
Biology of bone morphogenetic protein in bone repair
and regeneration: A role for autologous blood
coagulum as carrier

Kuber Sampath, T.; Vukičević, Slobodan

Source / Izvornik: Bone, 2020, 141

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.1016/j.bone.2020.115602

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:105:132506

Rights / Prava: Attribution 4.0 International / Imenovanje 4.0 međunarodna

Download date / Datum preuzimanja: 2024-08-17

Repository / Repozitorij:

Dr Med - University of Zagreb School of Medicine 
Digital Repository

https://doi.org/10.1016/j.bone.2020.115602
https://urn.nsk.hr/urn:nbn:hr:105:132506
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://repozitorij.mef.unizg.hr
https://repozitorij.mef.unizg.hr
https://repozitorij.unizg.hr/islandora/object/mef:3270
https://dabar.srce.hr/islandora/object/mef:3270


Contents lists available at ScienceDirect 

Bone 

journal homepage: www.elsevier.com/locate/bone 

Full Length Article 

Biology of bone morphogenetic protein in bone repair and regeneration: A 
role for autologous blood coagulum as carrier 
T. Kuber Sampatha,⁎, Slobodan Vukicevicb 

a perForm Biologics Inc., Holliston, MA 01746, United States of America 
b Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia  

A R T I C L E  I N F O   

Keywords: 
BMP 
BMP carrier 
Bone formation 
Bone repair 

A B S T R A C T   

BMPs were purified from demineralized bone matrix based on their ability to induce new bone in vivo and they 
represent a large member of the TGF-β superfamily of proteins. BMPs serve as morphogenic signals for me-
senchymal stem cell migration, proliferation and subsequently differentiation into cartilage and bone during 
embryonic development. A BMP when implanted with a collagenous carrier in a rat subcutaneous site is capable 
of inducing new bone by mimicking the cellular events of embryonic bone formation. Based on this biological 
principle, BMP2 and BMP7 containing collagenous matrix as carrier have been developed as bone graft sub-
stitutes for spine fusion and long bone fractures. Here, we describe a novel autologous bone graft substitute that 
contains BMP6 delivered within an autologous blood coagulum as carrier and summarize the biology of os-
teogenic BMPs in the context of bone repair and regeneration specifically the critical role that carrier plays to 
support osteogenesis.   

1. BMPs during embryonic skeletal development 

BMPs are potent chemo-attractants [1,2], mitogens [3] and mor-
phogens [4–7], and act across a concentration gradient during em-
bryonic skeletal development [8,9]. BMPs recruit mesenchymal stem 
cells and promote condensation (proliferation) and subsequently trigger 
their differentiation into endochondral bone during skeletal morpho-
genesis [10,11]. Ectoderm generally expresses BMPs [12,13] as secre-
tary proteins, which bind to extracellular matrix proteins (e.g., heparin 
sulfate proteoglycans and type IV collagen), BMP-antagonists (Noggin, 
Chordin, Sclerostin, Gremlins) and are subsequently released and gov-
erned as needed for mesoderm condensation and differentiation 
[8,14,15]. The cells that express BMPs also express BMP antagonists in 
order to establish a concentration gradient for ligand-receptor interac-
tions to induce the downstream signaling [9,16]. BMP signals are 
tightly controlled in space and time and the loss of an osteogenic BMP 
function at given tissue compartment is compensated by another BMP. 
Furthermore, BMP-signaling cross talks with TGF-β and activin as well 
as other members of the TGF-β superfamily proteins, and with Wnt- and 
Hedgehog-signals to govern skeletal tissue morphogenesis [16–18]. 

The embryonic cellular events that culminate in the formation of 
new cartilage and bone can be recapitulated in post-fetal life by im-
planting an osteogenic BMP (e.g., BMP2, BMP4, BMP6 and BMP7) with 
a carrier in a rat subcutaneous site and in diaphyseal fracture, 

segmental defect and lumbar spine fusion models. The presence of BMP 
in the implant attracts a sufficient number of mesenchymal stem cells, 
induces proliferation and differentiation into bone [19–21]. This bio-
logical function of BMP is concentration-dependent, the lower the 
amount is motogenic (chemotaxis) and medium concentrations are 
mitogenic (proliferation) and higher concentrations are morphogenic 
(differentiation) [10,13,22,23]. The biological activities of BMPs with 
respect to chemotaxis, proliferation and differentiation have been de-
monstrated in vitro using Boyden chamber assay, cell proliferation and 
differentiation assays in cultures using a BMP and responding me-
senchymal stem cells [1,24]. 

2. BMP structure and receptors 

BMPs are homodimers and all have the hallmark of “7- cysteine 
domain” held by an inter-disulfide bridge at the 4th cysteine between 
two monomers and are highly conserved from fly to humans. BMPs are 
produced as a large precursor with signal peptide, pro-domain and 
mature “7-cystein TGF-β domain”. They are synthesized as a monomer 
with three intra-disulfide bridges and then undergo dimerization in the 
endoplasmic reticulum by forming inter-disulfide bridge at the 4th 
cysteine and processing at RXXR site before they are secreted into the 
extracellular space [25,26]. The secreted BMP protein is a dimer at the 
mature TGF-β domain, which is biologically active, whereas the pro- 
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domain is not active but can interact with mature, processed dimer by 
non-covalent interactions. The mature protein loses its biological ac-
tivity if the inter-disulfide bridge is broken. The crystal structure reveals 
that the BMP dimer is aligned antiparallel with finger 1 and finger 2 and 
heal region [27]. A cysteine knot with intra- and inter- disulfide bridges 
holds the dimer protein and because of this it is very stable, even 
against proteases like trypsin. As an example, a schematic diagram for 
the structure of BMP7/OP1 is presented in Fig. 1. 

BMP7 protein is composed of 431 amino acids that contains a 29 
amino acids signal peptide, a 29–292 amino acid pro-domain and is 
cleaved at the second RXXR site to release 293–431 amino acids as 
processed mature protein containing a 7-cysteine domain, a hallmark of 
TGF-beta family of proteins. Though it has 4-potential glycosylation 
sites (marked as triangles) only two sites are glycosylated. However, the 
glycosylation is not required for bone induction. 

BMPs signal through Ser-Thr kinase receptors type I and type II. 
Although both type I and type II bind to the ligand and form a complex, 
type I receptor renders specificity and recruits intracellular signaling 
kinases SMAD-1/5/8 and subsequently triggers phosphorylation. These 
SMADs complex with a co-SMAD-4 translocate into nucleus to switch- 
on and off sets of genes responsible for tissue morphogenesis, repair and 
regeneration [28]. A BMP employs a specific type I receptor (Activin 
Like Kinases, ALK-2 or ALK-3 or ALK-6;) and a type II receptor (BMPRII, 
ActRII-A and ActRII-B) depending on the cell type and cellular re-
sponses it triggers [29]. There are several BMP co-receptors that have 
been described to activate or inhibit BMP-signaling to trigger specific 
cellular function and outcome [30]. These include the Dragon family of 
proteins, Hemojuvelin and Endoglin. Two downstream inhibitors, 
SMAD-6 and -7 are identified to play a functional role as checkpoints by 
inhibiting the BMP downstream signaling to modulate the biological 
activity. BMP ligands can also trigger SMAD independent non-canonical 
downstream signaling directly or indirectly, such as MAPK/ERK/JNK/ 
p38/PI3K/Akt/RANK/RANKL, as well as substantial cross-talk with the 
Wnt, hedgehog and VEGF signaling cascades [10,14]. In addition, 
known BMP antagonists like Noggin, Chordin, Follistatin, Gremlin, 
Sclerostin and USAG-1 are shown to govern the availability of BMP 
ligand to its receptor by binding avidly at the extracellular space to 
render specificity and establish a concentration gradient [31]. 

3. In vitro and in vivo model systems for endochondral bone 
formation 

3.1. In vitro model systems 

Several in vitro cell cultures have been used to examine BMP-like 
activity. Primary cultures generated from chick [32,33] and mouse- 
limb-bud [34], synovial tissue [35], skeletal muscle [36], periosteum 
[37,38], vasculatures [39] and primary bovine articular chondrocytes 
[40,41] and calvarial-derived primary osteoblasts [21,42] and estab-
lished rat osteosarcoma cell lines [43], C2C12 mouse myoblast cell line 
[44], bone marrow derived W-29 stromal cells [45] and adipocytes [46] 
have been routinely employed. To examine mesenchymal stem cell 
differentiation into chondrocytes or osteoblasts, the early responsive 
genes like id-1, -2 and -3 were examined [47], for chondrogenic dif-
ferentiation determinants like Sox-5, -9 [48] and markers of chon-
drocyte phenotype, type II collagen and cartilage-specific proteoglycan 
[51] were examined, for osteoblast differentiation, determinants like 
Osterix and Runx2 [49,50], and markers of osteoblast phenotype, al-
kaline phosphatase and osteocalcin are routinely monitored [21]. 
Identification of BMP-Responding Elements (BRE) in the promotor re-
gion of the BMP-SMAD dependent responding genes has allowed the 
engineering of several established stable cell lines linking with luci-
ferase enzyme to specifically qualify the biological activity of BMP from 
cell- and tissue- extracts, body fluids, and for release assays for re-
combinant BMP production [52]. Furthermore, pluripotent stem cells 
generated from patients with musculoskeletal disorders are being em-
ployed to determine how BMPs drive chondrogenesis and osteogenesis 
using the loss or gain of function approaches and by establishing 
screens to select small molecules [53]. 

3.2. In vivo model systems 

A BMP alone when implanted with an appropriate collagenous 
matrix can induce new bone formation at ectopic or orthotopic sites. 
This serves as a prototype for tissue engineering [54]. BMP serves as 
signal and collagen serves as scaffold. The local implant site provides a 
microenvironment to recruit the responding cells and they attach onto 
the collagenous scaffold and promote the differentiation into en-
dochondral bone. This BMP-induced new bone formation is dose-de-
pendent [21] up to certain doses based on given substratum used; 
however, at a higher dose BMP can trigger more recruitment and 

Fig. 1. Structure of BMP7/OP1.  
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proliferation of progenitors, resulting in cyst-like condensation and a 
delay in the differentiation into bone. This high dose cyst-phenomenon 
is observed both in ectopic and orthotopic sites. Recently, significant 
information about BMPs in systemic bone volume and heterotopic bone 
formation has been explored in genetically modified mice [26,55]. 

3.3. Role of BMPs in bone repair and regeneration 

Several clinical trials have been conducted to assess the safety and 
efficacy of recombinant human BMP containing osteogenic devices for 
the treatment of acute diaphysis bone fractures and delayed union, ti-
bial non-union and for anterior lumbar interbody fusion (ALIF) and 
posterolateral lumbar (PLF) fusion. Two BMP products, rhBMP2 
(InFUSE®) [56] and rhBMP7 (OP-1® [57] and OP-1 Putty®) [58] are 
licensed under PMA and HDE for marketing and clinical application in 
the US [59–61]. 

OP-1® Implant: The first human clinical study was performed to 
assess the efficacy of recombinant human rhBMP7 (OP-1®) for the 
treatment of tibial non-union in a prospective, randomized and con-
trolled clinical trial [62]. The conclusion of this clinical study demon-
strated that OP-1® implant was safe and an effective treatment modality 
for a tibial non-union, and the outcome was comparable to the use of 
bone autograft but failed to achieve a significant difference as the 
number of patients included in the study were not sufficient, because of 
this it has received only HDE approval in the US. 

OP-1 Putty®: OP-1® Implant was used in conjunction with carbox-
ymethylcellulose to provide putty-like property. The OP-1 Putty® de-
vice was evaluated in the PLF clinical study to treat symptomatic single- 
level degenerative lumbar spondylolisthesis and spinal stenosis without 
instrumentation [63,64]. Outcomes measured at 12 months of the 
follow-up showed a positive trend but did not again meet a significant 
difference. Therefore, OP-1 Putty® received again HDE approval for use 
as an alternative to autograft in compromised patients requiring revi-
sion of the posterolateral (inter-transverse) lumbar spinal fusion. 

InFUSE® (rhBMP2) was approved by FDA via premarketing approval 
(PMA) process, in conjunction with Absorbable Collagen Sponge (ACS) 
and LT-Cage Lumbar Tapered Fusion device for spinal fusion proce-
dures via an anterior approach; the specific indication is for spinal fu-
sion procedures in skeletally mature patients with degenerative disc 
disease (DDD) at one level from L2-S1 [65–67]. However, in large 
clinical studies conducted using a high dose (40 mg/single-level fusion) 
of InFUSE® with osteoconductive bulking agents (Amplify™) did not 
result in a positive outcome against autologous ICBG used as a com-
parator [68,69]. 

The off-label use of InFUSE® in cervical spine fusion posed un-
wanted safety issues including swelling of neck and throat tissue, which 
resulted in compression of the airway and/or neurological structures in 
the neck [70]. Some reports described difficulty in swallowing, 
breathing or speaking. Though fewer documented adverse events can 
be attributed to BMP, certain complications and safety issues are of 
concern. Adverse events that have been reported include but are not 
limited to inflammation, unwanted ectopic bone formation, infection, 
immune responses, vertebral osteolysis and vertebral edema. The con-
cern is centered on excessive dose of BMPs (for example hrBMP2 ap-
plied 12–40 mg for a single-level fusion), the use of animal-sourced 
collagen (bovine type I collagen) and synthetic ceramics (hydro-
xyapatite and tri‑calcium phosphate) composite as substratum to de-
liver rhBMP2 at the implant site [71,72]. Animal sourced collagens, 
ceramics as carriers induce inflammatory cytokine release and immune 
reactions at the local implant sites. Lower doses of BMPs with an ap-
propriate physiological autologous scaffold might provide the optimal 
bone formation without provoking unwanted ectopic bone formation. 

4. Autologous bone graft substitute – RhBMP6 in autologous blood 
coagulum 

The most important component in BMP-based osteogenic device is 
the carrier/scaffold. The current BMP2 containing osteogenic device 
(inFuse®) utilizes bovine-derived collagen by alone or in combination 
with ceramics (hydroxyapatite and tri‑calcium phosphate). The animal- 
derived collagen in the BMP2 device triggers initially immune re-
sponses and promotes the expression of markers associated with the 
fibroblast phenotype, and collagen-ceramics provokes inflammation 
and foreign body reaction. In addition, because of its low affinity to 
collagen/ceramics BMP2 is diffused out readily from the implant site 
and induces unwanted ossification at the distant sites. In order to 
overcome these unwanted inflammation and immune responses and 
compensate the immediate surge of BMP2 from the implant site, high 
doses of BMP2 (12–40 mg) are employed in the current osteogenic 
device. This safety issues observed in the clinical studies for poster-
olateral fusion have been ascribed to a high dose of BMP2 and the use of 
animal-derived collagen in combination and high mineral containing 
ceramic composites. In situation where the site is compromised due to 
non-union as seen in tibial diaphysis where the responding cells are not 
readily available in sufficient quantity, therefore autologous bone 
marrow is supplemented with InFuse® (BMP2 containing collagen 
scaffold). 

A preferred scaffold for BMP would be an autologous physiological 
carrier which does not provoke inflammatory and immune responses 
like animal (bovine) derived collagen and exhibits a high affinity for 
BMPs. Hence, low doses of BMPs could be employed to induce bone 
formation without causing any unwanted safety concerns. We recently 
described a novel autologous bone graft substitute (ABGS) that contains 
recombinant human BMP6 delivered in autologous blood coagulum 
(ABC) which serves as a physiological carrier. ABGS was capable of 
inducing new bone formation in a rat subcutaneous site and repairing 
diaphyseal segmental defect in rabbits [73], as well as promoting 
posterolateral lumbar fusion (PLF) in rabbits [74] and sheep [75] 
models at low doses. Fig. 2 shows endochondral bone differentiation in 
the rat subcutaneous implants induced by ABGS (rhBMP6/ABC) 
without and with rat bone allograft used as compression resistant ma-
trix (CRM). ABGS induces a cascade of cellular events leading to en-
dochondral ossification resulting in cartilage (day 7), bone (day 14) 
bone and bone marrow (day 35) in a reproducible manner. On the other 
hand, in the absence of rhBMP6, ABC with or without allograft resulted 
in no bone formation and instead formed a fibrous tissue which is 
dissolved in time [73]. 

Fig. 3 shows the posterolateral lumbar fusion by ABGS with syn-
thetic ceramics as a CRM in rabbit model and allograft as CRM in sheep 
model. ABGS implants induced new bone formation which undergo 
remodeling and achieved a complete fusion of vertebrae between the 
two transverse processes. The newly induced bone trabeculi are fully 
integrated with trabeculi of transverse processes and the fusion is me-
chanically competent. 

BMP6 is chosen in ABGS over BMP2 or BMP7 as 1) it reversibly 
binds with Noggin, a BMP antagonist abundant in bone [76] and thus 
help to lower the dose to effect osteogenesis, 2) utilizes most of BMP 
type I receptors (ALK2, ALK3 and ALK6) for signaling and 3) exhibits a 
high specific alkaline phosphatase activity in osteoblastic cell cultures 
[73]. Furthermore, it was shown that ABC reduced inflammatory and 
foreign body reactions when used with high mineral containing allo-
graft or synthetic ceramics in PLF models [74,75,77]. These findings led 
to the evaluation of ABGS for safety and efficacy in a Phase I study in 
patients with Distal Radial Fractures [78] and a Phase I/II study in 
patients undergoing High Tibial Osteotomy [79]. 

5. Conclusion 

BMPs serve as morphogenic signals for migration, proliferation and 
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differentiation of mesenchymal stem cells for the formation of skeleton 
during embryogenesis. BMPs are potent inducers of new bone forma-
tion and shown to promote bone repair and regeneration in adults [54]. 
The outcome of tissue responsiveness for bone induction is dictated by 
the responding cells and by an appropriate carrier/scaffold under a 
permissive environment rather than by a BMP signal [80]. There are 
several osteogenic BMPs, BMP antagonists and BMP receptors expressed 
to govern bone formation during fracture repair and restoration. Ex-
tracellular matrices like heparan sulfate proteoglycans and type IV 
collagen that interact with BMP ligands add to that regulation. Thus far, 

two BMP based biologics, rhBMP2 and rhBMP7 containing bovine 
collagenous scaffold have been approved for clinical use for local bone 
formation [62,67]. However, there were numerous unwanted safety 
issues associated with bovine collagenous matrix as scaffold and high 
doses of BMPs employed in the current device [70]. The finding that 
autologous blood coagulum serves as a physiological carrier and in 
combination with rhBMP6 induces new bone formation, restores dia-
physeal segmental defects [73] and promotes spinal fusion [74] at low 
doses suggested that some of these challenges could be avoided in the 
future. 

Fig. 2. Bone induction by ABGS without and with Allograft - rhBMP6 (20 μg) was formulated within 500 μL of autologous blood coagulum (ABC) and implanted in a 
rat subcutaneous site. A and B, represent rat implants harvested on day7; note extensive chondrogenesis and evidence of endochondral ossification. C and D, 
represent rat implants harvested on day 14; note extensive new bone formation (yellow arrows) and bone marrow differentiation (dark blue arrows). In implants 
containing allograft, newly formed bone is in close proximity to allograft particles (black asterisks) and a begining of creeping substitution is evident. E and F, 
represent rat implants harvested on day 35; note bone marrow (dark blue arrows) contains both hematopoetic and adipocytic components. Allograft particles are 
being resorbed by ongoing process of creeping substitution (yellow arrows). Modified from [73,74]. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 3. Newly formed bone in rabbit and 
sheep model of posterolateral spinal fusion 
without instrumentation. A. Fused trans-
verse processes in a rabbit treated with 
ABGS (2.5 mL ABC + 500 μg rhBMP) 
(modified from [74]); B. Newly formed 
bone in a rabbit treated with ABGS and 
synthetic ceramics (modified from [77]) C. 
Fused transverse processes in a sheep 
treated with ABGS (8 mL ABC + 1500 μg 
rhBMP and 2.4 g allograft) (modified from 
[75]); D. Micro CT reconstruction of A.; E. 
Undecalcified histology section stained with 
von Kossa of A; F. Frontal micro CT image 
of B; G. Micro CT image of C; H. Un-
decalcified histology section stained with 
von Kossa of C. Asterisks indicate transverse 
processes. Arrows (yellow and white) in-
dicate newly formed bone between adjacent 
transverse processes. Scale bar in E and H as 
indicated. 
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