Uloga impedancije jednjaka u dijagnostici loše kontrolirane astme u djece

Nogalo, Vlatka

Master's thesis / Diplomski rad

2014

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, School of Medicine / Sveučilište u Zagrebu, Medicinski fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:105:861873

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-04-30

Repository / Repozitorij:

Dr Med - University of Zagreb School of Medicine
Digital Repository
ULOGA IMPEDANCIJE JEDNJAKA U DIJAGNOSTICI LOŠE KONTROLIRANE ASTME U DJECE

DIPLOMSKI RAD

Zagreb, 2014.
Ovaj je diplomski rad izrađen u Kliničkom bolničkom centru Rebro, pod vodstvom prof. dr. sc. Doriana Tješića Drinkovića i predan na ocjenjivanje u u akademskoj godini 2013./2014.
Sadržaj

3. UVOD... 1

4. ASTMA .. 2
 4.1. DEFINICIJA ... 2
 4.2 EPIDEMIOLOGIJA... 2
 4.3 ETIOLOGIJA... 3
 4.3.1. GENETIKA.. 3
 4.3.2. SPOL ... 4
 4.3.3. OKOLIŠNI FAKTORI RIZIKA... 4
 4.3.4. INFEKCIJE DIŠNIH PUTOVA... 5
 4.4. PATOGENEZA ASTME .. 6
 4.5. KLINIČKA SLIKA I DIJAGNOSTIKA .. 9
 4.5.1 KLINIČKA SLIKA .. 9
 4.5.2 DIJAGNOSTIKA ASTME .. 11
 4.6. LIJEČENJE ASTME ... 14
 4.7. KONTROLA ASTME .. 17

5. GERB ... 19
 5.1 DEFINICIJA I EPIDEMIOLOGIJA.. 19
 5.2. MEHANIZMI NASTANKA GERB-a i KLINIČKA SLIKA.. 20
 5.3. DIJAGNOSTIKA I LIJEČENJE GERB-a.. 22
 5.4. IMPEDANCIJA JEDNJAKA.. 23
 5.5. TERAPIJA .. 26

6. POVEZANOST ASTME I GERB-a ... 29

7. ZAKLJUČAK ... 33

8. ZAHVALA .. 35

9. LITERATURA .. 36

10. ŽIVOTOPIS .. 46
1. SAŽETAK
Naslov rada: Uloga impedancije jednjaka u dijagnostici loše kontrolirane astme u djece

Autor: Vlatka Nogalo

Ključne riječi: astma, GERB, impedancija

Astma se može pojaviti u svakoj dobi, a najčešća je kronična bolest djece školske dobi. Brojne studije pokazuju stalan porast prevalencije i incidencije astme zadnjih 20-ak godina, a sličan se trend očekuje i u budućnosti. Astma je kronična upalna bolest donjih dišnih putova obilježena napadajima reverzibilne bronhoprostokica. U djece s loše kontroliranom astmom često nalazimo komorbiditete, od kojih je jedan od najvažnijih gastroezofagealna refluksna bolest (GERB). Prevalencija GERB-a u razvijenim zemljama dosegla je gotovo epidemijske razmjere. Gastroezofagealni refluks (GER) je nevoljno vraćanje želučanog sadržaja u jednjak. Ako agresivni činitelji tijekom GER-a nadvladaju obrambene mehanizme zaštite i uzrokuju oštećenje sluznice jednjaka i/ili simptome bolesti, riječ je o GERB-u. Multikanalna intraluminalna impedancija (MII) jednjaka je novija metoda koja se koristi za potvrdu GERB-a, posebno u bolesnika s refraktornim simptomima, za procjenu učinka antirefluksne terapije, te u dijagnostici alkalinog refluxa. Brojni su dokazi da liječenje GERB-a u bolesnika s astmom poboljšava simptome astme te smanjuje i skraćuje primjenu protuupalnih lijekova i bronhodilatatora u astmi. Obrada često asimptomatskoga GERB-a u djece s loše kontroliranom astmom, pa čak i s drugim kroničnim bolestima dišnog sustava, često je potrebna zbog njihove očite povezanosti. Diplomski rad opisuje važnost MII-a jednjaka kao nove metode u dijagnostici GERB-a u djece s loše kontroliranom astmom, te objašnjava povezanost GERB-a i astme u djece koristeći se dostupnom znanstvenom literaturom i publikacijama.
2. SUMMARY

Title: The role of esophageal impedance in the diagnosis of poorly controlled asthma in children

Author: Vlatka Nogalo

Key words: Asthma, GERD, Impedance of edophageus

Asthma may occur at any age and is the most common chronic disease of children. Numerous studies have shown a steady increase in the prevalence and incidence of asthma, and a similar trend is expected in the future. Asthma is a multifactorial caused disease. It is a chronic inflammatory disease of the bronchi characterized by reversible attacks of wheezing. In children with poorly controlled asthma, comorbidities are often present, especially GERD. Gastroesophageal reflux (GER) is the involuntary return of gastric content into the esophagus. GERD in developed countries has reached almost epidemic proportions, while in the poor countries is present in a smaller extent. If aggressive factors during GER overcome the defense mechanisms of protection and cause damage to the lining of the esophagus and/or cause symptoms of the disease, it is called gastroezophageus reflux disease (GERD) and it must be treated. Multi-channel intraluminal impedance (MII) of the esophagus is a newer method that is useful to confirm reflux disease, especially in cases of patients with refractory symptoms, to confirm the adequacy of antisecretory therapy, and to determine the presence of alkaline reflux. Numerous clinical trials confirm that the treatment of reflux disease improves symptoms of asthma and also to minimizes and reduces the need for medications. The examination, in often asymptomatic GERD in children with poorly controlled asthma, and even with other respiratory diseases, is essential because of their obvious connection. Diploma thesis describes the importance of the impedance of the esophagus as a new method in the diagnosis.
of GERD in children with poorly controlled asthma, and connection between GERD and asthma, using the available literature from scientific articles.
3. UVOD

Astma je najčešća kronična bolest djece. Smjernice, dijagnostike i liječenja usredotočene su na održavanje kontrole astme primjenom protuupalnih lijekova tzv. kontrolirajuće terapije. U pojedinih se bolesnika, unatoč redovitom liječenju, ne postiže kontrola astme. U problematičnim i teškim oblicima astme važno je provjeriti prisutnost komorbiditeta.(1)

Astma u djece je složena bolest, tj. sindrom, u kojem danas razaznajemo više fenotipova i endotipova. Prepoznavanje određenih fenotipova i endotipova astme u djece važno je za odabir terapije i praćenje terapijskog učinka (2) Kao i u odraslih asmatičara, komorbiditeti su prisutni i u djece s astmom, posebno u djece s loše kontroliranom ili „problematičnom“ astmom. Bolja kontrola astme u djece može se postići aktivnim traženjem komorbiditeta kao i njihovim liječenjem. Poznato je da je prevalencija GERB-a visoka među bolesnicima s astmom, a posebno s loše kontroliranom astmom.(3) Povremena regurgitacija želučanog sadržaja u jednjak česta je i bezazlena pojava u mlađe dojenčadi te se vjeruje da je nedovršeno sazrijevanje funkcije ezofagealno-želučanog spoja. Međutim, krajem prve godine života u zdravog djeteta više ne bi smjelo biti značajnog želučanog refliksa. U djece s GERB-om riječ je o poremećaju nepoznata uzroka koji može imati brojne komplikacije.(4)

Novije studije upućuju na uzročnu povezanost GERB-a i astme. Drži se da se prevalencija GERB-a u bolesnika s astmom kreće u rasponima od 34% do 89%.(5) Astma može pogoršati GERB, ali isto tako GERB može pogoršavati astmu. Ponekad je udruženost GERB-a i respiratornih manifestacija očita, ali znatno češće nedostaje klasična simptomatologija GERB-a (nijemi refliks).
4. ASTMA

4.1. DEFINICIJA
Bronhalna astma je kronična upalna bolest bronha obilježena napadajima reverzibilne bronhoopstrukcije koja se klinički očituje respiracijskom dispnejom, sipnjom (zviždanjem), osjećajem stezanja u prsima te kašljem. Bolest karakterizira i bronhalna hiperreaktivnost. U astmi sudjeluju mnoge upalne stanice, ali najvažnije djelovanje imaju mastociti, eozinofili i limfociti-T. Između napada i bolesnici se najčešće osjećaju zdravima. Vrlo je važno napomenuti kako se astma teško može dijagnosticirati u djece u prve dvije do tri godine, jer se u toj dobi pojavljuju akutni i recidivni napadaj reverzibilne bronhoopstrukcije koji se mogu zamijeniti astmom.(4)

4.2 EPIDEMIOLOGIJA
Astma se može pojaviti u svakoj životnoj dobi, međutim incidencija je najveća do pete godine. U 80-90% djece oboljele od astme prvi napad se javlja prije pete godine. Najčešća je kronična bolest djece školske dobi. Brojne studije pokazuju stalan porast prevalencije i incidencije astme u posljednjih nekoliko desetljeća, a sličan se trend očekuje i u budućnosti.(4)

Najopsežnija epidemiološka studija o prevalenciji atopijskih bolesti i astme u djece je studija ISAAC (International Study of Asthma and Allergies in Childhood).(5) U prvu fazu studije bilo je uključeno 56 zemalja i 156 centara širom svijeta sa 304,796-ero djece u dobi od 6 do 7 godina i 463,801 dijete u dobi od 13 do 14 godina. Prema rezultatima ove studije, prevalencija piskanja za posljednjih 12 mjeseci u skupini djece u dobi od 13 do 14 godina varira od 2,1% do 32,2% u različitim populacijama, s najnižom prevalencijom u Indoneziji, Albaniji, Rumunjskoj i
Grčkoj, a najvišom u Velikoj Britaniji, Novom Zelandu i Australiji. Na temelju upitnika, modificiranog prema kriterijima studije ISAAC, prevalencija piskanja za 12 posljednjih mjeseci u školske djece u Zagrebu, u dobi od 10 do 11 godina, iznosi 6,02% (6), dok je u Primorsko-goranskoj županiji u djece od 6 do 7 godina prevalencija piskanja 9,7%, a u djece u dobi od 13 do 14 godina 8,4%. (7) Također je značajno zapažanje da je prevalencija astme manja u najmlađe djece unutar obitelji nego među prvorođenom i drugorođenom djecom u istoj obitelji(8), te da infekcije u najranijoj dobi na neke imaju zaštitni učinak na pojavu i razvoj alergijskih bolesti i astme. To se objašnjava činjenicom da mala izloženost infekcijama u ranoj dobi uskraćuje toj djeci razvijanje Th1 stanica, pa zbog toga prevladavaju Th2 stanice koje svojim citokinima potiču alergijsku senzibilizaciju genetski predisponirane djece.(9)

4.3 ETIOLOGIJA

Astma je multifaktorno uzrokovana bolest koja nastaje interakcijom genskih i okolišnih čimbenika. To znači da bi se očitovala bolest mora udruženo sudjelovati više faktora ili čimbenika rizika gena i okoliša, a nijedan sam nije dovoljan za očitovanje bolesti.

4.3.1. GENETIKA

Postoje brojni dokazi da je astma nasljedna bolest, a mnoge studije pokazuju višu prevalenciju astme u potomaka roditelja koji boluju od ove bolesti u usporedbi s potomcima zdravih roditelja.(10-13) Učestalost astme i u monozigotnih blizanaca značajno je viša nego u dizigotnih, što također upućuje na značajan utjecaj nasljeđa. Ovisno o populaciji i dizajnu ispitivanja, utjecaj nasljeđa u blizanaca procjenjuje se na 35-70% .(13,14) Nasljeđe u astmi i drugim alergijskim bolestima ne slijedi klasičan mendelski model, koji je karakterističan za monogenski nasljedne bolesti.
Nasljeđivanje u astmi pokazuje da su uključene interakcije više gena i kromosomskih regija, s protektivnim učinkom ili kao rizičnih gena, a svaki od tih gena ima svoju varijabilnu ekspresiju. Povezanost antiguena glavnog kompleksa tkivne snošljivosti ili sustava HLA i astme istražena je i u našoj populaciji djece koja boljuju od alergijske astme, pa tako antigeni HLA-B8 i HLA–B14 i aleli HLA-DRB1*03 i HLA-DRB1*01 djeluju kao čimbenici rizika za atopiju i astmu, a antigen HLA-B15 ima protektivni učinak.(15)

Atopija je važan čimbenik rizika za astmu i smatra se da čak 75-90% astme u dječjoj dobi ima atopijsku podlogu.(16,17) Rizik za astmu u потомака roditelja koji boljuju od astme također je veći ako je prisutna i atopija u roditelja.(18,19)

4.3.2. SPOL
Astroma u dječjoj dobi češća je u dječaka. Povećani rizik za astmu u muškog spola vjerojatno je vezan za fiziološki uže dišne putove, povećan mišićni tonus i moguće više vrijednosti IgE protutijela.(20,21)

4.3.3. OKOLIŠNI FAKTORI RIZIKA
U okolišne faktore rizika za nastanak astme ubrajamo različite čimbenike i taj oblik etiološki se naziva alergijskim oblikom astme. U tom obliku astme veliku ulogu imaju alergeni poput peludi, ekskreti grinja, plijesni te prhut i dlake kućnih životinja. Grinje iz kućne prašine najčešći su alergeni zatvorenih prostora povezani s astmom.(21) Najčešći među njima su piroglifidne grinje Dermatophagoides pteronyssinus, Dermatophagoides farinae, Dermatophagoides microceras i Euroglyphus marinei, koje čine 90% grinja iz kućne prašine. Kao čimbenici rizika navode se onečišćenja iz zraka kao što su dušićni oksid, kiseli aerosoli, ozon i sumporni dioksid koji se povezuju sa simptomima i pogoštanjem astme. Premda je astma češća u industrijaliziranim zemljama razvijenog svijeta, malo je dokaza da je
onečišćenje zraka izravno odgovorno za porast prevalencije astme u ovim zemljama.(22) Osim alergijskog razlikujemo tzv. nealergijsku ili intrinzičnu astmu koja je puno rjeđa u djece od alergijske astme. Kao važni okidači u intrinzičnoj astmi navode se infekcije; nespecifični iritansi iz zraka (duhanski dim, pare, mirisi), tjelesni napor, hladan zrak, lijekovi (acetilsalikilna kiselina, ostali nesteroidni antireumatici, β-blokatori), jake emocije, menstruacija i voljna hiperventilacija.

Postoje brojni dokazi da je izloženost ploda štetnom učinku pušenja trudnice čimbenik rizika za nastanak astme, kao i pasivno te aktivno pušenje starije djece.(23)

4.3.4. INFEKCIJE DIŠNIH PUTOVA

Respiratorne infekcije u ranom životu, posebice u dojenčkoj dobi, mogu biti vezane za povećan, ali i smanjen rizik za razvoj astme, mogu izazvati pogoršanje astme u bilo kojoj životnoj dobi. Najčešći respiratorni virusi koji u dojenčadi uzrokuju 50% svih bronhoopstrukcija su respiratorni sincicijski virusi (RSV) i virusi para influenza, dok su u starije djece i odraslih najčešći rinovirusi, koronavirusi i virusi influenza.(24,25) Čini se da i bakterijske infekcije, osobito infekcije sa Chlamydia pneumoniae u ranom djetinjstvu, imaju ulogu u razvoju astme u kasnijem životu. (25,26)

Osim provokativnog učinka infekcija na pojavu astme u djece, postoje brojni dokazi o protektivnom učinku infekcija na pojavu i razvoj alergijskih bolesti i astme. Velika epidemiološka studija provedena u Republici Njemačkoj jasno je pokazala protektivni učinak čestih respiratornih infekcija gornjih dišnih putova u prvoj godini života na kasniji razvoj atopije i astme, čak i u djece s pozitivnom obiteljskom
anamnezom za atopijske bolesti. (27) Učinak infekcije na pojavu i razvoj atopijskih bolesti i astme još uvijek je nedovoljno razjašnjen.

Okolišni i genski čimbenici su važni za pojavu tzv. bronhalne hiperreaktivnosti koja je jedna od važnih karakteristika astme.

4.4. PATOGENEZA ASTME

Bronhalna hiperreaktivnost, kronična upala i edem d išnih putova, hipersekrecija guste i žilave sluzi te reverzibilna bronhokonstrikcija osnovni su čimbenici u patogenezi astme. Navedene promjene zajedničke su svim oblicima astme.(29,30) Anatomski i funkcionalni čimbenici u dojenčadi i male djece pogoduju bronhoprostirukciji zbog malenog promjera bronhalnog lumena. Razlikujemo specifičnu bronhalnu reaktivnost i nespecifičnu bronhalnu hiperreaktivnost.

Nespecifična bronhalna hiperreaktivnost je stanje u kojem primjenom malih doza nespecifičnog stimulansa (metakolin, histamin, hladni zrak, test opterećenja, hipertonična otopina NaCl-a) možemo izazvati kvantitativno jači bronhospazam u bolesnika nego u zdravih osoba. Nasljeđuje se zajedno sa sklonošću stvaranju visokih koncentracija protutijela IgE u serumu i gen koji utječe na BHR lociran je blizu glavnog lokusa koji regulira razinu serumskog IgE-a na kromosomu 5q.(28) Specifična bronhalna reaktivnost predstavlja kvalitativno drukčiju bronhalnu reakciju: u testu sa specifičnim alergenom bolesnici reagiraju bronhospazmom na one alergene na koje su senzibilizirani, a na koje zdravi u pravilu ne reagiraju.(30,31)

U patogenezi astme važnu ulogu imaju upalne stanice, posebno mastociti i tkivni bazofilni granulociti, limfociti i eozinofili. U osoba s atopijskom sklonošću astmi ponavljano izlaganje antigenu (alergenu) dovodi u plazma stanicama do stvaranja i sekrecije antigen- specifičnih IgE-antitijela koja se vežu na receptore na membrani
mastocita. Nakon vezanja dolazi do degranulacije mastocita i sekrecije niza medijatora kao što su histamin, proteolitički i glikolitički enzimi, heparin, prostaglandini (PG), leukotrijeni (LT), tromboksan, adenozin i reaktivni kisik. (32) Ovi medijatori izazivaju kontrakciju glatke muskulature bronha, vazodilataciju i povećanu propusnost krvnih žila. Također djeluju kemotaktički na neutrofile, bazofile, eozinofile i monocyte. To je takozvana rana faza IgE posredovane reakcije koja traje nekoliko minuta.

Nakon rane faze sljedi kasna faza IgE posredovane reakcije. Stanice periferne krvi – eozinofili, bazofil, limfociti i monociti stimulirane su i privučene na mjesto kontakta antigen-protutijelo nizom citokina i upalnih medijatora (IL-4, IL-5, leukotrijeni, GM-CSF). Dolazak upalnih astmica na mjesto susreta alergena i IgE protutijela započinje aktivacijom adhezijskih molekula na endotelnim stanicama krvnih žila – VCAM-1, međustanične adhezijske molekule-1 (engl. Inter-Cellular Adhesion Molecule-1, ICAM-1) i endotelne leukocitne adhezijske molekule-1 (engl. Endothelial Leucocyte Adhesion Molecule-1, ELAM-1) preko čimbenika nekroze tumora α (engl. Tumor Necrosis Factor β, TNF-α) i interleukina-1 (IL-1). To rezultira čvrstim prijanjem leukocita na endotelnje stanice nakon čega one migriraju kroz endotel u perivaskularne prostore. (33) Preživljanje aktiviranih upalnih stanica u bronhalnom tkivu je produljeno zahvaljući reduciranoj apoptozi koju podržavaju fibroblasti, miofibroblasti, epitelne stanice i stanice glatkih mišića koje luče brojne citokine i kemokine odgovorne za produljenje staničnog preživljanja te održavanje eozinofilne upale (GM-CSF, eotaksin, interleukin-6, IL-6). (34,35,36)

Prohodnost dišnih putova u astmatskom napadu, osim kontrakcije glatke muskulature krompromitiraju edem dišnog puta te pojačano lučenje sluzi. Edem nastaje zbog povećane propusnosti krvnih žila izazvane histaminom, faktorom
aktiviranja trombocita i leukotrijenima, a pojačano lučenje sluzi uzrokuju histamin, leukotrijeni i prostaglandini.(37) Pri nastanku bronhokonstrikcije, edema te pojačanog lučenja sluzi važnu ulogu imaju i tahikinini (neurokinini) koji se oslobađaju iz aferentnih završetaka, tzv.C-niti, u oštećenim stanicama respiratornog epitela.(38)

Sve je više dokaza da je upalna reakcija u astmi uvjetovana i neurogenim mehanizmima, koji su time značajno uključeni u nastanak bronhalne hiperreaktivnosti.(38, 39) Ona je i posljedica povećane aktivnosti parasimpatičkog autonomnog živčanog sustava, ali i međudjelovanja složene mreže živčanih vlakana koja, osim klasičnih neurotransmitera, sadrže neuropeptide i neuroregulatore.(40) Na prijenos podražaja utječu i medijatori iz mastocita i eozinofila koji se nakupljaju u ganglijima dišnih putova. Gusta mreža parasimpatičkih živčanih niti opskrbljuje submukozne žlijezde i glatke mišiće dišnih putova do respiracijskih bronhiola. Stimulacija vagusa tako uzrokuje kontrakciju glatkih mišića u stijenci dišnih putova i pojačava lučenje sluzi. Nadalje, trajna tonička aktivnost vagusa održava osnovni neuromuskularni tonus dišnih putova pa antikolinergici ili bilateralna vagotomija izazivaju značajnu bronhodilataciju, osobito na razini velikih dišnih putova.(41,42)

Uz kolinergički i adrenergički živčani sustav, nedavno je otkriven i neadrenergički, nekolinergički živčani sustav. Novije spoznaje upućuju da dušikov oksid (NO) vjerojatno ima glavnu ulogu u neurotransmisiji ovoga sustava, a isti nastaje aktivnošću NO sintetaze. NO u prvom redu u epitelu i živčanim vlaknima, ima koristan bronhodilatacijski učinak, dok ekscesivne količine NO-a proizvedene djelovanjem inducibilne NO-sintetaze uzrokuju različite nepovoljne, ponajprije upalne promjene. U epitelu dišnih putova astmatičara utvrđena je povećana koncentracija inducibilne NO-sintetaze.(43,44)
U patogenezi astme, kao posljedica kronične upale dolazi do pojave tzv. remodeliranja bronha posljedica kojeg nastaju ireverzibilne promjene strukture bronha. Najznačajnije promjene tijekom procesa remodeliranja su prekomjerno stvaranje profibrotičkih čimbenika rasta (TGF-β, čimbenik rasta vezivnog tkiva) te proliferacija i diferencijacija fibroblasta i miofibroblasta, s posljedičnom hipertrofijom i hiperplazijom gлатke muskulature, vrčastih stanica i submukoznih žlijezda. (43,44)

4.5. KLINIČKA SLIKA I DIJAGNOSTIKA

4.5.1 KLINIČKA SLIKA

Kliničku sliku astme karakteriziraju je razdoblja bez simptoma te razdoblja simptomatske bolesti koja se izmjenjuju ovisno o aktivnosti, težini bolesti, stupnju kontrole te podležećim bolestima. Simptomatska razdoblja se zovu napadaji ili pogoršanja (egzacerbacije) astme. Pogoršanja ili napadaji astme epizode su progresivnog pogoršanja ili nagle pojave osnovnih simptoma bolesti — zaduhe, kašila, piskanja i/ili pritiska u prsima, a koji su posljedica razvoja bronhoopstrukcije i opstruktivnih smetnja ventilacije. (45,46)

Tipičan napadaj astme počinje suhim, podražajnim kašljem koji je na početku suh, a kasnije može biti sluzavo-žilav, uz moguću ili postupnu pojavu sipnje (engl. wheezing), zaduhe i osjećaja stezanja u prsima. Ponekad se klinička slika astme može očitovati samo kao kašalj bez sipnje, jer je stupanj bronhoopstrukcije blag ili ga okolina ne primjećuje. Pri napadaju blажeg i umjerenog stupnja ekspiratorno zviždanje, tj. sipnja se može čuti i bez slušalica (visokotonski zviždci), dok se u jako teškom napadaju ne mora čuti, što može zavesti neiskusnog liječnika pri procjeni težine napadaja, a može ugroziti bolesnika. Osim stupnja težine napadaja, na kliničku sliku utječu metabolički poremećaji, dehidracija, respiratorne infekcije te druga patološka stanja često udružena s astmom. (45,46,4)
U teškom napadaju astme dijete izbjegava svaku tjelesnu aktivnost, sjedi u položaju tronošca (savijen položaj tijela rukama podupiru grudni koš držeći se za podlogu). Kratkoća daha je toliko izražena da dijete teško ili nikako ne može govoriti, širi nosnice i uvlači supraklavikularne, međurebren prostore toraksa, jugulum i epigastrij te abdominomalno diše. Često je dijete blijedo i oznojeno, a u uznapredovalom slučaju cijanotično. Uza sve nabrojeno, djeca su uznemirena i prestrašena. U ovom teškom obliku nema tipičnog čujnog ekspiratornog zviždanja, dapače ovdje je i inspirij i ekspirij jedva čujan. Zato je potrebno u ovom obliku biti vrlo oprezan. Uza sve nabrojano postoji tahikardija uz oslabljene srčane tonove (hiperinflacija) i može postojati paradoksalni puls. (45,46,4)

U astmi često zbog opstrukcije dišnih putova i zarobljavanja zraka u plućima (ventilni mehanizam) nastane hiperinflacija pluća. U tom je stanju prsni koš proširen posteriorno-anteriorno, plućni zvuk je hipersonoran, plućne baze spuštene, disanje oslabljeno, a disajni šumovi slabije čujni. Zbog povećanja rezidualnog volumena i funkcionalnog rezidualnog kapaciteta na uštrb vitalnog kapaciteta odnosno inspiratornog kapaciteta, smanjuje se prostor za udah te bolesnik javlja inspiratornu zaduhu. (45,46)

O teškom astmatском napadaju je riječ kada napadaj ne popušta na liječenje i traje 24 sata ili dulje. U razdobljima između napadaja, u djece s blažom i umjerenom astmom fizikalni nalaz može biti normalan. U djece s težim oblikom astme, koja traje mjesecima ili godinama, postoji više-manje trajno stanje bronhoopstrukcije. Tome je podloga kronična upala i hiperreaktivnost bronha. Napadaji astme i pogoršanja se javljaju često nakon akutne respiratorne infekcije, izlaganja kemijskim nadražljivcima, fizikalnim agensima (napor, promjena temperature zraka, vлага, promjena vremenskih prilika), posebnim emocionalnim stanjima te alergenima (pokretači
astme). Klinička se slika može i spontano popraviti pa bolesnik može ući u kraću ili dužu remisiju bolesti. Značajnu ulogu u pojavu pogoršanja mogu imati i podležeće bolesti (kronični rinosinusitis, gastroezofagealni ili laringofaringealni reflux). (46)

4.5.2 DIJAGNOSTIKA ASTME

Dijagnoza astme u djece postavlja se klinički, a potvrđuje na temelju nalaza plućne funkcije te kliničkih i laboratorijskih ispitivanja. Prvi i najvažniji korak u dijagnostici je detaljna i ciljana anamneza koja ukazuje na tipičnu kliničku sliku (znakovi i simptomi), a koja se javlja pri izlaganju tipičnim pokretačima astme.

Testovi plućne funkcije imaju najvažniju ulogu u dijagnostici astme. Možemo ih podijeliti u tri skupine: 1) testovi plućne funkcije (mjerenje plućnih volumena i kapaciteta te protoka); 2) farmakodinamski testovi (bronhodilatacijski i bronhokonstriktijski), te 3) mjerenje razine upale (frakcija izdahnutog dušik oksida [FeNO], temperatura izdaha, kondenzat izdaha [EBC]). (47) Osnovni preduvjeti za provođenje funkcijskog testiranja za potvrdu dijagnoze astme su prethodno isključene akutne infekcije dišnog sustava, nedavno izlaganje iritansima ili sustavne bolesti. Osnovni test plućne funkcije je spirometrijom kojom se mjeri krivulja protok-volumen, a kojom se pri forsiranom izdahu mjere tri plućna volumena koja daju forsirani vitalni kapacitet te protoci pri navedenim navedenim volumenima. Spirometrija upozorava na opstruktivne i restriktivne smetnje ventilacije ili njihovu kombinaciju. U djece predškolske i mlađe školske dobi restriktivni obrazac može biti prisutan i kod isključivo opstruktivnih smetnji ventilacije zbog pojave hiperinflacije (zarobljavanja zraka u plućima uz povećanje rezidualnog volumena) te zadržane brzine izdaha. Najjednostavniji i najviše upotrebljavani spirometrijski parametri u dijagnostici astme su vršni ekspiratorni protok (PEF, od engl. Peak Expiratory Flow) te forsirani ekspiratorni volumen u prvoj sekundi (FEV₁). PEF pokazuje maksimalnu
forsiranu ekspiraciju te njegovo smanjenje i dnevna varijabilnost >20% dobro koreliraju s težinom bronhoopstrukcije i pojavom simptoma te pogoršanjem astme. Proširenost uporabe proizlazi iz velike dostupnosti jer se PEF može mjeriti uporabom malog i jeftinog mjerača vršnog protoka (Wrigth’s peak flow meter). Na taj način sami bolesnici mogu svakodnevno kontrolirati bolest, slijediti upute o potreбnoj izmjeni terapije i odlučiti o potrebi posjeta liječniku. Za kliničku procjenu opstrukcije najvažniji parametar je snižena vrijednost omjera FEV₁/FVC na <70%. Težina opstrukcije dijeli se na blagu (FEV₁ ≥50% očekivanoga), umjerenu (FEV₁ ≥30% očekivanoga) i tešku (FEV₁ <30% očekivanoga).(47)

Kako bi se pri nalazu opstruktivnih smetnji ventilacije dokazalo da se radi o bronhospazmu i time potvrdila dijagnoza astme, provodi se bronhodilatatorni test kako bi se utvrdila reverzibilnost bronhoopstrukcija, što je jedna od osnovnih karakteristika astme. U testu se primjenjuje inhalacija bronhodilatatora kratkog djelovanja (salbutamol ili ipratropij) te se nakon 20-40 minuta ponavlja mjerene plućne funkcije. Značajno poboljšanje (porast FVC i/ili FEV₁ za ≥12% i 200 ml) plućne funkcije govori za pozitivan test. U djece se može primijeniti i nešto blaži kriterij za ocjenu pozitivnog bronhodilatatornog testa (porast FEV₁ za ≥9%). Navedeni se test može provesti i u bolesnika koji nemaju opstruktivne smetnje ventilacije, a imaju sugestivnu anamnezu jer normalne vrijednosti imaju značajnu varijabilnost.(47)

Kad je dijagnoza astme dvojbena, a dijete je starije i može surađivati, ispituje se reaktivnost bronha (radi utvrđivanja hiperreakтивnosti kao jedne od osnovnih karakteristika astme) provođenjem bronhoprovokativnih (bronhokonstriktornih) testova. Kao provokativni agens može se koristiti metakolin ili histamin, hladan i suhi zrak te tjelesni napor. Navedenim se agensima izaziva bronhospazam, a
hiperreaktivnost bronha se utvrđuje temeljem primijenjene kumulativne doze agensa koja je izazvala bronhokonstriktorni odgovor. (48, 49)

Ostali dijagnostički testovi služe tome da se utvrdi predispozicija koja može upozoravati na astmu (atopija, eozinofilna upala), a da se utvrde neki od pokretača astme i da se odabire oblik liječenja. Kako bi se utvrdio alergijski fenotip astme, potrebno je provesti alergološko testiranje kožnim ubodnim testom (skin-prick test) koji predstavlja zlatni standard u dijagnostici alergijskih bolesti. Test je visoko senzitivan, standardiziran te ponovljiv zbog zanemarivog rizika za bolesnika, vrlo niske invazivnosti te niskih troškova izvođenja. Pri testiranju se koriste standardizirani pripravci alergena čija je paleta inhalacijskih alergena prilagođena lokalnim prilikama (grinje, žohari, plijesnice, životinjska dlaka te peludi trava, stabala i korova). U slučaju već prisutne senzibilizacije određenim alergonom nastaje pozitivna reakcija (urtika promjera najmanje 3 mm uz okolno crvenilo). Apsolutni broj eozinofila u krvi može, ali i ne mora biti povišen. Za potvrdu dijagnoze astme puno veće značenje imaju eozinofili u iskašljaju. Povišena koncentracija ukupnih imunoglobulina E (IgE) ukazuje na neku atopijsku bolest (ili parazitozu), ali nije specifična za astmu.(4) Niski titar IgE ima veću prediktivnu vrijednost za isključenje astme. Procjena serumske koncentracije specifičnih IgE dobra je in vitro metoda za utvrđivanje alergijske senzibilizacije jer rezultati se poklapaju s rezultatima in vivo kožnih alergijskih testova koji se izvode kožnim ubodnim testom. Rendgenogram prsnog koša preporučuje se napraviti svakom novootkrivenom dijetetu u kojeg postoji sumnja na astmu kako bi se isključili drugi mogući uzroci bronhoostrukcije ili zaduhe te eventualne komplikacije.

Današnja dijagnostika astme je sve više usmjerena na mjerenje lokalnih upalnih biomarkera donjih dišnih putova (izdahnuti dušični oksid, temperatura izdaha, inducirani sputum, bronhoalveolarni lavat, kondenzat izdaha, elektronički nos za
mjerene obrasca volatilnih supstancija u izdahnutom zraku). Uzimanje bronhoalveolarnog lavata je invazivna metoda pa se u djece zbog toga koristi vrlo rijetko (ograničenih indikacija). Analiza inducirane sputuma dobro reprezentira lokalnu upalnu zbivanja u dišnim putovima, ali je isto tako ograničene uporabe zbog toga što je uspjeh dobivanja sputuma u djece, posebice predškolske dobi manje od 50% i zato što značajno opterećuje laboratorijske resurse. Stoga se danas najčešće koriste izdisajni testovi (dušikov oksid, temperatura izdaha, kondenzat izdaha, elektronički nos) koji su neinvazivni i provedivi u većine bolesnika, čak i u onih u kojih nije moguće dobiti aktivnu suradnju. (87)

4.6. LIJEČENJE ASTME

Zbog varijacija težine astme u različitim bolesnika, kao i u istog bolesnika tijekom vremena, prema smjernicama „Globalnog plana za prevenciju, dijagnostiku i liječenje astme (GINA, od engl. Global Initiative for Asthma) preporučuje se stupnjeviti pristup liječenju astme. (50). Cilj liječenja astme je potpuna kontrola bolesti koja podrazumijeva nestanak simptoma, postizanje i održavanje maksimalne plućne funkcije, smanjenje broja i težine pogoršanja, postizanje najbolje kvalitete života oboljelog, smanjenje morbiditeta i mortaliteta te sprječavanje nastanka trajnog gubitka plućne funkcije.

U zbrinjavanju i liječenju astme uključeni su farmakoterapija, specifična imunoterapija, fizikalna i klimatoterapija. Važan dio terapije je edukacija djece i roditelja kao preduvjet uspješnog liječenja. Pri liječenju astme razlikujemo liječenje stabilne bolesti od liječenja egzacerbacije. Lijekovi koji se koriste u liječenju astme dijele se na simptomatske (najčešće bronhodilatatori) i temeljne (protuupalni). Najvažniji simptomatski lijekovi su simpatikomimetici (selektivni beta2-agonisti) brzog
i kratkog djelovanja, a u našim prilikama najčešće upotrebljavani simpatikomimetik je salbutamol. Kao jedini lijekovi dostatni su u bolesnika s povremenom astmom. Dugotrajno protuupalno liječenje indicirano je u svim oblicima trajne astme, često i nakon nestanka simptoma bolesti. Osim inhalacijskih glukokortikoida (ICS) kao najučinkovitijih protuupalnih lijekova u liječenju astme rabe se i drugi protuupalni lijekovi kao što su antagonisti leukotrijenskih receptora, beta2-agonisti dugog djelovanja (samo u kombinaciji s ICS), teofilin te sustavni kortikoidi.(50) Specifična imunoterapija je jedina etiološka terapijska opcija. S obzirom na uže indikacijsko područje (uglavnom monosenzibilizirani bolesnici u ranoj fazi bolesti) nije primjenjiva na sve bolesnike, posebice na one koji boluju od nealergijske astme te u kojih simptomi i pogoršanja astme nisu vezani za izlaganje alergenima.

Preventivne mjere danas su jedan od glavnih oblika liječenja. Sastoje se u izbjegavanju pokretača alergena ukoliko su oni poznati. Trajna poduka bolesnika i njihovih roditelja je integralni dio liječenja astme i nikada se ne smije zaobići. Zbog toga danas postoje npr. „Asthma škole“ koje se bave edukacijom o astmi. Iako izliječenje još uvijek nije moguće, pravilnim odabirom lijekova, te njihovom pravilnom i redovitom primjenom, astma se može uspješno kontrolirati i bolesniku potpuno omogućiti normalno obavljanje svakodnevnih životnih i radnih obaveza .(51,52)

<table>
<thead>
<tr>
<th>Korak 1</th>
<th>Korak 2</th>
<th>Korak 3</th>
<th>Korak 4</th>
<th>Korak 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edukacija i mjere kontrole okoliša</td>
<td>SABA prema potrebi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odabir temeljne terapije</td>
<td>Odaberijedan</td>
<td>Odaberijedan</td>
<td>Dodajjedan ili više</td>
<td>Dodajjedan ili oba</td>
</tr>
<tr>
<td>Niske doze ICS-a</td>
<td>Niske doze ICS-a + LABA</td>
<td>Srednje ili visoke doze ICS-a + LABA</td>
<td>OCS (najniže doze)</td>
<td></td>
</tr>
<tr>
<td>LTRA</td>
<td>Srednje ili visoke doze ICS-a</td>
<td>LTRA</td>
<td>Anti IgE</td>
<td></td>
</tr>
<tr>
<td>Niske doze ICS-a + LTRA</td>
<td>Dugodje-lujući SR teofilin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niske doze ICS-a + teofilin pro-duženog djelovanja</td>
<td>SABA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legenda: SABA- simpatikomimetici kratkog djelovanja, LABA-simpatikomimetici dugog djelovanja, ICS- inhalacijski kortikosteroidi, OCS- peroralni kortikosteroidi, LTRA- antagonisti leukotrijenskih receptoraa.(50)

Cilj primjene GINA smjernica je postizanje potpune ili dobre kontrole bolesti, što se definira kao: minimum kroničnih simptoma, uključujući i noćne simptome (idealno bez simptoma), minimum egzacerbacija, odsutnost potrebe za hitnih posjetama liječniku, minimalno korištenje (idealno ništa) beta2–agonista kratkog djelovanja, mogućnost normalnih aktivnosti, uključujući i fizički napor, dnevna varijabilnost PEF-a manja od 20%, nalaz PEF-a blizu normale ili normalan, te minimum nuspojava (idealno bez njih) tijekom liječenja .(52)
4.7. KONTROLA ASTME

Pojam kontrola uglavnom se odnosi na kontrolu očitovanja simptoma bolesti. To se ne odnosi samo na kliničke manifestacije bolesti već i na promijenjene laboratorijske biljege upale. Provođenjem terapije lijekovima za kontrolu astme („kontrolori“) smanjuje se upala i time postiže klinička kontrola bolesti, ali zbog visoke cijene i nemogućnosti provođenja različitih testova (endobronhalna biopsija, određivanje eozinofilnih granulocita u sputumu i FENO) preporučeno je da se liječenje usmjeri na kontrolu kliničkih obilježja bolesti te plućne funkcije bolesnika. Potpuna kontrola astme često se postiže lijekovima, kontrolom okoliša, izbjegavanjem pokretača alergijske reakcije, respiratornih infekcija, a cilj je da se kontrola bolesti održi kroz dulji vremenski period. Razlozi koji često dovode do loše kontrole astme u djece su pogrešna dijagnoza, upitna suradljivost bolesnika, nedostatna kontrola okoliša, komorbiditeti, među kojima je jedan od najznačajnijih upravo GERB. Isto tako za dobru kontrolu bolesti potrebna je i sustavna edukacija roditelja i bolesnika (uspostavljanje partnerskih odnosa između liječnika, roditelja i malog bolesnika).(51,52) Nakon uvođenja terapije, astma se dijeli na kontroliranu, djelomično kontroliranu te nekontroliranu bolest. Svojstva koja se uzimaju obzir su dnevni simptomi, simptomi uz tjelesne aktivnosti, noćni simptomi, primjena β₂-agonista, plućna funkcija i egzacerbacije. Ako je bolest kontrolirana, nema simptoma, nema smetnji uz tjelesnu aktivnost, nema potrebe za primjenom simptomatskih lijekova (do 2x tjedno ili manje) i nema egzacerbacije. Astma je djelomično kontrolirana ako se dnevni simptomi javljaju više od dva puta tjedno, ako se smetnje javljaju povremeno uz tjelesni napor, ako je potreba za simptomatskim lijekovima više od dva puta na tjedan te ako su vrijednosti PEF-a ili FEV₁-a manje od 80% od očekivanih vrijednosti. To se odnosi na prisunost jednog od navedenih simptoma tijekom jednog od tjedana od posljednje kontrole. Egzacerbacija, makar samo jedna
na godinu, predstavlja djelomično kontroliranu bolest. Svaka egzacerbacija zahtijeva reviziju terapije.

Bolest je nekontrolirana ako se tri ili više simptoma djelomično kontrolirane bolesti javljaju u jednom od tjedana od posljednje kontrole. Pojava egzacerbacija jedanput tjedno znači nekontroliranu bolest. (50,52)
5. GERB

5.1 DEFINICIJA I EPIDEMIOLOGIJA

Gastroezofagusni reflux (GER) je nevoljno vraćanje želučanog sadržaja u jednjak. To je u svim dobnim skupinama fiziološka pojava koja se može javiti više puta dnevno i ako traje kratko, ne uzrokuje patološke promjene na sluznici jednjaka, pa ni simptome bolesti. Fiziološki GER se ne liječi. (53) Ako agresivni čimbenici tijekom GER-a nadvladaju obrambene mehanizme zaštite i uzrokuju oštećenje sluznice jednjaka i/ili simptome bolesti govorimo o gastroezofagusnoj refluxnoj bolesti (GERB). Ona zahtijeva liječenje.(55) GERB se obično manifestira tzv. “tipičnim” simptomima koji uključuju žgaravicu i regurgitaciju, no postoji skupina bolesnika koji imaju simptome i znakove koji se ne mogu izravno povezati s gastroezofagealnim refluxom. U posljednje vrijeme ti se simptomi i znakovi sve češće prepoznaju kao ekstraezofagealne manifestacije GERB-a. Smatra se da je u određenom postotku bolesnika s astmom, KOPB-om, kroničnim kašljem, aspiracijskom pneumonijom i plućnom fibrozom važan doprinosni čimbenik GERB. Osim u donjem dišnom sustavu ekstraezofagealni reflux može izazvati komplikacije u nosu, usnoj šupljini, glasnicama, ždrijelu, a uočeno je da i cijeli niz nespecifičnih manifestacija kao što su žarenje u ustima, globus senzacije, palpitacije, kašljucanje, grlobolja te bolovi u prsima i vratu mogu biti povezani s GERB-om. Ekstraezofagealni reflux se smatra posebno značajnim u patogenezi astme.(54,55)

Epidemiološki podaci pokazuju da GERB u razvijenim zemljama, posebice u SAD-u, doseže gotovo epidemijske razmjere, dok je u ekonomski nerazvijenim zemljama prisutan u značajno manjoj mjeri.(56) Isto su se tako istraživanja GER-a u djece donedavno temeljila na simptomima (bljuckanje ili regurgitacija), što se smatralo fiziološkom pojavom u ranom djetinjstvu. Uporabom 24-satne pH-metrije i
endoskopije probavnog sustava utvrđeno je da je GER prisutan u praktički 100% djece do 3 mjeseca, u 40% djece do 6 mjeseci i u otprilike 20% djece do 12 mjeseci života. Međutim, smetnje koje upućuju na GERB javljaju se u otprilike 8% dojenčadi. Otprilike 50% djece ima regurgitacije više od dva puta na dan, 7% zbog simptoma GER-a odlazi na pregled liječniku, a 2% se liječi i obrađuje kod specijalista gastroenterologa.(57) Informacije o incidenciji, dijagnozi i liječenju GERB-a u dječjoj populaciji ograničene i često kontradiktorne te zahtijevaju dodatna istraživanja Simptomi GERB-a su vrlo raznoliki ili ih bolesnici uopće ne zamjećuju (uključujući i one koje se ne odnose na probavni sustav, tj. respiratorne i/ili neurološke smetnje) te se vrlo često uopće ne povezuju s GERB-om. Zbog sve veće svijesti o prisutnosti bolesti, dostupnosti i češćoj primjeni odgovarajućih dijagnostičkih pretraga (24-satna pH-metrija jednjaka, endoskopija, impedancija jednjaka), za očekivati je da će se GERB značajno češće otkrivati te ćemo tek spoznati njegov značajni socio-ekonomski i javnozdravstveni utjecaj.(58,59)

5.2. MEHANIZMI NASTANKA GERB-a i KLINIČKA SLIKA

GER može biti primarni i sekundarni.(60) Primarni GER je funkcionalni poremećaj gornjeg probavnog sustava, dok je sekundarni GER posljedica dismotiliteta jednjaka različitih uzroka. Jednjak je zatvorena mišićna cijev koja se otvara ulaskom hrane, a daljnji prolazak hrane u želudac omogućen je primarnim peristaltičkim kontrakcijama. Kompetentna antirefluksna barijera koja je sastavljena od donjeg sfinktera jednjaka, intraabdominalnog segmenta jednjaka, dijafragmalnih vlakana, frenoezofagealnog ligamenta i Hisovog kuta sprječava refluks gastrointestinalnog sadržaja u jednjak. Hoće li fiziološki GER prijeći u GERB, ovisi o međudjelovanju triju komponenata: valvularnog mehanizma (donji sfinkter jednjaka), propulzivne moći jednjaka i rezervoara hrane (želuca) te otpornosti sluznice jednjaka
na prisutnost želučanog sadržaja. Valvularni mehanizam uvjetuje učestalost i količinu refluksnog sadržaja iz želuca. Nazivamo ga "antirefluksnom barijerom" i on je prva linija obrane od GERB-a. Djelotvornost valvularnog mehanizma ovisi o tlaku i prolaznoj relaksaciji donjeg ezofagealnog sfinktera te o Hissovom kutu, odnosno o anatomskom statusu donjeg dijela jednjaka. Druga linija obrane, ezofagealni klirens, određuje dužinu zadržavanja želučanog sadržaja u jednjaku. Treća linija obrane odnosi se na niz svojstava same sluznice jednjaka, odnosno njenih obrambenih snaga. To su sastav i količina sluzi, građa same sluznice te krvna opskrba i acidobazna svojstva tkiva.(53,60) Relativno novi klinički entitet koji se javlja u literaturi posljednjih 25 godina je laringofaringealni reflucs koji predstavlja povrat sadržaja iz želuca kroz jednjak u laringofarinks, ali i dalje u nazofarinks, nos i paranazalne šupljine. Do tada je LPR bio neprepoznat ili se je tumačio kao atipični gastroezofagealni reflucs (GER). Žgaravica, koja je jedan od glavnih simptoma GERB-a, rijetko je prisutna u LPR-u. Fiziološki ili tzv "tihi" reflucs ne uzrokuje simptom žgaravice. Za razliku od sluznice jednjaka, sluznice larinksa i farinksa su osjetljivije i podložnije oštećenju kiselinom iz želuca i pepsinom. Simptomi koji se javljaju su promuklost, suhoća grla, noćni laringospazam, otalgija, slijevanje sekreta iz nosa, globus senzacije, odinofagija, kronični kašalj, disfagija, bol u trbuhu, mučnina.(54,60)

U svakoj bolesti klinička je slika osnova na kojoj gradimo dijagnostički postupak radi postavljanja ispravne dijagnoze. Simptomi GER-a bitno ovise o djetetovoj dobi. Glavni je simptom atoničko povraćanje koje nije praćeno naprezanjem, koje slijedi u pravilu odmah poslije podoja. Povraćanje iznimno bude eksplozivno pa podsjeća na stenozu pilorusa. Samo 5 do 15% dojenčadi s izraženim bljuckanjem razvija kliničku sliku GERB-a i oni zahtijevaju adekvatnu dijagnostičku
obradu prije početka terapije.(60) U većeg djeteta simptomi su slični onima u odrasloj
dobi.(Tablica 2)(60,61) Osim klasičnih smetnji vezanih za probavni sustav, GERB se
može očitovati nizom simptoma drugih organskih sustava, kao što je dišni sustav:
apnoični napadaji, kronični kašalj, promuklost, stridor, noćni napadaji otežanog
disanja, ponavljujuća sipnja (wheezing), bronhoopstrukcije, hrkanje, kronični
rinosinusitis, laringitis, recidivirajuće upale pluća i uha. Uz navedeno javljaju se i
epizode cijanoze, nemir i plač, erozija zubne cakline, anemija zbog nedostatka
željeza, hipoproteinemija, tortikolis i opistotonična izvijanja (Sandifer – Sutcliffe
sindrom).(54,62)

Tablica 2. Simptomi GERB-a s obzirom na dob djeteta

<table>
<thead>
<tr>
<th>Dojenče</th>
<th>Veće dijete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regurgitacija</td>
<td>Žgaravica (goruščica)</td>
</tr>
<tr>
<td>Zastoj u tjelesnoj masi</td>
<td>Regurgitacija s ponovnim gutanjem hrane</td>
</tr>
<tr>
<td>Problemi hranjenja- poremećaj sisanja i/ili gutanja</td>
<td>Gorko- kiseli ("metalni") okus u ustima</td>
</tr>
<tr>
<td>Nemir, iznenadni, kratkotrajni plač (iritabilnost)</td>
<td>Disfagija</td>
</tr>
<tr>
<td>Dugotrajna štucavica poslije hranjenja</td>
<td>Bolovi u prsnom košu (nekardijalni retrosternalni bolovi)</td>
</tr>
</tbody>
</table>

5.3. DIJAGNOSTIKA I LIJEČENJE GERB-a
Svaki dijagnostički algoritam počinje anamnezom i temeljitim fizičkim
pregledom. Dijagnostičke pretrage za dokazivanje GERB-a biraju se ovisno o
vodećim simptomima, o djetetovoj dobi, o najvjerojatnijem uzroku poremećaja i
posljedici refluksa, ali i o dostupnosti pojedinih metoda. Zlatnim standardom za
dijagnozu i procjenu kiselog refluksa smatra se 24-satno mjerenje kiselosti sadržaja u

Ultrazvuk u dijagnostici GER-a ili GERB-a novija je metoda i nema još svoje mjesto u algoritmu dijagnostičkih pretraga.

5.4. IMPEDANCIJA JEDNJAKA

Donedavno se dijagnostika gastroezofagealnog refluksa temeljila na endoskopiji i 24-satnoj pH-metriji koja se smatra standardom pri otkrivanju refluksa.
Međutim, manjkavost pH-metrije odnosi se na činjenicu da se njome ne detektiraju refluksi s malo i bez kiselog sadržaja, tj. oni kod kojih je pH iznad 4. Takve epizode se javljaju u bolesnika u kojih se refluks javlja ubrzo nakon jela, u djece koja se hrane mlijekom zbog neutralizacije kiselog želučanog sadržaja, te u bolesnika na terapiji (inhibitorima protonske pumpe, H2 antagonistima).(67)

Multikanalna intraluminalna impedancija (MII) jednjaka je novija metoda koja je korisna za potvrdu refluksne bolesti u slučajevima bolesnika s refraktornim simptomima koji nemaju znakova oštećenja sluznice jednjaka na endoskopiji, za procjenu adekvatnosti antisekretorne terapije, te za određivanje prisutnosti alkalnog refluksa, najčešće postprandijalno. Metoda se osniva na načelu mjerenja promjena električne vodljivosti intraluminalno. Na kateter su postavljene elektrode koje mjere promjene električne vodljivosti te otpor prolasku električne struje između elektroda, koji nastaje zbog promjene sastava refluksnog sadržaja. On može biti zrak (u tom slučaju je niska provodljivost, ali je visoka impedancija), tekućina (tada je visoka provodljivost, ali niska impedancija) te kruta hrana.(67) Kad je jednjak prazan izmjerit će se osnovna impedancija jednjaka koja iznosi 1500-2000 Ohma. Susjedne elektrode su međusobno udaljene 1.5 cm i ima ih sveukupno šest, što znači da je ukupna duljina tog djela 9 cm. Pri mjerenju se šesta elektroda nalazi u predjelu kardije želuca, a prva elektroda u predjelu ždrijela.(68) Zbog takve raspodjele elektroda možemo odrediti smjer kretanja sadržaja u jednjaku koji može biti retrogradan (refluks) ili anterogradan (gutanje), što nam je isto vrlo važno. Isto tako možemo odrediti brzinu kretanja refluksnog sadržaja u jednjaku. Elektrode na kateteru imaju zadani razmak te se mjerenjem vremena promjene impedancije među elektrodama izračunava brzina širenja refluksnog sadržaja. Naknadno se može izmjeriti i visina refluksnog sadržaja.(67,68)
Ova metoda je važna za praćenje pH iznad 4 te se time razlikuje od pH-metrije jednjaka. Vrlo često se u bolesnika koji se liječe antisekretornom terapijom ne može pH-metrijom utvrditi refluk, što ne znači da refluksa nema jer se terapijom smanjuje kiselost refluksnog sadržaja, ali se ne mora utjecati i na sam refluk. Zbog toga ova metoda ima važno mjesto u dijagnostici refluksne bolesti.(69,70)

Premda je metoda vrlo vrijedna i donosi značajni napredak u dijagnostici refluksne bolesti, nažalost, ima nekih nedostataka.(69-71) Nedostatci mjerenja impedancije su: nemogućnost razlikovanja volumena refluksa jer su promjene impedancije jednake za 1 i 10 ml tekućine; nevalidirani računalni programi za analizu; nemogućnost detekcije kiselosti sadržaja; nedostatak raspona normalnih vrijednosti za djecu.

Zbog navedenih nedostataka u novije se vrijeme često kombinira metoda 24-satne pH-metrije i impedancije jednjaka. Tehnika izvođenja je ista, međutim, prednost je ta što se uz već navedene parametre može odrediti i kiselost sadržaja bolusa, a koji se definira kao kiseli (pH<4), blago kiseli (pH 4-7) i nekiseli sadržaj (pH>7).(71) Metodom se određuje i podudarnost simptoma, promjena položaja tijela te uzimanja jela i pića s pojavom refluksne epizode.

Uz elektrode za mjerenje impedancije jednjaka, nalaze se i elektrode za mjerenje pH. Distalna elektroda se postavlja otprilike 2.5 cm iznad gastroezofagealnog spoja. Proksimalna elektroda se nalazi malo ispod ždrijela. Elektrode se kalibriraju prije i nakon postupka mjerenja korištenjem puferiranih otopina (pH 4 i 7).(69,70) Za vrijeme mjerenje bolesnici se mogu normalno hraniti svaka 3-4 sata, ali je poželjno da se kiselića hrana izbjegava. Zbog mogućnosti detektiranja blago kiselog i kiselog sadržaja, testiranja se mogu izvoditi i u novorođenčeta i dojenčeta te
druge djece koja zahtijevaju učestala hranjenja. Testiranje se ne provodi za vrijeme hranjenja, osim ako bolesnik ima simptome koji se javljaju za vrijeme hranjenja te ih je potrebno objektivizirati.(72,73)

Obrada, često asimptomatskog GERB-a u djece s loše kontroliranom astmom ili drugim kroničnim ili recidivirajućim bolestima dišnog sustava, prijeko je potrebna zbog njihove očite povezanosti. Stoga ne čudi da bolesnici na antirefluksnoj terapiji imaju puno manje respiratornih problema. Na refluksnu bolest treba misliti u svih bolesnika s astmom, pri čemu treba imati na umu da GER kod nekih može biti „tih“ ili se može očitovati ekstrazofagealnim simptomima kao što su kronični kašalj, laringitis, rinosinusitis ili ponavljajuće plućne infekcije. Brojna klinička iskustva potvrđuju da liječenje refluksne bolesti poboljšava simptome astme te ujedno smanjuje i skraćuje uporabu lijekova u njenom liječenju. Postoje i suprotni stavovi, za sada samo istraženi u odraslih bolesnika.(74,75) Usprkos svemu navedenom, potrebno je istaknuti da se astma inducirana refluksnom bolešću u većine bolesnika može pretpostaviti, ali ne i dokazati. Današnje dijagnostičke metode, iako tehnološki uznarredovali, još su uvijek nedovoljno pouzdane. Stoga će i u budućnosti veza između GER-a i astme biti predmetom mnogobrojnih rasprava.(75)

5.5. TERAPIJA

Terapija primarnog GERB-a može se razdijeliti na tri stupnja.(Tablica 3)(73,76) Terapija započinje postupcima definiranima u I. stupnju, u pravilu na razini primarne zdravstvene zaštite. Ovu terapiju provodimo 2 do 4 tjedna. Ako na terapiju I. stupnja nema značajnog poboljšanja treba utvrditi je li riječ o GERB-u te po potrebi započeti s drugim, odnosno medikamentoznim stupnjem terapije GERB-a. Liječenje II. i III. stupnja trebao bi odrediti specijalist gastroenterolog. Prvi stupanj terapije
GERB-a indiciran je kao samostalna terapija u slučajevima nekompliciranog GER-a, ali i kao suportivni dio terapije GERB-a. Podrazumijeva kao prvo modifikaciju svakodnevnih životnih navika.

Tablica 3. Stupnjevi liječenja GERB-a

| I. stupanj | • Promjena načina života (položaj ležanja način prehrane, vrsta odjeće)
| | • Antacidi
| | • Izbjegavanje lijekova koji smanjuju tlaku donjem ezofagealnom sfinkteru |
| II. stupanj | • Prokinetici (cisaprid, betanekol, metoklopramid, domperidon i eritromicin)
| | • Supresori lučenja želučane kiseline: antagonisti histaminskih receptora (ranitidin, cimetidin, famotidin) i inhibitori protonske pumpe (omeprazol, pantoprazol, lanzoprazol) |
| III. stupanj | Operacija: Nisseno fundoplakacija |

Najčešće spominjani dio terapije je odgovarajući položaj ležanja djeteta. U veće djece, kao i u odraslih, to je položaj na lijevom boku uzdignutog uzglavlja, koji smanjuje broj refluksnih epizoda.(76) Pitanje optimalnog položaja dojenčadi je kompleksno. Naime, premda je položaj na prsima povoljan zbog refluksa (brže pražnjenje želuca, manji broj refluksnih epizoda, manji plač i nemir djeteta, manja opasnost od aspiracije), epidemiološki podaci upućuju na to da je potrubni položaj rizičan za pojavu iznenadne dojenačke smrti (SIDS) (učestalost 4.4 na 1000 živorođene djece u odnosu na manje od 0.1 u položaju na leđima).(77,78) Dakle, potrebno je pomno odvagati rizike SIDS-a s jedne strane i štetne posljedice GERB-a s druge te individualno savjetovati roditelje.

Drugi važan element I. stupnja terapije jest način prehrane, ovisno o djetetovoj dobi. Dojenčadi koja su na prsima ne mijenja se način prehrane. U

Treći stupanj terapije GERB-a jest operativni zahvat. Preporučuje se Nissenova fundoplakacija koje je uspjeh od 57% do 92%.(81) Indicirana je u bolesnika u kojih medikamentoznom terapijom nije došlo do poboljšanja simptoma, u slučajevima trajnih smetnji u smislu retrostroisternalne boli, orofaringealne komplikacije, laringealne i ezofagealne komplikacije (peptičke strikture, Barrettov ezofagus) i kod striktura.
6. POVEZANOST ASTME I GERB-a

Visoka učestalost istovremene pojave astme i GERB-a u djece (do 83% djece s astmom ima istovremeno prisutan GERB) govori u prilog značajnoj etiopatogenetskoj povezanosti tih dviju bolesti. Razlika u navodima učestalosti GERB-a u astmi u literaturnim navodima proizlazi najčešće vezano uz različite metode dijagnostike GERB-a (prisutnost tipičnih znakova i simptoma – mjerenje 24h pH-metrije jednjaka. Pri razmatranju odnosa GERB-a i astme temeljno je pitanje što je uzrok, a što posljedica. Je li astma uzrok nastanku GERB-a, je li ona posljedica GERB-a ili postoji li neki drugi međuodnos tih dviju bolesti?

Astma je najčešća kronična bolest djece. Dijete s lošom kontrolom astme može se svrstiti u jednu od četiriju kategorija: pogrešna dijagnoza “not asthma”, astma sa značajnim komorbiditetima “asthma plus”, astma koja ne odgovara na liječenje “difficult to control asthma”, te teška astma rezistentna na terapiju “severe therapy-resistant asthma”.(82,83) Potrebno je pojasniti zašto je bitno raditi impedanciju jednjaka u djece koja imaju loše korištenje astmi. Uzročna povezanost astme i GERB-a jest dvosmjerna. Poznato je da loše korištenje astmi promovira refluksnu bolest na nekoliko načina: povećavajući gradijent tlaka preko mišića dijafragme uslijed protrahiranog kašlja, povećavajući sekreciju želučane kiseline i smanjujući tonus donjeg ezofagealnog sfinktera zbog djelovanja bronhodilatatornih lijekova, posebno teofilinske skupine. S druge strane, GERB za sada putem triju poznatih mehanizama može pogošavati astmatske tegobe. To su mehanizam aspiracije refluksa, mehanizam stimulacije vagalnih refleksa ezofagealnim aciditetom te neuroinflamatorni aksonski refleks. Posljedični zajednički nazivnik ovih mehanizama jest smanjen pH dišnih putova u astmi uz pridruženi GERB.(82-84) Mikroaspiracija refluksa jednjaka važan je patofiziološki mehanizam
kojim GERB podržava upalni proces u dišnim putovima. Prisutnost kiselog refluksa u bronhopulmonalnom sustavu dovodi do oštećenja epitelnih stanica, koje tako stimulirane oslobađaju citokine i podržavaju upalni proces. Istraživanje na laboratorijskim životinjama pokazala su da instilacija 10 ml 0.2% HCl u jednjak uzokuje povećanje ukupne plućne rezistencije 1,5 puta iznad osnovne vrijednosti, a samo 0.05 ml 0.2% HCl u dušniku dovoljno je za povećanje ukupne plućne rezistencije za 4,5 puta iznad normalnih vrijednosti. Dokazano je da bilateralna cervikalna vagotomija u animalnom modelu blokira efekt trahealnog aciditeta na plućnu rezistenciju, što pokazuje da mikroaspiracija jednjačnog refluksa dovodi do povećanja vagalnog tonusa. Ova studija u kojoj je simultano vršen pH-monitoring jednjaka i traheje u svrhu dokazivanja refluksne aspiracije pokazuje da prisutnost samo ezofagealnog refluksa bez mikroaspiracije dovodi do pada vršnog ekspiratornog protoka zraka (od engl. peak expiratory flow, PEF) za 8 L/min. Trahealna acidifikacija pak uzrokuje pad PEF od 84 l/min. Prema Tuchmanovu životinjskom modelu, osnovni uzrok ovoj značajnoj razlici leži u povećanom vagalnom refleksu povezanom s mikroaspiracijom .(83-86)

Vagalni refleks- refluks kiselog želučanog sadržaja u jednjak, ako i nije praćen aspiracijom, može uzrokovati porast vagalnog tonusa putem dvaju osnovnih mehanizama. Prvi mehanizam jest stimulacija ezofagealnih pH, osmolalnih ili tlačnih receptor. Drugi mogući mehanizam jest utjecaj same nokse prouzročene aciditetom ili bolovima na poticanje aksonskog refleksa. U jednoj studiji ispitivana je skupina bolesnika s astmom i GERB-om upotrebljavajući infuziju HCL u uspravnom položaju bolesnika.(84,85) Ova je provokacija u svih bolesnika uzrokovala bol s posljedičnim povišenjem ukupne plućne rezistencije.
Druga studija, u kojoj je također ispitivan utjecaj djelovanja normalne i „zakiseljene” sline na plućnu funkciju, pokazala je značajno niži FEV1 u bolesnika koji su provocirani kiselinom.(83,84) U ovoj studiji evaluirano je i 136 bolesnika s GERB-om, bez astme, u kojih je također došlo do pojave boli nakon stimulacije kiselinom. U svih bolesnika premedikacija atropinom blokirala je bronhoopstruktivnu reakciju. Upravo ovi podaci potvrđuju da opisivani vagalni refleks može biti prisutan i u bolesnika bez astme.

Neuroinflamatorni aksonski refleks glatke mišićne niti dišnih putova inerviraju eferentne parasimpatičke niti vagusa. Gusta mreža parasimpatičkih živčanih niti opskrbljuje submukozne žlijezde i glatke mišiće dišnih putova do respiracijskih bronhiola. Neurotransmiter tih vlakana je acetilkolin. Stimulacija vagusa tako uzrokuje kontrakciju glatkih mišića u stijenci dišnih putova i pojačava lučenje sluzi. Nadalje, trajna tonička aktivnost vagusa održava osnovni neuromuskularni tonus dišnih putova pa antikolinergici i bilateralna vagotomija izazivaju značajnu bronhodilataciju, osobito na razini velikih dišnih putova.(85,86) S obzirom na to da su senzibilizacija i aktivacija senzornih živaca čest simptom akutne i kronične upale, vrlo je vjerojatno da su senzorni živci uključeni i u upalne zbivanja u astmi, a da u donjim dišnim putovima kašalj i osjećaj pritiska u prsima zamjenjuju bol kao simptom aktivacije senzornih živaca.

Karateristični nalazi, koji ne moraju uvijek bit prisutni u bolesnika s astrom induciranom refluxom jesu: češća pojava bolesti u odrasloj dobi, u nepušača i u osoba bez alergijskih smetnji, prisutnost kašlja, pogoršanje pri hranjenju, neadekvatan odgovor na antiastmatičnu terapiju i povoljan odgovor na primjenu antisekretolitika.(82) Pojava astmatičnih napadaja većinom noću od izuzetnog je značenja. Vodoravni položaj tijela, smanjenje izlučivanja sline i smanjena frekvencija
gutanja pogoduju produženom izloženosti jednjaka želučanoj kiselinii. (77) Na taj se način ezofagitis pojavitve češće i jačeg je intenziteta. Ezofagitis je značajni čimbenik u nastanku bronhospazma provociranog refluksom. Osim toga, noćni se refluks pojavljuje u vrijeme povećane osjetljivosti dišnog sustava zbog smanjene aktivnosti protektivnih refleksa, zbog ograničenih rezervi kisika u plućima i zbog sniženog praga normalne podražljivosti respiracijske muskulture. (88) Nadalje, većina astmatične djece ima alergiju za koju su odgovorna IgE protutjela, pa se pretpostavlja da inhalatorni alergeni dolaze ne samo u dišni sustav već i u jednjak i u želudac gdje se odvija alergijska reakcija s posljedičnom hipersekrecijom želučane kiseline i disfunkcijom distalnog dijela jednjaka. (87) Astmatičari imaju značajno niži tlak donjeg sfinktera jednjaka i duže vrijeme izloženosti jednjaka kiselinii. Potrebno je istaknuti da se astma inducirana refluksnom bolešću u većine bolesnika može pretpostaviti, ali ne i dokazati. Današnje dijagnostičke metode, iako tehnološki uznapredovale, još su uvijek nedovoljno pouzdane. Stoga će i u budućnosti veza između GER-a i astme biti predmetom mnogobrojnih rasprava. (84)
7. ZAKLJUČAK

Danas je velik dio djece s astmom nezadovoljavajuće kontroliran i liječen. Smjernice dijagnostike i liječenja važne su za postizanje i održavanje kontrole astme, no u pojedinom se slučaju, usprkos tome, ne postiže kontrola. Astma je nekontrolirana ako se tri ili više simptoma djelomično kontrolirane bolesti javljaju u jednom od tjedana od posljednje kontrole. Pojava egzacerbacija jednom tjedno znači nekontroliranu bolest. Razlozi koji često dovode do loše kontrole astme u djece su pogrešna dijagnoza, upitna suradljivost bolesnika, nedostatna kontrola okoliša, komorbiditeti, među kojima je jedan od najznačajnijih upravo GERB. Visoka učestalost istovremene pojave astme i GERB-a u djece (do 83% djece s astmom ima istovremeno prisutan GERB) govori o značajnoj etiopatogenetskoj povezanosti tih dviju bolesti. GERB putem triju poznatih mehanizama može pogoršavati astmatske tegobe. To su mehanizam aspiracije refluksnog sadržaja, mehanizam stimulacije vagalnih refleksa ezofagealnim aciditetom, te neuroinflamatorni aksonski refleks.

Multikanalna intraluminalna impedancija (MII) jednjaka je novija metoda i veoma nam je korisna za potvrdu refluksne bolesti u bolesnika s refraktornim simptomima, za procjenu adekvatnosti antirefluksne terapije te za određivanje prisutnosti alkalnog refluksa. Važna je za praćenje pH iznad 4 pa se time razlikuje od pH-metrije jednjaka. Često se u bolesnika koji se liječe antisekretornim terapijom ne može pH-metrijom utvrditi refluksa jer terapija smanjuje kiselost samog sadržaja, a uz i dalje prisutan refluksa. U novije se vrijeme često kombinira metoda 24-satne pH-metrije i impedancije jednjaka. Prednost je da se uz detektiranje refluksa, njegov smjer kretanja, sastav i brzinu prolaska može odrediti i kiselost sadržaja. Brojna klinička iskustva potvrđuju da liječenje refluksne bolesti poboljšava simptome astme te ujedno skraćuje upotrebu lijekova. Iz tog razloga je važno što ranije prepoznati
GERB u djece s loše kontroliranom astmom i to uz pomoć kombinacije metoda multikanalne intraluminalne impedancije i 24-satne pH-metrije te započeti liječenje.
8. ZAHVALE
9. LITERATURA

29. Dekaris D. Temeljna alergologija, 1983. Školska knjiga, Zagreb

46. Stipić-Marković A. Alergijska astma. Medix 2003;55-60

