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Vitamin D has been a focus of attention in liver cancer due 
to its direct and indirect antineoplastic effects. This review 
critically evaluates data from recently published basic and 
clinical studies investigating the role of vitamin D in liver 
cancer. Basic studies indicate that vitamin D plays an im-
portant role in liver cancer development by suppressing 
the activity of hepatic stellate cells and Kupffer cells. Fur-
thermore, vitamin D has a direct anti-proliferative, anti-ang-
iogenic, proapoptotic, and prodifferentiative effect on liver 
cancer cells. Recent investigation suggested several inter-
esting mechanisms of these actions, such as inactivation 
of Notch signaling, p27 accumulation, and tyrosine-pro-
tein kinase Met/extracellular signal-regulated kinases inhi-
bition. On the other hand, data from clinical observational 
studies, although promising, are still inconclusive. Unfortu-
nately, studies on the effect of vitamin D supplementation 
were generally focused on short-term outcomes of chron-
ic liver diseases (liver enzyme levels or elastographic find-
ing); therefore, there are still no reliable data on the effect 
of vitamin D supplementation on liver cancer occurrence 
or survival.
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Numerous observational studies emphasized a possible 
link between vitamin D deficiency and cancer risk. The as-
sociation was first established for cancers with a greater 
incidence in high-latitude regions, where vitamin D defi-
ciency is more prevalent, such as colon cancer. Although 
liver cancers, due to a strong association with known risk 
factors such as hepatitis B (HBV) and C virus (HCV) and al-
cohol abuse, do not follow this latitude-related pattern, re-
cent studies have suggested that vitamin D may still have a 
role in liver cancer development. This review critically eval-
uates data from basic and clinical studies investigating the 
possible role of vitamin D in liver cancer.

Pathophysiological background

Principal liver cells, hepatocytes, usually express a very low 
level of vitamin D receptor (VDR) or none at all. However, 
VDR is highly expressed in nonparenchymal liver cells such 
as Kupffer cells, hepatic stellate cells, and sinusoidal en-
dothelial cells, which play an important role in liver tumor 
development (1). The main effects of vitamin D on various 
liver cells are summarized in Table 1.

The most abundant expression of VDR in the liver was 
found in Kupffer cells. The effect of VDR activation in 
these cells is anti-inflammatory. The activation of VDR in 
Kupffer cells reduces the degree of lipopolysaccharide-
induced activation by decreasing the secretion of inter-
leukin (IL)-6, IL-1, and tumor necrosis factor alpha (TNF-
alpha) (2). Similarly, VDR diminishes the induction of 
endoplasmatic reticulum stress by tunicamycin and sub-
sequent inflammatory response (3). As pro-inflammato-
ry milieu in the liver is associated with cancerogenesis, 
these mechanisms might partially explain the vitamin D 
anticancer properties.

Hepatic stellate cells, critical contributors to liver fibrosis, 
also express a significant amount of VDR. Various in vitro 
studies reported that inhibitory effect of VDR agonists on 
primary murine hepatic stellate cells (4) or human cell lines 
HSC-T6 and LX-2 (5-7) is mediated by a decrease in trans-
forming growth factor-beta (TGF-β)/Smad signaling (7). 
These findings suggest that vitamin D may suppress liver 
fibrosis occurrence and progression, thereby decreasing 
liver cancer risk.

Although healthy hepatocytes do not express a significant 
amount of VDR, the expression may change in certain dis-

eases. Hepatocyte expression of VDR was induced in 
non-alcoholic fatty liver disease (NAFLD) (8) and de-

creased in non-alcoholic steatohepatitis (NASH) or chronic 
hepatitis C (8,9). However, VDR activation in hepatocytes 
could promote lipid accumulation and contribute to steato-
sis development (8-10). Whether VDR effects on nonparen-
chymal cells override the potentially harmful effects of VDR 
stimulation in parenchymal cells is still controversial.

Cholangiocyte expression of VDR is high (1,11). VDR activa-
tion regulates the expression of the antimicrobial peptide 
cathelicidin in biliary epithelial cells, and ursodeoxycholic 
acid and vitamin D induce cathelicidin expression through 
a VDR-dependent mechanism (12). The absence of VDR 
aggravates cholestatic liver injury in mice through disrup-
tion of biliary epithelial cell junctions (13). VDR deficiency 
might also promote sustained inflammatory response in 
primary biliary cholangitis (14). Furthermore, the vitamin 
D/VDR pathway affected the extent of injury and fibrosis 
in a mouse model of sclerosing cholangitis (Abcb4 knock-
out mice) (15,16). Mice on a low-vitamin D diet exhibited a 
higher level of fibrosis (15). In contrast, VDR knockout mice 
had an increased cholestatic liver injury level and a signifi-
cant lifespan reduction (16).

LIVER CANCER MODELS AND LIVER CANCER CELL LINES

During the last decades, several vitamin D properties 
that may hamper cancer development and growth have 
emerged, such as anti-proliferative, anti-inflammatory, anti-
angiogenic, proapoptotic, and prodifferentiative effect (17-
19). However, in terms of liver cancer cells, the most promi-
nent effect of vitamin D is the inhibition of proliferation.

Multiple in vitro and in vivo studies have shown that sup-
plementation with either vitamin D or vitamin D analogs 
inhibits the proliferation of various liver cancer cell lines 
and reduces the size of the tumors in mice (20-28). The 
anti-proliferative effect could be ascribed to disruption of 
hepatocyte growth factor/tyrosine-protein kinase Met/ex-
tracellular signal-regulated kinases (HGF/c-met/ERK) sig-
naling pathway by vitamin D-induced downregulation of 
c-met and ERK (23), modulation of E-cadherin, and Akt ex-
pression (28), and/or induction of cell cycle arrest presum-
ably due to p27 protein accumulation (25). Furthermore, 
treatment with vitamin D decreases the expression of his-
tone deacetylase 2 (HDAC2) and increases the expression 
of p21 (WAF1/Cip1) in HepG2 cells, resulting not only in 
decreased cell growth but also in the induction of apop-
totic cell death (26). Apoptosis could be induced through 
extrinsic and intrinsic pathways, as vitamin D treatment 
upregulates death receptor 5 and Bax protein expressions 
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along with Bcl-2 downregulation. These findings were fur-
ther confirmed in vivo as vitamin D-treated mice exhibit-
ed suppressed growth of xenograft human hepatocellular 
carcinoma (HCC) with a large area of necrosis (27).

Vitamin D may also affect TGF-β signaling in the liver. TGF-β 
is a pleiotropic cytokine that exhibits opposite functions 
depending on the context: it acts as a tumor suppressor 
in normal hepatocytes and early stages of tumorigenesis, 
but it can also promote tumor development in later stag-
es, and it is highly expressed in HCC tissue (29-31). Vitamin 
D deficiency increases the tumor burden in TGF-β/Smad3-
deficient mice through modulation of toll-like receptor 7 
expression and β-catenin activation. Additionally, vitamin 
D supplementation restored the Smad3 expression in cir-

rhosis and HCC patients and reduced β-catenin expres-
sion in liver tissue of HCC patients, providing a rationale 
for vitamin D treatment in specific patients with disrupted 
TGF-β signaling (32). On the other hand, in later stages of 
the disease, the downregulation of TGF-β signaling may be 
beneficial. In this context, the finding that vitamin D treat-
ment significantly reduces TGF-β level and Smad3, Snail, 
and matrix metalloproteinase-2 gene expression in experi-
mental HCC model in rats, along with improvement of a 
histopathological picture, sounds promising (33).

Several other mechanisms involving vitamin D may atten-
uate carcinogenesis in the liver. Vitamin D stimulates the 
expression of thioredoxin-interacting protein (34) and in-
activates Notch signaling in liver cancer cell lines, leading 

Table 1. The main effects of vitamin D or its analogs on various liver cells*

Cell type Main effects

Hepatocytes A very low level of VDR expression
Expression is induced in NAFLD but decreased in NASH or chronic hepatitis C (8,9)
VDR activation might be associated with lipid accumulation and contribute to steatosis development (8,10)

Kupffer cells Abundant expression of VDR that exhibits anti-inflammatory effects upon activation:
VDR activation suppresses the LPS-induced inflammation and downregulates IL-6, TNF, and IL-1b expression 
(2)
VDR activation mitigates inflammatory response in macrophages following ER stress challenge (3)

Hepatic stellate cells Significant VDR expression
Vitamin D and its analogs exert inhibitory effects on primary murine hepatic cells or human cell lines, possibly 
through inactivation of TGF-β/Smad signaling (5-7)

Cholangiocytes High VDR expression with immunoregulatory functions
Ursodeoxycholic acid and vitamin D induce the expression of antimicrobial peptide cathelicidin through a 
VDR-dependent mechanism (12)
VDR deficiency promotes cholestatic liver injury through disruption of biliary epithelial cell junctions (13)
Vitamin D or its analog ameliorate liver injury through a VDR-independent pathway (16)

Liver cancer cells VDR is expressed in human liver cancer cell lines and specimens of human HCC (1,22,23)
KLF4 might play a pivotal role in the regulation of VDR expression in HCC (39)
Supplementation with vitamin D or its analogs inhibits the proliferation of cancer cell lines and induces 
apoptosis through several mechanisms:
disruption of HGF/c-met/ERK pathway due to downregulation of c-met and ERK (23)
increase in E-cadherin and decrease in Akt expression (28)
induction of cell cycle arrest through p27 accumulation (25)
decreased HDAC2 with increased p21 (WAF1/Cip1) expression and subsequent modulation of p53, Bax, DR5, 
caspase 8, and Bcl-2 protein expressions (26,27)
modulation of TLR7 expression and β-catenin activation (32)
stimulation of TXNIP expression, inactivation of Notch signaling and/or p27(kip1)-dependent suppression of 
proinflammatory cytokines secretion (34-36)

Cholangiocarcinoma VDR expression in human cholangiocarcinoma tissue specimens (41-43)
Treatment with vitamin D or analogs impairs proliferation and induces apoptosis in cultured cells. Proposed 
mechanisms include induction of cell cycle arrest through regulation of cyclin D1, cyclin D3, CDK4, CDK6, p21, 
and/or p27 (44-47)
VDR dependent downregulation of LCN2 expression (46,47,49)

*Abbreviations: CDK – cyclin dependent kinase; c-met – tyrosine-protein kinase Met; DR – death receptor; ER – endoplasmic reticulum; ERK – extra-
cellular signal-regulated kinases; HCC –hepatocellular carcinoma; HDAC2 – histone deacetylase 2; HGF – hepatocyte growth factor; IL-6 – interleu-
kin-6; KLF4 – Krüppel-like factor 4; LCN2 – lipocalin 2; LPS – lipopolysaccharide; NAFLD – nonalcoholic fatty liver disease; NASH – nonalcoholic ste-
atohepatitis; Smad – mothers against decapentaplegic homologue; TGF-β – transforming growth factor beta; TLR – toll-like receptor; TNF – tumor 
necrosis factor; TXNIP – thioredoxin interacting protein; VDR – vitamin D receptor.
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to anti-proliferative, anti-invasive, and proapoptotic effects 
(35). Vitamin D also decreases the secretion of pro-inflam-
matory cytokines from immune cells in a p27(kip1)-depen-
dent way, hence undermining HCC development (36). The 
anti-tumor effect also may be exerted through the protec-
tion of hepatic progenitor cells. Vitamin D suppresses the 
aflatoxin B1-induced proliferation and dedifferentiation of 
liver progenitor cells (37).

VDR is expressed in both human liver cancer cell lines, es-
pecially HepG2 cell lines and specimens of human HCC 
(1,22,23). However, in certain circumstances, VDR expres-
sion may be reduced in liver cancer tissue, providing an 
escape mechanism from vitamin D effects (38,39). Fur-
thermore, the tumor suppressor Krüppel-like factor 4 
(KLF4) plays a pivotal role in regulating VDR expression in 
HCC. While decreased or lost KLF4 expression correlates 
with decreased VDR expression, overexpression of KLF4 
upregulates VDR and sensitizes the cells to the vitamin 
D effects (39). Therefore, the cancer cell response to vita-
min D treatment also depends on the expression of VDR 
in these cells. The finding that VDR expression might be 
upregulated by antihistamines, such as astemizole, which 
leads to the synergistic effect of astemizole and vitamin D 
(40), provides novel insights and confers the conclusion 
that additional basic studies are still warranted in order to 
elucidate detailed mechanisms and provide new targets 
for HCC treatment.

VDR expression was also found in human cholangio-
carcinoma (CCA) tissue specimens (41-43). As in HCC, 
the treatment with vitamin D and/or vitamin D analogs 
showed beneficial effects in CCA cell cultures and in vivo 
models of CCA (41-47). Vitamin D or its analogs signifi-
cantly impaired proliferation (41,42) and induced apop-
tosis in cultured cells (44), suppressed cholangiocarcino-
genesis (43,48) and significantly inhibited tumor growth 

and progression in murine models of CCA (43,44,47). Sev-
eral studies examined the mechanisms behind these ef-
fects, suggesting that vitamin D induces cell cycle arrest 
through regulation of cyclin D1 (44,45), cyclin D3 (47), 
p21 (44), and p27 expression (47). Furthermore, vitamin 
D/VDR signaling is involved in regulating the expression 
of lipocalin 2 (LCN2), an oncogene highly expressed in 
human intrahepatic cholangiocarcinoma tissue. Vitamin 
D significantly downregulates the expression of LCN2, 
which attenuates proliferation. This was further con-
firmed in LCN2 knockdown settings, where the loss of 
LCN2 made the cells less responsive to vitamin D or its 
analog treatment (46,47,49).

Data from observational clinical studies

The relationship between vitamin D and predisposing dis-
eases for liver cancer such as NAFLD, alcoholic liver dis-
eases, or viral hepatitis has been extensively investigated, 
often with conflicting results (50,51). On the other hand, 
mounting data suggest that vitamin D deficiency reflects 
hepatic dysfunction, and as such, is associated with mortal-
ity in patients with liver cirrhosis, regardless of the under-
lying causes (52,53). In the context of liver cancer, higher 
VDR gene promoter methylation was detected in the HCC 
tissue (54). Data from vitamin D studies investigating liver 
cancer occurrence are summarized in Table 2.

The Chinese Linxian Nutrition Intervention Trials showed 
no significant associations between the risk of liver cancer 
occurrence and serum vitamin D levels. However, the risk 
estimates decreased across increasing quartiles of vitamin 
D concentrations (55). A large case-control study by Bud-
hathoki et al (56) reported an inverse association between 
the pre-diagnostic vitamin D levels and liver cancer, which 
was independent of dietary factors or viral hepatitis infec-
tion. Interestingly, they found no association between vita-

Table 2. Studies investigating vitamin D and liver cancer occurrence

Incidence study
Number 

of patients Key findings
Chinese Linxian Nutrition Intervention 
Trials (55)

255 modest evidence for associations with incident liver cancer, which became signifi-
cant only among participants with higher baseline serum calcium

Nested case-control study within the 
European Prospective Investigation into 
Cancer and Nutrition (EPIC) cohort (57)

138 higher vitamin D levels were associated with a 49% reduction of HCC; the finding 
did not vary by time from enrolment to diagnosis, or changed after adjustment for 
biomarkers of preexisting liver damage or chronic HBV or HCV infection

Japan Public Health Center-based 
Prospective Study cohort (56)

110 vitamin D concentration was inversely associated with liver cancer, with corre-
sponding hazard ratios for trend of 0.45 (0.26 to 0.79) (P = 0.006)

Sir Run Shaw Hospital, China (59) 100 vitamin D level greater than 20 ng/mL increased HCC risk (odds ratio 7.56, 95% con-
fidence interval 4.58–12.50)

*Abbreviations: HCC – hepatocellular carcinoma; HBV – hepatitis B virus; HCV – hepatitis C virus.
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min D and other investigated cancers (gastric, rectal, colon, 
or lung cancer). Fedirko et al (57) previously reported simi-
lar findings in a nested case-control study within the EPIC 
cohort study. However, the EPIC cohort also demonstrated 
that a dairy-source vitamin D increased the risk of HCC. In 
contrast, a non-dairy source showed no association (58). 
Contrary to this, a recent study by Liu et al reported a high-
er vitamin D level among post-diagnostically sampled HCC 

patients (59). Except for the sampling time point, the stud-
ies further differed in many other important patient char-
acteristics (diet, lifestyle, environmental exposures, and 
HCC risk factor profiles), which explains divergent results.

The prognostic value of vitamin D in liver cancer has been 
investigated in several trials (Table 3). A prospective Ger-
man study showed that newly diagnosed HCC patients 

Table 3. Studies investigating vitamin D levels and liver cancer survival*

Survival study
Number 

of patients Key findings
German Prospective cohort study (60) 200 low levels of vitamin D were associated with increased mortality risk from HCC 

independently of the MELD score and high AFP levels
Nested study form Alpha-Tocopherol, 
Beta-Carotene Cancer Prevention Study in 
Finnish smoker population (61)

206 higher levels of vitamin D were not significantly associated with better survival 
of liver cancer patients in a population of Finnish smokers

Guangdong Liver Cancer Cohort study (62) 1031 higher bioavailable vitamin D levels were significantly associated with better 
survival, independent of Barcelona Clinic Liver Cancer stage, cancer treatment, 
and serum C-reactive protein
neither total nor free vitamin D levels were significantly associated with survival

*Abbreviations: AFP – alpha-fetoprotein; HCC – hepatocellular carcinoma; MELD – Model for End-Stage Liver Disease.

Table 4. Studies on vitamin D-related single nucleotide polymorphism and liver tumor development

Reference Etiology/population/N VDR SNPs Key points

Falleti et al (63) HCV, HBV, ALD/
Italian/80 HCC, 236 healthy 
controls

VDR gene
FokI
BsmI
ApaI
TaqI

Association with HCC was found for b/b genotype of BsmI, T/T 
genotype of TaqI, absence of the A-T-C protective allele of BAT, and 
carriage of the BAT A-T-C and G-T-T haplotypes

Hoan et al (66) HBV/Vietnamese/171 HCC,
183 CHB,
89 LC,
238 healthy controls

VDR gene
FokI
BsmI
ApaI
TaqI

ApaI CA genotype is less frequent, and APAL AA is more frequent in 
HCC vs CHB patients
No association between TaqI, FokI, and BsmI polymorphisms and 
any clinical outcome was found

Barooah et al (65) HCV/
Indian/
60 HCC,
167 CHC,
124 LC,
102 healthy controls

VDR
BsmI
ApaI
TaqI

ApaI CC genotype, ApaI C allele, and bAt haplotype were signifi-
cantly associated with liver cancer
paI CC genotype and bAt haplotype were independent predictors 
of HCC development

Rafat Rowida et al (64) HCV/
Egyptian/
80 HCC,
80 LC,
80 healthy controls

VDR gene
Apa1

Apa1 CC is associated with greater risk for HCC development. It is 
also associated with a more severe Child-Pugh score and MELD 
score (P < 0.05)

Peng et al (67) HBV/
Chinese/
184 HCC,
296 HBV non-HCC, 180 
healthy controls

VDR gene
Fok1
rs3782905
Cdx2
DBP gene
rs7041

Fok1 T allele and rs7041 G allele were associated with a significantly 
increased HBV-related HCC risk
no significant effect of VDR rs11568820, and rs3782905 polymor-
phisms on HBV-related HCC risk

*Abbreviations: ALD – alcoholic liver disease; CHB – chronic hepatitis B, CHC – chronic hepatitis C; HCC – hepatocellular carcinoma; HBV – hepatitis B 
virus; HCV – hepatitis C virus; LC– liver cirrhosis; MELD – Model for End-Stage Liver Disease; SNP – single nucleotide polymorphism; VBP– vitamin D 
binding protein; VDR – vitamin D receptor.
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with serum total 25-hydroxyvitamin D (25(OH)D)≤10 ng/
mL had significantly decreased overall survival compared 
with patients with 25(OH)D>10 ng/mL (60). A Finnish Al-
pha-Tocopherol, Beta-Carotene Cancer Prevention Study 
demonstrated that liver cancer patients with higher total 
25OHD levels (up to 28 years before cancer diagnosis) had 
a suggestive, although not significant, improvement in liv-
er cancer-specific survival (61). In a recent Chinese study, 
Fang et al (62) showed that higher serum bioavailable vi-
tamin D levels (calculated from measured free vitamin D, 
albumin, and affinity constant between 25(OH)D and albu-
min) rather than total vitamin D levels were independently 
associated with improved survival. Data on vitamin D role 
in CCA are scarce. We identified two studies that reported 
better survival of patients with higher VDR expression in 
resected tumor tissue (42,47).

The results of the studies on single nucleotide polymor-
phism further support the link between vitamin D and liv-
er tumor development (Table 4). VDR polymorphism was 
associated with a risk of HCC occurrence in an alcoholic- 
(63), HCV- (64,65), and HBV- (66,67) related cirrhosis. There 

are still no published studies regarding the association be-
tween the VDR polymorphism and CCA.

Data from clinical supplementation studies

In the last five years, numerous studies have investigat-
ed the effect of vitamin D supplementation on various 
chronic liver diseases. However, these studies were gener-
ally focused on short-term outcomes (liver enzyme levels 
or elastographic finding), and we found no reliable data 
on the effect of vitamin D supplementation on liver can-
cer occurrence or survival. The results are limited to one 
uncontrolled trial that suggested a weak effect of vitamin 
D analog, seocalcitol, in patients with inoperable HCC, and 
a pilot study that reported serious adverse effects in CCA 
patients treated with high-dose calcitriol in combination 
with chemotherapeutic drugs (68,69).

Conclusion

The main effects of vitamin D on processes involved in liver 
cancer development are summarized in Figure 1. After re-

Figure 1. Summary of main effects of vitamin D on processes involved in liver cancer development. CCA – cholangiocarcinoma; 
CDK – cyclin dependent kinase; c-met – tyrosine-protein kinase Met; ERK – extracellular signal-regulated kinases; HCC –hepatocel-
lular carcinoma; HSC – hepatic stellate cell; IL-1 – interleukin-1, IL-6 –interleukin-6; KC – Kupffer cell; LCN2 – lipocalin 2; SNP – single 
nucleotide polymorphism; TGF-β – transforming growth factor beta; TNF – tumor necrosis factor; VDR – vitamin D receptor; vit D – 
vitamin D.
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viewing recently published studies, we conclude that basic 
studies conducted on cell lines or animals provided com-
pelling evidence that vitamin D plays an important role in 
liver cancer development. On the other hand, data from 
clinical observational studies, although promising, are 
still inconclusive. Studies on the effect of vitamin D sup-
plementation were generally focused on short-term out-
comes of chronic liver diseases. There are still no reliable 
data on the effect of vitamin D supplementation on liver 
cancer occurrence or survival, and its role should be fur-
ther investigated in clinical studies.
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