
variables must be quantitative, measured on an interval or 
ratio scale. Pearson correlation coefficient then represents 
the measure of strength and direction of correlation. The 
direction is in this case positive because a longer dura-
tion of gestation is associated with a higher birth weight. If 
we were to look at a different example, eg, the number of 
cigarettes smoked per day and life expectancy, we would 
probably find a negative association. This is because more 
cigarettes smoked will most likely be associated with a 
shorter life expectancy on average. Both parameters, ie, 
the strength of the connection as well as its direction, are 
represented in a parameter known as “Pearson’s r”. Pearson 
r can take values from -1 to 1 and is calculated by a very 
simple formula:

In the above formula we include pairs of observed values 
as follows:

n = number of observations (number of measurements, 
number of pairs)

 = means for x and y

s(x), s(y) = standard deviations for x and y.

Consider a simple example. Three students were preparing 
for a written exam. Pero studied for 3 days and scored 76 
points. Vlado studied for 8 days and scored 77 points, while 
Svjetlana studied for 14 days and scored 97 points.

In the above formula we substitute:

n = 3 (there are three pairs of observations)

The denominator of the fraction is obtained by calculat-
ing the difference from the mean value for each x and y, 
multiplying and summing the results. The means for x and 
y are as follows:

= (3 + 8 + 14)/3 = 8.33

 = FORMULA  4 (76 + 77 + 97)/3 = 83.33

The fraction numerator is then:

[(3 – 8.33) × (76 – 83.33)] + [(8 – 8.33) × (77 – 83.33)] + [(14 – 
8.33) × (97 – 83.33)] =

 = [(-5.33) × (-7.33)] + [(-0.33) × (-6.33)] + [(5.67) × (13.67)] =

 = 39.07 + 2.09 + 77.51 =

 = 118.67

The denominator is calculated as the product of standard 
deviations. With standard deviations being:

s(x) = 5.51

s(y) = 11.84

the denominator of the fraction is 5.51 × 11.84 = 65.24

The formula then looks like:

We can conclude that the correlation coefficient (r) equals 
0.909. The following should also be noted: r and r squared 
(see below) would be identical had we defined “test result“ 
as X and “days spent studying“ as Y – that is, the result of the 
correlation analysis is the same regardless of which vari-
able is defined as X and which is defined as Y, reflecting the 
previous point that Pearson was focused simply on finding 
a mathematical solution to quantify the strength of asso-
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ciation. The same goes for the example of birthweight and 
gestational age.

Since the value of r represents effect size, it can be inter-
preted based on certain limits, for example (8):

0.00-0.19: “very weak” association between x and y (and 
vice-versa)

0.20-0.39: “weak,”

0.40-0.59: “moderate,”

0.60-0.79: “strong,”

0.80-1.0: “very strong.”

One should also keep in mind:

The correlation coefficient r defines the strength of the 
association. The squared value of r (r2 or the coefficient of 
determination; in the above case 0.909 × 0.909 = 0.826) 
represents the proportion of the variance of one vari-
able that can be explained by another variable.

High r value still says nothing about the causality of the 
correlation between the variables. The fact that values 
correlate does not mean that a change in one variable 
causes a change in another. It is always possible that 
there is a variable that we do not measure, or the one 
we are not even aware of, and that this variable is the 
real cause of the correlation.

If the relationship between the variables is not linear (ie, 
if it cannot be adequately approximated by a straight 
line), analysis of correlation will lead to erroneous con-
clusions.

 If there are outliers, ie, values that differ greatly in one 
direction or another, this will significantly affect the 

results. For example, if the above example included a 
fourth student who studied for only one day but re-
ceived 100 points on the test, the value of r would de-
crease from 0.909 to 0.121. The same is true if we in-
clude data for a student who studied for a long time 
and received only a few points. We say that Pearson cor-
relation is very sensitive to outliers or, more generally, 
that the results will not be reliable if the values of both 
variables do not follow the normal distribution.

For these reasons, and others that go beyond the scope 
of this column, in the following issue we will consider in 
more detail the relationship between correlation and re-
gression with special reference to the causality of relation-
ships between variables and multivariate methods of ana-
lyzing larger data sets.
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