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R E S E A R CH AR T I C L E
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Abstract

In the present study, we describe autologous blood coagulum (ABC) as a physiological

carrier for BMP6 to induce new bone formation. Recombinant human BMP6

(rhBMP6), dispersed within ABC and formed as an autologous bone graft substitute

(ABGS), was evaluated either with or without allograft bone particles (ALLO) in rat

subcutaneous implants and in a posterolateral lumbar fusion (PLF) model in rabbits.

ABGS induced endochondral bone differentiation in rat subcutaneous implants.

Coating ALLO by ABC significantly decreased the formation of multinucleated foreign

body giant cells (FBGCs) in implants, as compared with ALLO alone. However, addi-

tion of rhBMP6 to ABC/ALLO induced a robust endochondral bone formation with

little or no FBGCs in the implant. In rabbit PLF model, ABGS induced new bone for-

mation uniformly within the implant resulting in a complete fusion when placed

between two lumbar transverse processes in the posterolateral gutter with an opti-

mum dose of 100‐μg rhBMP6 per ml of ABC. ABGS containing ALLO also resulted

in a fusion where the ALLO was replaced by the newly formed bone via creeping sub-

stitution. Our findings demonstrate for the first time that rhBMP6, with ABC as a car-

rier, induced a robust bone formation with a complete spinal fusion in a rabbit PLF

model. RhBMP6 was effective at low doses with ABC serving as a physiological sub-

stratum providing a permissive environment by protecting against foreign body reac-

tion elicited by ALLO.

KEYWORDS

allograft (ALLO), autologous blood coagulum (ABC), autologous bone graft substitute (ABGS),
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1 | INTRODUCTION

Spinal fusion surgery is commonly performed in patients, where two or

more adjacent vertebral segments are fused to restrict motion primar-

ily to relieve the source of back and leg pain (Bohl et al., 2015; Diebo

et al., 2015; Gupta, Mohan, & Gupta, 2017; Mobbs, Loganathan,

Yeung, & Rao, 2013; Mobbs, Phan, Malham, Seex, & Rao, 2015). Auto-

grafts and allografts containing autologous bone marrow are routinely

employed to stimulate osteogenesis either at the intervertebral space

as in anterior lumbar interbody fusion (ALIF; Bohl et al., 2015) or at

an ectopic site between two lumbar transverse processes bilaterally

as in a posterolateral lumbar fusion (PLF; Liu, Wang, Qiu, Weng, &

Yu, 2014). A variety of disorders may be treated with spinal fusion,

including degenerative disc disease (DDD), spondylolisthesis, spinal

stenosis, scoliosis, infections, spinal fractures and dystrophy, and vari-

ous tumours (McAnany et al., 2016).

Autograft from the patient's posterior iliac crest bone is the “gold

standard” for spine fusion surgery as the harvested bone chips have

live bone marrow cells and an immunologically compatible extracellular

matrix (Garcia‐Gareta, Coathup, & Blunn, 2015; Goldberg & Steven-

son, 1987; Tilkeridis et al., 2014). However, the use of autograft pre-

sents several disadvantages: (a) It requires another incision that may

result in postoperative pain and an increased risk for infection and

(b) the amount of bone that can be harvested is limited (Fernyhough,

Schimandle, Weigel, Edwards, & Levine, 1992; Murphy et al., 2019).

As an alternative to autograft, several compositions are employed with

modest outcome that include allograft (cadaver bone from a bone

bank), demineralized bone matrix (Cahill, Chi, Day, & Claus, 2009;

Hsu, 2014), various ceramics (calcium‐based compounds) in conjunc-

tion with patients bone marrow (Carragee, Hurwitz, & Weiner, 2011),

and bone morphogenetic proteins (BMPs) in combination with animal

derived collagen (Simmonds et al., 2013) and/or with ceramic compos-

ite scaffolds (Brown et al., 2013).

Recombinant human BMP2 (rhBMP2) applied within an absorbable

collagen sponge (InFUSE) has been approved to treat DDD at one level

fusion (vertebra‐disc‐vertebra; ALIF) from L2 to S1 using Titanium LT

cages via an anterior (ALIF) and with polyetheretherketone (PEEK)

cages via lateral (oblique lateral interbody fusion) approach in skele-

tally mature patients (Carragee et al., 2011). An off‐label use of

INFUSE in related interbody fusion procedures (cervical) has resulted

in unwanted safety issues, presumably from the high rhBMP2 dose

employed (Brown et al., 2013; Hsu, 2014; Jain, Hassanzadeh, Strike,

Skolasky, & Riley, 2014; Riederman et al., 2017; Simmonds et al.,

2013). However, the clinical evaluation of rhBMP2 soaked in synthetic

ceramics (hydroxyapatite and tricalcium phosphate) and bovine‐

sourced collagen composite as a scaffold (Amplify) for the posterolat-

eral lumbar spinal fusion procedure (Glassman et al., 2008) has not

been approved by Food and Drug Administration for human use, in

part due to potential cancer risks in treated groups as compared with

autograft controls (Carragee et al., 2013) and posed numerous chal-

lenges including unwanted safety issues likely resulting from the high

dose of rhBMP2 employed (12–40 mg for a single‐level fusion; Brown

et al., 2013; Cahill et al., 2009; Carragee et al., 2011; Fu et al., 2013;

Hsu, 2014; Simmonds et al., 2013; Vukicevic et al., 2014; Vukicevic

& Sampath, 2017). Similarly, rhBMP7 that contained bovine bone col-

lagen dispersed with additive carboxyl‐methyl cellulose (OP‐1 Putty)

has also failed to achieve successful outcome (Vaccaro et al., 2008).

These data suggest that use of low doses of a BMP with a natural bio-

compatible scaffold may provide a more permissive environment for

the optimal bone formation that is restricted to the implant site. Here,

we demonstrate that an autologous bone graft substitute (ABGS) that

contains a low dose of rhBMP6 that has a low affinity for the endog-

enous BMP antagonist, Noggin (abundant in bone; Song et al., 2010),

delivered with an autologous blood coagulum (ABC) carrier with or

without bone allograft particles (ALLO), is capable of inducing new

bone formation in rat subcutaneous implants and achieving a complete

fusion in rabbit PLF model.

2 | MATERIALS AND METHODS

2.1 | Rat subcutaneous implant assay analyses

Rat subcutaneous assay was carried out to observe cellular events and

bone formation following subcutaneous implantation of allograft, ABC,

and rhBMP6 (Sampath & Reddi, 1981). Three types of implants (ALLO,

ABC + ALLO, and ABC + ALLO + rhBMP6) were composed and

implanted in the axillary region of male Sprague‐Dawley rats, aged

10 weeks. ABGS was prepared from 0.5 ml of rat blood, which was

mixed with 0.1 mg of allograft and 25 μg of rhBMP6 and left for 60

min to coagulate in a 1‐ml syringe. After removing the serum, the

ABGS was implanted. Two different experiments were performed

and implants were harvested on Days 1, 3, 7, and 14 in the first and

on Days 7 and 35 in the second experiment, with two rats and four

implants for each time point. Bone formation and cellular events were

analysed using micro‐CT and histology sections.

2.2 | Rabbit model

Study protocols were conducted in 14‐week‐old male New Zealand

White laboratory rabbits (Oryctolagus cuniculus), New Zealand strain,

body weight 3–5 kg. The animal facility was registered by Directorate

for Veterinary, Reg. No: HR‐POK‐001. An approval for the animal

studies was given by the Directorate for Veterinary and Food Safety,

Ministry of Agriculture, Republic of Croatia (approval No. 525‐10/

0255‐14‐3). Laboratory animals were housed in standard rabbit cages

in conventional laboratory conditions at the temperature of 18–22°C,

relative humidity of 50–70%, fluorescent lighting provided illumination

12 hr/day and noise level 60 dB. Standard diet (Mucedola, Italy) bed-

ding with environmental enrichment were available, and fresh water

was provided ad libitum. Animal care was in compliance with standard

operating procedures of registries Croatian Animal facility HR‐POK‐

001; using 3R principle, minimization of the pain suffering during the

experiment; the European convention for the protection of vertebrate

animals used for experimental and other scientific purposes (ETS 123).
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2.3 | ABGS implant preparation

ABGS without ALLO was produced by dispersing rhBMP6 into autolo-

gous blood, which then allowed to form coagulum with defined struc-

ture and rheological properties as determined by stiffness, elasticity,

and strain, testing as previously described (Grgurevic et al., 2018).

Blood samples were collected from rabbit marginal ear veins into tubes

without any anticoagulant substance, supplemented with 0.1 ml of 50‐

mM CaCl2 solution in a volume of 2.5 ml, 2 hr before surgery, and

lyophilized rhBMP6 (Genera Research, Croatia) was dissolved in water

for injection (c = 2.5 mg/ml) and mixed with blood in an appropriate

volume and then left in room temperature to coagulate. Allogenic

devitalized bone particles (ALLO) were prepared as described

(Tomford, 2000), and 70‐ to 420‐μm particle sizes were used to pro-

duce ABGS with allograft. To produce ABGS with ALLO, ALLO parti-

cles were added at 0.2 g/ml ABC/rhBMP6 mix and then left at room

temperature to coagulate. In biomechanical testing, amounts of 1,

1.5, and 2 g of ALLO per 5 ml of ABC/rhBMP6 were used.

2.4 | PLF operation procedure

Twenty‐eight skeletally mature rabbits underwent bilateral posterior

intertransverse process fusion between lumbar vertebrae L4 and L5

(Boden, Schimandle, & Hutton, 1995). Animals were assigned into

seven experimental groups with N = 4 in each group as follows: ABC

alone; ABC and ALLO; ABC with 50 μg/ml rhBMP6; ABC with 100

μg/ml rhBMP6; ABC with 200 μg/ml rhBMP6; ABC with 200 μg/ml

rhBMP6 and ALLO; and ABC with 400 μg/ml rhBMP6 and ALLO.

The operationswere carried out under general anaesthesia. Xylazine

(Xylapan®, Vetoquinol, Switzerland) in dose of 5 mg/kg body weight

and Ketamine (Ketaminol® Vetoquinol, Switzerland) in dose of 35

mg/kg body weight were applied intramuscularly. Analgetic ketoprofen

(Ketofen®, Merial, France) in dose of 4 mg/kg body weight was applied

s.c. Prior to iv catheter placement hair was clipped and skin aseptically

prepared. Spinal fusion was carried out in the lumbar region between

L4 and L5 vertebrae. After placing the rabbit in the prone position, a dor-

sal midline skin incision extending from L4 to L7wasmade followed by a

paramedian fascial incision (Boden et al., 1995; Schimandle, Boden, &

Hutton, 1995). An intermuscular plane was established between the

multifidus and longissimus muscle layers using blunt dissection facilitat-

ing exposure of the transverse processes of L5 and L6 as well as the

intertransverse membrane. An electric cauterizer was used as needed

to minimize blood loss. Defects (device was placed between the trans-

verse process in the paraspinal bed bilaterally) were filled with ABC

alone or in combination with ALLO and rhBMP6 according to the

predefined experimental groups. Lateral aspect of transverse processes

were decorticated until bleeding by high speed burr where prepared

ABGS devices were placed. The fascial incisionwas closedwith 4‐0 syn-

thetic glycolide/lactide copolymer absorbable sutures. The aforemen-

tioned procedure was repeated on the contralateral side.

Whereas in the first experiment, decortication of transverse pro-

cesses was performed as an usual procedure in all the operations, in

a separate experiment bone, decortication was explored as a contrib-

uting factor to the quality of the spinal fusion (Ishikawa, Shin, Bowen,

& Cummings, 1994). Twelve animals were divided into three groups

with N = 4 in each group as follows: ABC with 100 μg/ml rhBMP6

with decortication, ABC with 100 μg/ml rhBMP6 without decortica-

tion, and ABC with 100 μg/ml rhBMP6 and ALLO without

decortication.

All animals were euthanized 14 weeks after the surgery by using

premedication of 3 mg/kg xylapane and 20 mg/kg ketamine i.m. and

administration of T61 (1 ml/kg) i.v. Ethical principles of the study

ensured compliance with European Directive 2010/63/EU, the Law

on Amendments to Animal Protection Act (Official Gazette 37/13),

the Animal Protection Act (Official Gazette 102/17), Ordinance on

the protection of animals used for scientific purposes (Official Gazette

55/13), FELASA recommendations, and recommendations of the

Ethics Committee School of Medicine, University of Zagreb. During

experiment, no adverse effects have been observed in any of the

experimental groups.

2.5 | Anti‐rhBMP6 antibodies

The presence of anti‐rhBMP6 antibodies was investigated within the

toxicology GLP study on BMP6 biocompatibility, safety, and efficacy,

including biochemical, hematological, gross pathology, and histology

examination carried out in Meditox, Czech Republic, as one aspect of

this study. The toxicology study has been conducted in 30 rabbits

and was approved by Meditox s.r.o. Institutional Animal Care and

Use Committee and the Committee for Animal Protection of the Min-

istry of Health of the Czech Republic (58/2016). New Zealand white

rabbits were used, n = 5/sex/dose level (total of 30 animals). Three

dose groups were administered with 0 (control, ABC alone), 1 mg

(low dose), and 2‐mg rhBMP6/ABC (high dose) per animal with surgi-

cal spinal implantation between vertebrae L4 and L5 as described

above. Transverse processes of L4 and L5 were decorticated with high

speed burr, and area between them was filled with ABC alone (control)

and ABC with 2 × 0.5 mg of rhBMP6 for low‐dose group and ABC with

2 × 1 of mg rhBMP6 for high‐dose group. Application volume for all

groups was 2 × 2.5 ml per animal. Blood samples for antibody assay

were collected during the Week 1 and on Day 21 from the v.

auricularis or v. saphena into tubes without anticoagulant. Samples

were centrifuged (6,000 rpm for 10 min), and the serum split into ali-

quots and immediately frozen at −80°C until analysis.

2.6 | Methods of evaluation

Radiographical images were taken before the surgery and at Weeks 3,

6, 9, and 14 after surgery. X‐ray imaging of lumbar spine segment were

performed using two standard orthogonal views (lateral and dorsoven-

tral). Samples were scanned on Eichermeyer EDR HP (IMD Generators

s. r. l., Italy) X‐ray machine using the 40 kV and 8 mAs with all ioniza-

tion protection protocols respected during the imaging, whereas

images were processed using Agfa CR 30‐X (Agfa, Japan). All obtained

radiographs from rabbit bones were interpreted and scored using a
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radiographic grading score system (Lindley et al., 2017) by a surgeon

and a radiologist blinded to the treatment protocol and postoperative

interval.

Micro‐CT detailed analysis of rabbit lumbar spine spanning from L4

to L7 was done using the Sky Scan 1076 micro‐CT device (Hildebrand,

Laib, Muller, Dequeker, & Ruegsegger, 1999). Ex vivo lumbar spine was

scanned at the resolution of 18 μm, 0.5‐mm aluminium filter, 0.5° rota-

tional step, and frame averaging set at 2. Concurrent dataset analysis

of the site of implantation was analysed by CTAn (Sky Scan) software.

The new bone formation and trabecular bone parameters were

depicted throughout the whole area of newly formed bone, as previ-

ously described (Erjavec et al., 2016; Grgurevic et al., 2011).

2.7 | Histology

Explanted rat subcutaneous samples were fixed in 4% formalin for 10

days. After fixation, samples from Days 7 and 14 were decalceinated

using 14% EDTA in 4% formalin solution for 20 days, with solution

change every 2 days. All samples were embedded in paraffin and cut

at 5‐μm slice thickness. To identify progenitor cells present preceding

to and during bone formation, sections were stained with alkaline

phosphatase, and the cell numbers were expressed per mm2 of the

implant area. For measurement of the inflammatory response in the

rat subcutaneous implant model, slices were subjected to analysis of

foreign body giant cells (FBGCs) by H&E staining and acid phosphatase

detection by histochemistry. Number of FBGC was determined on his-

tological sections (three to four samples per group), and on each sam-

ple, FBGCs were counted in three fields (one field = 1 mm2).

Immunohistochemistry of rat subcutaneous implants was performed

using the Mouse and Rabbit specific IHC Detection kit—Micro‐

polymer (Abcam ab236467) with following antibodies: anti‐alkaline

phosphatase, dilution 1:250 (Abcam ab108337); anti‐Sox9, dilution

1:2,000 (Abcam ab185230); and anti‐osteocalcin, 10 μg/ml (Abcam

ab13418).

Muscle free rabbit spine samples were fixed in 4% formalin for 3

weeks, trimmed of soft tissue, and entire bone was embedded in plas-

tic resin (Technovit 7200). Samples were cut at 5‐μm slices with a dia-

mond saw and stained using Masson Goldner Trichrome dye, as

previously described (Krempien, Vukicevic, Vogel, Stavljenic, &

Buchele, 1988; Vukicevic, Krempien, & Stavljenic, 1987). Images were

obtained using Olympus BX51 Epi‐Fluorescence microscope.

2.8 | rhBMP6 immunochemical analyses

Time‐dependent release of rhBMP6 from the ABC plus allograft

in vitro was determined on blood samples from healthy human volun-

teers. Blood was collected from the cubital vein into tubes without

anticoagulants. Upon withdrawal, blood was mixed with allograft (par-

ticle sizes 2–5 or 5–8 mm) and rhBMP6 in two concentrations (62.5 or

125 μg). After the coagulation was completed (60 min), ABC+rhBMP6

plus allograft was rinsed with 1 ml of the basal medium. Each implant

was placed in a Falcon tube containing 3 ml of Dulbecco's modified

Eagle medium. Tubes were incubated at 37°C during 10 days, and

the medium was replaced on Days 1, 3, 6, 8, and 10. The amount of

BMP6 released from the ABC/ALLO/rhBMP6 in the medium was

determined by rhBMP6‐specific ELISA (R&D systems, DY507).

For determination of the presence of anti‐rhBMP6 antibodies in

the serum samples, a previously validated indirect ELISA method was

used. Microtiter plates were coated overnight with 100 ng/ml rhBMP6

diluted in carbonate buffer. Serum samples were diluted in reagent dil-

uent (1% BSA in PBS) to six different dilutions (1:50, 1:100, 1:500,

1:1,000, 1:5,000, and 1:10,000), and biotinylated goat anti‐rabbit IgG

(R&D BAF008, diluted 1:5,000) was used as secondary antibody.

Serum samples from six animals were analysed on the same plate,

and each plate included the negative serum pool diluted at the same

ratio as the study samples. Absorbance was read at 450 nm using

Absorbance Microplate Reader ELx 808TM. Validation cut point value

for each dilution point was determined during the method validation

(Mire‐Sluis et al., 2004). Briefly, 10 samples of rabbit naïve serum were

analysed in dilution series from 1:50 to 1:10,000. The assay cut point

was calculated according to the following formula: mean absorbance +

1.645 × SD, where 1.645 is the 95th percentile of the normal distribu-

tion. Samples with absorbance readings higher than determined cut

point value at particular dilution would be defined as positive.

2.9 | Data management

Values are expressed as mean ± SEM or SD as indicated. For statistical

comparison of two samples, a two‐tailed Student t test was used, and

P < .05 was considered significant where indicated. Two‐way analysis

of variance with Duncan's multiple range test was performed to deter-

mine the effect of treatment and time on biochemical and bone repair

parameters. Additional specific data analyses, if applicable, are pre-

sented in figure legends. Analyses were performed by SAS for Win-

dows 9.3 (SAS Inc.).

3 | RESULTS

3.1 | Bio‐responsiveness by ABGS in rat
subcutaneous assay

Histology of ALLO/ABC and ALLO/ABC/rhBMP6 implants on Days 7

and 35 is shown in Figure 1a. There was no bone formation in

ALLO/ABC implants (top panel). On the other hand, ABC/ALLO/

rhBMP6 implants showed endochondral bone formation (bottom

panel). In ABC/ALLO/rhBMP6 Day 7 implants, we further confirmed

the newly formed cartilage with histochemical staining for SOX‐9, a

transcription factor for chondrogenesis (Figure S1A,B), and the evi-

dence of new bone formation by alkaline phosphatase (Figure S1C)

and osteocalcin (Figure S1D) staining, markers of osteoblast pheno-

type. The newly formed bone underwent a typical bone remodelling

mediated by osteoclasts as shown on Day 35 implants, where ALLO

particles were replaced by newly formed bone via a creeping substitu-

tion (Figure 1a, bottom panel). The robust osteogenesis was observed

with a gradual resorption of ALLO bone particles, as visualized by
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FIGURE 1 Allograft in ABC without and with rhBMP6 following subcutaneous implantation in rats. (a) ABC/ALLO (black arrows) without
rhBMP6 induced formation of fibrotic tissue at Days 7 and 35 without any sign of new bone formation. ABC/ALLO with rhBMP6 induced new
bone formation at Day 7 (yellow arrows) and advanced creeping substitution of ALLO with new bone was observed on Day 35 (blue arrowhead).
(b) Overall micro‐CT analyses of ABC/ALLO implants without and with rhBMP6 are shown in the top row, only ALLO particles are visualized in the
middle row, and the bottom row represents the newly formed bone, image obtained upon subtracting the ALLO particle from overall micro CT.
Note the formation of new bone by 7 days and significant by Day 35 in ABC/ALLO implants that contained rhBMP6. ABC/ALLO alone did not
induce bone either at 7 or 35 days after implantation. (c) Morphometric analysis of ALLO volume in implants on Days 7 and 35 indicating a
significant decrease of ALLO volume and increased of the amount of bone in the presence of rhBMP6. Results are shown as mean ± SD (n = 5). *P <
.05 and **P < .01 versus ALLO (two‐tailed Student's t test). (d) ALLO (white asterisks) when implanted without ABC resulted in recruitment of
numerous foreign body giant cells (FBGC; yellow arrows). (e) ALLO when implanted with ABC showed significantly decreased number of FBGCs. (f)
ALLO when mixed with ABC and rhBMP6 induced endochondral and intramembranous bone formation (green arrowheads) in between ALLO
particles and surrounded by new vasculature (red arrowheads), note absence of FBGCs. (g) Total number of FBGCs from three histological sections
of representative implants. *P < .05 and **P < .01 versus ALLO and ALLO + ABC, respectively; #P < .05 versus ALLO and ALLO/ABC/rhBMP6 (two‐
tailed Student's t test). (h,i) Multinucleated FBGCs stained for acid phosphatase (yellow arrows) in adjacent sections of ALLO alone implants
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contrast micro‐CT analysis (Figure 1b). ALLO volume and bone volume

in the rat subcutaneous implants were quantified using micro‐CT anal-

ysis for ABC/ALLO and ABC/ALLO/rhBMP6 implants on Days 7 and

35 (Figure 1c).

When implanted in rat subcutaneous sites, ALLO bone particles

induced inflammation and foreign‐body reaction due to high Ca/P

mineral content at ectopic sites by recruiting mononuclear phago-

cytes by Days 1–3 (data not shown), which then fused to form mul-

tinucleated FBGCs by Days 7–14 (Figure 1d). The fusion of

multinucleated FBGCs was significantly reduced when ALLO parti-

cles were formulated with ABC (Figure 1e). In the ABGS implants

that contained ABC/ALLO/rhBMP6, there were even fewer or no

FBGCs, and new endochondral bone formation was observed in

apposition to ALLO particles (Figure 1f). Figure 1g represents the

average number of multinucleated FBGCs counted morphometrically

from three representative histology sections from ALLO, ALLO/ABC,

and ALLO/ABC/rhBMP6 implants. The multinucleated FBGCs cells

recruited by ALLO implants were further characterized by immuno-

histochemistry for acid phosphatase staining, which was reduced by

addition of ABC (Figure 1h,i).

3.2 | Production of ABGS device

The shape and dimension of the produced ABGS implant for use in

rabbit PLF model is presented in Figure 2a. In ABGS/ALLO implants,

the added ALLO particles were distributed uniformly within the

implants, as revealed by X‐ray and micro‐CT analysis. The presence

of ALLO has significantly increased the stiffness and elasticity of

the device and improved compatibility and handling properties as

compared with the implants without ALLO (Figure 2b). About 0.1

to 0.2 g of ALLO particles (74–420 μM) per 0.5 ml of ABC is suffi-

cient to provide the handling rheological properties.

As rhBMP6 is mainly bound to plasma proteins in ABGS

(Grgurevic et al., 2018), the calculated cumulative total release mea-

sured in vitro over 10 days from ABGS was only 3–5% of total

rhBMP6 dose (Figure 2c). Addition of ALLO in different particle sizes

seemed to slightly attribute to more cumulative release. The release

kinetics of rhBMP6 may change at the implant site as the protein is

taken up by the responding cells to trigger endochondral bone differ-

entiation as well as fibrinolysis of ABGS, which does not occur

in vitro. Furthermore, it is noteworthy that there were no anti‐

rhBMP6 antibodies detected in sera of rabbits treated with

ABC/rhBMP6 implants (1 and 2 mg of rhBMP6 per animal) at 3

weeks following implantation (Figure 2d).

3.3 | Evaluation of ABGS in rabbit PLF model

The follow‐up of the new bone formation in all experimental groups as

assessed by X‐ray at different time points after surgery is shown in

Figure 3. Figure 4a shows X‐ray, micro‐CT, and gross anatomy photo-

graphs of ABGS without and with ALLO at varying doses of rhBMP6

per ml of ABC as compared with ABC alone and ABC plus ALLO

groups at the end of experiment, 14 weeks after surgery. Bone

decortication of transverse processes was performed in all the groups.

The group that contained rhBMP6 at 50 μg/ml ABC demonstrated

new bone formation but achieved fusion in only two out of four rab-

bits, suggesting that the amount of rhBMP6 might not have been suf-

ficient, whereas rhBMP6 at 100 μg/ml ABC achieved a complete

spinal fusion in all the rabbits. Because ALLO is capable of inducing

inflammation and formation of multinucleated FBGCs, we have formu-

lated ABGS implants with higher amounts of rhBMP6. ABGS/ALLO

that contained 200 μg/ml ABC induced a complete fusion with bone

volume comparable with that of ABGS that had 100 μg/ml ABC with-

out ALLO; however, an increased amount of rhBMP6 to 400 μg/ml

ABC did not further increase the bone volume. In the groups that

had ABC alone or ABC/ALLO, no bone formation was observed and

spine did not fuse. The successfully fused bone by ABGS (ABC/

rhBMP6 or ABC/ALLO/rhBMP6) groups appeared to be compact

and solid (Figure 4a). The contact area between the transverse pro-

cesses and the newly formed bone was indistinguishable and fused

into one continuous bone segment.

Radiographic images of all samples were scored and measurement

of new bone was quantified for bone volume, trabecular number and

trabecular interconnectivity, as determined by micro‐CT analyses and

are presented in Figure 4b–e. ABGS at a dose of 100‐μg rhBMP6

per ml of ABC appears to be the optimal dose, and doubling the dose

does not increase the bone formation parameters. ABGS plus ALLO

implants that contained either 200‐ or 400‐μg rhBMP6 per ml of

ABC resulted in new bone formation comparable with ABGS without

ALLO at 100‐μg rhBMP6 per ml of ABC.

The histology showed that in ABGS implants, the newly formed

bone underwent a new bone formation with a typical remodelling

and osseous integration at the interface in between the newly formed

bone and the native transverse processes (Figure 5). In ABGS contain-

ing ALLO implants, the newly formed bone underwent a rapid bone

remodelling and was fully integrated with ALLO particles, which even-

tually got replaced by creeping substitution. An extended osteoid seam

covered surfaces of newly formed bone with areas of woven bone and

immature osteocytes (Figure 5).

In addition, we examined whether decortication of transverse pro-

cesses is required to achieve a successful fusion. Rabbits were treated

with implants ABC containing 100‐μg rhBMP6 per ml with or without

decortication during the operation procedure. The results show that

two out of four implants did not fuse rabbits without decortication

procedure, whereas four out of four implants have fused in rabbits

upon decortication. We also found ABGS when formulated with ALLO,

three out of three implants have fused in rabbits without decortica-

tion, suggesting that ALLO may facilitate the fusion of transverse pro-

cesses with newly formed bone with or without decortication

(Figure 6).

4 | DISCUSSION

In the present study, we demonstrated that an ABGS that contains

rhBMP6 dispersed within ABC, without or with ALLO particles, is
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capable of inducing new bone formation in rat subcutaneous implants

and achieving a fusion in a rabbit spine PLF model. BMP6 was chosen

as a preferred BMP as its binding to Noggin, a natural BMP antagonist

present in abundance in bone, is lesser than other BMPs (Klineberg

et al., 2014; Song et al., 2010; Vukicevic et al., 2014). BMP6 also binds

to most of theTypes I and II BMP receptors and exhibits a high specific

alkaline phosphatase activity in osteoblastic cell cultures (Grgurevic

et al., 2018; Song et al., 2010), hence permitting the use of lower

doses as compared with BMP2 or BMP7. ABC was chosen as a phys-

iological carrier as it suppresses foreign body response, promotes tight

rhBMP6 binding with plasma proteins within the fibrin meshwork,

allows a sustained release of rhBMP6, and avoids generation of anti-

bodies to rhBMP6, thus providing a permissive environment for endo-

chondral bone differentiation. In our previous work (Grgurevic et al.,

2018), we have demonstrated that the use of ABC as a carrier reduced

the immune response when compared with the use of bovine collagen,

as shown by reduced neutrophil accumulation and myeloperoxidase

activity in rat subcutaneous implants. The ALLO particles are added

and distributed uniformly across the ABC to provide adequate biome-

chanical and biocompatible good handling properties.

ABGS containing ABC or ABC/ALLO are produced with defined

rheological properties. We observed for the first time that ABC has

an unexpected inherent biological property as it overcomes foreign

body responses elicited by high Ca/P‐containing mineralized matrix

(ALLO) at ectopic sites. When implanted alone, ALLO did not form

bone at subcutaneous (ectopic) site but instead recruited mononu-

clear phagocytes which then fused to form multinucleated FBGCs

to dissolve the mineralized bone matrix implanted at a nonbony site.

On the other hand, ALLO implants when combined with ABC

reduced significantly the formation of multinucleated FBGCs and

with rhBMP6 dispersed within ABC resulted in formation of endo-

chondral bone. It is likely that ABC coated ALLO surface masked

T‐cell recognition, thus suppressing foreign body response locally.

The dose of rhBMP6 required to induce optimal bone formation

are comparable in ABGS with or without ALLO as it binds to ABC

more tightly than to ALLO and released locally in times with the res-

olution of ABC by haemolysis. ABGS induced bone is a dose‐

dependent with an optimal dose of rhBMP6 at 100 μg/ml ABC

and produced a complete fusion between two lumbar transverse

processes in rabbit PLF model.

FIGURE 2 The shape and dimension of the produced ABGS implants for use in rabbit PLF model. (a) ABGS implants with allograft prepared for
rabbit (1.5 × 1.0 cm) posterolateral spine fusion experiments; left is gross picture, the centre is X‐ray, and right is micro‐CT. (b) Biomechanical
properties of ABGS were tested using the CUT test for measuring stiffness, elasticity, and strain in implants with various allograft amounts (1–2 g)
per 5 ml of blood. Values are shown as mean ± SEM (n = 4), *P < .05 and **P < .01 (two‐tailed Student's t test) when compared with the implant
without allograft. (c) Cumulative in vitro release of rhBMP6 over 10 days from ABGS expressed as a percent of the total rhBMP6 dose. Results are
presented as individual values from two experiments. (d) Absence of the anti‐rhBMP6 antibodies in rabbit serum was demonstrated by indirect
ELISA method a week before and 3 weeks after surgery. Cut point value was determined during the method validation process. Mean ± SD (n = 10)
of absorbance (A450) values are shown
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FIGURE 3 Rabbit spinal fusion (L4–L5) imaged in all groups by X‐ray at Weeks 3, 6, 9, and 14 during the experiment. White arrows indicate new
bone, while yellow arrows indicate allograft particles

FIGURE 4 (a) Rabbit spinal fusion (L4–L5) after treatment with various doses of rhBMP6 without and with ALLO at 14 weeks after surgery, as
visualized by X‐ray (top row), micro‐CT (middle row), and gross anatomy macerated specimen (bottom row). (b) Spinal fusion X‐ray scoring results.
(c–e) Spinal fusion morphometric parameters measured from micro‐CT images. Results are shown as mean ± SD (n = 4). *P < .05 versus negative
control, **P < .05 versus ABC + ALLO (one‐way ANOVA with Tukey post hoc test)
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The newly formed bone in ABGS containing ALLOwas compact and

underwent typical bone remodelling as examined by micro‐CT analysis

and histology, which mimics that of autograft assimilation observed in

orthotropic sites (Gupta, Keshav, & Kumar, 2016) via a creeping substi-

tution. ALLO particles provided better structural stability for ABGS,

compared with ABGS alone, while permitting the migration of bone

forming cells as evidenced by bone formation and ALLO remodelling.

We also examined the contribution of decortication versus no decorti-

cation of transverse processes prior to placing of the implant, and the

results showed that decortication has produced significantly a higher

success rate of spinal fusion than keeping the cortices intact.

RhBMP2 (InFUSE) and rhBMP7 (OP‐1 Putty) have been shown to

induce new bone formation and promote radiographic fusion in PLF

animal models (Boden, Moskovitz, Morone, & Toribitake, 1996; Jenis,

Wheeler, Parazin, & Connolly, 2002; Martin, Boden, Marone, Marone,

& Moskovitz, 1999; Suh et al., 2002; Vukicevic & Sampath, 2017). In

contrast to these studies, we show here that rhBMP6 in ABGS

induced bone formation at lower doses, and the newly formed bone

was restricted to the size and shape of the implants. Although the

use of InFUSE (INFUSE Bone Graft product information: Lumbar,

2002) in conjunction with the LT‐Cage device has been approved for

ALIF procedures in patients with DDD at one level from L2 to S1

(Burkus, Gornet, Dickman, & Zdeblick, 2002), the off‐label use for

anterior cervical fusion in patients has produced unwanted safety

issues that included radiculitis, vertebral body resorption, seroma

and/or haematoma formation, uncontrolled heterotopic ossification,

osteolytic erosion, retrograde ejaculation, and concerns of possible

cancer risks (Cahill, McCormick, & Levi, 2015; Wong, Kumar, Jatana,

Ghiselli, & Wong, 2008), which in part may be attributed to the larger

amount of rhBMP2 used in the device (Carragee et al., 2011). Evalua-

tion of rhBMP2 in a porous synthetic slab that is composed of bovine

collagen sponge impregnated with ceramic granules of hydroxyl apa-

tite and tricalcium phosphate in PLF clinical studies demonstrated a

moderate fusion, but a significant number of patients continued to

experience low back pain and leg pain and unwanted adverse events

(Dawson, Bae, Burkus, Stambough, & Glassman, 2009; Dimar et al.,

2009). RhBMP7 as an implantable bone graft substitute also did not

achieve a statistical difference as compared with autograft in a PLF

clinical study (Vaccaro et al., 2004; Vaccaro et al., 2008).

Bovine sourced collagens were used as carriers to deliver BMP2

and BMP7. Bovine Achilles tendon derived acid soluble reconstituted

Type I collagen mesh as in InFUSE (INFUSE Bone Graft product infor-

mation: Lumbar, 2002) or as a slab‐shaped collagen composite with

synthetic ceramics as in Amplify (Executive Summary for P050036

Medtronic's AMPLIFY™ rhBMP‐2 Matrix Orthopedic and Rehabilita-

tion Devices Advisory Panel, 2010) were used to deliver rhBMP2.

Bovine diaphysis bone derived insoluble Type I collagen as particulate

and/or combined with additive carboxymethyl cellulose as injectable

putty were used for rhBMP7/OP1 as in OP1‐Implants (OP‐1 Implant®

product information, 2009) and OP1‐Putty (OP‐1 Putty® product

information, 2009). Sterilization of these bovine sourced collagens by

chemical methods or gamma radiation for clinical uses added

FIGURE 5 Histology of ABGS implants without and with ALLO harvested at 14 weeks after surgery in rabbit PLF model. Left rows represent
ABGS implants without ALLO: note newly formed bone containing dense trabecular structure with laid‐down osteoid at the surface (black
arrows) and pronounced bone remodelling with numerous blood vessels (yellow arrows). Right rows represent ABGS implants with ALLO: The
newly formed trabeculae is assimilated with ALLO (blue arrows) via creeping substitution and invaded by new blood vessels (yellow arrows)
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FIGURE 6 Effect of transverse processes
decortication on spinal fusion. The same dose
of rhBMP6 (100 μg/ml) was used. Rabbit
spinal fusion after removal of bone cortex (a),
without decortication (b) and in combination
with allograft (ALLO) particles (c)
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unwanted modifications to collagenous carrier as well (OP‐1 Putty®

product information, 2009). As such, we present here an ABC to serve

as a physiological carrier to deliver rhBMP6 (ABGS) to induce new

bone formation and with allograft (bone particle ALLO) as a compres-

sion resistant matrix to promote osteogenesis in PLF model and mini-

mize adverse events that may be associated with the use of collagen

calcium‐ceramics composite scaffold (Govender, Rampersaud,

Rickards, & Fehlings, 2002).

ABGS containing ABC and rhBMP6 has been evaluated in a First‐

in‐Human randomized, placebo controlled and double blinded Phase I

study in patients with distal radius fracture and in a Phase I/II study

in patients with high tibial osteotomy. ABGS with ALLO devices is cur-

rently being evaluated in a randomized, double blinded, and controlled

Phase II study for posterolateral lumbar interbody fusion against auto-

graft as a comparator.
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SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of the article.

Figure S1. A‐D. Histology of rat subcutaneous implants stained for

cartilage and bone markers on day 7. A‐B. ABC/ALLO/rhBMP6

implants stained for SOX‐9, the marker for chondrocytes (arrows). C.

ABC/ALLO/rhBMP6 implants stained for alkaline phosphatase. D.

ABC/ALLO/rhBMP6 implants stained for osteocalcin. Arrows indicate

osteoprogenitor cells.
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