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Aim To present the pathohistological and clinical charac-
teristics of five Croatian families with Alport spectrum dis-
orders caused by splice acceptor pathogenic variant c.193-
2A>C in COL4A4 at the genomic position chr2:227985866.

Methods The study enrolled five probands with kidney bi-
opsy analysis and five family members. Mutation screening 
was performed with Illumina MiSeq platform. The patho-
genic variant was confirmed with standard dye-terminator 
sequencing.

Results The only homozygous patient, aged two, had pro-
teinuria and hematuria with preserved kidney function 
and no extrarenal manifestations. This patient had chang-
es characteristic for Alport syndrome observed on elec-
tron microscopy of the kidney biopsy. In the heterozygous 
group, six patients had hematuria, four biopsied probands 
had proteinuria, and only one had moderately reduced 
kidney function. Heterozygous probands had variable kid-
ney biopsy findings. Three patients had thin glomerular 
basement membrane nephropathy visible on electron mi-
croscopy and focal segmental glomerulosclerosis on light 
microscopy, two of them with focal lamellation on elec-
tron microscopy. One heterozygous patient had changes 
characteristic for Alport syndrome on electron microscopy 
without focal segmental glomerulosclerosis.

Conclusion The homozygous patient had hematuria and 
proteinuria with preserved kidney function. The heterozy-
gous patients presented with reasonably mild clinical phe-
notype and variable pathohistological findings.
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Alport syndrome (AS) is a structural disorder of the glom-
erular basement membrane (GBM). Its genetic basis lies 
in the diverse mutations of COL4A3, COL4A4, and COL4A5 
genes and it phenotypically manifests as a progressive 
nephropathy with hematuria, ultrastructural changes of 
the GBM, sensorineural hearing impairment, and eye ab-
normalities (1-5). The most frequent mutations (85%) are 
COL4A5 mutations, resulting in X-linked AS (6). Individuals 
with autosomal recessive AS (ARAS), caused by two muta-
tions in COL4A3 and/or COL4A4, have similar clinical fea-
tures to men with X-linked AS (7,8). The type of mutation 
affects disease phenotype and manifestation. The pheno-
type is usually severe both in men and women, with early 
onset of end-stage renal disease (ESRD) and frequent ex-
trarenal disorders (9,10).

The spectrum of AS disorders has recently been expanded 
(11). Naming and describing individuals with heterozygous 
COL4A3 and COL4A4 mutations is still a matter of debate 
(10,12,13). A number of studies showed a correlation be-
tween thin glomerular basement membrane nephropathy 
(TBMN) with the heterozygosity for COL4A3 or COL4A4 mu-
tation and benign familial hematuria (2,14-25). However, 
a variable proportion of COL4A3 or COL4A4 carriers prog-
ress to proteinuria, hypertension, and ESRD, which raises 
the question of the nomenclature of autosomal dominant 
AS (ADAS) (14,25-31). Some scientists advocate the use of 
the term ADAS, others continue to use the term TBMN, 
while a Cyprus research group uses the term late-onset 
Alport nephropathy (10,12,13,32). The rationale behind 
ADAS nomenclature for heterozygous COL4A3 or COL4A4 
patients lies in the presence of thin GBM in the kidney bi-
opsy specimens of patients with X-linked AS and ARAS and 
the heterozygous carriers of COL4A3 or COL4A4 mutation 
(10). The authors suggest that this approach would im-
prove clinical and diagnostic evaluation, with the possibil-
ity of ESRD rate reduction and treatment optimization (10). 
There are also rationales behind the use of the term TBMN. 
Savige et al (13) stated that most of heterozygous COL4A3 
and COL4A4 carriers show either no decline in kidney func-
tion or show only mild decline with inconstant progression 
to ESRD and hearing impairment. The authors also argue 
that there is no unmistakable evidence that one mutation 
in COL4A3 or COL4A4 gene without disease modifying fac-
tors can be responsible for the characteristic ultrastructural 
signs of AS, hearing impairment, or eye abnormalities (13). 
Furthermore, in other genetic diseases autosomal domi-
nant (AD) term is not used for the carriers of autosomal re-
cessive (AR) disease because it can lead to the diagnosis of 
AD and AR disease in different members of the same fam-

ily (13). However, there are emerging reports of autosom-
al dominant Alport spectrum disorders, especially in the 
cases that are hard to diagnose clinicopathologically (33). 
Here, we present the pathohistological and clinical charac-
teristics of disorders caused by splice site mutation c.193-
2A>C in COL4A4 at the genomic position chr2:227985866.

PaTieNTs aND MeTHODs

Patients

This study is a part of the research project Genotype-Phe-
notype Correlation in Alport’s Syndrome and Thin Glom-
erular Basement Membrane Nephropathy funded by the 
Croatian Science Foundation. Five probands and their five 
family members were enrolled. The inclusion criterion for 
proband selection was kidney biopsy with glomerular 
changes on electron microscopy (EM) suggestive of AS 
or TBMN. The patients were selected by a retrospective 
review of the renal biopsy registry of the Department of 
Nephropathology and Electron Microscopy, Dubrava Uni-
versity Hospital Zagreb, covering the period from 2003 to 
2019. All available clinical data, including the information 
about patients’ and family medical history, onset of dis-
ease, kidney function (estimated glomerular filtration rate 
calculated by Chronic Kidney Disease Epidemiology Col-
laboration [CKD-EPI] equation, where values of 90 mL/
min/1.73m2 or above were considered as preserved kid-
ney function) and information about ocular abnormalities 
and sensorineural hearing loss was collected. An expert in 
clinical genetics conducted counselling with all probands, 
created family pedigrees, and identified family members at 
risk, who were later included in the study. All probands and 
family members gave a written consent for study partici-
pation. All procedures were performed in accordance with 
the ethical standards of the institutional research commit-
tee and the 1964 Helsinki Declaration and its later amend-
ments or comparable ethical standards. The project Gen-
otype-Phenotype Correlation in Alport’s Syndrome and 
Thin Glomerular Basement Membrane Nephropathy was 
approved by the Ethics Committee of the University of Za-
greb School of Medicine.

Methods

Probands and family members underwent mutation 
screening with Illumina MiSeq platform (Illumina, San Di-
ego, CA, USA). Truseq Custom Amplicon Low Input kit 
was designed (Illumina) for re-sequencing of COL4A3, 
COL4A4, and COL4A5 genes. This custom-made panel 
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includes 378 primer pairs that amplify the coding regions 
and flanking splice regions and generate amplicons rang-
ing in size from 225 bp to 275 bp. Each sample was barcod-
ed for multiplexing. The coverage for all exons was 99.09%. 
The quality of the libraries was assessed with the Agilent Bio-
analyzer HS DNA Kit (Agilent Technologies, Santa Clara, CA, 
USA), showing correct size and concentration of the sam-
ples. The amplified libraries were pooled and sequenced on 
MiSeq Nano Flow Cell (Illumina). FastQ files generated by 
sequencing were subsequently submitted for analysis. The 
mean coverage depth of all amplicons was 270 × . For bio-
informatical analysis, Illumina VariantStudio software was 
used. All variants were assigned a number in available data-
bases, including the NCBI dbSNP138 and ClinVar (34). Splice 
acceptor pathogenic variant c.193-2A>C found in COL4A4 at 
the genomic position chr2:227985866 (variant described ac-
cording to reference genome GRCh37) was confirmed with 
standard dye-terminator sequencing. Sanger sequencing 
was performed on ABI310 (Applied Biosystems) with BigDye 
v1.1 chemistry (Thermo Fisher Scientific, Waltham, MA, USA). 
The results were visualized with Vector NTI Software (Ther-
mo Fisher Scientific, Waltham, MA, USA).

ResuLTs

Patients’ characteristics

The summary of patients’ clinical characteristics is shown 
in Table 1, while the summary of probands’ kidney biopsy 
findings is shown in Table 2.

As we previously reported (35), the first proband (HR 1.1.) 
was a boy aged two years and two months referred to 
the Nephrology Department of Children’s Hospital Za-
greb due to hematuria and proteinuria. The patient ex-
perienced a delay in psycho-motoric development and 
megalencephaly. Extensive workup performed at 10 
months revealed karyiogram 46 XY and negative tests 
for fragile X. Organic acids in urine, homocystein, B12 
and folic acid, acyl-carnitine profile, and amino acids in 
urine and serum were within the reference range. Brain 
magnetic resonance imaging was unremarkable. Mega-
lencephaly was described as familial benign megalen-
cephaly (his father had head circumference above the 
95th centile). At the age of 1 year and 2 months, mac-
rohematuria and proteinuria were recorded for the first 
time. Protein/creatinine was 284 mg/mmol; afterwards 
he had persistent proteinuria and microhematuria. At the 
age of two, he had protein/creatinine 189 mg/mmol and 
microhematuria. Tonal audiogram was unremarkable; eye 
exam did not reveal anterior lenticonus. Renal biopsy on 
light microscopy (LM) showed the kidney cortex with 69 
glomeruli, one of which was globally sclerosed. Immature 
and partly immature glomeruli made 30% of all glomeruli 
(Figure 1A). There was one small focus of interstitial fibro-
sis and tubular atrophy, affecting 1% of the cortical pa-
renchyma (Figure 1A). Changes characteristic for AS with 
areas of lamellation and basket-weave appearance of the 
GBM were present on EM (Figure 1B). After starting 6 mg/
m2 ramipril, proteinuria decreased and protein/creatinine 
was 73 mg/mmol, while microhematuria persisted. Both 

TabLe 1. Probands’ and family members’ clinical characteristics

Patient sex age Hematuria
Proteinuria 

(g/24h)
Kidney

function (eGFR*)
Hearing 

loss
Ocular 

abnormalities Hypertension
Family HR1
HR 1.1. M 2 Yes 0.60 Preserved No No No
HR 1.2. M 37 Yes No Preserved NA NA NA
HR 1.3. F 35 No No Preserved NA NA NA
Family HR2
HR 2.1. M 58 Yes 2.34 Preserved NA NA Yes
HR 2.2. M 36 Yes No Preserved NA NA NA
HR 2.3. M 33 No No Preserved NA NA NA
Family HR3
HR 3.1. M 26 Yes 0.30 Preserved No No Yes
Family HR4
HR 4.1. F 60 Yes 2.3 Preserved NA NA Yes
Family HR5
HR 5.1. F 58 Yes 1.14 Moderately reduced 

(45 mL/min/1,73m2)
NA NA Yes

HR 5.2. M 19 No No Preserved NA NA NA
*eGFR – estimated glomerular filtration rate using Chronic Kidney Disease epidemiology Collaboration (CKD-ePi) equation.
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parents were heterozygous for the mutation. The father 
(HR 1.2.), aged 37, presented only with microhematuria 

(detected only after retesting), and the mother (HR 1.3.), 
aged 35, showed no signs of disease (no hematuria, no 

TabLe 2. Probands’ kidney biopsy findings*

Patient sex age
Pathohistological

diagnosis
segmental 

glomerulosclerosis
arteriolar 
hyalinosis

iFTa 
(%)

GbM thickness, 
average 

(min-max),
sD

Lamellation 
of GbM

Thickening 
and thinning 

of GbM

Podocyte 
foot

process 
effacement

Family HR1
HR 1.1. M 2 AS No No 1 167 (61-390), 65 Extensive Yes Focal
Family HR2
HR 2.1. M 58 TBMN

+
FSGS

Yes Marked 25 186 (96-375), 58 Focal Yes 10%

Family HR3
HR 3.1. M 26 AS No No 10 349 (70-972), 216 Extensive Yes No
Family HR4
HR 4.1. F 60 TBMN

+
FSGS

Yes Mild 15 205 (144-288), 52 Focal No 25%

Family HR5
HR 5.1. F 58 TBMN

+
FSGS

Yes Marked 30 175 (96-363), 71 No No No

*abbreviations: as – alport syndrome; TbMN + FsGs – thin glomerular basement membrane nephropathy combined with focal segmental glomeru-
losclerosis; iFTa – interstitial fibrosis and tubular atrophy; GbM – glomerular basement membrane.

FiGuRe 1. a kidney biopsy specimen of the proband HR 1.1. (A) The kidney cortex with an immature glomerulus (black arrow) and a 
small focus of interstitial fibrosis and tubular atrophy (red arrow). Periodic acid-schiff stain, magnification ×200. (B) Glomerular base-
ment membrane with lamellation (arrow). e – erythrocyte. Transmission electron microscopy, magnification ×15,000.
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proteinuria, and preserved kidney function) (35). His older 
sister (age 5) was negative for the mutation (Figure 2A).

In the years following our initial report on this mutation, we 
identified four more probands with the same mutation.

The second proband (HR 2.1.) was a 58-year-old man 
who presented with hematuria and proteinuria of 2.34 g 
in 24-hour urine, preserved kidney function (estimated 
glomerular filtration rate of 99 mL/min/1.73m2 by CKD-

EPI equation), and hypertension. Perihilar focal segmental 
glomerulosclerosis (FSGS) in one glomerulus was observed 
on LM (Figure 3A); 35% of glomeruli were globally sclerotic, 
while others were enlarged. Interstitial fibrosis and tubular 
atrophy were present in 25% of cortical parenchyma. Ar-
terioles showed marked hyalinosis, while arteries showed 
mild fibrointimal thickening (Figure 2B). EM revealed thin 
GBM (average thickness 186 nm) with discrete lamellation 
in the areas of thickening (Figure 3C). Podocyte foot pro-
cess effacement was present in 10% of GBM surface. The 

FiGuRe 2. Family pedigrees of the three included families. (A) Family HR1. Homozygous male proband and his heterozygous parents. 
(B) Family HR2. Heterozygous male proband and his two heterozygous sons. (C) Family HR5. Heterozygous female proband, her 
heterozygous son and a healthy daughter. arrow – proband, circle – female, square – male, black – homozygous patient, white – 
healthy individual, black and white – heterozygous patient.

FiGuRe 3. a kidney biopsy specimen of the proband HR 2.1. (A) a glomerulus with perihilar segmental sclerosis (arrow), Jones meth-
amine silver stain, magnification ×400. (B) Marked arteriolar hyalinosis (black arrow) and mild arterial fibrointimal thickening (red 
arrow). Periodic acid-schiff stain, magnification ×200. (C) Glomerular capillary loop with thin glomerular basement membrane and 
focal lamellation (arrow). e – erythrocyte, P – podocyte. Transmission electron microscopy, magnification ×8000.
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proband has two sons, aged 36 (HR 2.2.) and 33 (HR 2.3.), 
who both inherited the same heterozygous mutation (Fig-
ure 2B). The older son (HR 2.2.) had hematuria with no pro-
teinuria and preserved kidney function, while the younger 
(HR 2.3.) had no signs of the disease (no hematuria, no pro-
teinuria, and preserved kidney function).

The third proband (HR 3.1.) was a 26-year-old man who pre-
sented with hematuria and proteinuria of 0.30 g in 24-hour 
urine, preserved kidney function (estimated glomerular fil-
tration rate of 108 mL/min/1.73m2 by CKD-EPI equation), 
and hypertension. Tonal audiogram and eye exam did not 
reveal any changes characteristic for AS. LM showed five 
globally sclerosed glomeruli out of 26, and three with isch-
emic changes. There was no segmental sclerosis. Intersti-
tial fibrosis and tubular atrophy were present in 10% of the 
cortical parenchyma. Blood vessels had normal morphol-
ogy. Marked variations in GBM thickness (70-972 nm), with 
average thickness of 216 nm, were detected on EM. In the 

areas of thickening, lamellation and granular appearance 
of GBM were present (Figure 4). There was no podocyte 
foot process effacement.

The fourth proband (HR 4.1.) was a 60-year-old woman 
who presented with hematuria and proteinuria of 2.30 g in 
24-hour urine, preserved kidney function (estimated glom-
erular filtration rate of 110 mL/min/1.73 m2 by CKD-EPI 
equation), and hypertension. Perihilar FSGS was present in 
one out of six glomeruli on LM (Figure 5 A). One glomeru-
lus was globally sclerosed. Interstitial fibrosis and tubular 
atrophy were present in 15% of the cortical parenchyma 
(Figure 5A). Arterioles showed mild hyalinosis, while arter-
ies were not found in the kidney biopsy specimen. Thin 
GBM (144-288 nm, average thickness 205 nm) with focal 
lamellation was observed on EM (Figure 5B). Focal podo-
cyte foot process effacement was present in 25% of the 
GBM surface. The proband’s sister (age 53) was negative 
for the mutation.

The fifth proband (HR 5.1.) was a 58-year-old woman who 
presented with hematuria, proteinuria of 1.14 g in 24-hour 
urine, moderately reduced kidney function (estimated 
glomerular filtration rate of 45 mL/min/1.73m2 by CKD-
EPI equation), and hypertension. LM revealed perihilar 
FSGS (Figure 6A) in 23% of glomeruli and global glomeru-
losclerosis in 15% of glomeruli. Other glomeruli were en-
larged. Interstitial fibrosis and tubular atrophy were pres-
ent in 30% of the cortical parenchyma. Arterioles showed 
marked wall hyalinosis (Figure 6B), while arteries had nor-
mal morphology. Thin GBM (96-363 nm, average thickness 
175 nm) was observed on EM (Figure 6C). There was no 
podocyte foot process effacement. The proband has a son 
(age 19) (HR5.2.) and daughter (age 38). The son, who is as-
ymptomatic (no hematuria, no proteinuria, and preserved 
kidney function), inherited the same heterozygous muta-
tion, while the daughter is negative for the mutation (Fig-
ure 2C).

Genetic analysis

Next-generation sequencing (NGS) revealed splice site 
c.193-2A>C mutation in COL4A4 at the genomic position 
chr2:227985866 in all patients. The youngest patient was 
homozygous, while other patients and family members 
were heterozygous for this mutation. This mutation has 
not been described previously in the Human Gene Mu-
tation Database (HGMD), Leiden Open (source) Variation 
Database (LOVD), and Ensembl genome database (35). 
Bioinformatical analysis with Illumina VariantStudio 

FiGuRe 4. a kidney biopsy specimen of the proband HR 
3.1. Glomerular capillary loop with glomerular basement 
membrane showing lamellation (arrows). eN – endothelium, 
P – podocyte. Transmission electron microscopy, magnification 
×8000.
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software showed PVS1, PM2, and PP3 levels of certain-
ty for pathogenicity according to the American College 
of Medical Genetics and Genomics (ACMG) (36). The de-

scribed mutation was a null variant (within ±2 of canoni-
cal splice site) affecting gene COL4A4 (PVS1), the allele was 
not found in GnomAD despite good coverage (PM2), and 

FiGuRe 5. a kidney biopsy specimen of the proband HR 4.1. (A) The kidney cortex with a glomerulus, with segmental sclerosis (black 
arrow) and an area of interstitial fibrosis and tubular atrophy (red arrow). Periodic acid-schiff stain, magnification ×200. (B) a part of 
the glomerular capillary loop with focal lamellation of the glomerular basement membrane (arrow). eN – endothelium, P – podo-
cyte. Transmission electron microscopy, magnification ×8000.

FiGuRe 6. a kidney biopsy specimen of the proband HR 5.1. (A) a glomerulus with perihilar segmental sclerosis (arrow), Masson 
trichrome stain, magnification ×400. (B) arteriolar hyalinosis (arrow). Masson trichrome stain, magnification ×200. (C) Glomerular 
capillary loops with thin glomerular basement membrane (arrow). eN – endothelium, P – podocyte. Transmission electron micros-
copy, magnification ×8000.
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four pathogenic predictions, from DANN, GERP, Mutation-
Taster, and scSNV-splicing, were present (PP3). The pro-
gram scores were as follows: DANN score: 0.9909; GERP 
scores: NR 5.2399 and RS 5.2399; MutationTaster: accura-
cy 1 and coverted rankscore 0.8103; dbscSNV: ADA score 
0.9999 and RF score 0.916. A comparison with an in-house 
database of 50 healthy individuals with NGS-sequenced 
COL4A3, COL4A4, and COL4A5 genes also confirmed that it 
was a pathologic splice site variant c.193-2A>C in COL4A4 
at the genomic position chr2:227985866.

DisCussiON

The main goal of our study was to present the pathohis-
tological and clinical characteristics of five Croatian fam-
ilies with Alport spectrum disorders caused by splice ac-
ceptor pathogenic variant c.193-2A>C found in COL4A4 at 
the genomic position chr2:227985866. One patient (the 
youngest, previously reported) was homozygous, while 
other patients were heterozygous for the mutation and 
presented with reasonably mild clinical phenotype and 
variable pathohistological findings (35). Not many poten-
tial splicing mutations have been identified within the first 
10 nucleotides of the intron-exon boundaries for the CO-
L4A3 and COL4A4 genes (37). Since this mutation has not 
been previously described in databases (HGMD, LOVD, and 
Ensembl genome database); since bioinformatical analysis 
showed PVS1, PM2, and PP3 levels of certainty for patho-
genicity according to the ACMG; since the variant is not 
present among 50 healthy Croatian individuals; and since 
the characteristic pathohistological findings were found 
among the biopsied probands, we concluded this was a 
pathogenic variant causing autosomal Alport spectrum 
disorder (36). In the literature and databases, there are re-
ports on COL4A4 splice site mutation causing autosomal 
AS and TBMN (38,39). Rosado et al found IVS3 + 1G>C, re-
placement of guanine to cytosine in the position 1+ of in-
tron 3, in the splicing region, suggesting ADAS with a mild 
phenotype in which kidney disease manifests at a later 
age without progression to ESRD (38). Xu et al reported on 
seven members of one family with TBMN and a heterozy-
gous splicing mutation in COL4A4 (c.1459 + 1G>A), result-
ing in the elimination of the entire exon 21 from the CO-
L4A4 cDNA and direct splicing of exons 20 and 22, which 
in turn caused a frameshift mutation after exon 20 in the 
open reading frame of COL4A4 (39).

In a study by Savige et al, ARAS patients with COL4A4 mu-
tation had the mean age at ESRD onset of 25.4 ± 10.3 years 
(37). Our two-year-old homozygous patient had proteinu-

ria and hematuria with normal kidney function and no ex-
trarenal manifestations. For this patient, it is hard to predict 
the clinical course. He had EM changes characteristic of AS 
and only incipient chronic changes on LM.

Our heterozygous patients had a relatively benign clinical 
course. All of the biopsied probands presented with he-
maturia and proteinuria (ranging from 0.30 to 2.34 g in 
24-hour urine). In addition, all of the biopsied probands 
were hypertensive. Only one heterozygous patient, aged 
58, had a moderately reduced kidney function (estimated 
glomerular filtration rate 45 mL/min/1.73m2), while oth-
ers had a preserved kidney function. Collagen IV neph-
ropathy in heterozygous patients (TBMN) is characterized 
by incomplete penetrance, with normal findings in 5%-
10% of heterozygous patients (40). Considering the type 
of mutation (c.193-2A>C in COL4A4 at the genomic po-
sition chr2:227985866 with an expected result of whole 
exon skipping), we would have expected all heterozy-
gous patients to have hematuria. However, the mother of 
the proband HR 1.1. (HR 1.3., age 35), the younger son of 
the proband HR 2.1. (HR 2.3., age 33), and the son of the 
proband 5.1. (HR 5.2., age 19) did not have hematuria. It is 
interesting to note that the father of the proband HR 1.1. 
(HR 1.2., age 37) was initially negative for hematuria, but 
was later found to be positive. According to the literature, 
some patients with TBMN have intermittent hematuria, 
which emphasizes the necessity of a continuous nephro-
logical follow-up of heterozygous patients (41).

The pathohistological findings of our homozygous proband 
(HR 1.1.) revealed an increased number of immature or par-
tially immature glomeruli for his age, with only incipient 
chronic changes on LM and EM changes characteristic for 
AS. Patients with AS have been shown to have an increased 
percentage of immature glomeruli (42,43). Heterozygous 
probands in our study, on the other hand, had variable kid-
ney biopsy findings. Three patients (age 58-60) had TBMN 
on EM and FSGS on LM, two of them with focal lamellation 
on EM. Two patients had marked and one patient had mild 
arteriolar hyalinosis with interstitial fibrosis and tubular at-
rophy ranging from 10% to 30%. Interestingly, the young-
est heterozygous patient (age 26) had changes character-
istic for AS visible on EM with no FSGS observed on LM. He 
had no arteriolar hyalinosis, and only mild interstitial fibro-
sis and tubular atrophy were present (10%). Patients with 
collagen IV nephropathies, even within the same families, 
have highly variable phenotypic presentations. This is es-
pecially true for heterozygous patients (31). Heterozy-
gous COL4A3 or COL4A4 patients with pathohisto-
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logical changes characteristic for AS (lamellated GBM and 
GBM with basket-weave appearance on EM) have been 
described in the literature, and often referred to as ADAS 
(38,44-46). A limitation of our study is that we were not able 
to test our patients for further complicating genetic modi-
fiers. The presence of the most severe EM changes of the 
GBM in our youngest heterozygous patient (aged 26 and 
with preserved kidney function and no extrarenal manifes-
tations) suggests a potential influence of some modifying 
factors. Another limitation is that we could not exclude the 
possibility of deep intronic mutations, which are not de-
tectable by NGS analysis, and compound heterozygosity 
(47). In the study by Dagher et al, 12% of individuals with 
TBMN in whom hematuria segregated with the COL4A3 or 
COL4A4 locus had hypertension (48). In our research, all bi-
opsied probands were hypertensive. A perihilar variant of 
FSGS with glomerulomegaly has been reported in patients 
with systemic hypertension (49,50). One could argue that 
hypertension acted as a modifying factor of disease phe-
notype in all our biopsied probands (12).

In conclusion, while our only homozygous patient had evi-
dent clinical and histological signs of AS at a very young 
age, heterozygous patients presented with reasonably 
mild clinical phenotype and variable pathohistologi-
cal findings at a later age. Our study shows variability of 
changes in pathohistological findings adding to the pool 
of knowledge about Alport spectrum disorders.
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