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ARTICLE

International meta-analysis of PTSD genome-wide
association studies identifies sex- and ancestry-
specific genetic risk loci
Caroline M. Nievergelt et al.#

The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust

common variants have yet to be identified. In a multi-ethnic cohort including over 30,000

PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We

demonstrate SNP-based heritability estimates of 5–20%, varying by sex. Three genome-wide

significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses

stratified by sex implicate 3 additional loci in men. Along with other novel genes and

non-coding RNAs, a Parkinson’s disease gene involved in dopamine regulation, PARK2, is

associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly

predictive of re-experiencing symptoms in the Million Veteran Program dataset, although

specific loci did not replicate. These results demonstrate the role of genetic variation in the

biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and

expanding GWAS beyond European ancestry populations.
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Post-traumatic stress disorder (PTSD) is a commonly
occurring mental health consequence of exposure to
extreme, life threatening stress, and/or serious injury/harm.

PTSD is frequently associated with the occurrence of comorbid
mental disorders such as major depression1 and other adverse
health sequelae including type 2 diabetes and cardiovascular
disease2,3. Given this high prevalence and impact, PTSD is a
serious public health problem. An understanding of the biological
mechanisms of risk for PTSD is therefore an important goal of
research ultimately aimed at its prevention and mitigation4,5.

Exposure to traumatic stress is, by definition, requisite for the
development of PTSD, but individual susceptibility to PTSD
(conditioned on trauma exposure) varies widely. Twin studies
over the past two decades provide persuasive evidence for at least
some genetic influence on PTSD risk6,7, and the last decade has
witnessed the beginnings of a concerted effort to detect specific
genetic susceptibility variants for PTSD8,9.

The Psychiatric Genomics Consortium—PTSD Group (PGC-
PTSD) published results from a large GWAS on PTSD, involving
a trans-ethnic sample of over 20,000 individuals, approximately
5000 (25%) of whom were cases10. With this limited sample size,
no individual variants exceeded genome-wide significance; how-
ever, significant estimates of SNP heritability and genetic corre-
lations between PTSD and other mental disorders such as
schizophrenia were demonstrated for the first time.

It is apparent from previous PGC work on other mental dis-
orders that sample size is paramount for GWAS to discern
common genome-wide significant variants of small effect that are
replicable11. Subsequent to the publication of data from the first
freeze10, the PGC-PTSD has continued to acquire additional
PTSD cases and controls through partnerships with an expanding
network of investigators, such that we now have accrued a sample
size that has enabled us to turn the corner on genome-wide risk
discovery. Presented here are the results of our latest GWA stu-
dies that include over 23,000 European and over 4000 African
ancestry PTSD cases, now involving a total trans-ethnic sample of
over 200,000 individuals. In achieving this sample size, we
identify sex- and ancestry-specific findings. GWAS and gene-
based analyses across our cohorts indicate genome-wide sig-
nificant associations, involving genes related to dopamine and
immune pathways. We show high genetic correlations between
PTSD and related psychiatric disorders such as major depressive
disorder, but present evidence that some of the identified loci are

likely specific to PTSD. In addition, we construct a highly sig-
nificant polygenic risk score for PTSD, which is predictive of re-
experiencing symptoms (REX), a core feature of PTSD, in the
independent Million Veteran Program cohort9.

Results
Meta-analysis strategy across ancestries and sex. We report
meta-analyses of GWAS from the PGC-PTSD Freeze 2 (PGC2),
comprised of an ancestrally diverse group of 206,655 participants
(including 32,428 cases) from 60 different PTSD studies, ranging
from clinically deeply characterized, small patient groups to large
cohorts with self-reported PTSD symptoms (Supplementary
Data 1). Trauma exposure included both civilian and/or military
events, often with pre-existing exposure to childhood trauma, and
the majority of controls were trauma-exposed. First ancestry
groups were consistently defined across studies (Supplementary
Fig. 1). Primary GWAS were then performed separately in the
three largest ancestry groups (European (EUA), African (AFA),
and Native American Ancestry (AMA)), then meta-analyzed
across studies and ancestry groups. Given the previously observed
differences between male and female heritability estimates in
PGC-PTSD Freeze 110, we also performed sex-stratified analyses.
Quantile-quantile plots showed low inflation across analyses
(Supplementary Fig. 2), which was mostly accounted for by
polygenic SNP effects with little indication of residual population
stratification (see Supplementary Note 1 for additional
information).

Heritability of PTSD. We estimated heritability of PTSD in the
EUA studies (Table 1) based on information captured by geno-
typing arrays (h2SNP) from summary statistics using LDSC12.
Assuming a population prevalence of 30% after trauma exposure,
overall h2SNP in PGC2 was 0.05 on the liability scale (P= 3.18 ×
10−8). However, female heritability was highly significant
(h2SNP= 0.10, P= 8.03 × 10−11), while male heritability was not
significantly different from zero (h2SNP= 0.01, P= 0.63).

We further examined sex differences in heritability in different
subsets of the data: the PGC2 data without the UK Biobank
(referred to as PGC1.5) and the UK Biobank (UKB) by itself,
which comprises a large proportion of PGC2. Similar to the
overall PGC2, heritability in PGC1.5 was high in women and
not significant in men. In contrast, in the UKB, male heritability

Table 1 Heritability estimates in subjects of European ancestry (EUA)

Sample N N 10% prev 30% prev 50% prev

Cases Controls h2SNP 95% CI h2SNP 95% CI h2SNP 95% CI p-value

All
PGC2 23,212 151,447 0.04 0.02–0.05 0.05 0.03–0.07 0.06 0.04–0.08 3.2 × 10−8

PGC1.5 12,823 35,648 0.03 0.01–0.06 0.05 0.01–0.08 0.05 0.01–0.09 0.011
Men
UKB 10,389 115,799 0.13 0.1-0.15 0.17 0.14–0.21 0.19 0.15–0.23 2.1 × 10−18

PGC2 9908 75,605 0.01 −0.02 to 0.03 0.01 −0.03 to 0.05 0.01 −0.03 to 0.05 0.63
PGC1.5 6364 23,905 0.01 −0.04 to 0.05 0.01 −0.05 to 0.07 0.01 −0.05 to 0.08 0.69
UKB 3544 51,700 0.11 0.04–0.17 0.15 0.05–0.24 0.16 0.05–0.26 1.4 × 10−3

Women
PGC2 12,973 73,627 0.07 0.05–0.09 0.10 0.07–0.13 0.11 0.07–0.14 8.0 × 10−11

PGC1.5 6128 9528 0.15 0.08–0.22 0.21 0.11–0.31 0.23 0.12–0.33 2.7 × 10−5

UKB 6845 64,099 0.14 0.1–0.18 0.19 0.13–0.25 0.21 0.14–0.27 2.0 × 10−10

Estimates are calculated using LD-score regression (LDSC) at different population prevalences after trauma exposure for the combined PGC freeze 2 samples, and separately for PGC1.5 (without the UK
biobank), the UK biobank, and for men and women. Number of SNPs ranges from 1,160,174 to 1,175,791
P-value is testing if h2SNP is different from zero and applies to all prevalences
PGC2 all European ancestry subjects of PGC freeze 2 (including the UK biobank), PGC1.5 European ancestry subjects in the PGC1.5 EUA (not including the UK Biobank subjects), UKB UK Biobank
European subjects, h2SNP mean SNP-based heritability, 95% CI 95% confidence interval, prev prevalence
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was significant (h2SNP= 0.15, P= 1.38 × 10−3) and not signifi-
cantly different (z= 0.23, P= 0.41) from heritability in women
(h2SNP= 0.19, P= 2 × 10−10). Sensitivity analyses in UKB using
different case and control definitions further confirm these results
(Supplementary Table 1 and Supplementary Note 1).

We also compared heritability across ancestries using the
GCTA GREML method, which allows analysis of admixed
populations when individual genotypes are available. GCTA
estimates in the smaller EUA data remained similar to LDSC on
the full data (Table 2). Heritability in AFA was comparable to
estimates for EUA in the overall sample and when stratified by
sex.

Comparability of PGC2 studies and sex-specific analyses. A
comparison of heritability estimates in subsets of PGC2 studies
stratified by sex, ancestry, and characteristics of study (i.e.
PGC1.5 vs. the large UKB cohort) show significant estimates for
PTSD in the range of 10–20% (Tables 1–2). This is with the
notable exception of PGC1.5 males (in EUA and AFA analyses),
which fail to show significant h2SNP, despite similar numbers of
PTSD cases compared to PGC1.5 women. To further evaluate the
comparability of PGC2 studies we estimated genetic correlations
(rg) between subsets with different characteristics (Supplementary
Table 2).

As numerous small studies contribute to PGC1.5 (24 EUA
studies with N < 200 cases, Supplementary Table 3), we first
investigated the contribution of small studies to the overall
genetic signal and genetic similarity to the larger PGC1.5 cohorts.
The combined subset of small studies showed significant overall
heritability (h2SNP= 0.12, P= 0.046) and close to significant
genetic correlation with large studies (rg= 0.45, P= 0.08),
indicating a meaningful genetic contribution in aggregate.

Subsetting PGC1.5 and UKB by sex showed a high genetic
correlation between women and men for UKB (rg= 1.03, P=
1.6 × 10−5), but no significant genetic correlation between women
and men in PGC1.5, which was expected, since h2SNP in PGC1.5
men is not significant. Next, focusing on PGC1.5 women only, a
comparison to UKB showed significant genetic correlations with
the overall UKB (rg= 0.46, P= 0.0004) and UKB women (rg=
0.46, P= 0.0008), and a slightly lower, but marginally significant
correlation with the smaller UKB male data (rg= 0.44, P=
0.052).

Overall, these findings of significant heritability estimates for
PTSD and moderate to high genetic correlations between most
PGC2 subsets, including PGC1.5 to UKB (rg= 0.73, P= 0.0005),
are promising for GWAS in these data.

GWAS in subjects of European and African ancestry. Our
largest PTSD meta-analysis in subjects of EUA (maximum
number of subjects included in EUA meta-analyses: N= 23,212
cases, 151,447 controls, see Table 3 for details) identified two
independent, genome-wide significant loci (P < 5 × 10−8), both
mapping to chromosome 6, and sex-stratified analyses in men
identified two additional loci (Fig. 1a, b, respectively). The smaller
meta-analyses in AFA (N= 4363 cases, 10,976 controls) identi-
fied one genome-wide significant locus, and an additional locus
was found in men when stratified by sex (Fig. 1c, d, respectively).
No genome-wide significant associations were found in meta-
analyses of EUA or AFA women (Supplementary Fig. 3).

Regional plots of the six genomic regions can be found in
Supplementary Figs. 4–9. The six leading markers show odds
ratios of 1.12–1.33 and no significant heterogeneity across studies
(Table 3). This is supported by PM-plots (posterior probability
that a SNP effect exists in a given study) showing a high
consistency of effects among the studies predicted to have an
effect13 (Supplementary Figs. 10–15). A z-test on the effect sizes
confirmed similar effects for men and women for the three
leading variants in the joint-sex analyses, and significant sex-
specificity for the three male hits identified in the sex-stratified
analyses (Supplementary Table 4).

Analyses across ancestry groups. In order to study whether the
genetic associations with PTSD vary across different ancestries,
we first tried to replicate our six EUA and AFA top hits in the
other main ancestry groups (EUA, AFA and AMA, respectively).
No evidence of replication was found by directly comparing the
six leading markers, nor by investigating the larger genomic
regions harboring the signal (Supplementary Figs. 16–21). In
addition, we did not identify any genome-wide significant hits by
performing a trans-ethnic genome-wide meta-analysis across the
six main ancestry groups (N= 29,556 cases and 166,145 controls)
under fixed- and random-effect models (Supplementary Fig. 22).

While lack of replication of the 4 EUA hits may not be
conclusive due to limited power in the smaller AFA and AMA
data (Supplementary Tables 5–6), the 2 hits in AFA provided an
opportunity for a more detailed analysis of ancestry effects.
GWAS in the AFA subjects included standard PCs to control for
average admixture across the genome. However, to precisely infer
local ancestry across the genome of admixed subjects, we further
implemented a local ancestry inference (LAI) pipeline (Supple-
mentary Note 1 and Supplementary Fig. 23). We confirmed the
AFA top hit rs115539978 to be specific to the African ancestral
background (8% MAF on the African, and <1% MAF on the

Table 2 Comparison of heritability between European (EUA) and African ancestry (AFA) studies

Sample N N 10% prev 30% prev 50% prev

Cases Controls h2SNP 95% CI h2SNP 95% CI h2SNP 95% CI p-value

All
EUA 9354 25,175 0.04 0.02–0.06 0.05 0.02–0.08 0.05 0.02–0.08 1.3 × 10−4

AFA 3163 9459 0.02 −0.04 to 0.09 0.03 −0.06 to 0.12 0.04 −0.06 to 0.13 0.22744
Men
EUA 4412 17,380 0.02 −0.02 to 0.05 0.02 −0.02 to 0.07 0.03 −0.03 to 0.08 0.15951
AFA 1195 4361 0.02 −0.14 to 0.18 0.03 −0.2 to 0.25 0.03 −0.21 to 0.27 0.41127
Women
EUA 4689 5874 0.08 0.03–0.13 0.12 0.05–0.19 0.13 0.05–0.20 4.0 × 10−4

AFA 1761 4435 0.12 −0.01 to 0.25 0.17 −0.01 to 0.35 0.18 −0.01 to 0.38 0.028

Analyses are performed using GCTA in both sexes and for men and women separately and include all subjects used in the EUA and AFA GWAS with access to individual-level genotype data. Number of
SNPs ranges from 4,071,335 to 4,863,146.
P-value is testing if h2SNP is different from zero and applies to all prevalences
h2SNP mean SNP-based heritability, 95% CI 95% confidence interval, prev prevalence
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European and Native American backgrounds, respectively;
(Supplementary Table 7). Conversely, LAI analyses of the male-
specific hit indexed by rs142174523 showed no evidence for
ancestry-specific effects that would explain the lack of replication
in the EUA meta-analyses (Supplementary Table 8); however, the
LD-structure in the MHC locus is complex14.

Integration with functional genomic data. Functional mapping
and annotation of the 6 GWAS hits using the FUMA pipeline
conservatively predicted five genes ZDHHC14, PARK2, KAZN,
TMEM51-AS1 and ZNF813 located in EUA risk loci, and five
distinct genes LINC02335, MIR5007, TUC338, LINC02571 and
HLA-B in AFA risk loci (Table 4). In addition, gene-based ana-
lyses on 18,222 protein-coding genes based on the EUA and AFA
GWAS summary data identified two additional gene-wide sig-
nificant loci, represented by SH3RF3 (P= 4.28 × 10−07) and
PODXL (P= 2.37 × 10−06) in the EUA analysis. Gene-based
analyses in AFA did not result in genome-wide significant loci.
The biological function and potential psychiatric relevance of the
12 genes predicted by FUMA are detailed in the Supplementary
Note 1 and discussed below.

We next performed gene-set analyses to understand implicated
genes in the context of pathways and found four significant,
Bonferroni-corrected gene sets (Supplementary Data 2). Of note,
the two gene sets identified in the EUA data point towards a role
for the immune system in PTSD. This is supported by a number
of TNF-related genes summarized in a significant gene-set
in AFA.

Annotation of variants in risk loci showed limited evidence of
functionality (Table 4 and Supplementary Note 1). Most notably
for the AFA top hit on chromosome 13, when testing for
chromatin interactions using Hi-C data in neural progenitor cells,
significant chromatin conformation interactions were observed
between the risk region and a region ~1100 kb upstream
harboring additional non-coding RNAs including LINC00458,
hsa-mir-1297 and LINC00558 as well as a region approximately
820 kb downstream harboring the pseudogene HNF4GP1 (Sup-
plementary Fig. 24). eQTL analyses did not show significant
associations with gene expression. However, the lack of functional
data for this region may be explained by the African ancestry
specificity of the GWAS findings since databases available within
the FUMA framework, including GTEx and BrainSpan for eQTL
analyses, are predominantly based on European populations.

Thus, we expanded our analyses for the AFA top hit through
cell culture experiments in lymphoblastoid cell lines (LCLs) from
African subjects (see Methods and Supplementary Note 1). We
show evidence that the African-ancestry-specific SNP
rs115539978 seems to capture a genomic region that may
influence the expression of non-coding RNAs from this PTSD
risk locus in response to increased glucocorticoid receptor
signaling, thus linking this African-specific genetic variant to
stress response and non-coding RNA expression (Supplementary
Fig. 25).

We further characterized the AFA signal (rs115539978) using
psychophysiology and imaging datasets available through the
Grady Trauma Project (GTPC) and found evidence that this lead
SNP captures a genomic region that is also associated with
increased amygdala volume and fear psychophysiology in a
traumatized population (Supplementary Note 1 and Supplemen-
tary Fig. 26).

Replication of findings in the external MVP cohort. In an
attempt to replicate our genomics findings in an adequately-
powered external study we used the large MVP cohort, including
146,660 EUA and 19,983 AFA participants assessed forT
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re-experiencing symptoms (REX), a core feature of PTSD9. We
first compared the genetic signals between PGC2 PTSD and MVP
REX EUA and found a highly significant genetic correlation (rg=
0.80, SE= 0.096, P= 2.85 × 10−17). No evidence of replication was
found for the six leading PTSD markers identified in PGC2 EUA
and AFA GWAS for the MVP REX-specific symptoms (Supple-
mentary Table 9). However, two of these markers were not directly
genotyped and had to be assessed by proxy markers in only
moderately high (~75%) LD, and sex-stratified analyses were not
available for MVP.

Polygenic risk scores (PRS) for PTSD. PRS generated from well-
powered GWAS have recently become a tool of high relevance for
polygenic disorders and traits (e.g. ref. 15,16). We assessed the
predictive value of PRS for PTSD, using our largest cohort, the
UKB, as a training sample (Fig. 2a). Our analyses were strongest at
a p-value threshold PT= 0.3 and showed a highly significant
increase in odds to develop PTSD across PRS quintiles in the
PGC1.5 EUA target sample, with a variance explained on the
liability scale of r2= 0.0015 (likelihood ratio test P= 5.44 × 10−7).
Analyses within the UKB show even stronger PRS predictability,
with the highest OR for UKB men with a PRS trained on UKB
women, reaching an OR of 1.39 in the 5th quintile, with an overall
variance explained of r2= 0.012 (P= 4.19 × 10−10).

We also tested the overall PGC2 PTSD PRS in the external
MVP replication cohort, using REX as the target for predictions.
PRS predictions were strongest at PT= 0.3 and highly significant
(likelihood ratio test P= 5.4 × 10−62, Supplementary Fig. 27).
Mean REX symptoms in MVP EUA participants was 8.48 (4.59
SD), and participants in the 5th quintile of genetic risk had
significantly higher REX scores than subjects in the 1st quintile
(beta= 0.58, P= 1.41 × 10−48; Fig. 2b).

Genetic correlation of PTSD with other traits and disorders.
Analysis of shared heritability across common disorders of the
brain17 and specific genetic correlations of psychiatric disorders
with cognitive, anthropomorphic and behavioural measures10,18–20

has been facilitated greatly by the development of a centralized
database of GWAS results including a web interface for LDSC
(LD Hub21). We estimated pairwise genetic correlations (rg)
between PTSD and 235 disorders/traits and found 21 significant
correlations after conservative Bonferroni correction (Fig. 3, panel
A and Supplementary Data 3). Genetic variation associated with
PTSD was positively correlated with PRS from other psychiatric
traits including depressive symptoms, schizophrenia and neuroti-
cism, as well as epidemiologically comorbid traits such as insom-
nia, smoking behavior, asthma, hip-waist ratio and coronary
artery disease. In contrast, negative rg with PTSD include subjective
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well-being, education, and a strong correlation with parents’ age at
death (rg=−0.70). Significant positive correlations were also
found for reproductive traits such as the number of children ever
born, and, as previously reported for women22, PTSD was nega-
tively correlated with age at first birth.

With the notable exception of asthma, our findings on PTSD
correspond closely with genetic correlations between these traits
and other psychiatric disorders such as MDD18, SCZ23, BPD19

and ADHD20 (Fig. 3, panels B-E). These findings are not
surprising, as pleiotropic effects (i.e. SNPs impacting multiple
traits) have been widely reported for psychiatric disorders.

In order to test to what degree genome-wide significant
findings from our GWAS meta-analyses were specific to PTSD
rather than driven by correlated traits as identified above, we
adjusted the top hits from our analyses for the effects of
genetically correlated psychiatric traits. Since the strongest
correlations were found between PTSD and depressive symptoms
(rg= 0.80) and MDD (rg= 0.62), summary statistics from PGC
MDD18, as well as MDD plus BPD and SCZ, were included in the
analyses. Using a recently implemented method applicable to
external GWAS summary data (mtCOJO24) to approximate an
analysis where these traits are regressed out, we found that effect
sizes for the four EUA top hits were not markedly reduced when
adjusted for the effects of MDD, or all three psychiatric traits
tested simultaneously (Supplementary Tables 10, 11). These
findings indicate that the genetic variants identified here are
specific to PTSD when tested in the context of the three
psychiatric disorders genetically most significantly correlated
with PTSD.

Discussion
PTSD is a common and debilitating condition influenced by
genetic factors, yet common genetic risk variants for PTSD have
not been robustly identified. The PGC-PTSD combined data from
60 multi-ethnic cohorts (PGC1.5) and the UK Biobank (PGC2)
achieved a sample size of 206,655 participants with 32,428 PTSD
cases, over ten times that of any previous analysis10,25. As has
been demonstrated in GWAS of SCZ23, BPD26, and recently in
MDD18,27 and ADHD20, sample size is critical to produce robust
genome-wide significant hits that inform foundational knowledge
on the neurobiology of complex psychiatric conditions. These
results show this is also true of PTSD. This increased power has
led us to draw several major conclusions.

First, our genetic findings squarely place PTSD among the
other psychiatric disorders in terms of heritability and genetic
relationship with other disorders. While this statement may seem
obvious to some, there remains debate about whether PTSD is
entirely a social construction28. We found substantial SNP-based
heritability (i.e. phenotypic variation explained by genetic dif-
ferences) at 5–20%, similar to that for major depression18 across
methods, studies and ancestries. The heritability results and
pattern of genetic correlations are also consistent with our initial
findings10 and with those from twin studies. PTSD shares com-
mon variant risk with other psychiatric disorders, which show
substantial sharing of common variant risk with one another29.
PTSD was most significantly (genetically) correlated with major
depression, but also with schizophrenia, both of which have
genome-wide significant loci implicated in brain function.

Second, our GWAS analyses identified several genetic loci not
previously associated with PTSD. These loci pointed to a number
of different target genes that merit further investigation. With
PARK2, there is a posited role of dopaminergic systems in PTSD.
The dopaminergic system has a critical role in fear conditioning
which is important in the development and maintenance of
PTSD30. There is also epidemiological evidence for association ofT
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Parkinson Disease and PTSD31–33. PODXL is involved in neural
development and synapse formation34, SH3RF3 is associated with
neurocognition and dementia35,36, ZDHHC14 is associated with
regulation of β-adrenergic receptors37,38, and KAZN is expressed
in the brain39, where it has been found to be underexpressed in
parvalbumin neurons of the superior temporal cortex of schizo-
phrenia cases40 and overexpressed in the substantia nigra of
Parkinson’s cases41. Finally, the HLA-B complex may be related
through the known role of immunity and inflammation in stress-
related disorders42,43. Less is known about the role of the iden-
tified RNAs LINC02335, MIR5007, TUC338 and LINC02571 in
regards to the biology of PTSD. However, preliminary work from
our group including imaging and psychophysiology highlights the
value of deep phenotyping in conducting functional investiga-
tions into the meaning of GWAS findings8. Extensive follow-up
work is needed to replicate our findings and to determine the
function of identified genes and their relationship to putative
pathological processes. For example, in SCZ the MHC locus is
now thought to influence risk, in part, through pruning of
synapses using immune machinery rather than through classical
immune pathways44. These ancestry-specific results are pre-
liminary, and even larger PTSD GWAS will facilitate the identi-
fication of plausible neurobiological targets for PTSD.

Third, our results also illustrate that there may be genetic
contributions to the well-documented association between PTSD
and dysregulation in inflammatory and immune processes45. It

has been widely recognized that PTSD is associated with a broad
range of adverse physical health conditions over the life course
ranging from type-2-diabetes and cardiovascular disease to
dementia and rheumatoid arthritis46,47. Less is known about the
biological mechanisms driving the relationship between PTSD
and these outcomes. Our genetic correlation analyses may pro-
vide some initial clues for further investigation. For example, we
found a high genetic correlation (rg= 0.49, P= 0.0002) between
PTSD and asthma. Our subsequent gene-set and pathway ana-
lyses provide some clues further implicating the immune system.
Of note, these genetic results converge with evidence from epi-
demiologic cohort studies documenting the role of stress-related
disorders such as PTSD in autoimmune diseases48, case-control
studies showing elevations of immune-related biomarkers in
women with PTSD49, and epigenetic studies pointing to the role
of the immune system in PTSD etiology50,51. Further work is
needed to determine whether PTSD has genetic overlap with
immune disorders broadly and the causal direction between
disorders. At minimum, the emerging genetic evidence presented
here suggests that association between PTSD and health condi-
tions may, in some cases, have some genetic origin.

Fourth, PGC-PTSD is distinct in relation to current genomics
consortia due to its high proportion of data from participants of
diverse ancestries. For example, a recent review found that only
three percent of all samples in genetic studies were from African
ancestry52. This contrasts sharply with the 10% of AFA
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UKB women: 6845 PTSD, 64,099 controls; UKB men: 3,544 PTSD, 51,700 controls; UKB: 10,389 PTSD, 115,799 controls; PGC1.5: 10,213 PTSD, 27,445
controls; PGC2: 23,212 PTSD, 151,447 controls; MVP: 146,660 participants with re-experiencing symptoms assessments. Analyses include only subjects of
European ancestry

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12576-w ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:4558 | https://doi.org/10.1038/s41467-019-12576-w |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


participants in our consortium. We have the first heritability
estimates for PTSD in African ancestry: they are similar to EUA,
highly significant in women and lower in men. Our GWAS in
subjects of African ancestry indicated at least one ancestry-
specific locus using local ancestry methods developed for this
analysis. We note the sample size in the AFA analysis has only
about 15,000 participants, which is small and under-powered,
increasing the chance for false positives. However, other work has
shown that genetic studies of underrepresented populations
afford the opportunity to discover novel loci that are invariant in
European populations53. As others have noted, there are major
limitations in our knowledge of the genetic and environmental
risk architecture of psychiatric disorders in persons of African
descent54. Our findings provide further evidence of the need to
invest in research that includes diverse ancestral populations, to
expand reference data, and to continue to develop methods to
analyze data from such populations. Until such an investment is
made, we are limited in our ability to understand biological
mechanisms, predict genetic risk55, and produce optimal treat-
ments for non-European populations. African genomes are
characterized by shorter haplotype blocks and contain many
millions more variants per individual than populations outside
Africa56. Further, including data from African populations in
genetic studies of PTSD and other neuropsychiatric disorders
may accelerate genetic discovery and could be useful for fine
mapping disease causing alleles57.

Fifth, although PTSD heritability remained relatively stable
across methods, studies, and ancestries, sex differences in herit-
ability were observed in the overall cohort analyses as well as in
the AFA analyses10. It is of note that the sex differences in her-
itability were not evident in the UK Biobank data, which we

hypothesize is due to differences between the PGC1.5 cohorts and
the UK Biobank. PTSD is conditional on trauma exposure, which
is also highly heterogeneous across individuals and populations58.
Unlike PGC1.5, the UK Biobank cohort is comprised of few to no
subjects who experienced military-related trauma. In contrast, a
substantial proportion of men in the PGC1.5 cohorts were from
military cohorts, while virtually all women were civilians. The
environmental experiences (e.g. military versus civilian) and
index traumatic events leading to PTSD in male subjects versus
female subjects could explain observed lower heritability esti-
mates in males in the PGC1.5 cohorts. In future work, we aim to
investigate this empirically by pooling detailed trauma and PTSD
phenotypic information on both males and females and by
modeling the effects of measurement variability on heritability
estimates. Future work could also aim to increase samples of
civilian men and military women to allow for analyses stratified
by military trauma and sex.

Lastly, we report a significant polygenic risk score for PTSD,
which also significantly predicts re-experiencing symptoms in
independent data from the MVP9. However, larger sample sizes
are needed to achieve sensitivity and specificity at levels of clinical
utility16. In the future, polygenic risk may eventually be useful in
algorithms developed to identify vulnerable persons after expo-
sure to trauma. PTSD is one of the most theoretically preventable
mental disorders, as many people exposed to trauma come to
clinical attention in first response settings such as emergency
rooms, intensive care units, and trauma centers. Controlled
clinical trials show that PTSD risk can be significantly reduced by
early preventive interventions59,60. However, these interventions
have nontrivial costs, making it infeasible to offer them to all
persons exposed to trauma, given that only a small minority goes
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on to develop PTSD61,62. They are also unnecessary for many
survivors who recover spontaneously59. To be cost-effective, risk
prediction rules are needed to identify which exposed persons are
at high risk of PTSD. Such risk prediction tools have been
developed63,64, but none to date has included polygenic risk as a
predictor.

These findings advance our understanding of the genetic basis
of PTSD, but they also demonstate that PGC-PTSD remains
under-powered for the detection of most risk loci and associated
pathways. PTSD is similar to major depression in both prevalence
(among trauma-exposed persons) and in heritability. There are
now 100 genome-wide significant signals for major depression;
notably, that level of discovery required 246,363 cases and
561,190 controls27. Other limitations include the treatment of
PTSD as a binary disorder in our analysis. Extensive epidemio-
logic work has shown that subthreshold PTSD is highly prevalent
and debilitating65,66. In our analysis, persons with subthreshold
PTSD are classified as controls, which would likely reduce our
power to find genetic associations. In future work, we will con-
sider PTSD as a continuous phenotype as well as examine clusters
of PTSD symptoms, which are more homogeneous. Of note,
Gelernter et al. (2019) recently found multiple genome-wide
significant loci for re-experiencing symptoms, which is the cluster
of symptoms most unique to PTSD, in data from over 100,000
veterans in the Million Veteran Program9. Finally, we used
mostly unscreened controls, but controls carefully screened for
trauma may increase power since trauma is required for a PTSD
diagnosis. In addition to increasing sample size, we aim in the
future to also pool item-level phenotypic data from our cohorts in
order to address these limitations.

Advances in understanding the genomic architecture of PTSD
are critical for understanding the pathophysiology of this debili-
tating syndrome and to developing novel biologically-based
treatment approaches. The current data from a PTSD GWAS in
>195,000 participants advances our understanding of the genetic
underpinnings of PTSD and trauma-related disorders.

Methods
Participating studies. The PGC-PTSD Freeze 2 dataset (PGC2) includes 60
ancestrally diverse studies from Europe, Africa and the Americas. Of these, 12 were
already included in Freeze 110. Study details and demographics can be found in
Supplementary Data 1. PTSD assessment was based either on lifetime (where
possible) or current PTSD (i.e. including participants with a potential lifetime
PTSD diagnosis as controls), and PTSD diagnosis was established using various
instruments and different versions of the DSM (DSM-III-R, DSM-IV, DSM-5). For
GWAS analyses, all studies provided PTSD case status as determined using stan-
dard criteria and control subjects not meeting the PTSD diagnostic criteria (see
Supplementary Data 1 for additional exclusion criteria). The majority of controls
was trauma-exposed. A detailed description of the studies included is presented in
Supplementary Methods. We have complied with relevant ethical regulations for
work with human subjects. All subjects provided written informed consent and
studies were approved by the relevant institutional review boards and the UCSD
IRB (protocol #16097×).

Data assimilation. Subjects were genotyped on a range of Illumina genotyping
arrays (exception: UKB was genotyped on the Affymetrix Axiom array). At the
time of analysis, direct access to individual-level genotypes was permitted for
65,555 subjects. For these, pre-QC’ed genotype data were deposited on the LISA
server for central data processing and analysis, using the standard PGC pipelines
(https://sites.google.com/a/broadinstitute.org/ricopili/) and (https://github.com/
orgs/Nealelab/teams/ricopili). Studies with data sharing restrictions (eight studies,
N= 137,114 subjects) performed analyses off site using identical pipelines unless
otherwise indicated (Supplementary Data 1). Such studies then shared summary
results for meta-analyses.

Global ancestry determination. To determine consistent global ancestry estimates
across studies, each subject was run through a standardized pipeline, based on
SNPweights67 of 10,000 ancestry informative markers genotyped in a reference
panel including 2911 unique subjects from 71 diverse populations and six con-
tinental groups (K= 6)68 (https://github.com/nievergeltlab/global_ancestry). Pre-
QC genotypes were used for these analyses.

For the present GWA studies, subjects were placed into three large,
homogeneous groupings, using previously established cut-offs (Supplementary
Table 12): European and European Americans (EUA; subjects with ≥90%
European ancestry), African and African-Americans (AFA; subjects with ≥5%
African ancestry, <90% European ancestry, <5% East Asian, Native American,
Oceanian, and Central-South Asian ancestry; and subjects with ≥50% African
ancestry, <5% Native American, Oceanian, and <1% Asian ancestry), and Latinos
(AMA; subjects with ≥5% Native American ancestry, <90% European, <5%
African, East Asian, Oceanian, and Central-South Asian ancestry). Native
Americans (subjects with ≥60% Native American ancestry, <20% East Asian, <15%
Central-South Asian, and <5% African and Oceanian ancestry) were grouped
together with AMA. All other subjects were excluded from the current analyses
(N= 6,740). Supplementary Fig. 1 shows the ancestry grouping used for GWAS
of 69,484 subjects for which individual-level genotype data was available to the
PGC. The ancestry pipeline was shared with external sites in order to ensure
consistency in ancestry calling across cohorts.

Genotype quality control. The standard PGC pipeline RICOPILI was used to
perform QC, but modifications were made to allow for ancestrally diverse data. In
the modified pipeline, each dataset was processed separately, including subjects of
all ancestries. Sample exclusion criteria: using SNPs with call rates >95%, samples
were excluded with call rates <98%, deviation from expected inbreeding coefficient
(fhet <−0.2 or >0.2), or a sex discrepancy between reported and estimated sex based
on inbreeding coefficients calculated from SNPs on X chromosomes. Marker
exclusion criteria: SNPs were excluded for call rates <98%, a > 2% difference in
missing genotypes between cases and controls, or being monomorphic. Hardy-
Weinberg equilibrium (HWE): the modified pipeline identified the largest homo-
genous ancestry group in the data, identified SNPs with a HWE P-value < 1 × 10−6

in controls, and excluded these SNPs in all subjects of the specific datasets, irre-
spective of ancestry.

Relatedness within studies. Within-study relatedness was estimated using the
IBS function in PLINK 1.969. From each pair with relatedness π̂ > 0.2, one indi-
vidual was removed from further analysis, retaining cases where possible.

Calculation of principal components (PC’s) for GWAS. For each dataset,
unrelated subjects were subset into the three ancestry groups (EUA, AFA, AMA;
Supplementary Tables 3, 5, 6) for analysis. SNPs were excluded that had a MAF
<5%, HWE P > 1 × 10−3, call rate <98%, were ambiguous (A/T, G/C), or due to
being located in the MHC region (chr. 6, 25–35 MB) or chromosome 8 inversion
(chr. 8, 7–13 MB). SNPs were pairwise LD-pruned (r2 > 0.2) and a random set of
100 K markers was used for each subset to calculate PC’s based on the smartPCA
algorithm in EIGENSTRAT70.

Imputation. Imputation was based on the 1000 Genomes phase 3 data (1KGP
phase 371). Any dataset using a human genome assembly version prior to GRCh37
(hg19) was lifted over to GRCh37 (hg19). SNP alignment proceeded as follows: for
each dataset, SNPs were aligned to the same strand as the 1KGP phase 3 data. For
ambiguous markers, the largest ancestry group was used to calculate allele fre-
quencies and only SNPs with MAF <40% and ≤15% difference between matching
1KGP phase 3 ancestry data were retained. Pre-phasing was performed using
default settings in SHAPEIT2 v2.r83772 without reference subjects, and phasing
was done in 3 megabase (MB) blocks, where an additional 1 MB of buffer was
added to either end of the block. Haplotypes were then imputed using default
settings in IMPUTE2 v2.2.273, with 1KGP phase 3 reference data and genetic map,
a 1 MB buffer, and effective population size set to 20,000. RICOPILI default filters
for MAF and Info were removed since analyses were run across ancestry groups at
this step. Imputed datasets were deposited with the PGC DAC and are available for
approved requests.

Main GWAS. The analysis strategy for the main association analyses is shown in
Supplementary Tables 3, 5 and 6. Analyses were performed separately for each
study and ancestry group, unless otherwise indicated. The minimum number of
subjects per analysis unit was set at 50 cases and 50 controls, or a total of at least
200 subjects, and subsets of smaller size were excluded. Smaller studies of similar
composition were genotyped jointly in preparation for joint analyses (e.g. PSY1,
PSY3). For studies with unrelated subjects, imputed SNP dosages were tested for
association with PTSD under an additive model using logistic regression in PLINK
1.9, including the first five PC’s as covariates. For family and twin studies (VETSA,
QIMR), analyses were performed using linear mixed models in GEMMA v0.9674,
including a genetic relatedness matrix (GRM) as a random effect to account for
population structure and relatedness, and the first five PC’s as covariates. The UKB
data (UKB) were analyzed with BGenie v1.2 (https:// www.biorxiv.org/content/
early/2017/07/20/166298) using a linear regression with 6 PC’s, and batch and
center indicator variables as covariates (see Supplementary Methods for additional
details). In addition, all GWAS analyses were also performed stratified by sex.
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Meta-analyses. Summary statistics on the linear scale (from GEMMA and
BGenie) were converted to a logistic scale prior to meta-analysis (for formula
see75). Within each dataset and ancestry group, summary statistics were filtered to
MAF ≥1% and PLINK INFO score ≥0.6. Meta-analyses across studies were
performed within each of the three ancestry groups and across all ancestry groups.
Inverse variance weighted fixed effects meta-analysis was performed with METAL
(v. March25 2011)76. Heterogeneity between datasets was tested with a Cochran
test and for nominally significant Q-values, a Han-Eskin random effects model
(RE-HE) meta-analysis was performed with METASOFT v.2.0.177. Markers with
summary statistics in less than 25% of the total effective sample size or present in
less than three studies were removed from meta-analyses. Quantile-quantile (QQ)
plot of expected versus observed −log10 p-values included genotyped and imputed
SNPs at MAF ≥1%. The proportion of inflation of test statistics due to the actual
polygenic signal (rather than other causes such as population stratification) was
estimated as 1—(LDSC intercept—1)/(mean observed Chi-square—1), using
LD-score regression12 (LDSC).

For primary analyses, genome-wide significance was declared at P < 5 × 10−8.
To account for multiple comparisons in analyses stratified by sex, genome-wide
significance was also considered at P < 1.67 × 10−8. For genome-wide significant
hits, Forest plots and PM-Plots were generated using the programs METASOFT
with default settings and M-values were generated using the MCMC option13,78.
For a given study and SNP, the M-value is the posterior probability that there is a
SNP effect in that study. Studies with values <0.1 are predicted to have no effect,
values ≥0.1 and ≤0.9 are ambiguous, and values >0.9 are predicted to have an effect.
In PM-plots, M-values are plotted against -log10 P-values. Regional association
plots were generated using LocusZoom79 with 400KB windows around the index
variant and compared to the corresponding windows in the other ancestry groups,
including the 1000 Genomes Nov. 2014 reference populations EUR, AFR and
AMR, respectively. To test for sex-specific effects, a z-test was performed on the
difference of the effect estimates from male and female sex-stratified analyses.

Estimating PTSD heritability. SNP-based heritability estimates (h2SNP) in EUA
subjects were calculated using LDSC on meta-analysis summary data. Estimates
were calculated for the combined PGC freeze 2 samples (PGC2) and separately for
PGC1.5 (without UKB), the UK biobank (including alternative subject/phenotype
selections), and for men and women. Unconstrained regression intercepts were
used to account for potential inclusion of related subjects and residual population
stratification, and precomputed LD scores from 1KGP EUR populations were used.
For population prevalence we used a range of values (conservative low at 10%,
moderate at 30%, and very high at 50%), based on prevalences reported for subjects
exposed to different types of trauma80. Sample prevalence was set to the actual
proportion of cases in each set of data.

To estimate h2SNP in admixed individuals and compare h2SNP across different
ancestries, individual-level genotype data was analyzed using an unweighted linear
mixed model81 as implemented in the LDAK software82. For each ancestry group
(EUA and AFA, respectively), imputed individual-level genotype data were filtered
to bi-allelic SNPs with MAF ≥1% in the corresponding 1KGP phase
3 superpopulation. Imputed genotype probabilities ≥0.8 were converted to best-
guess genotype calls, and for each ancestry group, studies were merged and SNPs
with <95% genotyping rate or MAF <10% removed. Next, to estimate relatedness
between subjects, a genetic relatedness matrix (GRM) was constructed based on
autosomal SNPs that were LD pruned at r2 > 0.2 over a 1MB window, and an
unweighted model with α=−1, where α is the power parameter controlling the
relationship between heritability and MAF. To prevent bias of h2SNP due to cryptic
relatedness, strict relatedness filters were applied. For pairs with relatedness values
> the negative of the smallest observed kinship (−0.014 for EUA and −0.045 for
AFA, respectively), one subject was randomly removed. PC’s were then calculated
in the remaining sets of unrelated subjects. Finally, to estimate h2SNP, an
unweighted GRM was estimated without LD-pruning, and h2SNP was calculated on
the liability scale using REML in LDAK, including 5 PC’s and dummy indicator
variables for study (number of studies - 1) as covariates.

Comparability of PGC2 studies. To compare the genetic signal between specific
PGC2 subsets, LDSC12 was used to estimate heritability and genetic correlations.
Small EUA studies with N < 200 cases and total effective sample size of N < 500
were selected (N= 24 studies; GWAS including 2102 cases and 7366 controls,
effective N= 5162) and compared to larger studies. To reduce standard error given
this relatively small sample, we estimated heritability with the LDSC intercept
constrained to 1, after first testing that the intercept was not significantly different
from 1.

Replication study. Data from the US Million Veteran Program (MVP) were used
to replicate GWAS findings9. Participants reported here completed the PCL-C that
asked respondents to report how much they have been bothered in the past 30 days
by symptoms in response to stressful experiences (i.e. not just military experiences).
The symptom cluster most distinctive for PTSD, re-experiencing symptoms (range
5–25), was analyzed. After accounting for missing phenotype data, the final sample
for European Americans was 146,660, of whom 41.3% were combat-exposed.

Genotyping was accomplished via a 723,305-SNP Affymetrix Axiom biobank array,
customized for the MVP. Imputation was performed with Minimac 383 and the
1000 Genomes Phase 3 reference panel. GWAS analysis was conducted using
RVTEST84 using linear regression with the first 10 principal components, age, and
sex included as covariates. The results were filtered with imputation quality score
R2 ≥ 0.9, MAF > 0.01 and HWE test P-value > 1 × 10-06. LDSC was used to estimate
genetic correlation with the PGC2 EUA sample. The PGC2 EUA GWAS summary
statistics were used to estimate PRS in MVP samples, where linear regression was
then used to test for association between PRS and re-experiencing symptoms.

Local ancestry deconvolution. A pipeline was developed to determine local
ancestry in subjects with African and/or Native American admixture (AFA, AMA;
Supplementary Fig. 28). Additional QC to consistently prepare cohort data for
downstream analysis was performed with a custom script (https://github.com/
eatkinson/Post-QC). Post-QC steps involved extracting autosomal data, removing
duplicate loci, updating SNP IDs to dbSNP 144, orienting data to the 1KGP
reference (with removal of indels and loci that either were not found in 1KGP or
that had different coding alleles), flipping alleles that were on the wrong strand, and
removing ambiguous SNPs.

Data harmonization and phasing: We then intersected and jointly phased the
post-QC’ed cohort data with autosomal data from 247 1KGP reference panel
individuals, removing conflicting sites and flipping any remaining strand flips. The
merged dataset was then filtered to include only informative SNPs present in both
the cohort and reference panel using a filter of MAF ≥ 0.05 and a genotype
missingness cutoff of 90%. The program SHAPEIT285 was used to phase
chromosomes, informed by the HapMap combined b37 recombination map86.
Individuals from the cohort and reference panel were then separated and exported
as harmonized sample and reference panel VCFs to be fed into RFMix87.

Reference panel: Three ancestral populations of European, African, and Native
American ancestry were chosen for the admixed AFA cohorts based on ancestry
proportion estimates from SNPweights runs. All reference populations were taken
from 1KGP phase 3 data71. Specifically, 108 West African Bantu-speaking YRI
were used as the African reference population, 99 CEU comprised the European
reference, and 40 PEL of >85% Native American ancestry were used as the Native
American reference panel. Individuals used as the reference panel can be found on
(https://github.com/eatkinson).

Local ancestry inference (LAI) parameters: LAI was run on each cohort
separately using RFMix version 287 (https://github.com/slowkoni/rfmix) with 1 EM
iteration and a window size of 0.2 cM. We used the HapMap b37 recombination
map86 to inform switches. The -n 5 flag (terminal node size for random forest
trees) was included to account for an unequal number of reference individuals per
reference population. We additionally used the --reanalyze-reference flag, which
recalculates admixture in the reference samples for improved ability to distinguish
ancestries.

Local ancestry of genome-wide significant variants: Haplotypes of the genomic
regions around genome-wide significant associations were aligned to the local
ancestry calls according to genomic position. To compare MAF of top hits on
different ancestral backgrounds within a specific admixed population (AFA or
AMA), subjects were grouped according to the number of copies (1 or 2) of a
specific ancestry (European, African, and Native American, respectively) at that
position. For a given SNP, MAF was calculated within each of the six groups. To
ensure successful elimination of population stratification by standard global PC’s in
regression analyses of admixed populations, two (out of 3, to reduce redundancy)
local ancestry dosage covariates were included, coded as the number of copies (0, 1
or 2) from a given ancestral background. Finally, to compare if effects of the minor
allele depend on a specific ancestral background (European, African, and Native
American), for each SNP, we coded variables that counted the number of copies of
the minor allele per ancestral background. Association between these three
variables and PTSD were jointly evaluated using a logistic regression, including
study indicators and five global ancestry PC’s as additional covariates.

Functional mapping and annotation. We used Functional Mapping and Anno-
tation of genetic associations (FUMA) v1.3.0 (https://fuma.ctglab.nl/) to annotate
GWAS data and obtain functional characterization of risk loci. Annotations are
based on human genome assembly GRCh37 (hg19). FUMA was used with default
settings unless stated otherwise. The SNP2Gene module was used to define inde-
pendent genomic risk loci and variants in LD with lead SNPs (r2 > 0.6, calculated
using ancestry appropriate 1KGP reference genotypes). SNPs in risk loci were
mapped to protein-coding genes with a 10 kb window. Functional consequences for
SNPs were obtained by mapping the SNPs on their chromosomal position and
reference alleles to databases containing known functional annotations, including
ANNOVAR, Combined Annotation Dependent Depletion (CADD), RegulomeDB
(RDB), and chromatin states (only brain tissues/cell types were selected). Next
eQTL mapping was performed on significant (FDR q < 0.05) SNP-gene pairs,
mapping to GTEx v7 brain tissue, RNA-seq data from the CommonMind Con-
sortium and the BRAINEAC database. Chromatin interaction mapping was
performed using built-in chromatin interaction data from the dorsolateral pre-
frontal cortex, hippocampus and neuronal progenitor cell line. We used a FDR
q < 1 × 10−5 to define significant interactions, based on previous recommendations,
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modified to account for the differences in cell lines used here. SNPs were also
checked for previously reported phenotypic associations in published GWAS listed
in the NHGRI-EBI catalog.

Gene-based and gene-set analysis with MAGMA. Gene-based analysis was
performed with the FUMA implementation of MAGMA. SNPs were mapped to
18,222 protein-coding genes. For each gene, its association with PTSD was
determined as the weighted mean χ2 test statistic of SNPs mapped to the gene,
where LD patterns were calculated using ancestry appropriate 1KGP reference
genotypes. Significance of genes was set at a Bonferroni-corrected threshold of
P= 0.05/18,222= 2.7 × 10−6.

To see if specific biological pathways were implicated in PTSD, gene-based test
statistics were used to perform a competitive set-based analysis of 10,894 pre-
defined curated gene sets and GO terms obtained from MsigDB using MAGMA.
Significance of pathways was set at a Bonferroni-corrected threshold of P= 0.05/
10,894= 4.6 × 10−6. To test if tissue-specific gene expression was associated with
PTSD, gene-set-based analysis was also used with expression data from GTEx v7
RNA-seq and BrainSpan RNA-seq, where the expression of genes within specific
tissues were used to define the gene properties used in the gene-set analysis model.

Functional follow-up of the AFA top hit rs115539978. Cell Culture Experiments,
RNA extraction and qPCR: Lymphoblastoid cell lines (LCLs) from the AFR
superpopulation were obtained from the Coriell Institute, NJ (Supplementary
Table 13, N= 6 lines each for the homozygous major and homozygous minor
allele). Cells were cultured in RPMI 1640 medium with GlutaMAX (Thermo Sci-
entific, 61870-036) supplemented with 15% FBS (Thermo Scientific, 26140079) and
1X Antibiotic-Antimycotic (Thermo Scientific, 15240-062) at 37 C and 5% CO2 in
a humidified incubator. For Dexamethasone (Dex) treatment, a final concentration
of 100 nM Dex (Sigma–Aldrich) in 100% Ethanol was added to the medium for a
total of 4 hr. All experiments were run in duplicates.

RNA was extracted using the Quick-RNA MiniPrep Kit (Zymo, R2060)
according to the instructions of the manufacturer including an additional DNase
digestion. RNA concentrations were quantified via Qubit and cDNA was generated
using the SuperScript IV First Strand Kit (Life Technologies, 18091200) according
to the manufacturer’s instructions. SYBR green qPCR reactions were carried out in
duplicates using POWERUP SYBR Green Master Mix (Life Technologies, A25743)
and custom primer pairs (Supplementary Table 14) according to the
manufacturer’s recommendations. Data were analyzed using the ΔΔCt method88

and GAPDH as reference. Between group differences were calculated using one-
way ANCOVA with sex as covariate. Significance threshold was set at P= 0.05.

Deep phenotyping of the AFA top hit rs115539978. Neuroimaging: Scanning of
87 GTPC subjects took place on a 3.0 T Siemens Trio with echo-planar imaging
(Siemens, Malvern, PA). High-resolution T1-weighted anatomical scans were
collected using a 3D MP-RAGE sequence, with 176 contiguous 1 mm sagittal slices
(TR/TE/TI= 2000/3.02/900 ms, 1 mm3 voxel size). T1 images were processed in
Freesurfer version 5.3 (https://surfer.nmr.mgh.harvard.edu). Gray matter volume
from subcortical structures was extracted through automated segmentation, and
data quality checks were performed following the ENIGMA 2 protocol (http://
enigma.ini.usc.edu/protocols/imaging-protocols/), a method designed to standar-
dize quality control procedures across laboratories to facilitate replication. Briefly,
segmented T1 images were visually examined for errors, and summary statistics
and a summary of outliers ± 3 SD from the mean were generated from the
segmentation of the left and right amygdala and hippocampus. Regional volumes
that were visually confirmed to contain a segmentation error were discarded.

Startle Physiology: The physiological data of 299 GTPC subjects were acquired
using Biopac MP150 for Windows (Biopac Systems, Inc., Aero Camino, CA). The
acquired data were filtered, rectified, and smoothed using MindWare software
(MindWare Technologies, Ltd., Gahanna, OH) and exported for statistical
analyses. Startle data were collected by recording the eyeblink muscle contraction
using the electromyography (EMG) module of the Biopac system. The startle
response was recorded with two Ag/AgCl electrodes; one was placed on the
orbicularis oculi muscle below the pupil and the other 1 cm lateral to the first
electrode. A common ground electrode was placed on the palm. Impedance levels
were less than 6 kilo-ohms for each participant. The startle probe was a 108-dB(A)
SPL, 40 ms burst of broadband noise delivered through headphones (Maico, TDH-
39-P). The maximum amplitude of the eyeblink muscle contraction 20–200 ms
after presentation of the startle probe was used as a measure of startle magnitude.

Polygenic scoring. Polygenic risk scores (PRS) were calculated in hold out target
samples based on SNP effect sizes from PTSD GWAS in non-overlapping dis-
covery/training samples. GWAS summary statistics were filtered to common
(MAF > 5%), well imputed variants (INFO > 0.9). Indels, ambiguous SNPs, and
variants in the extended MHC region (chr6:25-34 Mb) were removed. LD pruning
was performed using the --clump procedure in PLINK1.9, where variants were
pruned if they were nearby (within 500 kb) and in LD (r2 > 0.3) with the leading
variant (lowest P-value) in a given region. PRS were calculated in PRSice v2.1.2
using the best-guess genotype data of target samples, where for each SNP the risk
score was estimated as the natural log of the odds ratio multiplied by number of

copies of the risk allele. PRS was estimated as the sum of risk scores overall SNPs.
PRS were generated at multiple P-value thresholds (PT) (at intervals of 0.01 ranging
from P= 0.0001 to P= 1). Best-fit PRS (at PT= 0.3 for PTSD and PT= 0.3 for re-
experiencing symptoms, respectively) were used to predict PTSD status under
logistic regression, adjusting for 5 PCs and dummy study indicator variables, using
the glm function in R 3.2.1. PRS prediction plots were based on quintiles of PRS,
with odds ratios calculated in reference to the lowest quintile. The proportion of
variance explained by PRS was estimated as the difference in Nagelkerke’s R2

between a model including PRS plus covariates and a model with only covariates.
R2 was converted to the liability scale assuming a 30% prevalence, using the
equation found in Lee et al89. P-values for PRS were derived from a likelihood ratio
test comparing the two models.

Genetic correlation of PTSD with other traits and disorders. Bivariate LD-score
regression (LDSC) was used to calculate pairwise genetic correlation (rg) between
PTSD and 235 traits with publicly available GWAS summary statistics on LD
Hub12. Summary statistics for PTSD studies were restricted to the EUA meta-
analysis, including UKB subjects (23,212 cases, 151,447 controls) and significance
was evaluated based on a conservative Bonferroni correction for 235 phenotypes
(i.e. correlated traits and traits measured twice in independent studies were counted
independently).

In addition, these phenotypes were compared with genetic correlations reported
for PTSD and several psychiatric disorders, including 221 phenotypes and MDD18,
172 phenotypes and Schizophrenia (SCZ)10, 196 phenotypes and bipolar disorder
(BPD)19 and 219 phenotypes and attention-deficit/hyperactivity disorder (ADHD)
20. Due to substantial overlap with other traits, two education, four anthropometric
and two cancer phenotypes were omitted.

Conditional analyses to test for disease specific effects. To evaluate if the
effects of the top variants identified in the PTSD GWAS were specific to PTSD, we
conditioned PTSD on MDD, and MDD plus BPD plus SCZ using the multi-trait
conditional and joint analysis (mtCOJO)24 feature in GCTA to regress out the
effects of correlated traits based on external GWAS summary data. MDD was
selected here as the main psychiatric trait because of the high co-morbidity and
genetic correlation of depressive symptoms and PTSD (rg= 0.80 for depressive
symptoms and rg= 0.62 for MDD; see Supplementary Data 3). Publicly available
summary statistics were supplied as program inputs: Bipolar cases vs. controls for
BPD, and MDD2 excluding 23andMe for MDD (both from https://www.med. unc.
edu/pgc/results-and-downloads); Schizophrenia: CLOZUK+ PGC2 meta-analysis
for SCZ (http://walters.psycm.cf.ac.uk/). The effect of each psychiatric disorder on
PTSD was estimated using a generalized summary-data based Mendelian rando-
mization analysis of significant LD independent psychiatric trait SNPs (r2 < 0.05,
based on 1000 G Phase 3 CEU samples), where the threshold for significance was
set to P < 5 × 10−7 due to having less than the required 10 significant independent
SNPs at the program default P < 5 × 10−8 for MDD. Estimates of heritability,
genetic correlation, and sample overlap of psychiatric trait and PTSD GWAS were
estimated using precomputed LD scores based on 1000 G Europeans that were
supplied with LDSC (https://data.broadinstitute.org/alkesgroup/LDSCORE/
eur_w_ld_chr.tar.bz2).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The full meta-analyses summary statistics are available for download from the
Psychiatric Genomics Consortium at https://www.med.unc.edu/pgc/results-and-
downloads/. Access to individual-level data for available datasets may be requested
through the PGC Data Access Portal at https://www.med.unc.edu/pgc/shared-methods/
data-access-portal/. All other data that support the findings of this study are available
from the corresponding authors upon request.
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