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Abstract: Osteoarthritis is a common cause of disability worldwide. Although commonly referred
to as a disease of the joint cartilage, osteoarthritis affects all joint tissues equally. The pathogenesis
of this degenerative process is not completely understood; however, a low-grade inflammation
leading to an imbalance between anabolic and katabolic processes is a well-established factor. The
complex network of cytokines regulating these processes and cell communication has a central role
in the development and progression of osteoarthritis. Concentrations of both proinflammatory and
anti-inflammatory cytokines were found to be altered depending on the osteoarthritis stage and
activity. In this review, we analyzed individual cytokines involved in the immune processes with an
emphasis on their function in osteoarthritis.

Keywords: osteoarthritis; cytokines; chemokines; pathogenesis; inflammation; biomarker

1. Introduction

Osteoarthritis (OA) is the most common musculoskeletal condition and the largest
cause of disability in the world [1]. The knee is predominantly affected in OA. A recent
study concluded that knee OA globally affects 16% of the population, more often women,
and that its prevalence, due to today’s lifestyle, higher obesity rates and higher average
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life expectancy, is constantly increasing [2]. Although OA is often referred to as a joint
disease with damage and loss of cartilage, OA is a much more diverse disease with complex
pathogenesis that affects all tissues within the joint [3].

One of the most important factors in the pathogenesis of OA is a disturbed cytokine
balance in favor of proinflammatory cytokines that by their action initiate a vicious cycle
that leads to final effects such as damage to cartilage and other intra-articular structures
by activating catabolic enzymes (matrix metalloproteinases (MMPs) and ADAMTS (a
disintegrin-like and metalloproteinase with thrombospondin motif)) (Figure 1) [4]. The
most important inflammatory mediators in the pathogenesis of OA are IL-1β, TNF-α and
IL-6. They are activators of a plethora of different signaling pathways that activate other
cytokines and pathologic processes. Part of this unstoppable process are chemokines that,
stimulated by cytokines, attract inflammatory cells to the joint that further promote the
secretion of inflammatory factors and disease progression [5]. The aim of this review was
to describe the mechanisms of action of the most important cytokines and chemokines
involved in OA pathogenesis, with emphasis on knee OA.

Figure 1. Schematic representation of key inflammatory processes and factors in osteoarthritis pathogenesis. The disturbed
balance of proinflammatory and anti-inflammatory cytokines (in favor of proinflammatory cytokines) is responsible for the
secretion of enzymes and other inflammatory factors involved in the pathogenesis of osteoarthritis leading to morphological
changes within the joint such as cartilage degeneration, osteophyte formation and other inflammatory changes such as
synovitis. Chemokines also contribute to inflammatory processes, stimulating the chemotaxis of inflammatory cells that
then further secrete proinflammatory cytokines, thus creating a vicious circle that poses a major challenge in treating and
slowing the progression of osteoarthritis. IL—interleukin; CCL-CC—chemokine ligand; TNF-α—tumor necrosis factor α;
MMPs—matrix metalloproteinases (MMPs); ADAMTS—a disintegrin-like and metalloproteinase with thrombospondin
motif; COX-2—cyclooxygenase-2; PGE-2—prostaglandin E2; NO—nitric oxide.

2. Cytokines and Chemokines Involved in Knee Osteoarthritis Pathogenesis
2.1. Proinflammatory Cytokines
2.1.1. IL-1β

IL-1β is one of the main proinflammatory cytokines involved in the pathogenesis
of numerous diseases and a member of the IL-1 superfamily, which consists of IL-1α,
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IL-1β, IL36α, IL-36β, IL-36γ, IL-36RA, IL-37, IL-38 and IL-1Ra (IL-1 receptor antagonist).
It achieves its effects by binding to the receptor named type I IL-1 receptor I (IL-1RI),
a type I transmembrane protein that is the binding site of IL-1α and IL-1Ra as well [6].
IL-1Ra competes for an IL-1RI binding site with IL-1β with antagonistic activity. These
receptors are expressed on a number of cell types in the knee joint, including chondrocytes,
synoviocytes, osteoblasts, osteoclasts and inflammatory cells such as macrophages [7].
Furthermore, it has been observed that the number of IL-1RI is increased in isolated
human OA chondrocytes in vitro [8]. By binding to the receptor, IL-1β activates several
signaling pathways, which, combined, lead to the progression of OA. IL-1Ra binds to
the same receptors as IL-1β and acts as its competitive antagonist, thus blocking IL-1β
proinflammatory effects. Although IL-1Ra is an anti-inflammatory mediator, its plasma
levels have been found to correlate with the radiological stage of symptomatic OA and its
progression, regardless of risk factors such as age, sex and body mass index, confirming the
idea of a constant competition of proinflammatory and anti-inflammatory factors in OA [9].

Through mitogen-activated protein kinase (MAPK) signaling, IL-1β induces catabolic
events such as cartilage degradation, as the most dominant process in OA. MAPK consists
of three families: extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases
(JNKs) and p38 MAPKs. By downregulating type II collagen and aggrecan gene expression,
ERK activation by IL-1β reduces cartilage extracellular matrix (ECM) production [10]. JNK
signaling also inhibits collagen synthesis through SOX-9 suppression [11]. Furthermore,
IL-1β leads to ECM degradation by inducing collagenases and aggrecanases such as
MMP-1 (via ERK, p38, JNK), MMP-3 (via ERK), MMP-13 (via ERK, p38, JNK), ADAMTS-
4 (via ERK, p38, JNK) and ADAMTS-5 (via JNK) [12]. These catabolic events result
in chondrocyte hypertrophy, dedifferentiation and, finally, apoptosis [13]. Through all
three MAPK signaling pathways, IL-1β stimulates the secretion of IL-6, LIF and other
proinflammatory cytokines, which potentiate the catabolic effects of IL-1β and at the same
time serve as catabolic mediators on their own [12]. In that way, IL-1β can upregulate itself
through a positive feedback mechanism. ERK-mediated effects can also be activated by
PGE-2 (prostaglandin E2), NO (nitric oxide) and COX-2 (cyclooxygenase-2), inflammatory
mediators that are, again, induced by IL-1β [14]. These mediators also contribute to
synovial inflammation, which additionally enhances the secretion of IL-1β and other
cytokines and aggravates the vicious circle of OA progression [15].

Another important signaling pathway in IL-1β mediated OA progression is NF-κB,
which, when activated, leads to inhibition of type II collagen expression, increased produc-
tion of matrix metalloproteinases (MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9 and
MMP-13) and aggrecanases (ADAMTS4 and ADAMTS5), but also COX-2, iNOS, PGE-2 and
NO [16,17]. Additionally, the IL-1β-activated NF-κB pathway supports proinflammatory
cytokines synthesis and secretion, such as IL-6 and TNF-α [16].

Furthermore, IL-1β-mediated NF-κB activation stimulates the production of various
chemokines including IL-8, monocyte chemoattractant protein-1 (MCP-1 or CCL2), CCL5,
also known as RANTES (regulated on activation, normal T cell expressed and secreted)
and macrophage inflammatory protein-1a (MIP-1a), which, by attracting additional in-
flammatory cells, potentiate the inflammatory state in the joint [4]. In addition, activated
macrophages, attracted to the synovial tissue due to the effects of chemokines, are the pri-
mary source of IL-1β secretion in the synovium, which once again confirms the complexity
of the vicious inflammatory cycle in OA [12]. A schematic representation of the mechanism
of action and effects of IL-1β is shown in Figure 2.
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Figure 2. Schematic representation of IL-1β function in osteoarthritis pathogenesis. By binding to its receptor (IL-1RI),
IL-1β activates signaling pathways (NF-κB and MAPK) that, by raising the expression of enzymes (ADAMTS and MMPs),
lead to catabolic reactions, i.e., proteoglycan degradation and collagen disruption. Furthermore, via the same signaling
pathways, IL-1β inhibits type II collagen synthesis through SOX-9 suppression but also proteoglycan synthesis by increasing
the synthesis of COX-2, PGE-2 and NO. In addition, IL-1β increases the expression of chemokines such as IL-8, CCL2
and CCL5, as well as the cytokines IL-6 and TNF-α, which attract inflammatory cells and cause synovial inflammation,
respectively, resulting in the even greater production and secretion of IL-1β. IL-1β—interleukin 1β; IL-1RI—interleukin
1 receptor 1; MAPK—mitogen-activated protein kinase; ERK—extracellular signal-regulated kinases; JNK—c-Jun N-
terminal kinases; NF-κB—nuclear factor kappa-light-chain-enhancer of activated B cells; MMPs—matrix metalloproteinases
(MMPs); ADAMTS—a disintegrin-like and metalloproteinase with thrombospondin motif; COX-2—cyclooxygenase-2;
PGE—prostaglandin E2; NO—nitric oxide; IL-8—interleukin 8; CCL2—chemokine ligand 2; CCL—chemokine ligand 5;
SOX-9—SRY-Box Transcription Factor 9; IL-6—interleukin 6; TNF-α—tumor necrosis factor α.

Due to its significant proinflammatory effects and ability to activate a number of
signaling pathways in the pathogenesis of OA, the suppression of IL-1β action has been
studied as a potential therapeutic method in treating OA and stopping its progression.
However, IL-1β inhibition did not produce the desired effects of preventing OA progres-
sion; therefore, the negative results led to the idea that IL-1β does not likely drive OA
progression [18–21]. With that in mind, researchers should consider that the pathogenesis
of OA does not depend on a single cytokine; rather, the same signaling pathways can be
activated by different cytokines, and the interplay of multiple factors is crucial in the onset
and progression of the disease.

2.1.2. TNF-α

TNF-α is a potent proinflammatory cytokine that plays an important role in the
inflammatory response. As such, it is involved in cell differentiation, proliferation and
apoptosis [22]. TNF-α was discovered in 1975 by Carswell et al. as a protein that showed
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cytotoxic activity and caused the necrotic regression of certain tumor types. Alongside
IL-1β, this cytokine is considered the key proinflammatory cytokine in the pathogenesis
of OA [23].

It is a part of the tumor necrosis factors superfamily, together with 18 other ligands [24].
The TNF superfamily members are type II transmembrane proteins that can be expressed
in soluble and membrane-bound forms [25]. TNF-α is a homotrimeric, cone-shaped protein
secreted in two forms, as mentioned above. The membrane-bound form (tmTNF-α) differs
from the soluble form (sTNF-α) in its biological activity and is considered more active [26].
TNF-α binds to two isotypes of membrane receptors present on almost all known cell types
except erythrocytes and unstimulated T lymphocytes. Tumor necrosis factor receptor 1
(TNRF-1) can be activated by both TNF-α forms, while TNRF-2 is mainly activated by
the membrane form. Westacott et al. claim that TNRF-1 activity has a greater impact
on local cartilaginous tissue loss, but both receptors are involved in signal transduction
related to the pathogenesis of OA [27]. Due to their differences and unique structural
features, both receptors are able to participate in different signal pathways [28]. Ligands
can induce two different signaling complexes by binding to TNRF-1 receptors. Complex
1 leads to the stimulation of cell survival and the expression of pro-inflammatory genes
and complex 2 leads to apoptosis and cell death. Complex 1 is associated with TNFR-1
associated death domain protein (TRADD), which allows for the binding of another two
adapter proteins—receptor interacting protein-1 (RIP-1) and TNF receptor-associated factor-
2 (TRAF-2). The most important transcription pathways are NF-κB and AP-1. Furthermore,
another important signaling pathway is activated by mitogen-activated protein kinases
(MAPK), more precisely by its three independent pathways (ERK, JNK and p38 MAPK). On
the contrary, signaling complex 2 is directed towards cell death or apoptosis [28,29]. The
formation of FADD (Fas-associated death domain protein), procaspase 8/10 and caspase 3
are responsible for programmed cell death. Not so long ago, TNRF-2 initiated signaling
was considered less investigated than those initiated by the activation of TNRF-1 receptors.
It is claimed that TNRF-2 stimulation notably supports cell activation, migration and
proliferation [29]. It activates the JNK kinase and the transcription factor NF-κB. It is worth
mentioning that polymorphism in the gene (M196R) encoding TNFR-2 may predetermine
the development of OA by increasing the number of receptor proteins on the surface of
chondrocytes [28]. The mechanism of action of TNF-α is shown in Figure 3.

The activation of the same signaling pathways as IL-1ß results in synergism between
these two cytokines [30]. Chondrocytes’ synthesis of proteoglycan components and type II
collagen is blocked by TNF-α [31]. TNF-α also leads to extracellular matrix (ECM) degrada-
tion by inducing collagenases and aggrecanases including MMP-1, MMP-3, MMP-13 and
ADAMTS-4, which coincides with IL-1β [32]. The possibility of cartilage repair is vastly
reduced because of the earlier mentioned complex 2 signaling pathway and consequent
cell apoptosis. Furthermore, TNF-α increases the synthesis of IL-6, IL-8, RANTES and
VEGF. Together with the already mentioned IL-1β, TNF-α induces the production of iNOS,
COX-2 and PGE-2 synthase, which further upregulates IL-1β and TNF-α production [28].
Considering its proinflammatory nature, it is important to mention that the inhibition
of TNF-α could be a sufficient therapeutic option in treating OA. Present data suggest
that monoclonal antibodies may exhibit a favorable risk-benefit ratio considering future
targeted therapeutic methods. However, current monoclonal antibodies targeting TNF-α
such as adalimumab, infliximab and etanercept have shown poor results in clinical studies
of general OA patients. They demonstrated only limited benefits in pain reduction and no
significant disease modification [33].
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Figure 3. Schematic representation of TNF-α function in osteoarthritis pathogenesis. TNF-α can bind to two receptors,
TNRF-1 and TNRF-2. By binding to TNRF-1, TNF-α can induce two different signaling complexes. Complex 1 leads to
the stimulation of cell survival and the expression of NF-κB, MAPK and AP-1, which results in proteoglycan degradation,
collagen disruption and the inhibition of proteoglycan and collagen synthesis. On the other hand, the activation of
complex 2 leads to a cascade of reactions, which include the formation of FADD and the activation of procaspase 8/10
and caspase 3, which consequently leads to cell apoptosis. Additionally, the binding of TNF-α to TNRF-2 activates NF-κB
and JNK. In summation, TNF-α leads to degeneration of cartilage and other joint structures, thus contributing to the
onset and progression of osteoarthritis. TNF-α—tumor necrosis factor α; TNRF-1—Tumor necrosis factor receptor 1;
TNRF-2—Tumor necrosis factor receptor 2; TRADD—TNFR-1 associated death domain protein; RIP-1—receptor interacting
protein-1; TRAF-2—TNF receptor-associated factor-2; MAPK—mitogen-activated protein kinase; ERK—extracellular signal-
regulated kinases; JNK—c-Jun N-terminal kinases; NF-κB—nuclear factor kappa-light-chain-enhancer of activated B cells;
AP-1—activator protein 1; FADD—Fas-associated death domain protein.

2.1.3. IL-6

Classic immunology textbooks commonly depict interleukin-6 (IL-6) as a proinflam-
matory cytokine important in many inflammatory diseases [34,35]. Contrary to this, the
biological role of IL-6 is far more complex.

In 1986, the molecular cloning and structural analysis of B-cell differentiation factor
(BCDF) was first reported [36]. Today, BCDF is known as interleukin-6, and as its name sug-
gests, IL-6 is a protein that is essential for the communication between leukocyte cells [37].
IL-6 is a member of the IL-6 family (IL-11, ciliary neurotrophic factor, leukemia inhibitory
factor, oncostatin M, cardiotrophin 1, cardiotrophin-like cytokine and IL-27), a group of cy-
tokines that share a common signal-transducing protein gp130 that signals through various
signaling pathways, including JAK/STAT (Janus kinase/signal transducers and activators
of transcription) and MAPK, PI3K (phosphoinositide 3-kinases), and to which IL-6 has no
binding affinity [38,39]. Although it is most commonly mentioned in the context of immune
system functioning, IL-6 is essential for various organ systems, including the hematopoietic,
endocrine and nervous system, and it is classified as an adipokine and myokine [40,41]. It is
produced by a number of cells, including T cells, B cells, granulocytes, smooth muscle cells,
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eosinophils, mast cells, glial cells and keratinocytes, but in the context of OA, chondrocytes,
osteoblasts and synoviocytes are the most important to mention [42,43].

IL-6 acts by binding to the IL-6 receptors, either membrane-bound (mbIL-6R) or soluble
(sIL-6R). The binding of IL-6 to sIL-6R forms a complex that associates with ubiquitously
expressed gp130 protein and activates trans-signaling responsible for the proinflammatory
action of IL-6 [44]. On the other hand, the binding of IL-6 and selectively expressed
mbIL-6R is considered to form a complex that activates classic-signaling responsible for the
anti-inflammatory and regenerative properties of IL-6 [44]. Trans-signaling affects virtually
all cell types since gp130 is ubiquitously expressed, while classic signaling only affects
cells that express mbIL-6R, namely, the hepatocytes, neutrophils, monocytes, macrophages,
osteocytes, chondrocytes and some lymphocytes [45–47]. The concentration of sIL-6R
is considered a determining factor of trans- or classic signaling dominance [48,49]. sIL-
6R is considered to be produced as a result of the alternative splicing of mRNA and,
to a greater extent, by the proteolytic cleavage of mbIL-6R mediated by metzincin type
proteases that are known to have increased expression in OA, specifically a disintegrin
and metalloproteinases 10 and 17 (ADAM10 and ADAM17) [50,51]. Furthermore, the
endogenous soluble form of gp130 (sgp130) has the ability to bind and stabilize IL-6 and
sIL-6R. Although it was initially claimed that this could suppress trans-signaling without
affecting the classic signaling, newer studies have shown that inhibition of classic signaling
can occur as well when there is a molar excess of sIL-6R over IL-6 [52–54]. Interestingly,
ADAM10 and 17 can also shed membrane-bound gp130, but their affinity for gp130 is small
and thus their proteolytic activity against gp130 is likely not biologically significant [55].

IL-6’s exact role in OA is difficult to define, as there are beneficial and detrimental
effects of IL-6. In vitro studies on chondrocytes have shown that IL-6 alone can induce
TIMP-1, with the effect even more pronounced when chondrocytes are co-treated with
sIL-6R [56,57]. Some studies have shown that IL-6, with and without sIL-6R, increases the
expression of collagen type 2, while others have shown that IL-6 or IL-6 + sIL-6R treatment
inhibits collagen type 2 production via transcriptional control [58]. The combination of
IL-6 and sIL-6R induces the expression of MMP-1, 3 and 13 and ADAMTS-4, 5/11 [57]. On
the other hand, animal studies have shown that IL-6 knockout mice develop OA in higher
prevalence and severity than wild-type mice and that IL-6 intraarticular injection induces
OA-like cartilage lesions [45,59]. Conversely, the systemic treatment using anti-IL-6 or
STAT-3 alleviated experimental OA in mice [57].

When compared with healthy controls, patients with end-stage OA have a significantly
higher concentration of IL-6 in synovial fluid (median 4.8 vs. 196.9 pg/mL), and the
concentration of IL-6 in synovial fluid is known to correlate with the pain experienced
by patients with OA [60,61]. Additionally, IL-6 seems to have a predictive value as well.
In a prospective cohort study conducted on 163 subjects aged 50–79, disease severity
assessment and IL-6 and TNF-α serum measurements were performed at baseline and a
3-year follow-up. The findings of both univariate and multivariate analyses suggest that
increased IL-6 and TNF-α concentration at baseline are associated with an increased loss
of cartilage volume [62]. Furthermore, the decreased innate production of IL-6 has also
been associated with a decreased risk for developing hand OA, and a trend of decreased
risk can be observed for knee and hip OA as well [63]. IL-6 might also be an important
link between obesity and OA. It has been shown that infrapatellar fat, and to a lesser
extent subcutaneous adipose tissue, can induce the expression of IL-6 in fibroblast-like
synoviocytes [64]. Moreover, obese OA patients are known to have higher IL-6 and sIL-6R
than non-obese patients with OA [65].

Thus, it is clear that the interpretation of IL-6 role in OA should not be based solely on
the concentration of IL-6 but also on the concentration of sIL-6R and sgp130 and on the
assessment of trans- and classic-IL-6 signaling. This is often overlooked in studies, making
it hard to demystify the pathophysiological role of IL-6 in OA. A schematic representation
of the mechanism of action and effects of IL-6 is shown in Figure 4.
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Figure 4. Schematic representation of IL-6 function in osteoarthritis pathogenesis. IL-6 acts by binding membrane-
bound IL-6R or sIL-6R that associates with gp130. Gp130 initiates intracellular signaling that regulates the inflammation
and expression of enzymes, collagen and proteoglycans. sIL-6R is produced by means of alternative splicing or the
shedding of membrane-bound IL-6R. sgp130 can inhibit IL-6 signaling. Through classic and trans-signaling, IL-6 activates
the PI3K, JAK/STAT and MAPK signaling pathways that regulate enzymes production (TIMP, MMPs and ADAMTS)
and type II collagen and proteoglycan synthesis. Thus, IL-6 balances between anti-inflammatory and proinflammatory
effects, but the latter predominates, ultimately leading to the progression of osteoarthritis. ADAM—a disintegrin and
metalloproteinase; ADAMTS—a disintegrin-like and metalloproteinase with thrombospondin motifs; gp130—glycoprotein
130; IL-6—interleukin-6; MMP—matrix metalloproteinases; sgp130—soluble glycoprotein 130; sIL-6R—soluble IL-6 receptor;
TIMP—tissue inhibitor of metalloproteinase; JAK/STAT—Janus kinase/signal transducers and activators of transcription;
PI3K—phosphoinositide 3-kinases; MAPK—mitogen-activated protein kinase.

2.1.4. IL-15

IL-15 is a proinflammatory cytokine produced by various cell types such as fibroblasts,
synoviocytes, phagocytes, skeletal muscle, inflammatory cells and many others [66,67].
Although the role of inflammation in the development of the disease has largely been
studied in rheumatoid arthritis (RA), recent findings suggest inflammation as an important
factor in the pathogenesis of OA. The division of OA into phenotypes speaks in favor of
this, defining the inflammatory phenotype of OA among other forms [68]. Likewise, IL-15
has been studied more in the pathogenesis of RA because of its effect on the activation,
differentiation and proliferation of T lymphocytes and NK cells [67,69]. However, a study
comparing cytokine expressions in synovial fluid of the knee joints of patients with OA
and RA showed no significant difference in IL-15 concentrations between OA and RA [70].
Furthermore, according to a study by Scanzello et al., higher concentrations of IL-15 were
found in the synovial fluid of patients with early-stage OA compared to patients with
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late-stage disease, independently of age, gender and BMI [71]. Also, the study found that
IL-15 was detectable in all patients with early-stage OA included in the study, indicating
its importance in disease progression [71]. Another study found increased IL-15 levels in
the serum of patients with OA compared with healthy controls [72,73]. In addition, serum
IL-15 correlated with patient-reported pain severity measured by the WOMAC pain score,
independently of age, gender and BMI [72].

The exact mechanism by which IL-15 affects the onset and progression of OA is not
yet known, but it is known that IL-15 enhances the production of MMPs, as is the case with
MMP-9 [74]. It was also shown that the concentration of IL-15 in the synovial fluid of the
knee correlates with the concentrations of MMP-1 and MMP-3 and that the concentration of
IL-15 in the serum correlates with the concentration of MMP-7 in the serum [71,73]. Despite
the association of IL-15 with the enhanced production of matrix-degrading enzymes, an
association with the radiological severity of OA has not been established [75]. Precisely
because of the unclear mechanism of action, further research is needed to elucidate the
role of IL-15 in the development of OA. Elevated concentrations in the early stages of the
disease suggest a potential role for IL-15 as a biomarker for the early diagnosis of OA. The
confirmation of these findings would be an excellent tool in stopping disease progression
in a timely fashion.

2.1.5. IL-17

IL-17, also named IL-17A, is considered a proinflammatory cytokine and a member of
the IL-17 cytokine family that includes IL-17B, IL-17C, IL-17D and IL-17E [76]. IL-17A is the
most extensively researched cytokine of the IL-17 family, and it has been shown to induce
the most potent changes of all IL-17 family cytokines in the transcriptome of synovium
and chondrocytes of patients with OA [76,77].

Multiple types of cells secrete IL-17, but little is known about the particular role
of these cells in OA and their contribution to IL-17 production in OA. In general, IL-17
is prominently produced by the Th17 subtype of T helper (Th) cells [78]. These cells
can act as either pathogenic (responsible for the development of autoinflammatory (AI)
diseases, including AI diseases of the joint) or non-pathogenic (protective), depending
on the cytokine milieu that stimulates them [78]. The most prominent influence on them
is exhibited by IL-23, which is induced in fibroblast-like synoviocytes by IL-17 in RA
patients [79]. However, only several studies measured these cells in OA patients, and their
explicit role in OA is unclear. Another important source of IL-17 are γδ T cells. These cells
are abundant in mucosal tissue and essential in microorganism sensing but also seem to
be implicated in bone healing [80,81]. Nevertheless, γδ T cells do not seem altered in the
synovial tissue in patients with OA, and we could not find relevant articles investigating γδ

T cells’ contribution to IL-17 production in OA [82]. Other known sources of IL-17 include
natural killer (NK) cells and macrophages. The abundance of NK cells is present in the
synovium and synovial fluid of OA patients [83,84]. Additionally, the enrichment of CD56
bright CD16 (-) subtypes of NK cells in the synovial fluid, and their numbers, correlate with
the concentration of IL-6 [84]. The same cells also accumulate in inflamed tissue and in the
interplay with monocytes. They are prone to stimulation by IL-12, IL-15 and IL-18 secreted
by monocytes and recurrently stimulate TNF-α secretion in monocytes [85]. These findings
accentuate the importance of the inflammatory component to OA, but whether NK cells
are a significant source of IL-17 in OA is unknown (unmeasured).

IL-17 signals by binding to the heterodimeric receptors IL17RA and IL17RC to activate
downstream NF-κB, MAPK and C/EBP pathways. Although it is a weak activator of NF-κB,
IL-17 TRAF-mediated signaling can stabilize the mRNAs of proinflammatory cytokines [86].
IL-17RA and IL-17RC, the main targets for IL-17, are both found on chondrocytes and
synovial fibroblasts, with IL-17RA more expressed on the synovial fibroblasts of OA
patients with highly inflamed synovium [87]. Furthermore, IL-17 has been found to
upregulate catabolic factors (MMP 1, 3 and 13) and downregulate anabolic factors (TIMP3,
COL2A1 and SOX9) in chondrocytes isolated from the cartilage of patients with OA and
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induce cartilage degradation in bovine full depth explant [88,89]. It has also been shown
that IL-17 can increase IL-6 and TNF-α production in OA [87]. OA-prone guinea pigs had
a higher concentration of IL-17 in comparison to OA-resistant guinea pigs [90]. Moreover,
a weak correlation was observed in a longitudinal study of serum cytokines in Hartley
guinea pig OA between serum IL-17 and histological score (R2 = 0.16, p = 0.047) [91].
Furthermore, a single intra-articular IL-17 injection induces the depletion of proteoglycans
with no signs of inflammation, whereas repeated injection induces both inflammation and
proteoglycan degradation [92].

There are multiple studies with conflicting results investigating IL-17 in the serum
and synovial fluid of OA patients. We identified two studies that failed to demonstrate the
difference in concentration of IL-17 and the presence of Th17 cells in the serum of patients
with OA and the healthy control [93,94]. On the other hand, Qi et al. identified a statistically
significant increase in IL-17 concentration in the serum of OA patients. However, the
difference between OA and healthy controls is minor (approximately 2 pg/mL, based
on Figure 4) [95]. Similarly, Liu et al. have found slightly increased serum IL-17 in
OA patients (2.17 pg/mL in control vs. 6.04, 6.35, 6.00 and 5.85 in KL grades 1–4 of
OA, respectively). Although not statistically significant, a slight decrease in IL-17 serum
concentration is present in KL grade 4 vs. KL grade 1, 2 and 3 [96]. Conversely, another
study identified an increase in serum IL-17 only in patients with KL grade 4 OA compared
to control (6.161 vs. 4.173 pg/mL), suggesting that IL-17 is increased in patients with
more severe OA [97]. We identified two more studies that demonstrated an increase in
IL-17 in patients with OA; however, the IL-17 concentration measured in the serum was
remarkably higher than in the previous studies (mean values of 106.24 and 134.89 vs.
63.46 and 67.37 pg/mL) [98,99]. Furthermore, IL-17 seems to be negatively associated with
infrapatellar fat pat volume and positively associated with the severity of infrapatellar
fat pad signal intensity alteration [100]. Both variables are associated with OA, but the
observed association with IL-17 is rather tiny. In summation, these results demonstrate
high variance, and it is not clear whether IL-17 is altered in OA patients or not. More
importantly, the significance of a slight change in the serum IL-17 observed in most of the
studies is questionable, especially when changes in the IL-17 target receptors and the other
molecules affecting IL-17 signaling are unknown (unmeasured).

Regarding IL-17 in the synovial fluid, Chen et al. reported that IL-17 concentra-
tion from synovial fluid increases from KL grade 2 to KL grade 4, ranging from 5.565 to
8.701 pg/mL, and correlates with the severity of the knee OA graded using the Lequesne
index. Although the authors did not specifically comment on this, we observe that the con-
centration of the IL-17 in the synovial fluid is insignificantly higher than the concentration
in the serum [97]. Similarly, two studies reported no difference in the IL-17 measured in
the synovial fluid and the peripheral blood [84,101]. A recent study performed measure-
ments of several cytokines in the synovial fluid of patients that underwent total hip or
knee arthroplasty, including IL-17, and successfully detected IL-17 in only 14 out of 152
(9.6%). However, the authors suggest that IL-17 identifies an inflammatory OA type based
on observed increased IL-6, leptin, resistin, CCL7 and NGF in patients with detectable
IL-17 [102]. Similarly, it was reported that the serum IL-17 levels were not significantly
associated with cartilage defects and bone marrow lesions, except in a subgroup of patients
with hs-CRP of > 2.45 pg/mL, where a moderate association was demonstrated [103].

To date, numerous studies have investigated the association between IL-17 polymor-
phism and OA. Lee and Song conducted a meta-analysis and concluded that rs2275913 and
rs763780 polymorphism is a risk factor for developing OA [104,105].

2.1.6. IL-18

IL-18, a cytokine primarily identified as an IFN-γ-inducing factor, is a member of the
IL-1 family. It is produced, as a biologically inactive precursor (pro-IL-18), by a variety
of cells, including chondrocytes, osteoblasts, synoviocytes, macrophages, keratinocytes,
dendritic cells, astrocytes, microglia, respiratory epithelial cells and osteoblasts [106,107].
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The enzyme responsible for obtaining the active form of IL-18 is caspase-I, known as IL-1
converting enzyme [108].

IL-18 was found in elevated concentrations in the plasma, synovial fluid, and articular
cartilage of patients with OA compared with healthy controls, indicating the increased
local and systemic production of IL-18 in OA [106]. Furthermore, IL-18 levels, either
from plasma, synovial fluid or articular cartilage, were higher in advanced OA than in
early-stage OA; that is, they correlated with the radiographic severity of the disease [106].
Furthermore, a more recent study found that synovial fluid IL-18 levels correlated with the
severity of post-traumatic OA [109].

IL-18 achieves its effects by various mechanisms of action, which begin when IL-18
binds to its receptors, IL-18Rα and IL-18Rβ, both of which are expressed on chondro-
cytes [110]. Moreover, IL-18 induces an increase in the number of receptors on the chondro-
cyte surface and the synthesis of metalloproteinases, MMP-1, MMP-3 and MMP-13, the key
enzymes responsible for cartilage degradation [111]. Similar to IL-1β, IL-18 triggers signal
transduction via the NF-κB and MAPK-p38-AP1 signaling pathways and thus upregulates
COX-2 expression, thereby increasing PGE-2 synthesis in chondrocytes, which inhibits
proteoglycan production and aggrecan synthesis but also upregulates MMPs, leading to
cartilage degradation [107,112–114]. In addition, IL-18 increases the production of NO, a
cytotoxic free radical that is an independent factor in cartilage degradation and, unlike the
PGE-2 mechanism, is not inhibited by the use of anti-inflammatory drugs [113].

As OA is not a disease of the cartilage but rather of the whole joint, the effects of
inflammatory mediators in other tissues within the joint are also important [3]. Thus,
COX-2, NO and PGE-2 stimulate both catabolic and anabolic processes in the bone, leading
to bone resorption and the formation of osteophytes, respectively [115,116].

Furthermore, IL-18 induces the enhanced expression of genes for the synthesis of IL-6
and TNF-α in chondrocytes and synoviocytes, which further contributes to the fact that
one of the most important factors in the pathogenesis of OA is a complex vicious circle of
proinflammatory cytokines and other inflammatory mediators [110].

2.1.7. IL-21

Produced by NK cells, Th17 and follicular T-cells, IL-21 is another pleiotropic cytokine
involved in immune processes, including OA. The IL-21 signal is transduced when it
binds to its receptor (IL-21R) and the common cytokine receptor γ-chain, γc (shared by the
receptors for IL-2, IL-4, IL-7, IL-9 and IL-15), which are found in a variety of cell types [117].
The effect of IL-21 has been thoroughly explored in studies on RA, where its immunologic
function is used as a potential drug target [118,119]. In RA, IL-21 levels correlate with
IL-17 levels in the sera and synovial fluid of these patients, promoting the production of
Th17 cells that perpetuate the immune reaction. IL-21 levels also correlate with IL-6 levels,
and the inhibition of IL-6 lowers the concentration of IL-21 as well [117]. However, in OA,
its place in the underlying immunologic mechanism is still to be defined. In a study by
Scanzello et al. IL-21 was found in the majority of synovial fluid samples of patients with
cartilage degeneration [71]. A more recent study by Shan et al. increased the levels of
IL-21 and IL-21–follicular helper T-cells were found, which correlated with OA severity
measured by WOMAC scores and CRP levels, indicating the potential role of IL-21 as a
biomarker of OA [120].

2.1.8. IL-22

IL-22 is a member of the IL-10 family produced primarily by Th17 and NK cells. Other
cells producing IL-22 include macrophages, neutrophils and fibroblasts [121]. Higher IL-22
concentrations were found In RA and OA joints when there was active synovial inflamma-
tion, a common feature of RA but found in OA as well [122]. In OA patients, IL-22 was
increased in the synovial fluid and fibroblast-like synoviocytes, and IL-22 receptors were
elevated almost tenfold in chondrocytes. Conversely, no difference in IL-22 concentration
was observed in the serum of OA patients [123]. Constitutively expressed by fibroblast-like
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synoviocytes, IL-22 plays an important role in the pathophysiologic mechanism of OA
by promoting MMP-1 activity. The potential therapeutic strategy includes blocking this
signaling pathway, since it was shown that blocking JAK 2 and JAK 3 decreased the effect
of IL-22 on S100A8/A9 [124]. Indeed, in the experimental model of OA, IL-22R neutralizing
antibodies proved beneficial [123].

2.2. Anti-Inflammatory Cytokines
2.2.1. IL-4

IL-4 is a potent regulator of the immune system and is often called the prototypic
immunoregulatory cytokine. It is secreted by Th2 cells, eosinophils, basophils and mast
cells [125]. IL-4 is a protein consisting of 129 amino acids, and it takes the form of a
four-helix bundle [28].

Its biological effect is achieved by binding to a multimeric receptor system shared
with some other cytokines, such as IL-2 and IL-13. There are two different receptor
type complexes. Type 1 complex is formed by the dimerization of IL-4Rα and IL-2Rγc
and enables the attachment of IL-4, while the interaction between IL-4Rα and IL-13Rα1
forms type 2 complex, which enables the attachment of both IL-4 and IL-13 [28]. The
exact signaling pathway of IL-4 is still not clearly described, although there is some
relevant information regarding the initial intracellular events. It is known that the gradual
phosphorylation of the IL-4Rα/JAK1/STAT3/STAT6 cascade leads to the expression of
several proinflammatory genes [126].

There is evidence that polymorphism within the functional candidate gene IL4R is
associated with OA of the hand, knee and hip [127]. Silvestri et al. found that serum
soluble interleukin-4 receptor (sIL-4R) concentration was significantly higher in all OA
patients compared to the healthy control group. IL-4 concentration within the synovial
fluid and synovial cells was also increased [128,129]. CD4+ T-cells were detected in the
sublining layer of the synovium of patients with OA, and their number was significantly
higher than that of those in the same layer of healthy control. This suggests that the
production of IL-4 is primarily determined by T cells (Th2) infiltrating the synovium of the
joint [130]. It is worth mentioning that IL-4 has a noticeable chondroprotective effect. It
inhibits the secretion of MMPs metalloproteinases, reduces the variation in the production
of proteoglycans that are visible in the course of OA and, consequently, has an inhibiting
effect on the degradation of proteoglycans in the articular cartilage [131,132]. Furthermore,
IL-4 alone or in combination with IL-10 protects against blood-induced cartilage damage
and inhibits the apoptosis of both the chondrocytes and FLS [28,133]. Considering its
chondroprotective effect and the effect on other cell lineages, it is not surprising that IL-4
decreases the synthesis of inflammatory cytokines such as IL-1β, TNF-α and IL-6 [134]. In
addition, IL-4 also decreases the secretion of other inflammatory mediators such as PGE-2,
COX-2, PLA2 and iNOS [28].

2.2.2. IL-10

Another cytokine with pleiotropic anti-inflammatory properties is IL-10. IL-10, struc-
turally related to interferons, initiates its effect by binding to its receptor IL-10R—a het-
erodimer composed of IL-10R1 and IL-10R2 subunits. Mainly produced by immune cells,
IL-10 is also synthesized by chondrocytes, where it has a role in the complex mechanism
of cartilage extracellular matrix turnover [135]. Upon binding, IL-10R activates the JAK-
STAT kinase intracellular pathway and stimulates the expression of genes dependent on
IL-10 [28]. The end product of this stimulation is a net chondroprotective, antiapoptotic
and anti-inflammatory effect caused by the stimulation of type II collagen and aggrecan
synthesis, as well as the inhibition of MMP synthesis [135,136]. Alternatively, IL-10 ex-
presses its profound anti-inflammatory properties by the stimulation of IL-1β antagonist
synthesis by macrophages and the inhibition of TNFα, IL-6 and IL-12, thus opposing
their proinflammatory effect [28,137]. In vitro IL-10 treatment of cartilage injury model
demonstrated a chondroprotective effect and increased glycosaminoglycan content (GAG).
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Autologous chondrocyte implant grafts treated with IL-10 also demonstrated an improve-
ment in chondrocyte differentiation and cartilage matrix formation [138]. A recent study
observed decreased serum levels of IL-10 and the decreased IL-10/TNFα ratio in patients
with high-stage knee OA (Kellgren-Lawrence 4) compared with patients with moderate
knee OA (Kellgren-Lawrence 3), potentially indicating its prognostic value [139]. The
therapeutic effect of physical activity is often taken as an axiom in modern medicine. A
clinical study exploring the effect of physical activity on IL levels in 31 female OA patients
found increased levels of IL-10 intra- and periarticularly in a 3-h post-exercise period,
while IL-6 and IL-8 levels remained stable throughout, thus strengthening the recommen-
dation of physical activity for OA patients [140]. Studies also demonstrated that physical
activity promotes M” anti-inflammatory macrophage phenotype differentiation, which
in turn produces IL-10 and other anti-inflammatory chemokines and helps in achieving
a chondroprotective anabolic joint environment [141]. The effect of mesenchymal stem
cell (MSC) therapy on M2 macrophage differentiation has been established as one of the
mechanisms by which they stabilize micro-inflammation in knee OA [3,141,142]. Targeted
intraarticular plasmid DNA therapy was found to be safe and effective in a canine OA
study, highlighting a potential for further treatment options based on IL-10 activity in knee
OA [143].

2.3. Chemokines

Chemokines, also known as chemotactic cytokines, are small molecules with the
ability to induce chemotaxis in a wide variety of cells. They are best known for their effect
on the trafficking and guiding of immune effector cells to sites of infection or inflamma-
tion. Their wide range of action affects the proliferation, differentiation and activation of
cellular responses. Thus, chemokines play an important role in persistent and ongoing
inflammation in OA joints [5].

These small (8–12 kDa) protein ligands are divided into four families based on the
positioning of the N-terminal cysteine residues: C, CC, CXC and CX3C. In the CC family,
the cysteine residues are adjacent to each other. On the contrary, the CXC family is
characterized by the separation of the two cysteine residues by an amino acid. The vast
majority of known chemokines belong to these two families. The third identified chemokine
family is the C family, containing a single cysteine residue in the conserved position. Finally,
in the CX3C family, cysteine residues are separated similarly to the CXC family but by three
variable amino acids instead of one [144]. Chemokines achieve their effects by binding to
G-protein coupled cell-surface receptors. These receptors show different levels of binding
specificity and promiscuity, but they do not bind different groups of chemokines. For
example, CCR receptors bind only CCL chemokine ligands and CXCR receptors bind
CXCL ligands. In order to understand the importance of chemokines in the course of OA,
it is inevitable to mention their role in driving cellular motility during the inflammatory
response. Leukocytes express a specific set of chemokine receptors and migrate to sites
of infection or tissue damage along the gradients of their cognate chemokine ligands.
Furthermore, chemokines arrange the recruitment of pluripotent cell types to sites of tissue
repair. They perform a variety of functions aside from chemotaxis, including T helper
cell differentiation and function as well as angiogenesis, and have a pleiotropic effect on
multiple cell types related to the pathogenesis of OA [5,145].

The most important CC family chemokines that are related to OA are CCL2, CCL3,
CCL4 and CCL5 [5]. The monocyte chemoattractant protein-1 (MCP-1/CCL2) is a potent
chemotactic factor for monocytes that also recruits memory T-lymphocytes and natural
killer (NK) cells. Its effects are primarily associated with its binding to the CCR2 recep-
tor [146]. Elevated levels of CCL2 were found in the synovial fluid of patients with both
knee injuries and knee OA [147,148]. Miller et al. found that both CCL2 and CCR2 were
upregulated in the innervating dorsal root ganglia (DRG) of the knee 8 weeks after surgical
injury in a murine model [149]. The same authors did a follow-up study and reported
that CCL2 production by murine DRG neurons was induced by alarmin S100A8 and the
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plasma protein α2 macroglobulin, which are molecular “danger signals” strongly involved
in OA pathogenesis [150]. CCL2 (MCP-1) production is dependent on Toll-like receptor-4
(TLR-4) signaling. These findings imply that products of tissue damage and inflammation
during OA could stimulate nociceptive pathways. Genetic variation in the CCL2 gene may
be associated with knee OA [151]. CCL2 increases MMP-3 expression, which results in
proteoglycan loss and the degradation of cartilaginous tissue [152].

CCL3 (MIP-1α), CCL4 (MIP-1β), and CCL5 (RANTES) are other members of the CC
family that are also upregulated in OA. Zhao et al. investigated chemokine levels in the
plasma of 181 patients (75 control patients, 47 pre-radiographic knee OA patients and
50 radiographic knee OA patients) [153]. CCL3 in plasma showed the highest ability to
discriminate pre-radiographic knee OA patients from the control group. Levels in plasma
increased with the radiographic severity of the disease. Beekhuizen et al. found that CCL5
levels were among the most significantly elevated mediators in OA synovial fluid compared
with controls [60]. Another study that confirms this statement documented CCL5 levels
elevation in 18 additional patients [147]. It is worth mentioning that all of these three
chemokines are ligands for CCR5. Consequently, Takabe et al. found that CCR5 deficient
mice were partially protected against post-traumatic cartilage erosion [154]. There were no
signs of bone remodeling or synovial response to surgery, suggesting that CCR5 functions
primarily in cartilage during the development of post-traumatic OA. IL-1β-treated human
chondrocytes showed the significant upregulation of CCL3, CCL4 and CCL5 [155].

Chemokines from the CXC family that play a significant role in the pathogenesis
of OA are CXCL8 (IL-8) and CXCL12. IL-8 is a chemokine molecule, first described as
a chemoattractant of neutrophils. Today it is known that IL-8 exhibits effects on many
different cells, and it is researched in numerous diseases [156]. It is expressed by cells
of the immune system, most prominently CD8+ T cells, macrophages and monocytes,
but also by keratinocytes, fibroblasts, epithelial cells, hepatocytes and synovial cells [156].
It acts on CXCR1 and CXCR2 receptors expressed not only on leukocytes but also on
chondrocytes, osteoclasts, fibroblasts, epithelial and endothelial cells and on the cells of the
nervous system [156–158].

It has been shown on the human chondrocyte cell line (CHON-002) that IL-8 can be
upregulated by TNF-α [159]. Furthermore, IL-8 production is stimulated by advanced
glycation end products (AGEs) through NF-κB signaling, which are known to accumulate in
cartilage with age and stimulate catabolic metabolism in chondrocytes [160]. Additionally, it
has been shown that in human OA chondrocytes, IL-8 is regulated by DNA demethylation
that is affected by IL-1b signaling [161]. Free fatty acids also increase the production
of IL-8 in the osteoblasts of patients with OA but have little effect on IL-8 secretion in
osteoclasts [162]. Osteopontin is yet another molecule involved in the regulation of IL-8
expression, and it is known to stimulate IL-8 in chondrocytes [163]. The mechanical load
also increases IL-8 secretion in the chondrocytes of OA patients [164].

Without a doubt, IL-8 is significantly more expressed in the synovial tissue and
synovial fluid of patients with RA than in OA [165–170]. OA patients undergoing surgery
had 37-fold higher IL-8 expression in chondrocytes than patients undergoing surgery due
to a fracture of the neck of the femur (likely due to osteoporosis) [161]. Koh et al. have
shown that IL-8 is higher in the synovial fluid of OA patients than in young patients with
ligament injury [171]. This is also supported by animal studies demonstrating increased
IL-8 in dogs with OA [172,173]. Furthermore, it has been shown that IL-8 is also slightly
higher in the serum of OA patients than in healthy control [167,171]. IL-8 in synovial fluid
has been shown to correlate with the clinical severity of OA, but IL-8 in serum has not [174].
On the other hand, Ruan et al. have demonstrated a certain correlation between serum IL-8
and the clinically and radiologically assessed severity of OA [174,175].

IL-8 is also known to increase collagen I, MMP1- and MMP-13 protein concentration
and to enhance the phosphorylation of STAT3 and NF-Kb subunit p65 [159]. It can also
affect chondrocyte morphology by decreasing endogenous GTP-Cdc42 and increasing
stress fibers. HA concentration in the knee negatively correlates with IL-8 in synovial
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fluid [170]. In patients with a good response to sodium hyaluronate treatment in terms of
improvement of hydrarthrosis, there was a prominent reduction of IL-8 and IL-6 concentra-
tion following the treatment [170]. IL-8 also stimulates the hypertrophy of chondrocytes
and the calcifications of the matrix [157]. Further studies by the same group have shown
that IL-8 increases the expression of PiT-1 expression and stimulates the uptake of inorganic
phosphate in chondrocytes [176].

CXCL12, also known as stromal cell-derived factor-1 (SDF-1), is a chemokine that
plays a key role in tissue regeneration. It mobilizes mesenchymal stem cells (MSCs) to sites
of injury by binding to CXCR4 [177]. Shen et al. confirmed this statement by studying the
effects of human meniscus-derived stem/progenitor cells (hMeSPCs) in a rat meniscectomy
model [178]. hMeSPCs were injected intra-articularly after meniscectomy and homed to
the injured meniscus. The meniscal repair was superior in the hMeSPCs-treated mice, with
significantly reduced cartilage degeneration. In a study consisting of 252 patients with
knee OA and 144 healthy controls, CXCL12 levels in the synovial fluid were closely related
to the radiographic severity of OA [179]. Besides their effect on MSCs, there is evidence
that articular chondrocytes express CXCR4, and CXCL12 also induces MMP13 and some
other catabolic mediators. The disruption of these catabolic events could be achieved by
the pharmacological blockade of CXCL2/CXCR4 signaling. Thus, the disruption of the
CXCL12/CXCR4 signaling can be used as a therapeutic approach to attenuate cartilage
degeneration in OA [180]. Taking into consideration all of the above, it is obvious that
CXCL12 has diverse effects that depend on cellular targets.

3. Conclusions

The pathogenesis of OA is largely determined by the imbalance of proinflammatory
and anti-inflammatory mediators, leading to low-grade inflammation, which is respon-
sible for cartilage degradation, bone remodeling and synovial proliferation [181]. Many
cytokines, by activating multiple signaling pathways, increase COX-2 expression and
consequently PGE-2, which subsequently affects cartilage degradation and osteophyte
formation. COX-2 inhibitors such as nonsteroidal anti-inflammatory drugs, which are
generally listed as first-line drugs in the relevant guidelines, do not slow down disease
progression [182]. The potential answer to this problem lies in the finding that the activa-
tion of signaling pathways such as NF-κB and MAPK also activates other mechanisms that
lead to OA progression that are not affected by NSAIDs. However, changes in lifestyle
habits, such as diet, supplementation and physical activity, can lead to improvements in
OA symptoms, even before drug therapies, and it would be of great value to continue
research on the mechanism of lifestyle changes on cytokines modulation and slowing OA
progression, as it could provide valuable new findings [183–186]. Furthermore, targeting
major cytokines in the development of OA, such as IL-1β and TNF-α, and suppressing their
effects did not offer the expected results in clinical studies [18–20,187,188]. Since in OA
the effects of one cytokine are not necessarily dependent on the activation of another, the
suppression of one cytokine may not sufficiently contribute to stopping the inflammation
and the production of matrix-degrading enzymes. Therefore, biological treatment methods
such as the application of mesenchymal stem cells, which have various anti-inflammatory
effects and have obtained significant clinical effects in numerous studies, deserve atten-
tion in future research in terms of proving the role of certain anti-inflammatory factors
in suppressing OA progression [189–195]. This potential future research should take into
consideration the effect of these therapeutic options on the interplay between different
cytokines. Therefore, it would be imprudent to choose a single cytokine to measure the
therapeutic effect, as the change of a single variable does not necessarily reflect the change
at the level of cellular interactions.

In conclusion, much further research is needed to fully understand the role of cy-
tokines and chemokines in the onset and progression of OA. The epigenetic regulation of
cytokine synthesis is also an interesting area to be explored and could offer new solutions
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in OA management. A sound biological understanding is necessary for any therapeutic
intervention to be successful in treating OA patients.
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195. Borić, I.; Hudetz, D.; Rod, E.; Jeleč, Ž.; Vrdoljak, T.; Skelin, A.; Polašek, O.; Plečko, M.; Trbojević-Akmačić, I.; Lauc, G.; et al. A
24-month follow-up study of the effect of intra-articular injection of autologous microfragmented fat tissue on proteoglycan
synthesis in patients with knee osteoarthritis. Genes 2019, 10, 1051. [CrossRef] [PubMed]

http://doi.org/10.1038/s41598-021-84582-2
http://www.ncbi.nlm.nih.gov/pubmed/33664374
http://doi.org/10.1007/s10067-019-04718-8
http://doi.org/10.1002/art.20748
http://doi.org/10.1155/2013/561098
http://doi.org/10.5966/sctm.2012-0170
http://www.ncbi.nlm.nih.gov/pubmed/24448516
http://doi.org/10.1097/JIM.0000000000000150
http://doi.org/10.1186/ar4242
http://doi.org/10.1038/nrrheum.2016.136
http://www.ncbi.nlm.nih.gov/pubmed/27539668
http://doi.org/10.3390/ph14030205
http://doi.org/10.1007/s40520-019-01191-w
http://www.ncbi.nlm.nih.gov/pubmed/30982220
http://doi.org/10.1016/j.smhs.2021.02.005
http://doi.org/10.1136/annrheumdis-2014-207169
http://doi.org/10.3390/nu9090949
http://doi.org/10.1186/ar3430
http://www.ncbi.nlm.nih.gov/pubmed/21801403
http://doi.org/10.1136/ard.2011.149849
http://doi.org/10.1038/s41598-017-15376-8
http://doi.org/10.2147/JIR.S256932
http://doi.org/10.4252/wjsc.v6.i5.552
http://doi.org/10.3390/genes8100270
http://doi.org/10.3325/cmj.2019.60.227
http://www.ncbi.nlm.nih.gov/pubmed/31187950
http://doi.org/10.3390/genes10060474
http://www.ncbi.nlm.nih.gov/pubmed/31234442
http://doi.org/10.3390/genes10121051
http://www.ncbi.nlm.nih.gov/pubmed/31861180

	Introduction 
	Cytokines and Chemokines Involved in Knee Osteoarthritis Pathogenesis 
	Proinflammatory Cytokines 
	IL-1 
	TNF- 
	IL-6 
	IL-15 
	IL-17 
	IL-18 
	IL-21 
	IL-22 

	Anti-Inflammatory Cytokines 
	IL-4 
	IL-10 

	Chemokines 

	Conclusions 
	References

