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Increasing evidence suggests that the autism spectrum disorder (ASD) may be
associated with inborn errors of metabolism, such as disorders of amino acid
metabolism and transport [phenylketonuria, homocystinuria, S-adenosylhomocysteine
hydrolase deficiency, branched-chain α-keto acid dehydrogenase kinase deficiency,
urea cycle disorders (UCD), Hartnup disease], organic acidurias (propionic
aciduria, L-2 hydroxyglutaric aciduria), cholesterol biosynthesis defects (Smith-Lemli-
Opitz syndrome), mitochondrial disorders (mitochondrial encephalomyopathy, lactic
acidosis, and stroke-like episodes—MELAS syndrome), neurotransmitter disorders
(succinic semialdehyde dehydrogenase deficiency), disorders of purine metabolism
[adenylosuccinate lyase (ADSL) deficiency, Lesch-Nyhan syndrome], cerebral creatine
deficiency syndromes (CCDSs), disorders of folate transport and metabolism (cerebral
folate deficiency, methylenetetrahydrofolate reductase deficiency), lysosomal storage
disorders [Sanfilippo syndrome, neuronal ceroid lipofuscinoses (NCL), Niemann-
Pick disease type C], cerebrotendinous xanthomatosis (CTX), disorders of copper
metabolism (Wilson disease), disorders of haem biosynthesis [acute intermittent
porphyria (AIP)] and brain iron accumulation diseases. In this review, we briefly
describe etiology, clinical presentation, and therapeutic principles, if they exist, for these
conditions. Additionally, we suggest the primary and elective laboratory work-up for their
successful early diagnosis.

Keywords: autism spectrum disorder, early diagnosis, genetic testing, inborn errors of metabolism, therapeutic
principles

INTRODUCTION

Autism spectrum disorder (ASD) is a behavioral developmental disorder defined by the impairment
of communication and social interaction. It usually starts before age three and children with autism
can be recognized by stereotyped and repetitive patterns of behavior as well as their restricted
activities and interests. ASD varies in degrees of severity, occurring in 1% of the population,
and its prevalence has been increasing during the last three decades (Maenner et al., 2020). The
causes of different subtypes of autism lay in the complex landscape of environmental, genetic
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and epigenetic influences (Waye and Cheng, 2018; Šimić et al.,
2020). Although the etiology of most cases of ASD is still
unknown, numerous studies have shown that there is a strong
heritable component. Change (mutation or premutation) in the
FMR1 gene sequence on the chromosome X that results in
fragile X syndrome (FXS) or fragile X-premutation tremor/ataxia
syndrome (FXTAS) are among the leading genetic causes of
ASD (Šarac et al., 2011; Ghaziuddin and Al-Owain, 2013).
Current genetic testing strategies, including the combination
of molecular cariotypisation and exome sequencing, are the
most successful diagnostic approaches, yielding exact diagnosis
in about 20–25% of the cases. The term “non-syndromic”
autism refers to patients without dysmorphic characteristics or
any other disease or additional signs or symptoms than those
known to be associated with ASD. On the other hand, the term
“syndromic” is being used to describe individuals with clinical
characteristics additional to ASD, such as epilepsy, motor deficits,
developmental delay and regression, dysmorphic features, and
other manifestations or diseases that can contribute to autistic
phenotype (Campistol et al., 2016).

It has been recently proposed that a significant number
of ASD cases could be associated with various metabolic
abnormalities, some of them identifiable only through untargeted
metabolomic profiling, simultaneously opening additional space
for therapeutic attempts (Glinton and Elsea, 2019).

Inborn Errors of Metabolism
Clinical symptoms deriving from central nervous system (CNS)
occur in more than 50% of patients with inborn errors of
metabolism (IEM). In addition to neurological or somatic
manifestations, psychiatric symptoms are also the presenting
sign in 2−5% of IEM cases (Saudubray and García-Cazorla,
2018). Recent reports emphasized the causal role of IEMs in
ASD, meaning that some IEM could be prevented, especially
in population with high level of consanguinity (Celestino-Soper
et al., 2012; Novarino et al., 2012). Many IEM are treatable
conditions; in some of them positive effects are observed
when treatments were started early in life. Phenylketonuria
(PKU), the prototype of IEM successfully diagnosed by neonatal
screening program and treated with diet if initiated early
in life, is characterized by intellectual disability and autism
(Asato et al., 2015). Possible IEM should be considered in the
diagnostic approach of patients with syndromic ASD because
for many of them there is a chance for intervention and
improvement (Márquez-Caraveo et al., 2020). Spilioti et al.
(2013) found significant proportion of patients with an IEM
in patients with autism. For most of the IEM, ASD is not a
single symptom, but accompanied with other neuropsychiatric
and somatic disturbances (Simons et al., 2017). The data of
Schiff and colleagues provide a large cohort of non-syndromic
autistic subjects for whom a systematic metabolic work-up has
been carried-out (Schiff et al., 2011). Their data suggest that
usual metabolic workup should not be done routinely in non-
syndromic ASD because the prevalence of IEM in the group of
non-syndromic ASD is not higher than in general population
(<0.5%). In the case of non-syndromic ASD, a precise clinical

workup represents a good clinical practice (Schiff et al., 2011).
In this review, we give an overview of IEM characterized by
symptoms of ASD, propose diagnostic approach to assess such
cases in clinical practice, and suggest possible specific therapies.

ASD ASSOCIATED WITH INBORN
ERRORS OF METABOLISM

Disorders of Amino Acid Metabolism
Phenylketonuria
Phenylketonuria (PKU) is the most common IEM in the group
of aminoacidopathies. It is caused by biallelic mutations in the
phenylalanine hydroxylase (PAH) gene with consequent lowering
of PAH activity. PAH metabolizes phenylalanine to tyrosine, a
process which requires the cofactor tetrahydrobiopterin (BH4).
Deficient activity of PAH results in elevated concentration of
phenylalanine in the blood and toxic levels in the CNS. If
untreated, PKU is accompanied with severe and progressive
intellectual disability, but may also be associated with symptoms
such as autism, seizures, and motor deficits. Psychiatric or
psychological difficulties may become apparent if the patient is
not compliant with the diet (Blau et al., 2010). Newborn screening
programs successfully diagnose patients with PKU. Treatment
with a low phenylalanine diet in the postneonatal period has
resulted in a worldwide population of over 50 thousand PKU
individuals without cognitive deficits (ten Hoedt et al., 2011).
BH4, the natural cofactor of PAH, may be effective in about
50% of PKU patients who are BH4-responsive to increase
phenylalanine tolerance (van Wegberg et al., 2020). Possible new
treatment options include enzyme therapy with phenylalanine
ammonia lyase, enzyme that metabolizes phenylalanine, and gene
therapy (van Wegberg et al., 2017).

Homocystinuria (Cystathionine β-Synthase
Deficiency)
Cystathionine β-synthase (CBS) deficiency, also known as
classical homocystinuria (HCU), is caused by biallelic mutations
in the CBS gene. CBS deficiency prevents the conversion of
homocysteine (Hcy) to cystathionine, resulting in homocysteine
increase. Subjects with classical homocystinuria may have a
clinical picture of varying severity and with different age of onset.
It can start in childhood as a severe multisystemic disease or stay
asymptomatic until adulthood (Morris et al., 2017). Untreated
patients may have various symptoms, including osteoporosis,
thromboembolic events, and intraocular lens dislocation. These
patients can also have a variety of CNS disturbances, including
symptoms of ASD (Abbott et al., 1987; Kiykim et al., 2016).
Extrapyramidal signs and seizures are frequent features too
(Morris et al., 2017). Treatment options include vitamins B6,
B12 and folate supplementation, low-methionine diet and betaine
(Kruger, 2017). Current efforts for developing novel therapies
for HCU include enzyme replacement therapy with recombinant
enzyme OT-58 that has been shown effective in lowering plasma
and tissue homocysteine, ameliorating metabolic balance and
clinical symptoms in a phase II clinical study (clinical trial
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NCT03406611). Gene therapy using adenovirus or minicircle
DNA is also being appraised (Bublil and Majtan, 2020).

S-Adenosylhomocysteine Hydrolase Deficiency
S-adenosylhomocysteine hydrolase deficiency (SAHHD) is
a rare disorder of methionine metabolism characterized
by (not constant) hypermethioninemia, elevation of
S-adenosylmethionine (AdoMet) and S-adenosylhomocysteine
(AdoHcy, Barić et al., 2004). AdoHcy is an inhibitor of different
methytransferases, enzymes that transfer methyl group to various
molecules such as DNA, RNA, lipids, proteins, amino acids, and
others. The removal of adenosine and Hcy under physiological
conditions is sufficient to direct the flux toward hydrolysis.
Hydrolysis of AdoHcy plays a critically important role in the
regulation of reactions of biological methylation processes
(Barić et al., 2004).

Clinical presentations vary from severe perinatal to milder
forms and include various combinations of myopathy with
elevated creatine kinase (hyperCKemia), behavioral disturbances,
developmental delay, dysmyelination, coagulopathy, strabismus,
and hepatic disease. Diet with low methionine intake can
decrease and sometimes normalize plasma AdoMet and AdoHcy
concentrations, with positive effects on methylation and clinico-
biochemical parameters. Together with low protein/methionine
diet, creatine and phosphatidylcholine supplementations have
been used in some individuals, although without firm evidence of
clinical improvement. Myopathy is less responsive to treatment,
whereas liver, coagulation and neurological abnormalities are
more responsive (Barić et al., 2017). Liver transplantation in a
single patient improved cognitive development, especially gross
motor, language and social skills (Strauss et al., 2015).

Branched-Chain α-Keto Acid Dehydrogenase Kinase
Deficiency
Biallelic mutations in the BCKDK gene that codes for the kinase
behind the negative regulation of the branched-chain α-keto
acid dehydrogenase complex (BCKD) have been associated with
clinical symptoms of autism with seizures (Novarino et al.,
2012). Normalization of plasma branched-chain amino acids
(BCAA) improves hyperactivity, attention span, gross motor and
communication skills (Burrage et al., 2014). Supplementation
with high-protein diet and frequent BCAA supplement dosing
throughout the day are required for normalization of BCAA
plasma concentrations (Burrage et al., 2014; García-Cazorla et al.,
2014).

Urea Cycle Disorders
The urea cycle is a metabolic pathway that serves to eliminate
excess of nitrogen, arising primarily as ammonia. Nitrogen
in small quantities is essential substance for growth and
cellular equilibrium, but excessive ammonia can lead to life-
threatening consequences. In its non-ionized form ammonia
easily crosses the blood-brain barrier and enters the CNS. In
case of a severe metabolic crisis, a great amount of ammonia
can accumulate in the blood and tissues, especially in the
CNS that is most vulnerable. As the acute hyperammonaemia
increases extracellular glutamate and causes excitotoxic cell death

it comes as no surprise that neurological disturbancies such
as ataxia, tremor, and seizures may ensue (Matsumoto et al.,
2019). Urea cycle disorders (UCD) comprise deficiency of one of
several enzymatic steps or transporters of the urea cycle. Clinical
presentation is characterized by severe hyperammonaemic crisis
in the newborn/infancy period, while the late-onset form is
primary characterized by neurological symptoms from infancy
through adulthood with possibility of metabolic decompensating
and hyperammonaemia triggered by catabolic states. Besides
other neurological symptoms, ASD was described in patients
with carbamoyl phosphate synthetase deficiency, ornithine-
transcarbamylase (OTC) deficiency, citrullinaemia type 1,
and arginase deficiency (Frye, 2015). It is of immediate
urgency to reduce the plasma ammonia concentration when
hyperammonaemia develops. Acute management relies on
ammonia detoxification by giving ammonia scavengers (sodium-
benzoate or sodium-phenylbutirate), but hemodialysis and
hemodiafiltration are the most efficient treatment strategies
for plasma ammonia reduction. In parallel, catabolic state is
reversed by providing high amounts of intravenous glucose
and lipids. Arginine-hydrochloride is given to stimulate urea
cycle reactions (except in case of arginase deficiency). Chronic
treatment with low-protein diet prevents a catabolic state and
recurrence of hyperammonaemia. In severe neonatal forms,
prognosis is unfavorable if severe metabolic crisis develops.
In late-onset forms improvement of symptoms has been
reported with treatment. Liver transplantation can change the
unfavorable clinical course in male patients with OTC deficiency
(Matsumoto et al., 2019).

Hartnup Disease
Hartnup disease is a disfunction of the B0AT1 protein that
results in overexcretion of neutral amino acids in feces and urine
(Hashmi and Gupta, 2021). B0AT1 is a transporter responsible
for the absorption of neutral amino acids in small intestine and
renal tubules. As tryptophan serves as a precursor for niacin,
deficiency of tryptophan and niacin manifests as pellagra-like
skin changes and neurological disturbancies (Orbak et al., 2010).
Along with ASD, clinical presentation includes reversible and
intermittent episodes of neurological and symptoms affecting the
skin. Neurological symptoms include ataxia, tremor, depression,
mood disorders, epilepsy and psychosis. The skin eruptions are
present at areas exposed to sun and have erythematous and scaly
appearance. The disease is treatable with high protein diet and
nicotinamide (Hashmi and Gupta, 2021).

Loss of CLTRN protein and its functions results in a disorder
of similar biochemical phenotype to Hartnup disease. CLTRN
gene encodes the protein collectrin, a homolog of angiotensin-
converting enzyme 2 (ACE2), which is involved in transportation
and activation of B0AT1 protein in the renal epithelium (Singer
and Camargo, 2011; Pillai et al., 2019).

Organic Acidurias
Propionic Aciduria
Propionic aciduria (PA) is an inborn error of branched
chain amino acids metabolism, defined by accumulation of
propionic acid due to deficiency of enzyme propionyl-CoA
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carboxylase (Baumgartner et al., 2014). Clinical features of
PA may occur due to accumulation of toxic metabolites,
altered mitochondrial energy metabolism, carnitine depletion,
and coenzyme A sequestration. Acute illness may be presented
by metabolic acidosis, acute alterations of consciousness or
encephalopathy due to hyperammonaemia, anorexia, nausea,
and vomiting. Chronic complications include poor growth,
movement disorders, progressive spastic quadriparesis, epilepsy,
cardiac dysfunction, osteopenia/osteoporosis, and functional
immunodeficiency (Fraser and Venditti, 2016). Neurological
complications include epilepsy, intellectual disability, and ASD
(Ghaziuddin and Al-Owain, 2013). PA is treated with protein-
restricted diet, precursor-free amino acid supplementation, and
carnitine supplementation due to secondary carnitine deficiency.
Acute treatment aims to stop catabolism and enable ammonia
detoxification by giving sodium benzoate, L-arginine, and
N-carbamyl-glutamate. Severe metabolic acidosis sometimes
requires hemodiafiltration. Despite adequate therapy, significant
number of patients have intellectual disability and psychiatric
problems, thus requiring psychosocial support from childhood
throughout adult life (Baumgartner et al., 2014).

L-2 Hydroxyglutaric Aciduria
L-2-hydroxyglutaric aciduria is a metabolic disorder affecting
CNS and characterized by elevated concentrations of L-
2-hydroxyglutaric acid in plasma, urine and cerebrospinal
fluid (CSF) due to the deficiency of L-2-hydroxyglutarate
dehydrogenase. Disease is defined by progressive neurological
symptoms: ataxia, mental deterioration, subcortical
leukoencephalopathy, and ASD (Zafeiriou et al., 2008). A few
successful therapeutic trials with riboflavin and flavin adenine
dinucleotide (FAD) have been reported in subjects with L-
2-hydroxyglutaric aciduria. Yilmaz (2009) described the first
patient treated with riboflavin in whom a partial improvement
in motor and cognitive performance and significant decrease
of urinary excretion of L-2-hydroxyglutarate was observed.
Another approach, described by Samuraki et al. (2008) in an
adult patient, is based on treatment with levocarnitine and
FAD, which resulted in improvement of dystonia and tremor
as well as in a significant decrease of urinary excretion of L-2-
hydroxyglutarate. These examples suggest that supplementation
of riboflavin improves the enzymatic activity by raising the
intracellular concentration of FAD. Therefore, they may
be categorized into a group of vitamin-responsive IEM
(Van Schaftingen et al., 2009).

Cholesterol Biosynthesis Defects
Smith-Lemli-Opitz Syndrome
Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive
disorder caused by biallelic mutations in the DHCR7 gene,
resulting in impaired biosynthesis of cholesterol. Besides
dysmorphic features and intellectual disability, autistic
symptoms are often a part of the SLOS behavioral phenotype
(Thurm et al., 2016). SLOS is characterized by elevated 7-
dehydrocholesterol and low plasma cholesterol levels. Some
of the major consequences of cholesterol deficiency include
abnormal formation of the CNS, face and limbs via an effect on

sonic hedgehog (SHH) signaling pathways during development
(Li et al., 2020) and its effect on steroidogenesis, particularly
that of dihydrotestosterone. Therapeutic intervention with
supplementation of cholesterol and symptomatic treatment
after early diagnosis decreases mortality and improves long-
term outcome (Donoghue et al., 2018). It is also important
to know that several common antipsychotic, antidepressant,
and anxiolytic compounds, including aripiprazole, buspirone,
fluoxetine, haloperidol, nefazodone, perospirone, and trazodone
may induce an in vitro biochemical profile similar to SLOS
(Kim et al., 2016).

Mitochondrial Disorders of Energy
Production
Mitochondrial dysfunction is a common metabolic disturbance
observed in ASD subjects. At the same time, different clinical
features and biochemical abnormalities seen in ASD subjects
can be linked to mitochondrial dysfunction (Frye and Rossignol,
2011). Although it seems that mitochondrial dysfunction can
unify the seemingly disparate abnormalities associated with ASD,
mitochondrial failure is commonly a secondary phenomenon
related to other biological processes, such as chronic immune
dysfunctions and increased oxidative stress that have been
observed in ASD patients (James et al., 2009; Li et al., 2009; Malik
et al., 2011).

Mitochondrial encephalomyopathy, lactic acidosis, and
stroke-like episodes (MELAS) is one of the most frequent
mitochondrial disorders, inherited maternally. Clinical
criteria include: (1) stroke-like episodes before age of 40,
(2) encephalopathy with seizures and/or cognitive deficits, and
(3) mitochondrial myopathy accompanied by lactic acidosis
and/or ragged-red fibers (El-Hattab et al., 2015). In addition
to its neurological manifestations, MELAS syndrome can
include a clinical picture of ASD (Ahmadabadi et al., 2020).
Connolly and collaborators described kindred with MELAS,
autism, cardiomyopathy, and rhabdomyolysis associated
with the A3260G mtDNA mutation (Connolly et al., 2010).
Treatment of MELAS syndrome with L-arginine, coenzyme
Q, creatine monohydrate, and carnitine can be beneficial.
Valproic acid, metformin, and dichloroacetate should be avoided
(El-Hattab et al., 2015).

Neurotransmitter Disorders
Succinic Semialdehyde Dehydrogenase Deficiency
Succinic semialdehyde dehydrogenase deficiency (SSADH-D)
is a genetic disease caused by disrupted metabolism of
the γ-amino butyric acid (GABA). Impaired activity of the
mitochondrial enzyme SSAD leads to the accumulation of
γ-hydroxybutyric acid (GHB). The SSADH-D has highly
heterogeneous clinical picture, with varying degrees of autism,
mental retardation, hypotonia, ataxia, epilepsy, and a delay
in speech development. There has been no approved curative
therapy for the disease yet, but vigabatrin can be beneficial
by reducing accumulation of SSA and GHB through inhibition
of GABA transaminase. Inhibition with vigabatrin, however,
has no effect on peripheral GABA transaminase, so the
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GHB keeps rising and reaches the CNS (Pearl et al., 2016).
Many therapeutic approaches are currently being studied
(Didiášová et al., 2020).

Disorders of Purine Metabolism
Adenylosuccinate Lyase Deficiency
Adenylosuccinate lyase (ADSL) deficiency is a disorder of purine
metabolism that reduces purine de novo synthesis and purine
nucleotide recycling. ADSL was first described in Jaeken and
Van den Berghe (1984), who discovered succinylpurines in
the plasma, urine, and CSF of a few patients with severe
psychomotor delay and autism. Growth and development
might be normal in the newborn period (Jurecka et al.,
2015), but in severe forms neurological symptoms might
be evident immediately after birth (Ciardo et al., 2001).
They include acute and chronic encephalopathy, behavioral
abnormalities, and ASD. Treatment relies on epilepsy treatment.
Intervention with D-ribose administration, which increases levels
of phosporibosylpyrophosphate and stimulates purine synthesis
de novo, has only limited success (Jurecka et al., 2015).

Lesch-Nyhan Syndrome
Lesch-Nyhan syndrome (LNS) is an X-linked disorder caused
by mutations in the HPRT1 gene, coding for hypoxanthine-
guanine phosphoribosyltransferase (HPRT). Symptoms
include dystonia, intellectual disability, gout, autism, and
behavioral changes such as self-mutilation. Pathogenesis
is unclear and it remains to be uncovered how deficits
in hypoxanthine and guanine recycling lead to a severe
phenotype. Upon identification of several isoforms of amyloid
precursor protein (APP) mRNA with a deletion followed by
an insertion that accounted for epigenetic control of genomic
rearrangements of APP gene in fibroblasts of patients with
LNS, Nguyen proposed a role of epistasis between mutated
HPRT1 and APP genes affecting the regulation of alternative
APP pre-mRNA splicing as a possible pathophysiological
mechanism of the severe neurobehavioral phenotype of
LNS (Nguyen, 2019). Patients excrete large amounts of uric
acid. Allopurinol prevents urate nephropathy. Treatment
with allopurinol has no effect on neurological symptoms
(Bell et al., 2016).

Cerebral Creatine Deficiency Syndromes
Creatine serves as a donor of high-energy phosphates for
the synthesis of hydrolyzed adenosine triphosphate. The
role of creatine transporter coded by the SLC6A8 gene on
chromosome X is to translocate creatine across the cell
membrane in the cytoplasm of neurons and myocytes.
Mutations in the SLC6A8 gene lead to cerebral creatine
deficiency syndrome (CCDS) with a spectrum of clinical
manifestations, including severe intellectual delay, autism,
epilepsy, and motor dysfunction. Females heterozygous for
the SLC6A8 pathogenic mutation are asymptomatic or have
mild intellectual delay. The other two CCDS disorders are
caused by the deficiencies of two enzymes involved in the
synthesis of creatine: arginine-glycine amidinotransferase
(AGAT) and guanidinoacetate methyltransferase (GAMT).

All three conditions result in creatine depletion in the
brain (Farr et al., 2020). GAMT and AGAT are treated
with oral creatine monohydrate to restore cerebral creatine
levels. Therapy of GAMT using ornithine supplementation
and protein dietary restriction has only limited success
(Mercimek-Andrews and Salomons, 2015).

Disorders of Folate Transport and
Metabolism
Cerebral Folate Deficiency
Cerebral folate deficiency (CFD) is any neurological condition
with a low CSF concentration of 5-methyltetrahydrofolate
(5-MTHF) and normal folate plasma concentrations. This
syndrome is characterized by a wide variety of clinical symptoms,
from irritability and sleep disturbances to severe seizures,
developmental regression, autism, progressive ataxia and
extrapyramidal symptoms, including choreoatethosis (Hyland
et al., 2010). CFD is a treatable condition if timely recognition
is followed by treatment with folinic acid perorally. Treatment
with folic acid is contraindicated as it may exacerbate the
5-MTHF deficiency in the CNS. Autoimmunity against the
folate receptor (transporter of 5-MTHF into the CSF) and
mutations in the folate receptor 1 (FOLR1) gene are the primary
causes of CFD. Secondary CFD has been observed in other
IEM, including mitochondrial diseases, serine deficiency, and
pyridoxine-dependent epilepsy (Pope et al., 2019).

Methylenetetrahydrofolate Reductase Deficiency
Methylenetetrahydrofolate reductase deficiency (MTHFR-D) is
the most common genetic cause of hyperhomocysteinemia.
MTHFR has an important role in the conversion of Hcy to
methionine. A common genetic variant in the MTHFR gene
is the c.677C > T polymorphism (rs1801133), where the
common variant is less active at higher temperatures (Dean,
2012). In comparison to controls, subjects with two copies of
this variant usually have higher Hcy levels and lower serum
folate levels (“TT homozygous”). Another common MTHFR
variant, c.1298A > C, is not associated with homocysteinemia
alone, but only combined heterozygosity of c.1298A > C
and c.677C > T results in an outcome similar to TT
genotype. Pathogenic variants in the MTHFR gene can cause
an autosomal recessive IEM with high concentrations of Hcy
in plasma and urine. This, in turn, may cause developmental
delay, thrombosis, eye disorders, and osteoporosis (Dean,
2012). Importantly, the TT genotype is frequent among ASD
patients and their mothers, compared to the general population.
The results of the study of Sadigurschi and Golan (2019)
support the view that the maternal MTHFR genotype is
associated with increased risk for ASD in children. The study
of Orenbuch et al. (2019) showed that prenatal nutritional
intervention by adding folic acid and choline in the diet of
pregnant MTHFR-deficient mice reduce autistic-like behaviors
among offspring that are MTHFR-deficient. Further studies are
needed to better define the role of methionine cycle in the
pathogenesis of ASD.
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Lysosomal Storage Disorders
Muccopolysaccharidosis Type III (Sanfilippo
Syndrome)
Mucopolysaccharidosis type III (MPS III) is a multisystemic
lysosomal storage disease characterized by progressive
neurodegeneration characterized by severe developmental
regression, intellectual disability, autism, and other behavioral
problems. Multisystemic manifestations include hearing loss,
musculoskeletal problems (contractures, joint stiffness, hip
dysplasia and scoliosis), respiratory tract infections, and valvular
cardiac disease (Wagner and Northrup, 2019). Patients are
commonly misdiagnosed as having idiopathic developmental
delay, attention deficit/hyperactivity disorder or ASD with
unnecessary testing procedures and treatment attempts.
Neurological decline is inevitable (Wijburg et al., 2013).
Treatment is symptomatic with therapies such as enzyme
replacement; however, the latest developments could push gene
therapy into the mainstream (Seker Yilmaz et al., 2021).

Neuronal Ceroid Lipofuscinoses
Neuronal ceroid lipofuscinoses (NCL) are a group of autosomal
recessive, progressive lysosomal storage disorders with
dominantly neurological symptomatology. This group of
diseases has a high genetic heterogeneity and variable clinical
presentation. The most common forms are infantile NCL
(INCL), late infantile NCL (LINCL), and juvenile NCL (JNCL).
Common symptoms include epilepsy, developmental regression,
and ophthalmologic abnormalities. Madaan et al. (2020)
described a patient with autistic regression and epilepsy, along
with EEG photosensitivity that is considered as an early sign of
Batten disease. Cerliponase α, a recombinant human tripeptidyl
peptidase 1 enzyme replacement therapy, became the first
globally approved treatment for LINCL—Batten disease in 2017,
signifying major therapeutic progress (Johnson et al., 2019).

Niemann-Pick Disease Type C
Niemann-Pick disease type C is an autosomal recessive disorder
caused by mutations in NPC1 (in 95% of cases) or NPC2
(in about 5% of cases) genes. When either of two proteins,
NPC1 or NPC2, is not functional, it leads to impaired
cellular trafficking of endocytosed LDL cholesterol and its
accumulation in the lysosomes. The clinical presentation is
highly heterogeneous, with an age of onset ranging from
the perinatal period to late adulthood. Visceral signs such
as fetal hydrops, hepatosplenomegaly, and cholestatic jaundice
in early forms usually preceed neurological and psychiatric
manifestations. Manifestations of neurological forms (late-
infantile and juvenile forms) are ataxia, clumsiness, handwriting
difficulties, impaired attention, vertical supranuclear gaze palsy
and gelastic cataplexy. Some patients develop seizures. Compared
to younger-onset patients, individuals with the adolescent/adult
onset more frequently develop psychiatric symptoms and
cognitive impairment (Newton et al., 2018).

Oxysterols (cholestane-3β, 5α and 6β-triol and
7-ketocholesterol are elevated in most patients, but they
can also be elevated in the deficiency of lysosomal acid lipase and
in neonatal cholestasis in general. Gene analysis is diagnostic.

Miglustat is currently the only causal treatment for neurological
manifestations (Geberhiwot et al., 2018; Patterson et al., 2020).

Cerebrotendinous Xanthomatosis
Cerebrotendinous xanthomatosis (CTX) is a disorder of bile
acid synthesis caused by mutations in the cytochrome P450
CYP27A1 gene. These mutations cause dysfunction of sterol
27-hydroxylase enzyme, resulting in incomplete oxidation of
the cholesterol side chain. Although CTX does not belong to
the lysosomal diseases, by its clicial presentation it resembles
storage diseases. Hence, it is often classified in this group.
CTX is characterized by high levels of plasma cholestanol and
accumulation of cholestanol and cholesterol in the CNS and
tendons, which is manifested as tendon xanthomas. Typical
clinical symptoms of CTX include chronic diarrhea, tendon
xanthomas, bone fractures, bilateral cataracts, and neurological
dysfunction. The disease is progressive, particularly due to severe
neurological presentations that may include autism, intellectual
disability, psychiatric and behavioral problems. Treatment with
chenodeoxycholic acid is the current standard of care; if initiated
early, it can stop the progression of the disease (Duell et al., 2018).
At present, level of 7α-hydroxycholestenone appears to be the
best biochemical marker for the evaluation of CTX treatment
(Lütjohann et al., 2020).

Although Smith-Lemli-Opitz syndrome, Niemann-Pick
disease type C and CTX all affect cholesterol metabolism and can
present with psychiatric symptoms including autistic features,
other clinical signs, metabolic background and treatment
approaches do not overlap.

Disorders of Copper Metabolism
Wilson Disease
The key clinical features of Wilson disease include acute episodes
of hemolysis in association with acute liver failure, cirrhosis,
neuropsychiatric disturbances including autistic features, and
eye manifestations such as Kayser–Fleischer ring. Psychiatric
and behavioral symptoms are common and may precede other
neurological or hepatic signs and symptoms. Wilson disease is a
disorder of copper metabolism, caused by biallelic mutations in
the ATP7B gene, and characterized by low serum ceruloplasmin
levels and elevated daily urinary copper excretion (Ferenci, 2017).
Current treatment includes avoiding copper-rich foods, reducing
copper absorption with zinc, chelation therapy to remove
copper from tissues, and symptomatic treatment (Mulligan and
Bronstein, 2020). Early recognition is prerequisite for treatment
success (Mulligan and Bronstein, 2020).

Disorders of Haem Biosynthesis
Acute Intermittent Porphyria
Mutations in hydroxymethylbilane synthase gene (HMBS)
cause autosomal dominant acute intermittent porphyria (AIP).
AIP is characterized by life-threatening neurovisceral attacks
and increased risk of hepatocellular carcinoma, hypertension,
and kidney failure. The only possible treatment is liver
transplantation (Bustad et al., 2020). Luder et al. (2009) described
a 15-year-old girl with AIP, whose first symptoms were autistic
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features at the age of 4. Visceral symptoms have occurred in
the later course and the diagnosis of AIP was confirmed by the
finding of a known causative AIP mutation (Luder et al., 2009).

A new therapeutic approach to AIP is RNA interference-based
therapy (Givosiran), which decreases aminolevulinic acid syntase
mRNA levels. Another promising approach is gene therapy
that targets hepatocytes harboring mutated porphobilinogen
deaminase (PBGD) gene (Spiritos et al., 2019).

Brain Iron Accumulation Diseases
Neurodegeneration with brain iron accumulation (NBIA) is a
group of genetic diseases characterized by movement disorders
such as parkinsonism and dystonia, psychomotor delay, and
early death. There is still no established therapy available to
mitigate or stop the progression of these diseases (Di Meo
and Tiranti, 2018). Two of these diseases are characterized by
autistic regression as a dominant clinical symptom: panthotenate
kinase-associated neurodegeneration (PKAN) and β-propeller
protein-associated neurodegeneration (BPAN). Veeravigrom and
colleagues described a girl diagnosed with ASD at the age of
three, later confirmed to have PKAN. The brain MRI at 15
year of age showed abnormally low T2 signal intensity in the
globus pallidus and posterior limb of internal capsule bilaterally
due to iron accumulation (“eye of the tiger” sign), as well as
cortical atrophy (Veeravigrom et al., 2014). Yogananthan and
colleagues described a girl with seizures, autistic regression,
intracranial calcification, and iron accumulation in the nucleus
niger and globus pallidus. The diagnosis of BPAN was established
by identification of pathogenic variant in WD repeat domain
45 (WDR45) gene encoding for β propeller protein. Current
treatment is only palliative (Yoganathan et al., 2016).

DIAGNOSTIC AND THERAPEUTICAL
APPROACHES

Many IEM present with syndromic ASD, most commonly as
an associated symptom. Diagnostic approach includes wide
neuroradiologic, metabolic, and genetic workup (Polšek et al.,
2011). In this review, we briefly describe etiology, clinical
presentation, and therapeutic principles, if available, for several
groups of IEM in differential diagnosis of ASD. Many of them
are nowadays diagnosed and successfully prevented by neonatal
screening program. Based on the list of potentially treatable
IEM mentioned in this paper, we suggest following laboratory
work-up: ammonia and lactate concentration, acid-base balance,
plasma amino acid analysis, urinary organic acid analysis, urinary
amino acids, plasma or dry blood spot acylcarnitine profile,
total cholesterol, total homocysteine, vitamin B12 concentration,
and uric acid. Further, more specific laboratory tests such as
purine and pyrimidine analysis, CSF analysis (amino acids,
folic acid concentration), cholestanol concentration, urinary
glycosaminoglycans and porphyrins, copper excretion, and
ceruloplasmin concentration should be done based on additional
leading symptoms or laboratory results, but should not be a
part of the primary workup. All laboratory tests should be
done after a detailed anamnesis and clinical examination with

special attention on associated neurological abnormalities. Brain
MRI with spectroscopy and electroencephalogram have their
place in the primary workup of an ASD patient due to several
specific findings that can be leading to a proper diagnosis
(CCDSs, NBIA). Here, we do not focus on common genetic
causes of ASD such as FXS, tuberous sclerosis, Rett syndrome
or on rare dysmorphic syndromes and genetic diagnostic tests
such as molecular karyotyping (copy number variants could
be found in 10−15% of cases), PCR assay or single specific
gene analyses. In the end, unspecific genomic approaches like
whole exome sequencing could be useful in diagnosing rare
disorders missed by proposed diagnostic workup and will
reveal the etiology in about 30−40% of syndromic ASD cases
(Schaefer et al., 2013).

Over the years, ample evidence has accumulated to
suggest that children with ASD have different biochemical
profiles compared to healthy children. For example, age-
independent hyperserotonemia is present in approximately
one-third to one-half of subjects with ASD (Šimić et al., 2020).
Untargeted metabolomics, although still not implemented in
routine clinical practice, has been shown to be a promising
approach in screening of underlying biochemical abnormalities,
discovering new specific biomarkers and directing treatment
(Glinton and Elsea, 2019).

An interesting study was done in Greece where a large cohort
of children with confirmed ASD were screened for the presence
of IEM (Spilioti et al., 2013). Their data provide the evidence for
a new potential biomarker—3-hydroxyisovaleric acid as well as
a few novel treatment approaches for children with ASD: biotin
supplementation and a ketogenic diet elicited mild to significant
improvement in clinical picture (Spilioti et al., 2013).

Basic six therapeutic principles of IEM include: (1) substrate
reduction therapy (as in PKU), (2) removal of toxic metabolites
(e.g., urea cycle disorders), (3) product supplementation (e.g.,
cerebral creatine deficiency disorders), (4) stimulating of deficient
enzyme activity (e.g., B6 supplementation in CBS deficiency),
(5) enzyme replacement therapy (e.g., in LINCL) or 6) organ
transplantation (in some cases of UCD and AIP). As exemplified
in parentheses, these principles can be also observed throughout
the IEM listed above.

Methionine Cycle and its Disturbances
as Well as Folic Acid Enigma Deserve
Special Attention Regarding Therapeutic
Trials and Opinions
Periconceptional folic acid supplementation in pregnant women
along with the dietary and blood folate concentrations in children
with ASD have been shown as environmental factors contributing
to the incidence of autism. Moreover, children with autism
have hyperhomocysteinemia compared to controls, whereas
serum levels of folate and vitamin B12 may be diminished or
normal. This can be due to lower folate intake in these subjects.
Furthermore, folinic acid supplementation in ASD subjects with
low 5-MTHF levels in CSF leads to the normalization of folate
levels and alleviates some symptoms of ASD (Castro et al., 2016).
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FIGURE 1 | Schematic representation of the methionine metabolism according to Barić et al. (2017), slightly modified. 5-MTHF, 5-methyltetrahydrofolate; ADK,
adenosine kinase; AdoHcy, S-adenosylhomocysteine; AdoMet, S-adenosylmethionine; AMP, adenosine monophosphate; BHMT, betaine-homocysteine
methyltransferase; CBS, cystathionine β-synthase; GNMT, glycine N-methyltransferase; dTMP, 2′-deoxythymidine-5′-monophosphate (thymidylate); dUMP,
2′-deoxyuridine-5′-monophosphate; MAT, methionine adenosyltransferase; MS, methionine synthase; MTHFR, methylenetetrahydrofolate reductase; MTs, a variety
of AdoMet-dependent methyltransferases; THF, tetrahydrofolate; SAHH, S-adenosylhomocysteine hydrolase; TS, thymidylate synthase.

There are several examples of enzyme deficiencies in
methionine cycle (CBS, SAHHD, MTHFR) with clinical
presentation of ASD. It is yet to be elucidated how subtle
disturbances in this metabolic pathway affect methylation and
consequent epigenetic dysregulation of numerous genes.

Malaguarnera and Cauli (2019) showed the positive clinical
effects of L-carnitine administration in non-syndromic
forms of autism. Several clinical trials suggest that carnitine
supplementation is useful in diminishing symptoms of non-
syndromic ASD. Nevertheless, future clinical trials to identify
the subgroup of ASD patients that could benefit from carnitine
supplementation are needed (Malaguarnera and Cauli, 2019).

Treating an autistic child is always associated with additional
healthcare-associated costs, therapies, education, and family
services. The associated social and emotional stresses often lead
to depression, somatization, and impairment in quality of life
parameters (Glinton and Elsea, 2019).

At the present time, there is not enough evidence for
routine supplementation of ASD patients with folic acid,
choline, or other supplements. We suggest methionine cycle
(Figure 1) to be carefully analyzed in syndromic ASD patients
(as proposed earlier, this should be performed by plasma
amino acid analysis and total Hcy concentration measurement)
and specific supplementation given in case of biochemically
proven deficiencies.

CONCLUSION

Symptoms of ASD can be a present in many IEM, but rarely
occur in isolation. Since some of IEM are treatable, physicians
treating children with ASD should be aware of a long list
of rare and ultra-rare disorders in the differential diagnosis.
Given the enormous etiologic variability of autistic symptoms,
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including those of genetic and metabolic origin, diagnostic work-
up of these patients should include appropriate genetic and
metabolic studies elected on the basis of leading symptoms
and associated clinical signs. This review is also intended to
serve as a reminder on IEM that could present with ASD as a
leading or associated presentation. As always, detailed medical
history and clinical examination, including detailed neurological
examination, should be a basis for planning focused diagnostic
work-up of patients with ASD.
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Adenylosuccinate lyase deficiency. J. Inherit. Metab. Dis. 38, 231–242. doi:
10.1007/s10545-014-9755-y

Kim, H.-Y. H., Korade, Z., Tallman, K. A., Liu, W., Weaver, C. D., Mirnics, K., et al.
(2016). Inhibitors of 7-dehydrocholesterol reductase: screening of a collection
of pharmacologically active compounds in Neuro2a cells. Chem. Res. Toxicol.
29, 892–900. doi: 10.1021/acs.chemrestox.6b00054

Kiykim, E., Zeybek, C. A., Zubarioglu, T., Cansever, S., Yalcinkaya, C.,
Soyucen, E., et al. (2016). Inherited metabolic disorders in Turkish patients
with autism spectrum disorders. Autism Res. 9, 217–223. doi: 10.1002/aur.
1507

Kruger, W. D. (2017). Cystathionine β-synthase deficiency: of mice and men. Mol.
Genet. Metab. 121, 199–205. doi: 10.1016/j.ymgme.2017.05.011

Li, X., Chauhan, A., Sheikh, A. M., Patil, S., Chauhan, V., Li, X.-M., et al. (2009).
Elevated immune response in the brain of autistic patients. J. Neuroimmunol.
207, 111–116. doi: 10.1016/j.neuroim.2008.12.002

Li, X., Li, Y., Li, S., Li, H., Yang, C., and Lin, J. (2020). The role of Shh signalling
pathway in central nervous system development and related diseases. Cell
Biochem. Funct. 39, 180–189. doi: 10.1002/cbf.3582

Luder, A. S., Mamet, R., Farbstein, I., and Schoenfeld, N. (2009). Awareness is
the name of the game: clinical and biochemical evaluation of a case of a girl
diagnosed with acute intermittent porphyria associated with autism. Cell. Mol.
Biol. 55, 19–22.

Lütjohann, D., Stellard, F., and Björkhem, I. (2020). Levels of 7alpha-
hydroxycholesterol and/or 7alpha-hydroxy-4-cholest-3-one are the optimal
biochemical markers for the evaluation of treatment of cerebrotendinous
xanthomatosis. J. Neurol. 267, 572–573. doi: 10.1007/s00415-019-09650-0

Madaan, P., Jauhari, P., Luhar, Z. M., Chakrabarty, B., and Gulati, S.
(2020). Autism, epilepsy, and neuroregression: photosensitivity on
electroencephalography solved the riddle. Clin. EEG Neurosci. 51, 399–402.
doi: 10.1177/1550059419899327

Maenner, M. J., Shaw, K. A., Baio, J., Washington, A., Patrick, M., DiRienzo, M.,
et al. (2020). Prevalence of autism spectrum disorder among children aged 8
years – autism and developmental disabilities monitoring network, 11 sites,

United States, 2016. MMWR Surveill. Summ. 69, 1–12. doi: 10.15585/mmwr.
ss6904a1

Malaguarnera, M., and Cauli, O. (2019). Effects of l-carnitine in patients with
autism spectrum disorders: review of clinical studies. Molecules 24:4262. doi:
10.3390/molecules24234262

Malik, M., Sheikh, A. M., Wen, G., Spivack, W., Brown, W. T., and Li, X. (2011).
Expression of inflammatory cytokines, Bcl2 and cathepsin D are altered in
lymphoblasts of autistic subjects. Immunobiology 216, 80–85. doi: 10.1016/j.
imbio.2010.03.001

Márquez-Caraveo, M. E., Ibarra-González, I., Rodríguez-Valentín, R., Ramírez-
García, M. Á, Pérez-Barrón, V., Lazcano-Ponce, E., et al. (2020). Brief
report: delayed diagnosis of treatable inborn errors of metabolism
in children with autism and other neurodevelopmental disorders.
J. Autism Dev. Disord. doi: 10.1007/s10803-020-04682-2 [Epub ahead
of Print].

Matsumoto, S., Häberle, J., Kido, J., Mitsubuchi, H., Endo, F., and Nakamura, K.
(2019). Urea cycle disorders-update. J. Hum. Genet. 64, 833–847. doi: 10.1038/
s10038-019-0614-4

Mercimek-Andrews, S., and Salomons, G. S. (2015). “Creatine deficiency
syndromes”, in GeneReviews [Internet], eds M. P. Adam, H. H. Ardinger, R. A.
Pagon, et al. (Seattle, WA: University of Washington), 1993–2021.

Morris, A. A., Kožich, V., Santra, S., Andria, G., Ben-Omran, T. I., Chakrapani,
A. B., et al. (2017). Guidelines for the diagnosis and management of
cystathionine β-synthase deficiency. J. Inherit. Metab. Dis. 40, 49–74. doi: 10.
1007/s10545-016-9979-0

Mulligan, C., and Bronstein, J. M. (2020). Wilson disease: an overview and
approach to management. Neurol. Clin. 38, 417–432. doi: 10.1016/j.ncl.2020.
01.005

Newton, J., Milstien, S., and Spiegel, S. (2018). Niemann-pick type C disease: the
atypical sphingolipidosis. Adv. Biol. Regul. 70, 82–88. doi: 10.1016/j.bior.2018.
08.001

Nguyen, K. V. (2019). Beta-amyloid precursor protein (APP) and the human
diseases. AIMS Neurosci. 6, 273–281. doi: 10.3934/Neuroscience.2019.4.273

Novarino, G., El-Fishawy, P., Kayserili, H., Meguid, N. A., Scott, E. M., Schroth, J.,
et al. (2012). Mutations in BCKD-kinase lead to a potentially treatable form of
autism with epilepsy. Science 338, 394–397. doi: 10.1126/science.1224631

Orbak, Z., Ertekin, V., Selimoglu, A., Yilmaz, N., Tan, H., Konak, M., et al. (2010).
Hartnup disease masked by kwashiorkor. J. Health Popul. Nutr. 28, 413–415.
doi: 10.3329/jhpn.v28i4.6049

Orenbuch, A., Fortis, K., Taesuwan, S., Yaffe, R., Caudill, M. A., Golan, H. M.,
et al. (2019). Prenatal nutritional intervention reduces autistic-like behavior
rates among Mthfr-deficient mice. Front. Neurosci. 13:383. doi: 10.3389/fnins.
2019.00383

Patterson, M. C., Garver, W. S., Giugliani, R., Imrie, J., Jahnova, H., Meaney,
F. J., et al. (2020). Long-term survival outcomes of patients with Niemann-Pick
disease type C receiving miglustat treatment: a large retrospective observational
study. J. Inherit. Metab. Dis. 43, 1060–1069. doi: 10.1002/jimd.12245

Pearl, P. L., Wiwattanadittakul, N., Roullet, J.-B., and Gibson, K. M. (2016).
“Succinic semialdehyde dehydrogenase deficiency”, in GeneReviews [Internet],
eds M. P. Adam, H. H. Ardinger, R. A. Pagon, et al. (Seattle, WA: University of
Washington), 1993–2021.

Pillai, N. R., Yubero, D., Shayota, B. J., Oyarzábal, A., Ghosh, R., Sun, Q., et al.
(2019). Loss of CLTRN function produces a neuropsychiatric disorder and a
biochemical phenotype that mimics Hartnup disease. Am. J. Med. Genet. A 179,
2459–2468. doi: 10.1002/ajmg.a.61357

Polšek, D., Jagatic, T., Cepanec, M., Hof, P. R., and Šimić, G. (2011). Recent
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