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Owing to its frequent occurrence and severe clinical pic-
ture, bone metastasis is an important problem in the clini-
cal course of tumor diseases. Bone metastasis develops 
when the physiological remodeling process is disrupted 
by tumor cells via the same molecular mechanisms used 
by native bone cells. The process includes molecular cross-
talk between osteocytes and osteoblasts and osteoclasts. 
Osteolytic bone metastasis, most often seen in breast can-
cer, is characterized by promoted differentiation and func-
tion of osteoclasts and reduced osteoblast function. Tumor 
cells take advantage of factors released by bone tissue re-
sorption, thus establishing a vicious cycle that promotes 
the metastatic process. In osteoblastic metastasis, most of-
ten seen in prostate cancer, osteoblast function and dif-
ferentiation are promoted, while osteoclast activity is re-
duced, resulting in net gain of bone tissue. Mechanisms 
involved in the early stages of bone metastasis and cancer 
cell dormancy have been understudied, and their explo-
ration may pave the way for potential therapeutic strate-
gies. Tumor affects the bone marrow microenvironment 
via exosomes, soluble factors, and membrane-bound lig-
ands. In this way, an initial lesion is established, which after 
a variable duration of disseminated tumor cells dormancy 
progresses to an overt condition. The current review deals 
with basic mechanisms involved in bone metastasis forma-
tion and propagation. We illustrated a disparity between 
the diversity and number of factors included in the disease 
pathophysiology and the number of available and devel-
oping therapeutic options. We also examined new thera-
peutic strategies affecting molecular pathways.

The pathogenesis of bone 
metastasis in solid tumors: a 
review

REVIEW 

 

Croat Med J. 2021;62:270-82 

https://doi.org/10.3325/cmj.2021.62.270

mailto: ivan.vicic1@gmail.com
https://doi.org/10.3325/cmj.2021.62.270


271Vičić and Belev: The pathogenesis of bone metastasis in solid tumors

www.cmj.hr

The bone is the third most frequent metastasis site, behind 
the lungs and liver (1). Given common clinical manifesta-
tion and a high degree of related disability, bone metastases 
pose a serious problem in the clinical course of tumor dis-
eases. Since bone metastases present frequently in tumor 
diseases, they have an important predictive role. Namely, 
the median survival from the diagnosis of bone metasta-
ses is 12-53 months for prostate cancer, 19-25 months for 
breast cancer, 48 months for thyroid cancer, 6-7 months for 
lung cancer, 6 months for melanoma, 6-9 months for blad-
der cancer, and 12 months for kidney cancer (2).

All known mechanisms taking part in bone metastasis pro-
cess are related to the disorders of physiological bone re-
modeling. Although the traditional division of bone me-
tastases into osteolytic and osteoblastic is still widely 
accepted, these categories are increasingly viewed as only 
extremes of a continuum (3).

Tumor Cell mIgraTIon, adhesIon, and InVasIon

Cancer cells begin to infiltrate a distant site by migrating 
from the circulating blood through the blood vessel wall to 
the extracellular space of the bone. Here, we described the 
role of molecules that mediate cancer cells homing in the 
bone extracellular matrix and enable cancer cell adhesion 
to the matrix molecules and other cells.

Blood vessels in the bone marrow (sinusoidal blood ves-
sels) are fenestrated and lack the usual supporting struc-
ture of the capillaries. This specific structure increases the 
likelihood of tumor cells extravasation through the vessel 
wall (4).

After cancer cells cross the vessel wall, a stable cell mass 
is established in the new environment through mechani-
cal adhesion. An important adhesion molecule and a po-
tent chemotactic factor for various stages of hematopoi-
etic cells is CXCL12, also known as stromal-derived factor 
1 (5). Its effects are mediated by CXCR4 and CXCR7 re-
ceptors on tumor cells. The interaction alters the ratio 
of cytoskeletal elements in terms of polymerization and 
polarization of actin, pseudopodia formation, and en-
hancement of adhesion to epithelial cells and extracellu-
lar matrix elements (6). Similar chemotactic properties to 
the CXCL12/CXCR4 action are also exhibited by CXCL16 
and its receptor CXCR6 (7).

Annexin II is a 36-kDa membrane protein and an extracel-
lular matrix component. In osteoblasts, it participates in 

the adhesion of hematopoietic stem cells and regulation 
of hematopoietic stem cell survival within the stem cell 
niches. The interaction of annexin II and its receptor con-
tributes to the tropism of tumor cells (8).

Another factor playing an important role in tumor cell ad-
hesion is the interaction of E- and N-cadherin in heterotyp-
ic adherence junctions (9). Breast cancer cells expressing E-
cadherin produce more bone metastases compared with 
other metastatic foci (10).

Mechanical interactions of tumor cells with the extracel-
lular matrix are mediated by integrins. Integrin α2β1, which 
binds collagen type I, has been observed in prostate can-
cer cells that produce bone metastases (an effect reversed 
by the action of a specific antibody), but not in the cells 
that produce visceral metastases (11). In breast cancer 
cells, αvβ3 and αvβ5 integrins have been found to mediate 
the adhesion to bone extracellular matrix proteins such as 
sialoprotein, vitronectin, and osteopontin (12).

Among factors participating in tumor diseases patho-
genesis are members of small leucine-rich proteogly-
cans, a family of matricellular proteins: decorin, biglycan, 
asporin, and lumican. A lower decorin concentration was 
found in stromal cancer tissue and the extracellular ma-
trix of metastases than in normal bone tissue (13). In tu-
mor cells, decorin inhibits tyrosine kinase receptors, such 
as epidermal growth factor receptor, type I insulin-like 
growth factor receptor, and hepatocyte growth factor 
receptor (or mesenchymal-epithelial transition factor) 
(14,15).

Another group of matricellular proteins are small integrin-
binding ligand N-linked glycoproteins, five of which take 
part in bone tissue function and various stages of metas-
tasis process (13). Osteopontin anchors osteoclasts to the 
bone matrix by binding to integrin αVβ3 (16). Osteopontin 
gene polymorphisms correlate with different bone metas-
tasis formation potential, and an induced osteopontin ex-
pression in breast cancer cells increases the bone metasta-
sis formation potential (17,18).

An important factor in bone metabolism and metasta-
sis are cellular communication network (CCN) matricellu-
lar proteins (13). An increased expression of CCN2 (also 
known as connective tissue growth factor [CTGF]) protein 
has been identified in bone metastases of breast cancer 
compared with normal breast epithelial cells and other 
metastatic foci (18,19).
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dIssemInaTed CanCer Cell dormanCY and earlY 
Phases oF meTasTaTIC ProCess

Circulating tumor cells detected in peripheral blood sam-
ples are considered a poor prognostic factor (20). Dissem-
inated tumor cells are those that have overcome all ob-
stacles from the primary tumor site to the target organ 
and have not yet established their activity at the distant 
site. A subset of disseminated tumor cells are cancer stem 
cells, characterized by low mitotic activity, resistance to 
chemotherapeutics, but also by a starting cell clone at 
the distant site (21).

The local tissue microenvironment that maintains and 
regulates the activity of stem or progenitor cells is called 
a niche. The bone marrow contains the perivascular and 
endosteal niche. The perivascular niche is located near 
the bone marrow sinusoids, and is populated by a sinusoi-
dal endothelium, pericytes, dividing hematopoietic stem 
cells, bone marrow stromal cells, reticular cells (CAR cells), 
and others. The endosteal niche is located near the sur-
face of the mineralized bone matrix and is populated by 
bone marrow stromal cells, osteoclasts, various develop-
mental stages of osteoblasts, and quiescent hematopoi-
etic stem cells (22).

An important part of the bone microenvironment are os-
teocytes, the most abundant bone cells. They attract tu-
mor cells to the bone tissue by secreting CXCL12, an al-
ready mentioned chemotactic and adhesion molecule 
(23). Osteocytes affect tumor cells directly via several 
mechanisms. They downregulate Snail, a factor involved 
in epithelial-to-mesenchymal transition, thus favoring epi-
thelial traits and tumor cell colonization of the bone (24). 
Osteocytes that inhibit osteoblast activity secrete dickkopf 
1 (DKK1) and sclerostin, factors involved in bone turnover 
regulation, which in the context of the bone metastasis 
favors bone degradation (25). A direct contact of osteo-
cytes and tumor cells establishes Notch signaling, a pro-
cess inducing osteocytes apoptosis and enhancing tumor 
cell proliferation (26). Since osteocytes are mechanosensi-
tive cells, their interplay with tumor cells is affected by me-
chanical stimuli. Physiological mechanical stress activates 
connexin 43 (a hemichannel) on osteocytes. This leads to 
the release of adenosine triphosphate (ATP), which inhib-
its tumor cell proliferation, whereas its metabolites stim-
ulate metastatic cells. Therefore, the net effect is deter-
mined by the balance between ATP and its metabolites. 

The ATP amount released depends on the mechanical 
stimulation strength (27,28).

A variety of roles in bone metastasis formation is played 
by adipocytokines, factors secreted by bone adipocytes. 
Adipocytokines CXCL12, ANGPTL2, and ANGPTL4 increase 
vascular permeability and act as a chemoattractant for tu-
mor cells (29,30). Proinflammatory cytokines IL-1beta, IL-6, 
TNF-alpha, and CXCL1 and CXCL2 induce myeloid-derived 
suppressor cells, which inhibit innate and adaptive im-
mune response (31,32), while leptin promotes CSC proper-
ties and enhances the metastatic potential (33). Adipokines 
participate in the induction of osteomimicry (an expression 
profile of the tumor cells similar to that of the native bone 
cells, mostly osteoblasts) mediated by the Runx2 transcrip-
tion factor (34). Bone marrow adipocytes can alter the me-
tabolism of metastatic cells. Prostate cancer cells cultured 
with bone marrow adipocytes had increased levels of lipid-
transfer proteins FABP4, CD36, and perilipin 2 (35).

Tumor cell dormancy refers to the G0/G1 phase of the cell 
cycle (36). This quiescent state triggers the development of 
metastatic disease many years after the primary tumor de-
velopment. It also enables tumor cells to adapt to or resist 
chemotherapeutics and protects the cells from immune 
system recognition. The induction of the tumor cell dor-
mancy can be explained by several theories, the most con-
vincing one being that bone marrow microenvironment 
modulates tumor cell activity (37).

Dormant cells are characterized by the predominance of 
p38 MAPK signaling pathway activity and the inhibition 
of ERK MAPK pathway, with vice versa being true for ac-
tive tumor cells (38,39). Another proven dormancy trigger 
is MKK4, an upstream factor of p38 in the MAPK signaling 
pathway (40). In addition to p38 action, an important dor-
mancy regulator is NR2F1, a nuclear hormone receptor 
and transcriptional regulator that activates NANOG, SOX2, 
SOX9, and RARβ transcription factors. Tumor cell dorman-
cy is further mediated by p15, p16, and p27 inhibitors of 
cyclin-dependent kinases. The effect of NR2F1 appears to 
encompass epigenetic mechanisms and a reduced Myc 
oncogene activity (Figure 1) (37,41).

After extravasation, tumor cells of the mesenchymal traits 
colonize the perivascular and the endosteal niche. These 
niches are rich in factors that regulate hematopoietic stem 
cell behavior. One of these factors is growth arrest-specific 
protein 6 (GAS6), secreted by osteoblasts in the endosteal 
niche. The annexin II-mediated link between tumor cells 
and osteoblasts promotes the expression of tyrosine kinase 
receptors AXL, Sky, and Mer on tumor cells, whose ligand 
is GAS6. Thus, the GAS6/AXL signaling is established and 
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tumor cell dormancy is initiated (42,43). The p38 MAPK sig-
naling pathway is also stimulated by TGF-β2, trans-retinoic 
acid, BMP4, and BMP7, which are secreted in the endosteal 
niche (39,44). Another dormancy-inducing factor in tumor 
cells is thrombospondin 1, secreted by the endothelium. 
On the other hand, the proliferating endothelium secretes 
TGF-β1 and periostin, factors that activate tumor cells. 
Thus, cells located in the perivascular niche receive signals 
that direct them to either dormancy or metabolic and mi-
totic activity (45).

Tumor cell dormancy is interrupted by resorptive activity, 
ie, the release of growth factors by the osteoclast activity. 
The interaction of vascular cell adhesion protein (VCAM-1) 
and integrin α4β1 on osteoclast precursors promotes os-
teoclastogenesis. VCAM-1 expression is initiated by the ac-
tion of NFκB, which is stimulated by the action of receptor 
activator of nuclear factor kappa-B ligand (RANKL), PTH(rP), 
or IL-6 (46). Growth factors are released from the bone ma-
trix by enzymes such as ADAMTS1 and MMP1, and MMP7 

stabilizes RANKL (47,48). Tumor cells also secrete hepara-
nase, which promotes osteoclast activity (49). Osteoclastic 
activity can be potentiated by hypoxia-induced lysyl oxi-
dase expression independently of the enzyme’s usual ac-
tivity on the extracellular matrix collagen fibers (50).

In breast cancer, bone metastases have been associated 
with the presence of miR-10a and miR-10b (microRNAs), al-
though their target mRNAs have not been accurately iden-
tified. These miRNAs are upregulated by the transcription 
factor RUNX2, while miR-10b is upregulated by the tran-
scription factor TWIST1. Thus, in the early phases of meta-
static process miRNAs are part of regulatory mechanisms 
with known participants, ie, RUNX2 and TWIST1 (51,52). 
Furthermore, miR-135 and miR-203 expression was asso-
ciated with a decreased RUNX2 expression in metastatic 
breast cancer, making them a potential therapeutic tar-
get (53). Other miRNAs associated with the suppression of 
these processes are miR-33a targeting PTHrP (mRNA) (54) 
and miR-335 targeting RANKL (55).

FIgure 1. Cancer cell dormancy induction. abbreviations: gas6 – growth arrest-specific protein 6; BmP – bone morphogenetic 
protein; TgF – transforming growth factor; erK maPK – extracellular signal-regulated kinase mitogen-activated protein kinase; atra 
– all-trans retinoic acid; rar – retinoic acid receptor; nr2F1 – nuclear receptor subfamily 2 group F member 1; soX – srY-related 
hmg-box.
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In addition to miRNAs actions within tumor cells, miRNAs 
transfer from tumor to non-tumor cells via exosomes has 
been described (56). Exosomes secreted from breast can-
cer tumor cells fuse with endothelial cells, importing miR-
105, which reduces the expression of ZO-1 protein, an im-
portant component of the tight junctions (57). miR-122 is 
translocated by exosomes from metastases cells to niche 
cells, reducing the amount of M2 pyruvate kinase, decreas-
ing GLUT1 transporter expression, and thus facilitating the 
metabolic supremacy of tumor cells (58).

osTeolYTIC Bone dIsease

In physiological conditions, bone formation and bone re-
sorption are in a precisely regulated dynamic equilibrium, 
also known as the process of bone remodeling. Bone me-
tastases in various tumor diseases, such as kidney cancer, 
non-small-cell lung cancer, malignant melanoma, thyroid 
carcinoma, non-Hodgkin’s lymphoma, multiple myeloma, 
and breast cancer, are characterized by the predomination 
of resorptive processes (59). The major cause of bone tis-
sue resorption is an increased osteoclast activity. However, 
tumor cells also reduce osteoblast activity by secreting a 
group of factors and by harnessing bone tissue mecha-
nisms and substances for their progress, thus establishing 
a positive feedback system (3).

In bone remodeling process, the communication between 
osteoblasts and osteoclasts is mediated by Ephrin (Eph) B2 
and EphB4 membrane receptors. EphB4 is found on osteo-
blasts and bone marrow stromal cells, and EphB2 on os-
teoclasts (60). This interaction reduces osteoclast activity 
and promotes osteoblast action. In bone metastases, the 
presence of tumor cells in the bone reduces the interac-
tion of these receptors, ie, decreases the contact between 
the bone tissue cells (61).

An important role in the humoral stimulation of osteoclast 
function by tumor cells is played by RANKL. Its activity is 
mediated by the receptor activator of the nuclear factor 
κB (RANK), which is located on osteoclast precursors (3). 
RANKL binding to RANK triggers an intracellular cascade 
that involves the binding and activation of multiple TNF 
receptor-associated factors and downstream activation of 
numerous intracellular signaling pathways: nuclear factor 
κ-Β (NFκB), nuclear factor of activated T-cells c1, c-Jun, and 
melanogenesis associated transcription factor. Their ac-
tion triggers the transcription of effectors important for 

the osteoclast action: αvβ3 integrin, cathepsin K, calci-
tonin receptor, and TRAP. These effectors promote 

bone resorption, and some have become therapeutic tar-
gets (62). RANKL function is affected by osteoprotegerin, a 
member of the tumor necrosis factor receptor superfam-
ily secreted by osteoblasts and bone marrow stromal cells, 
which binds RANKL to impair its interaction with RANK. 
Thus, the resorption extent is determined by the osteopro-
tegerin to RANKL ratio (3).

RANKL secretion is increased by PTHrP. The NH2-terminal 
portion of PTHrP is very similar to that of parathyroid hor-
mone (PTH), so PTHrP action is mediated by PTH receptor 
(PTHR1) (63). PTHrP secretion has been observed in over 
90% of metastatic breast cancer cells characterized by os-
teolytic bone metastases (3). The RANKL/RANK system is 
also affected by tumor-secreted IL-11, which increases the 
RANKL level while decreasing the osteoprotegerin and 
PTHrP levels (64).

Differentiation of osteoclast precursors into osteoclasts, 
which increases bone tissue resorption, is promoted by 
many other interleukins, including IL-1, IL-6, IL-8, and IL-
18 (65). IL-3 acts both through the RANKL/RANK system 
and directly on osteoclast precursors. Osteoclastogen-
esis is promoted also by macrophage inflammatory pro-
tein 1α. This protein acts as a chemotactic factor for os-
teoclast precursors and induces osteoclast differentiation 
by a RANKL-independent mechanism (61,66). Cyclooxyge-
nase type 2 expression in osteoblasts is induced through 
MAP kinase activity, and consequently an increased PGE 
2 concentration acts in an autocrine manner (mediated 
by EP4 receptor) to enhance RANKL production and os-
teoclast differentiation (67). TNF-α secreted by tumor cells 
and bone marrow stromal cells has a dual role of promot-
ing osteoclast differentiation and inhibiting osteoblast 
function (61).

An important factor in the development of bone metas-
tases is DKK1, an inhibitor of the Wnt/β-catenin signaling 
pathway. This protein plays a double role in tumor metas-
tasis at different sites: it inhibits breast cancer lung metas-
tasis by modulating the noncanonical Wnt signaling path-
ways formation and stimulates bone metastasis formation 
by modulating the canonical Wnt signaling pathways (68). 
DKK1 is increasingly secreted in osteolytic bone metasta-
ses, especially in multiple myeloma, reducing the expres-
sion of RUNX2, a key transcription factor in osteoblast 
differentiation. In addition to its effect on osteoblast differ-
entiation, it also stimulates osteoclast activity by reducing 
osteoprotegerin expression and by enhancing RANKL ex-
pression (69). Osteoblast function is also inhibited by scle-
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rostin and sFRP2, two inhibitors of the Wnt signaling path-
ways (53,61), as well as by IL-7 and TNF-α (70).

Tumor cells exploit the communication pathways be-
tween osteoblasts and osteoclasts, which serve as qualita-
tive, quantitative, and temporal regulators of bone remod-
eling. Bone resorption promoted by tumor cells (secretion 
of PTHrP, IL-11, CTGF, CXCR4, MMP-1) releases factors that 
stimulate tumor cells themselves, establishing a positive 
feedback mechanism (vicious cycle) that results in the 
spread of bone metastatic disease (Figure 2) (3,71,72). In 
addition to the already mentioned matricellular proteins, 
extracellular matrix contains numerous growth factors and 
cytokines. Of these, TGF-β, IGF-1, several types of BMPs, 
INF-γ, and several types of ILs are considered to stimulate 
tumor cells growth. Osteoclasts, more specifically low pH 
and secreted enzymes (MMP, cathepsin), release and ac-
tivate bone matrix TGF-β. This cytokine stimulates tumor 
cells, acts chemotactically on mesenchymal stromal cells, 
and induces osteoblast differentiation, but in later stages 
inhibits osteoblast activity. It stimulates osteoclasts directly 
and indirectly via osteoblasts (73). In addition to growth 

factors, tumor cells respond to calcium ions (via CaSR) re-
leased in the process of bone resorption (74).

osTeoBlasTIC Bone dIsease

Osteoblastic metastases, primarily found in prostate can-
cer, but also in small-cell lung cancer, Hodgkin’s lymphoma, 
and medulloblastoma, have not been studied as exten-
sively as osteolytic metastases (59). Although in this type of 
metastases bone mass is increased due to increased bone 
formation and decreased bone resorption, the functional 
structure and integrity of the bone is impaired (61).

Tumor cells secrete a number of factors that increase the 
osteoblast count and activity. Platelet-derived growth fac-
tor, a dimeric peptide (A and B unit), induces osteoblast 
differentiation and activity in bone metastases of prostate 
cancer (BB form) (75). Although the mechanisms are not 
fully elucidated, osteoblast activity is also enhanced by fi-
broblast growth factors and vascular endothelial growth 
factor (76,77). The action of insulin-like growth factor (IGF I 
and II) alone is insufficient to stimulate osteoblasts, so more 

FIgure 2. The vicious cycle concept: tumor cells stimulate osteoclast function and inhibit osteoblast function. The products of bone 
resorption act stimulatory on tumor cells. abbreviations: Il – interleukin; TnF – tumor necrosis alpha; TgF – transforming growth 
factor; IgF – insulin-like growth factor; BmP – bone morphogenetic protein; Pge – prostaglandin e; dKK1 – dickkopf-related protein 
1; sFrP2 – secreted frizzled-related protein 2; PThrP – parathyroid hormone-related protein; mIP-1α – macrophage inflammatory 
protein 1α.



REVIEW276 Croat Med J. 2021;62:270-82

www.cmj.hr

aggressive tumors exhibit an increased IGF level and a de-
creased insulin-like growth factor binding protein level (78). 
Bone morphogenetic proteins (BMPs) secreted by tumor 
cells, especially BMPs 6, 7, and 4, stimulate bone formation. 
In addition to their effect on osteoblasts, they also affect an-
giogenesis (77). Prostate cancer has been shown to express 
Wnt 3a, 7b, and 10b, which modulate the canonical Wnt 
signaling pathways, playing a role in osteoblast differentia-
tion and proliferation. Early prostate cancer has been dem-
onstrated to express a Wnt inhibitor DKK1 as well. Therefore, 
the Wnt pathway signaling is determined by a balance of 
stimulatory and inhibitory signals (79). Another factor in-
volved in the stimulation of osteoblast activity is endothe-
lin 1 (ET1), which is secreted by tumor cells (80).

Prostate cancer bone metastases are also characterized by 
PTHrP secretion (72). This paradox may be most convincingly 

explained by the structural similarity of the NH2-terminal end 
of PTHrP to ET1 and by the binding of PTHrP to endothelin 
receptors after modification of the protein by secreted en-
zymes (eg, PSA) (81). Prostate cancer cells secrete urokinase 
plasminogen activator (uPA) and prostate-specific antigen 
(PSA). uPA is secreted by tumor cells in the form of high mo-
lecular weight-uPA (HMW-uPA). HMW-uPA is broken down 
into low molecular weight-uPA and the amino-terminal end, 
which binds to uPAR on osteoblasts and enhances their ac-
tivity. uPA also acts on the inactive form of TGF-β, which is 
synthesized by osteoblasts. It also enhances IGF-I activity by 
breaking down IBFBP (82). Similarly to uPA, PSA (a serine pro-
tease) modifies the NH2-terminal end of PTHrP and partici-
pates in the release of active forms of growth factors (83).

In the early development of metastatic disease in the bone, 
tumor cells secrete substances that stimulate osteoblast ac-

TaBle 1. molecular mechanisms involved in different phases of bone metastasis and registered and non-registered therapeutic options*

registered and potential therapeutic agents reference

Migration, adhesion and 
invasion

CXCL12/CXCR4 and 7 (5,6)
CXCL16/CXCR6 (7)
annexin II/annexin II receptor (8)
E- and N-cadherin (9)
integrins α2β1, αvβ3 and αvβ5/ECM proteins (11,12)
decorin/tyrosine kinase receptors (14,15)
CCN2 (18,19)

Regulation of disseminated 
cancer cell dormancy and 
early metastasis

MKK4 (27)
NR2F1 (37,38)
GAS6/AXL Cabozantinib (multi-targeted tyrosine kinase inhibitor) (42,43,98)
TGFβ2/TGFβR III (39,44)
BMP4,BMP7/BMPR2 (39,44)
thrombospondin 1, periostin (45)
miR-10a, b (and other miRNAs) (51,52)
osteoclasts metabolism bisphosphonates (90)

Osteolytic bone disease ephrinB2/ephrinB4 (60)
PTHrP PTH (63)
RANKL/RANK Denosumab, everolimus (mediated by mTOR inhibition) (3,91,93)
DKK1 DKK1 specific antibodies (68)
sclerostin, sFRP2 Sclerostin specific antibodies (53,61)
cathepsin K dutacatib, odanacatib, balicatib (94)
c-Src bosutinib, dasatinib, ponatinib, vandetanib (95)

Osteoblastic bone disease PDGF (95)
BMP 6,7,4 (78)
Wnt 3a, 7b, 10b (79)
endothelin 1 ET 1 antagonists (80)
uPA, PSA (82,83)

*abbreviations: CXCl – chemokine (C-X-C motif) ligand ;CXCr – C-X-C motif chemokine receptors; eCm – extracellular matrix; CCn2 – cellular 
communication network; mKK4 – mitogen-activated protein kinase kinase 4; nr2F1 – nuclear receptor subfamily 2 group F member 1; gas6/aXl – 
growth arrest-specific protein 6; TgF – transforming growth factor; BmP – bone morphogenetic protein; ranKl – receptor activator of nuclear factor 
κ-Β ligand; dKK1 – dickkopf-related protein 1; sFrP2 – secreted frizzled-related protein 2; PdgF – platelet derived growth factor; Wnt – wingless-
related integration site; uPa – urokinase-type plasminogen activator; Psa – prostate specific antigen.
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tivity. Osteoblasts form new bone tissue, which could soon 
physically limit the development of tumor cells. However, 
this is not a self-limiting process. The increasing osteoblast 
activity also increases the activity of osteoclasts (RANKL/
RANK system, CCL2, IL-6), while bone matrix degradation 
leads to a release of growth factors. Tumor cells promote 
osteoblast activity as well as osteoclast activity, but the net 
result is bone tissue formation. RANKL secreted by osteo-
blasts acts on prostate cancer tumor cells via RANK. BMPs 
secreted from osteoblasts also stimulate tumor cells them-
selves (84). Therefore, a positive feedback mechanism is 
established through the factors released by osteoclast ac-
tion. but also through factors secreted by osteoblasts.

TheraPeuTIC and dIagnosTIC PossIBIlITIes

Although pathogenetic molecular mechanisms of bone 
metastasis are becoming increasingly understood, our 
knowledge still has limited therapeutic application in 
terms of symptoms alleviation and slowing down the dis-
ease progression. Only a few agents are being accepted 
and confirmed as beneficial (Table 1), and they exploit a 
small number of mechanisms, leaving many potential 
strategies unused.

The first problem is a timely diagnosis. The cornerstone of 
clinical practice are still the traditional techniques such as 
computed tomography, bone radiography, bone scintigra-
phy, positron emission tomography-computed tomogra-
phy, image-guided biopsy, magnetic resonance imaging. 
However, some new techniques are being perfected. The 
concept of nanoparticles as contrast agents is being widely 
accepted, eg, superparamagnetic iron oxide nanoparticles 
are used as a contrast agent in MRI (85). In addition, gold 
nanoparticles have been developed that bind specifically 
to prostate-specific membrane antigen, thus enhancing 
computed tomography-based prostate cancer metastasis 
diagnostics (86). Another approach is the use of biomark-
ers. The N-terminal cross-linked telopeptide of type I colla-
gen and C-terminal cross-linked telopeptide of type I col-
lagen, released by bone resorption, have been evaluated 
as breast cancer bone metastasis biomarkers (87). miR-214 
can be used as a biomarker of breast cancer bone metasta-
sis, and annexin A1 as a biomarker of small cell lung cancer 
bone metastasis (88,89).

A very common therapeutic strategy is the use of bispho-
sphonates, analogs of pyrophosphates, with high affinity 
for binding to calcium, ie, hydroxyapatite, during bone re-
modeling. These agents mainly inhibit the metabolism and 

apoptosis of osteoclasts (90). Another strategy is to disrupt 
RANKL-RANK interaction. IgG2 antibody denosumab inhib-
its osteoclastogenesis and osteoclast activity and impairs 
bone tissue resorption. In breast and prostate cancer bone 
metastases, denosumab has been shown to be more ef-
fective than zoledronate in delaying the first clinical mani-
festations of tumor disease, while being non-inferior in 
other tumors (91). Additionally, only bisphosphonates 
have been proven to reduce breast cancer metastasis to 
the bone (92).

Given that the action of RANKL, M-CSF, and TNF-α is me-
diated by mTOR, mTOR inhibitors have been classified as 
therapeutic strategies for bone metastases. mTOR inhibi-
tors (everolimus) increase osteoprotegerin expression, os-
teoclast apoptosis, and probably promote osteoblast dif-
ferentiation (93). Although cathepsin K inhibitors dutacatib, 
odanacatib, and balicatib have been shown to effectively 
inhibit bone resorption, their poor safety profile (odana-
catib) led to the discontinuation of some studies; yet the 
therapeutic goal still exists (94). The proto-oncogene ty-
rosine kinase has also been identified as a therapeutic tar-
get, due to its role in osteoclast differentiation. Tyrosine 
kinase inhibitors bosutinib, dasatinib, ponatinib, and van-
detanib have an inhibiting effect on bone metastases (95). 
Another possible therapeutic target are sclerostin-specific 
antibodies. Sclerostin, secreted by numerous tumor cells, 
inhibits osteoblasts and acts as a canonical Wnt signaling 
pathways inhibitor (96). Antibodies specific for DKK1, an-
other Wnt inhibitor, are also under investigation (97). MET 
inhibitor cabozantinib (also inhibits VEGFR2, AXL, KIT, RET) 
has been studied as an inhibitor of angiogenesis and tu-
mor growth in many tumor diseases. It also acts on bone 
remodeling, favoring osteoblastic activity (98).

Besides conventional chemotherapy (targeting both pri-
mary and metastatic foci) and targeted therapy, radiation 
has also been traditionally used. External beam radiother-
apy is a bone metastasis treatment proven to be effec-
tive in reducing symptoms as well as decreasing tumor 
cell burden in the bones (99). A more focused technique 
is stereotactic body radiotherapy, which delivers a pre-
cise dose to a precise area, limiting damage to the sur-
rounding tissue (100). Another form of delivering radia-
tion is radionuclide-based therapy. Strontium-89 chloride 
and samarium-153-labeled ethylene diamine tetrameth-
ylene phosphonate are used to treat bone metastasis-
related pain (101), while radium-223 chloride, an alpha-
emitting radionuclide, is used to treat prostate cancer 
bone metastasis (102).
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ConClusIon

Bone metastatic disease develops as a result of various 
mechanisms. Current knowledge on these mechanisms 
far exceeds the available successful therapeutic strate-
gies. This fact indicates a lack of understanding of these 
processes, leading to inappropriate therapeutic options. A 
particularly pressing issue is the problem of cancer stem 
cells, ie, an incomplete understanding of the mechanisms 
of dormancy and early stages of metastasis, which are con-
ceptually decisive in the seeding of bone by tumor cells. 
These cells become resistant to treatments and, after a pe-
riod of seemingly absent disease, return to take part in a 
devastating vicious cycle.
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