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Abstract 

Background and aim: The main challenge of assessing diastolic function is the balance between clinical 

utility, in the sense of usability and time-efficiency, and overall applicability, in the sense of precision for 

the patient under investigation. In this review, we aim to explore the challenges of integrating data in the 

assessment of diastolic function and discuss the perspectives of a more comprehensive data integration 

approach. 

Methods: Review of traditional and novel approaches regarding data integration in the assessment of 

diastolic function. 

Results: Comprehensive data integration can lead to improved understanding of disease phenotypes and 

better relation of these phenotypes to underlying pathophysiological processes - which may help affirm 

diagnostic reasoning, guide treatment options, and reduce limitations related to previously unaddressed 

confounders. The optimal assessment of diastolic function should ideally integrate all relevant clinical 

information with all available structural and functional whole cardiac cycle echocardiographic data – 

envisioning a personalized approach to patient care, a high-reaching future goal in medicine. 

Conclusion: Complete data integration seems to be a long-lasting goal, the way forward in diastology, and 

machine learning seems to be one of the tools suited for the challenge. With perpetual evidence that 

traditional approaches to complex problems may not the optimal solution, there is room for a steady and 

cautious, and inherently very exciting paradigm shift towards novel diagnostic tools and workflows to reach 

a more personalized, comprehensive and integrated assessment of cardiac function. 

 

Keywords: diastolic function, diastolic dysfunction   
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Introduction 

The task to non-invasively assess left ventricular (LV) diastolic function and filling pressures has 

been an ongoing challenge since the emergence of cardiac ultrasound imaging. The tension lies in the 

complexity of diastolic dysfunction as a pathology opposed to a very real-life clinical need to assess it in a 

fast and simple workflow. Besides the difficult task of balancing specificity and sensitivity in the 

assessment, various proposed guidelines and algorithms also face the challenge of linking arbitrarily 

separated grades of dysfunction with clinical outcomes and treatment indications. Oversimplification of 

such algorithms has resulted in misclassifications of a large proportion of patients, whereas more complex 

algorithms, incorporating increased decision points and parameters, have proved to have low clinical utility 

in the real-world practical setting. Achieving a universal approach to the assessment of diastolic function 

therefore seems to be an intricate task that can hardly be approached with traditional algorithms, either 

simplified or complex. The optimal assessment of diastolic function and filling pressures should ideally 

integrate all relevant clinical information with all available structural and functional echocardiographic 

data, not a pre-selected set of parameters. The described assessment envisions a personalized approach to 

patient care, a high-reaching future goal in medicine.  

In this review, we aim to explore the challenges of integrating data in the assessment of diastolic 

function and discuss the perspectives of a more comprehensive data integration approach. 

 

Assessing diastolic function – the quest for a universal approach 

 The majority of current ideas and pitfalls surrounding non-invasive assessment of diastolic 

function were recognized and defined in the seminal work from Appleton, Hatle and Popp [1], relating 

distinct transmitral flow velocity patterns to LV diastolic function. The observed flow patterns were more 

related to myocardial dysfunction and hemodynamic status than the type of underlying disease, setting 

ground for future classification of diastolic dysfunction into grades (Figure 1). Although these grades are 

pathophysiologically interpretable, the patterns of mitral inflow represent a dynamic continuum, changing 

with regard to disease progression, medical therapy or alterations in hemodynamic status. Ongoing research 

showed that the correlation of mitral inflow parameters and pressure measurements is influenced by overall 

cardiac function, resulting in the fact that transmitral flow parameters do not correlate with LV filling 

pressures in patients with preserved ejection fraction, whereas they do in reduced LV function [2]. 

Interpreting any surrogate diastolic parameter is inherently complex, as most Doppler patterns demonstrate 
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varying dependency on the inotropic state, volume loading, ventricular relaxation, chamber compliance and 

left atrial pressure, as well as on additional factors such as age, heart rate, blood pressure, mitral valve 

pathology, amongst others [3–6]. Therefore, to correctly interpret findings and assess function, it is crucial 

to recognize a wider pattern including clinical history, diagnostic data, echocardiographic patterns and their 

dynamic changes.  

To address these challenges and resolve the ambiguity of the pseudonormalisation pattern, various 

additional tests and parameters were suggested over time – the alteration of loading conditions with a 

Valsalva test [7], the addition of pulmonary venous velocity curves [8–10] or tissue Doppler imaging (TDI) 

[2,11,12] – ultimately resulting in more complex algorithms. As an example, with the addition of the ratio 

between early diastolic transmitral flow and TDI velocities of the mitral ring (i.e. E/e’) the assessment of 

diastolic function in patients with preserved EF was somewhat simplified. However, this addition ultimately 

created a new grayzone in the intermediate range of the ratio, where further assessment and parameters 

were mandatory to assess underlying diastolic function (e.g. pulmonary flow velocities or the Valsalva 

manoeuvre). [2] This need for a wide combination of parameters in non-invasive diastolic function 

assessment, together with alterations of algorithms in specific patient populations, was thus emphasised in 

the ASE/EACVI 2009 guidelines for diastolic assessment [13]. Besides parameters of diastolic function 

and associated measurements (i.e. mitral inflow velocities, Valsalva manoeuvre, pulmonary venous flow, 

TDI velocities etc.), morphologic and functional correlates of diastolic dysfunction (i.e. LV hypertrophy, 

left atrial (LA) volume, LA function and pulmonary artery systolic and diastolic pressures) were also 

considered. However, the incorporation of complexity backfired, resulting in a burdensome, sophisticated 

and multipart algorithm reflective of the complex underlying pathology, but nevertheless with limited 

applicability in the clinical setting. The revised 2016 guidelines [14] hence aimed to reduce and simplify 

the required measurements for diastolic dysfunction assessment, selecting only four diastolic function and 

diastolic function-influenced parameters for the task (i.e. E/A, E/e’, tricuspid regurgitation velocity and LA 

indexed volume). The algorithm flow was modified offering a two-step decision tree now classifying a new 

subset of patients with indeterminate function, thus increasing specificity and reducing the diagnosis of first 

grade dysfunction [15]. A major limitation of the guidelines was still the lack of consideration of age – 

where age influences the findings of diastolic parameters. [16] Recent efforts have been made in addressing 

the challenges of age-appropriate interpretation of diastolic patterns by applying age-specific multivariate 

reference regions for echocardiographic parameters commonly used in the evaluation of LV diastolic 
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function [17], or general population age-based normative values [18], demonstrating  age-specific ranges 

to be prognostically relevant and suggesting that such approaches in the classification of LV filling patterns 

could lead to more consistent diagnostic algorithms.  

Several studies [19,20] demonstrated that the 2016 guidelines proved to have higher sensitivity in 

estimating the filling pressures in patients with reduced EF as compared to the 2009 guidelines, while the 

low sensitivity was still present in patients with normal EF and normal filling pressures. However, more 

data integration - combining demographic and clinical variables with non-invasive echocardiographic 

parameters - showed an incremental value when diagnosing elevated filling pressures. [21] On the other 

hand, stratification into diastolic grades has been strained by the lack of relationship to cardiovascular 

outcomes, complicating the clinical utility of undergoing complex algorithms to identify a diastolic class. 

While various diastolic parameters proved predictive of clinical outcomes in studies [22–26], combining 

parameters in classifications to define grades showed no consistent relation to outcomes [27,28] – showing  

worse outcomes in moderate/severe compared to mild diastolic dysfunction [29], or only in severe 

dysfunction [30]. A universal diastolic grading approach therefore evidently lacked clear clinical value.   

Novel imaging techniques like speckle tracking echocardiography (STE) are also increasingly in 

focus, as they can offer a wealth of embedded information on the systolic and diastolic function, and provide 

insight into patterns of myocardial mechanics that correlate with diastolic parameters and cardiovascular 

outcomes. [14,31] The wealth of data that can be obtained using these techniques is still under research and 

therefore clinically underused [32]. Analysis of single-beat STE based LV and LA volume and strain peak 

velocity and timing measurements resulted in patient groups with increasing severity of diastolic 

dysfunction and LV filling pressures (validated by invasive measurements), proving that information 

derived from STE variables can indeed be useful for assessment of diastolic dysfunction. [38]. Moreover, 

STE indices of diastolic function showed to be an important discriminator between heart failure 

phenogroups [34]. Deformation data also carries immense information in exercise testing, especially in the 

subset of patients with diastolic dysfunction that may have normal hemodynamic profile at rest but 

symptoms of heart failure or dyspnoea in effort. Typically, the data from these exercise tests is complex to 

integrate and therefore conclusions are reduced to the comparison of only selected measurements at rest 

and exercise. 
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Assessing function in challenging patients - the limitations of a universal approach 

The described overview of non-invasive diastolic function assessment shows, consistently and 

somewhat paradoxically, that a universal approach is feasible only by sacrificing precise assessment in 

special patient populations where non-invasive parameters and the corresponding patterns are influenced 

by related comorbidities. For example, mitral valve disease or regional deformation impairment due to 

ischemic disease or genetic-sarcomere mutations can alter the mitral inflow pattern, TDI velocity profile 

and the related ratios, resulting in diastolic patterns not reflective of the level of diastolic dysfunction. These 

pitfalls can be demonstrated through the comparison of the patients presented in Figures 1-3.  Patterns 

related to increasing grades of diastolic dysfunction are clearly defined using the guideline-recommended 

echocardiographic measurements in four hypertensive patients shown in Figure 1. The patient histories, 

signs and symptoms are supplemental, describing increased comorbidities, worse symptoms and a need for 

more medical therapy in higher grade dysfunction. The STE LV and LA strain parameters concur, showing 

overall decreased LV global longitudinal strain in grade I and II, and a more heterogenic regional LV 

deformation with basal impairment in grade III. LA strain adds incremental value to the finding of LA 

enlargement, reflecting underlying atrial functional dynamics [33]. Impaired LV relaxation in grade I 

dysfunction results in a reduction of LA conduit strain, while the pump function is augmented to maintain 

to LV stroke volume. In more advanced diastolic dysfunction, we can observe a steady reduction in all 

components of LA strain. The cases are more challenging in Figure 2.  Patients present with relatively 

similar guideline-defined patterns – E/A < 0.8 in the first two patients, similar septal e’ velocities and E/e’, 

lack of quantifiable tricuspid regurgitation and an enlarged LA. However, in these individuals the clinical 

and STE data provide a crucial framework for interpreting underlying patient phenotypes. The first case is 

a patient presenting with elevated blood pressure at examination, which can influence the relaxation of the 

LV. This can be objectively quantified with the LV deformation curves, showing a post-systolic motion in 

the basal septum (i.e. a pattern associated with elevated blood pressure and reflecting delayed LV relaxation 

[33,34]); whereas the LA strain reflects a relatively preserved atrial function. Integration of clinical and 

echo data in the second case reveals long-standing moderate primary mitral regurgitation-related LV 

hypertrophy and preserved EF. Due to these confounders, the utility of the E/A, E/E’, and LA enlargement 

for diastolic assessment has to be taken with caution. STE imaging gives some insight, showing a shift in 

atrial dynamics, with augmented contractile strain and decreased conduit strain. Additional parameters are 

needed to assess cardiac function (e.g. IVRT and difference in pulmonary and mitral A wave duration). 
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Finally, in the last case, the clinical history and STE data provide important insight – showing severe 

hypertrophy and severe regional deformation impairment of the anterolateral wall related to the diagnosis 

of hypertrophic cardiomyopathy, which is paired with systolic anterior motion and mild mitral 

regurgitation. In hypertrophic cardiomyopathy individual variables have moderate correlation with LV 

filling pressures, and regional abnormalities in deformation can influence mitral annulus motion [14]. LA 

strain again shows a signal of LV relaxation impairment, however additional parameters are needed to 

assess the diastolic function.  

The described clinical cases outline the challenges of a universal, algorithmic assessment of 

diastolic dysfunction. These challenges can be approached either with numerous alterations to a general 

algorithm in specific diseases, as suggested in the 2009 and 2016 guidelines, or with comprehensive data 

integration that can incorporate and weigh all information relevant to the positioning of patients in the 

spectrum of cardiac function abnormalities. The latter seems more attractive and intuitive, and is indeed, 

as shown above, applied in everyday workflows using clinical reasoning and experience. Due to complex 

relations of diastolic parameters, confidence in assessment of specific patients can only be achieved through 

the integration of the complete clinical assessment and complete available data – from clinical to 

echocardiographic (Figure 3). 

 

Moving towards more comprehensive data integration of the whole cardiac cycle in the assessment 

of diastolic function  

The addition of whole cardiac cycle data extracted from echocardiographic images (e.g. volume, 

blood-pool and myocardial velocity, strain or strain-rate curves) to the assessment of diastolic function 

serves as a step towards a more sophisticated data integration strategy. Heterogeneity of diastolic 

dysfunction is an appropriate challenge for machine learning (ML), especially unsupervised approaches 

[31], which aim to extract hidden patterns in available data and naturally cluster patients regardless of a 

priori knowledge or pre-defined clinical labels. Such algorithms have recently been used to approach 

diastolic dysfunction classification. Using recommended parameters for diastolic assessment, an 

unsupervised clustering approach identified unique patterns of diastolic dysfunction that showed a 

relationship to clinical outcomes, as opposed to current grading schemes. [32] Importantly, patients 

classified as indeterminate by guidelines were reclassified into an appropriate risk group. In other studies, 

a combination of variables (i.e. demographic, clinical, laboratory, ECG and echo) have been used to explore 
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heart failure phenotypes that differ in outcomes and therapy response [35,36]; and also, to investigate HF 

phenogroups with data on invasive hemodynamics, altogether showing that the severity of diastolic 

dysfunction seems to be one of the main separating factors between these phenogroups [36,37]. Precise 

phenotyping of diastolic function inevitably influences patient care, for example, optimal patient 

management requires differentiation between abnormal relaxation, when heart rate reduction is beneficial, 

and decreased compliance, when the latter is not the case. [38] The distinction can be found through 

comprehensive data assessment incorporating a wide set of parameters, stepping out of the scope of 

simplified algorithms of classification. ML approaches can aid in standardizing echocardiographic 

evaluation using unlabelled variables without a priori algorithms, isolating prognostic phenotypes not 

visualized by guideline algorithms. 

In disease exploration, both the traditional consensus-based and the described ML approaches are 

constrained to a limited number of key disease markers and clinical variables, such as selected peak value 

or timing measurements. These might not capture the full complexity, and subtle changes of the underlying 

diseases. Specifically, spatiotemporal patterns of myocardial velocity curves, defined by peak and timing 

values throughout the whole cardiac cycle, are reflective of regional and global dysfunction in systole and 

diastole [39], and reveal intricate changes in myocardial mechanics in specific cardiac pathologies [40]. 

Similarly to when a clinician integrates these data based on previous experience and knowledge, novel 

machine learning techniques offer the possibility to incorporate information embedded in the velocity data 

of the whole cardiac cycle, with the aim to extract the maximum amount of information reflective of cardiac 

function and disease from cardiac images. This approach could also be used to analyze the complex changes 

occurring between rest and exercise echocardiography. Moreover, pathology related information is 

contained not only in the amplitude and profile of a velocity curve, but likewise in the timings and durations 

of different cardiac phases (e.g. isovolumic contraction or early diastole) [40]. Temporal differences, due 

to inter-patient variability in heart rate or intra-patient variability between rest and exercise, result in a 

challenging interpretation of the relationship between cardiac phases (e.g. when assessing a shift in the 

onset of systole/diastole due to dysfunction, see Figure 4).  Since the timings of cardiac phases can easily 

be defined with echocardiographic (valve flows) and ECG (onset of atrial contraction) data, time alignment 

of echo data is feasible as part of the ML approach [39,41–43]. Velocity data can be time aligned to a 

common temporal reference within a patient cohort and quantitatively compared between patients. Data on 

the corrected differences in timings can be preserved, and used as an additional parameter in later analysis.  



 9 

An important matter to assess is if the theoretical advantage of whole-cardiac cycle data integration 

adds any real advantages in disease exploration. To address this question, a ML approach integrating 

spatiotemporal information from rest and exercise echocardiographic data (including velocity, strain and 

strain rate curves, respectably) was used to create spatiotemporal-rest-exercise representations of the LV 

function. [39] This comprehensive whole cardiac cycle data proved more successful than traditional 

measurements (e.g. peak amplitudes of systolic and early diastolic velocities, selected peaks and timings of 

strain and strain rate measurements, or echocardiographic variables such as LV end-diastolic volumes and 

LA indexed size) in identifying HFpEF, objectively showing that indeed, traditional measurements do not 

exploit all available diagnostic data and represent just a single value from the information-filled cardiac 

cycle. Time-alignment also proved useful here and in other studies [39], improving the characterization of 

a HFpEF population, showing that the largest variability of cardiac data is found within the diastolic cardiac 

phase, especially during exercise.  

A further illustration of the utility of the integration of whole cardiac cycle data lies in the valuable 

possibility of ML to provide patient membership probabilities, in favour of categorical clinical diagnoses, 

to diseased (i.e. HF) or healthy groups. For example, hypertensive and breathless patients have been 

categorized belonging to a transition zone of the HFpEF spectrum, thus demonstrating possible culprits of 

clinical diagnostic algorithms, as well as the spectrum of the heterogeneous HFpEF syndrome. [41] As part 

of this process, a pathophysiological interpretation of TDI patterns related to distinct  patient groups was 

possible, showing the ability of ML methods to distinguish alterations in diastolic function in the diseased 

patient groups – more fusion of early and late diastolic curves during exercise with similar heart rates, 

delayed early diastolic lengthening reflective of relaxation/compliance abnormalities or early vs. late 

diastolic filling patterns, and increased variability in the onset of atrial contraction and a failure of peak a’ 

wave increase during exercise, suggestive of increased filling pressure. Multi-feature analysis of rest and 

exercise data, as well as of regional data opposed to only global, resulted in a better disease assessment 

than analysing the data independently.[42] Unsupervised ML has also been used to combine whole-cycle 

echo data, specifically LV strain and volume curves, with relevant and heterogeneous clinical variables, to 

form a meaningful representation of cardiac function in each patient, relating it to therapy response [43]. 

These methods facilitate the fusion of heterogeneous data, weighing the contribution of each input to the 

final result, allowing extraction of interpretable physiological patterns from patient data without the 

influence of potentially incorrect clinical diagnostic labels of borderline patients. [42] Indeed, the most 
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controversial, and also the most interesting contribution of such sophisticated spatiotemporal analysis, 

might be the way borderline patients are classified, which may not concur with traditional diagnostic labels, 

potentially reflecting suboptimal capability of diagnostic guidelines. [39,41,43] 

 

Challenges ahead 

Besides the time limitations and knowledge requirements, there are other relevant and inherent 

challenges when integrating complex data in everyday clinical assessment – selection bias of patients in 

analysis, missing data, embedded noise in imaging data, validation of used algorithms and reproducibility, 

to name a few. The results of most studies mentioned above are confined to single-center cohorts or cohorts 

from selected, well-defined populations [36,41,43]. One of the strongholds of ML methods lies in the 

possibility to incorporate prospective patient data or in testing/validating the algorithms on different 

datasets [17,44].  Missing patient data, a relevant problem in clinical practice and research, has been 

previously addressed with the exclusion of patients with incomplete data [35,45], which can heavily bias 

the conclusions of the analysis. Novel approaches have used data imputation methods to resolve missing 

clinical parameters[36,43] or velocity curves [39], potentially increasing the utility of complex data 

integration in a real-life setting. As in any deductive process, the quality of conclusions depends on quality 

of used information. Complex approaches using imaging data are highly dependent on image quality and 

reproducibility of measurements. Strain and strain-rate curves are burdened with embedded noise. Here 

novel approaches can be used as noise filtering techniques [46] – where the most important dimensions/ 

principal components of data variability capture the major clinically interpretable patterns, whereas, less 

relevant ones capture the noise. In the future, data extraction (e.g.  deformation analysis on available echo 

images) as well as data preparation (e.g. time alignment), needed for more complete analysis, could be 

automated [47,48], thus enabling standardization through increased reproducibility. Finally, all novel 

algorithms are in need of being subjected to stringent validation before incorporation into the clinical 

environment. A scheme showing the advantages and challenges regarding a more comprehensive data 

integration are presented in Figure 5. 

 

Conclusion 

 

The balance between clinical utility, in the sense of usability and time-efficiency, and overall 

applicability, in the sense of precision for the patient under investigation, represents the main challenge in 
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the assessment of diastolic (dys)function. The high-reaching aim of personalized medicine that could 

resolve these tensions may be feasible through a more comprehensive integration of all relevant data – from 

clinical to whole-cycle echocardiographic data. Complete data integration seems to be a long-lasting goal, 

the way forward in diastology, and machine learning seems to be one of the tools suited for the challenge. 

Each successful integration of heterogeneous data to patient assessment offers incremental value to the goal 

of better understanding complex topics such as diastolic dysfunction or HFpEF. With more comprehensive 

approaches we can see improved shaping of disease phenotypes and better relation of these phenotypes to 

underlying pathophysiological processes - which may help affirm diagnostic reasoning, guide treatment 

options, and reduce limitations related to previously unaddressed confounders. The aim has slowly shifted 

from strict categorical classifications of disease/health towards the exploration of disease as a continuous 

spectrum, ranging from health to dysfunction, with the novel goal being personalized positioning of patients 

into a certain part of this spectrum. Finally, the main clinical value can be harvested from relating newfound 

distinct phenotypes to long-term patient trajectories, a goal consistently highlighted in contemporary 

publications. With perpetual proof that traditional approaches to complex problems are not the optimal 

solution, there is room for a steady and cautious, and inherently very exciting paradigm shift towards novel 

diagnostic tools and workflows to reach a more personalized, comprehensive and integrated assessment of 

cardiac function.  
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Figure descriptions 

Figure 1 Diastolic assessment using the 2016 guidelines 

(Rows) Four hypertensive patients with varying degrees of diastolic dysfunction. (Columns from left to 

right) The patient history, signs and symptoms, recommended echocardiographic parameters, and diastolic 

grades assessed using the 2016 guidelines [14]. Diastolic dysfunction can be assessed in a straightforward 

way using the four echocardiographic parameters proposed by the guidelines. The grade of dysfunction 

concurs with the associated clinical picture.  

(BMI – body mass index, EF - ejection fraction, DM – diabetes mellitus, ARB - Angiotensin II receptor 

blocker, ACEi - Angiotensin-converting-enzyme inhibitors, FA- atrial fibrillation, PW TDI – pulsed wave 

tissue Doppler imaging, LAVI – left atrial volume indexed to body surface area, LV GLS – left ventricular 

global longitudinal strain, STE – speckle-tracking echocardiography) 

 

Figure 2 Challenges of diastolic assessment using the 2016 guidelines 

(Rows) Three patients with various pathologies: arterial hypertension, moderate mitral insufficiency and 

hypertrophic cardiomyopathy. Patient history lays out the framework for interpreting related 

echocardiographic findings. Important echo findings are marked in yellow and red. Further discussion can 

be found in the text.  

(abbreviations same as in Figure 1, CPAP – continuous positive airway pressure, MR – mitral 

regurgitation, SAM – systolic anterior motion of the anterior leaflet, PSS – post-systolic shortening) 

 

Figure 3 An example of data integration in the assessments of a complex patient 

A female with long-standing arterial hypertension and clinically diagnosed obstructive hypertrophic 

cardiomyopathy. The posterior part of the mitral annulus is calcified, moderate mitral regurgitation is 

present, and the basal septum is hypertrophied, measuring 17 mm. All of the latter influence traditional 

interpretation of diastolic parameters. Additional investigation is needed. The patient had elevated blood 

pressure at assessment, which can influence findings. The obstruction is highest in the midventricular 

region, with the gradient reaching 51 mmHg during the Valsalva manoeuvre. During Valsalva, the inversal 

of the pseudo-normal mitral inflow can be noted. The E/E’ ratio indicates elevated filling pressure, 

supported by the difference in the timings of the pulmonary vein and mitral inflow A wave duration, LA is 

enlargement and tricuspid regurgitation velocity.  
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(abbreviations same as in Figure 1, COPD – chronic obstructive pulmonary disease) 

 

Figure 4 A scheme showing the utility of temporally aligning velocity traces 

(A) Temporal non-correspondence of the velocity traces can be due to inter-subject differences in heart rate 

and in the timing of cardiac phases. (B) Temporal alignment can be used to express velocity traces within 

a common temporal reference. (C) Temporally aligned velocity traces can be directly compared between 

patients enabling the assessment of the onset and duration of cardiac phases. A later onset of systolic LV 

ejection, and a prolonged LV ejection and isovolumic relaxation time can be seen in the patient on the right. 

This concurs with the delayed and reduced peak aortic velocity and the fusions of the early and late diastolic 

filling.  

 

 Figure 5 An overview of data a more comprehensive approach to data integration 

A scheme showing the advantages and challenges of a more comprehensive data integration. 
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